
 

 

FACULTY OF MEDICINE 
INSTITUTE OF MEDICAL BIOLOGY 

 
Impact of chromatin in lupus nephritis and lupus 

dermatitis 

– mechanisms of induction and progression of disease 
 

 

 

 

Silje Fismen 

A dissertation for the degree of Philosophiae doctor 
June 2011  



 



 

 

 

Impact of chromatin in lupus nephritis and lupus dermatitis 

– mechanisms of induction and progression of disease 

 

 

Silje Fismen, Cand.med. 

 

 

 

 

 

A dissertation for the degree Philosophiae doctor 

June 2011 

 

 

 

UNIVERSITY OF TROMSØ 

Institute of Medical Biology 

 

 



 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Contents 
           
1 Acknowledgements         1 
 
2 List of papers          2 
 
3 Abbreviations          3 
 
4 Summary          4 
 
5 Introduction          6 
 5.1 Systemic lupus erythematosus - a brief historical perspective   6 

5.2 Autoimmunity and disease        7 
 5.3 SLE and autoimmunity        8 
 5.4 Autoantibodies         9 
  5.4.1 Anti-dsDNA antibodies       9 

5.4.2 The role of chromatin- anti-DNA antibody complexes in induction  13 
and progression of disease        
5.4.3 SLE and the clearance of dead cells     14 
5.4.4 Murine models in SLE       16 

 5.5 Lupus dermatitis         17 
 5.6 Lupus nephritis         21 

5.6.1 Clinical considerations and the ISN/RPS classification system for   21 
 lupus nephritis 
5.6.2 The pathogenesis of lupus nephritis     22 

 5.7 The role of DNaseI in SLE        26 
 
6 Aims of the thesis         27 
 
7 Summary of experimental results       28 

7.1 Paper I          28 
7.2 Paper II          30 
7.3 Paper III          31 
7.4 Paper IV          32 

  
8 Discussion          33 
 8.1 Immune complex deposition and its importance in disease progression in   33 

lupus nephritis and lupus dermatitis        
 8.2 Acquired loss of DNaseI activity and the role of matrix metalloproteinases  36 
 8.3 The unsettled role of Trap1 and the need for further studies     39 

8.4 Limitations of the studies         40 
 
9 Concluding remarks         41 
 
10 References          43 
 
11 Papers           60
          
12 Appendix 
  
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 



 1

 1 Acknowledgements 

First of all I would like to express my enormous gratitude to my supervisors; professor Ole 

Petter Rekvig and professor Elin Mortensen. I am grateful for your professionalism, the open 

doors to your offices, your patience and your confidence. Your enthusiasm and interest in 

research have been invaluable in trying to decipher the complexities of molecular 

immunology.   

I am compelled to thank the former and the present Head of Department of Pathology, Vidar 

Isaksen and Tor-Arne Hanssen, for facilitating good research conditions and for their 

willingness to let me concentrate on lab work for extended periods.  

I am particularly grateful to Kristin Fenton, Annica Hedberg and Natalya Seredkina for your 

guidance and for countless fruitful discussions concerning both research matters and the real 

world beyond the lab.  

I would like to thank former and present members of the research group; Jørgen Benjaminsen, 

Premasany Kanapathippillai, Dhivya Thiyagarajan, Anders Tveita, Berit Tømmerås, Svetlana 

Zykova, Stine Figenschau and Janne Mjelle for sharing not only gloomy days of experimental 

failures but also the enthusiasm of promising scientific results. 

 

I would like to acknowledge Randi Olsen and Helga-Marie Bye at the Electron microscopy 

department for superb technical help and for sharing your expertise. I would also like to 

acknowledge the Animal department for excellent care and breeding of the mice.  

 

I express my gratitude to Chris Fenton for invaluable help with statistical analyses and to 

professor Søren Jacobsen, Elisabeth Krarup and Anne-Lise Kamper at Copenhagen University 

Hospital Rigshospitalet for collecting research material.  

 

Finally, I am indebted to my family for continuous support and encouragement. 

 

The studies in this thesis were carried out at the Institute of Medical Biology, University of 

Tromsø, during the years 2007-2011 and funded by grants from the University of Tromsø and 

from Helse Nord HF.  



 2

2 List of papers 

I Circulating chromatin-anti-chromatin antibody complexes bind with high 
affinity to dermo-epidermal structures in murine and human lupus nephritis. 

Fismen S, Hedberg A, Fenton KA, Jacobsen S, Krarup E, Kamper AL, Rekvig OP, Mortensen 
ES. Lupus. 2009 Jun;18(7):597-607. 
 

II Deposition of chromatin-IgG complexes in skin of nephritic MRL-lpr/lpr mice is 
associated with increased local matrix metalloprotease activities.  

Hedberg A, Fismen S, Fenton KA, Mortensen ES, Rekvig OP. Exp Dermatol. 2010. Aug 19 
(8), e265-74. 

 
III Anti-dsDNA Antibodies Promote Initiation, and Acquired Loss of Renal DNaseI 
Promotes Progression of Lupus Nephritis in Autoimmune (NZBxNZW)F1 Mice 

Fenton KA#, Fismen S#, Hedberg A, Seredkina N, Fenton C, Mortensen ES, Rekvig OP. 
PLoS One. 2009 Dec 29;4(12):e8474 

# These authors contributed equally to this work. 

 
IV Renal upregulation of Trap1 and p62/SQSTM1 is associated with DNaseI 
downregulation during progression of murine and human lupus nephritis. 
 
Fismen S, Thiyagarajan D,  Jacobsen S, Fenton C, Krarup E, Kamper AL, Rekvig OP, and 
Mortensen ES. Manuscript submitted.  

 

 

 

 

Appendix  

V Pathogenesis of SLE Dermatitis – A Reflection of the Process in SLE Nephritis?  
Fismen S, Rekvig OP and Mortensen ES 
CurrentRheumatologyReviews, Volume 3, Number 2, May 2007. Review 

 

VI  Nuclease defiencies promote end-stage lupus nephritis but not nephritogenic 
autoimmunity in (NZB x NZW) F1 mice. 
Fismen S, Mortensen ES, Rekvig OP. 
Immunol Cell Biol. 2011; Jan: 89(1), 90-9. Review 
 

 



 3

3  Abbreviations  

ANAs    Antinuclear antibodies 

APC   Antigen presenting cell 

BK virus A polyomavirus. Named after the initials of a renal transplant patient.  

CLE    Cutaneous lupus erythematosus 

ss/dsDNA  Single stranded/double stranded DNA 

DNaseI   Deoxyribonuclease 1 

DC/pDC  Dendritic cell/plasmocytoid dendritic cell 

DIF   Direct immunofluorescence 

ECM   Extracellular matrix 

EDS    Electron dense structures 

ELISA   Enzyme-linked immunosorbent assay 

GBM   Glomerular basement membrane 

H1   Histone 1 

HMGB1  High mobility group box protein 1  

HSPG   Heparan sulphate proteoglycans 

IFN   Interferon 

Ig   Immunoglobulin 

IL   Interleukin 

ISN/RPS  International Society of Nephrology/Renal Pathology Society 

LN   Lupus nephritis 

MHC   Major histocompatibility complex 

MFG-E8  Milk fat globule-EGF factor 8 protein 

MMP   Matrix metalloproteinases 

(NZB/NZW )F1 F1 hybrids of New Zealand Black/New Zealand White mice 

qRT- PCR  Quantitative Real Time Polymerase Chain Reaction 

mRNA   Messenger ribonucleic acid 

SDS   Sodium dodecyl sulphate 

SLE   Systemic lupus erythematosus 

SPR    Surface plasmon resonance 

TBP   TATA box binding protein     

TdT   Terminal deoxynucleotidyl transferase 

TLR   Toll like receptor 

TGF   Transforming growth factor  

TNF   Tumor necrosis factor 

TRAP1    TNF receptor-associated protein 1 

TUNEL  Terminal deoxynucleotidyl transferase dUTP nick end labelling 
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4  Summary 

Different concepts have been discussed to describe the pathogenesis linked to early lupus 

nephritis and its progression from mild into end-stage disease. There is a general consensus 

that anti-dsDNA and anti-chromatin antibodies are central in the initiation and maintenance of 

lupus nephritis, but there is yet no agreement as to how they interact with glomerular 

structures. One theory is that this is due to cross-reactions of anti-chromatin antibodies with 

glomerular structures like laminin, α-actinin or membrane components of mesangial cells. 

Another theory favours the binding of anti-chromatin antibodies to chromatin fragments 

exposed in affected glomeruli. Data from our group support the latter model, as several 

publications have demonstrated that chromatin fragments possess high affinity for glomerular 

membranes and matrix components. These fragments were observed as electron dense 

structures (EDS) along glomerular basement membranes (GBM) and in the mesangial matrix, 

and shown to be terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling 

(TUNEL) positive, demonstrating that they contain nicked DNA.  Furthermore, antibodies to 

components of chromatin, like DNA, histones or transcription factors, bind to antigens present 

in EDS in murine and human lupus nephritis in vitro, as demonstrated by co-localisation 

immune electron microscopy (IEM).  

The main focus of paper I and paper II was to address the pathogenesis of lupus 

dermatitis at a molecular level, based on the experimental results in kidneys as described 

above. The primary focus was to determine whether dermo-epidermal immune complex 

deposits observed in lupus dermatitis have identical molecular compositions to EDS found in 

kidneys, thus trying to settle whether deposits in glomeruli and dermal deposits share a 

common pathogenetical pathway. Secondly, we wanted to address if chromatin fragments 

bind dermo-epidermal structures, and, finally, we intended to analyse whether immune 
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complex deposits in nephritic glomeruli predispose for accumulation of similar deposits in 

skin.  

The third and fourth papers emphasize the role of DNaseI in the progression of lupus 

nephritis. Previous results from our group have demonstrated that exposure of extracellular 

chromatin in lupus nephritis is linked to a reduced ability of renal nucleases to degrade 

apoptotic or necrotic chromatin [1].  With low renal DNaseI enzyme activity, apoptotic 

chromatin may be inappropriately scavenged, resulting in its transformation into secondary 

necrotic chromatin fragments which are then released from apoptotic blebs. Subsequently, 

chromatin becomes exposed to the extracellular environment and may bind glomerular 

membranes.  

A second focus was to understand the role of secreted matrix metalloproteinases 

(MMPs) and their potential to disintegrate glomerular basement membranes (GBM) and 

mesangial matrices by enzymatic degradation, which again may facilitate deposition of 

chromatin fragment-IgG complexes in GBM.  

In our studies we demonstrated that EDS in skin do have a similar composition as 

EDS in glomeruli. Still, the presence of deposits in glomeruli did not predict similar deposits 

in skin. Further, we found that chromatin fragments bind dermal membrane components with 

high affinity and that chromatin deposition in skin is associated with increased local MMP 

activities.  

In the studies concerning the role of DNaseI, our work demonstrated that 

accumulation of chromatin fragment-IgG complexes correlated with an acquired loss of renal 

DNaseI mRNA at the time when nephritis transforms into end-stage organ disease, suggesting 

that chromatin fragments found in GBM of nephritic kidneys are most likely derived from 

within the kidneys, due to loss of renal DNaseI. We observed no changes in the expression of 
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genes responsible for nuclease activity in skin. This may point to yet another mechanism for 

deposition of chromatin in dermal structures.  

 Data presented in this study indicate that lupus nephritis is a biphasic disease; the first 

phase depends on production of anti-dsDNA antibodies which promote mild mesangial 

nephritis, while the second phase seems to be linked to acquired loss of DNaseI, ultimately 

promoting the deposition of immune complexes in the GBM with subsequent progression to 

end-stage lupus nephritis.  

 

5  Introduction 

5.1  Systemic lupus erythematosus - a brief historical perspective 

Historically, the cutaneous manifestations of lupus were the first to be bespoken. Already in 

medieval literature, the Latin term lupus, meaning wolf, was proposed to describe the 

erythematous, facial butterfly rash (resembling a wolf bite) typically seen in discoid lupus 

erythematosus [2]. In the late 19th century, William Osler was credited as the first to 

scientifically describe the diverse visceral manifestations of SLE into a vaguely defined 

clinical entity [3-5].  The hypothesis suggesting systemic lupus erythematosus (SLE) as an 

autoimmune disorder was launched in the early 20th century [6], followed by the detection of 

antinuclear antibodies (ANAs) by Friou in 1958 [7].  Further milestones in the understanding 

of SLE included the knowledge about the human leucocyte antigen (HLA) system and the 

role of B- and T cells in autoimmunity. The advances at the molecular and genetic levels in 

recent years have been tremendous. Yet, a unifying concept of this enigmatic set of disease 

manifestations remains to be settled. However, in the quest for understanding the initiation 

and pathogenesis of SLE, four main directions must be mentioned; i) infectious diseases in 

which cross-reactivity with self-antigens triggers an autoimmune reaction (via e.g. molecular 

mimicry or superantigens) [8], ii) disturbances in lymphocyte regulation that generate a state 
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of autoimmunity, iii) environmental exposures [9] and iv) genetic aberrations involving 

various aspects of organ homeostasis. Genome-wide association studies have failed to identify 

single gene defects [10] (exept in rare cases of single gene deficiencies (e.g. C1q [11]), but 

rather suggest that several genes, or gene combinations, contribute to the risk of developing 

SLE [12].  

 

5.2  Autoimmunity and disease 

Distinguishing self from non-self is fundamental to the immune system. Autoimmune 

diseases are caused by a breakdown of immunological tolerance against self-antigens. 

Lymphocytes reactive against self structures are erroneously activated and allowed to operate 

to an extent that causes sustained self-reactivity and tissue damage. The inflammation is 

initiated by the presence of either autoantibodies or self-reactive T cells, leading to organ- or 

tissue damage afflicted by autoantibodies or secondary activation of inflammatory cells. 

However, the mere existence of autoantibodies is not sufficient to evoke an autoimmune 

disease. Several clinical conditions that clearly involve new or mutant proteins evoke 

autoimmune phenomena without eliciting autoimmune disease; pregnancy, malignancies, 

infections or immune deficiencies [13]. Matzinger`s danger model suggests that most 

autoimmune states do not stem from deficiencies in the immune response by itself, but rather 

from defects in the normal physiology of tissues.  In other words; the immune system is more 

concerned with damage than foreignness, and becomes activated by alarm signals from 

injured tissues (pathogens, toxins, mechanical damage), rather than by the recognition of non-

self [13]. A sustained self-reactivity and subsequent tissue damage (as opposed to a transient 

activation of lymphocytes in the course of e.g. an acute infection) compromise the 

fundamental core of the danger model; that autoreactivity per se is a normal aspect of the 

inflammatory process of tissue inflammation, whereas the defining sentinel of pathological 
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autoimmunity (e.g. autoimmune disease) is the persistence of autoimmunity caused by a 

continuous provision of danger signals and autoantigens. Matzinger defines danger signals as 

structures released or produced by cells or tissues undergoing stress or abnormal cell death, or 

even normal cell death, if the cells are not properly scavenged and instead go into secondary 

necrosis. The resulting pathogens call the resting antigen presenting cells (APCs) into action.  

  As a disease process, lupus nephritis may be fully explained by the danger model of 

Matzinger, with extracellular exposed secondary necrotic chromatin as the initiating danger 

signal. Furthermore, aside from providing danger signals, chromatin act as the central auto-

antigen complex [13-15] that is targeted by induced autoantibodies. This process creates the 

immune complexes responsible for the inflammatory process (as discussed below).  

  

5.3  Systemic lupus erythematosus and autoimmunity 

SLE is a multiorgan disease elicited by yet incompletely understood molecular and cellular 

aberrations of the immune systems.  A triggering pathogenetic factor (infection, sun exposure, 

medications) combined with a genetic susceptibility and a compromised immune system 

distort the equilibrium between a physiological condition and the development of disease. The 

development of autoimmunity in SLE leads to a variety of autoantibody specificities [16]. A 

dysregulation of the apoptotic process and inadequate removal of apoptotic cells and nuclear 

debris will expose the immune system to chromatin material and stimulate the activation of 

autoantibodies [17-19]. The binding of autoantibodies may elicit cell- and tissue injury by 

initiating inflammation. In the kidneys, intrinsic antigens such as extracellular chromatin 

fragments may serve as targets for antibody binding and autoantibody – chromatin complex 

formation [20]. Fc receptor- (presented by macrophages) and complement activation further 

increase the inflammatory and cytotoxic response and eventually lead to the development of 

manifest organ disease [21].  
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5.4  Autoantibodies  

The potential to produce autoantibodies is an inherent property of the normal immune system. 

Normal, healthy individuals may have detectable levels of autoantibodies without any clinical 

disease. Advancing age is associated with an increase in the number and titers of 

autoantibodies in the absence of clinical symptoms, and these may merely reflect loss of 

immune tolerance over time [22]  Healthy siblings of patients with autoimmune disorders, 

such as SLE, also have increased numbers of autoantibodies, without necessarily exhibiting 

clinical disease. Instead, this may reflect an underlying genetic predisposition for 

autoantibody development.  

Activation of self-reactive B cells that have escaped central tolerance and become 

activated by an eliciting autoantigen results in extrafollicular formation of short-lived plasma 

cells that produce autoantibodies.  The differentiation of B cells into plasma cells may be 

either T cell dependent [23] or T cell independent [24]. T cell responses are usually required 

for this pathway to take place [25]. Autoreactive B cells can also enter germinal centers where 

they undergo somatic hypermutation and affinity maturation of their B cell receptors with 

resulting  Ig class switching and generation of long-lived autoreactive memory B cells [25]. 

Autoreactive memory and germinal center B cells can further differentiate into long-lived 

plasma cells secreting high affinity autoantibodies. These processes normally occur in 

secondary lymphoid structures such as in the spleen and lymph nodes, but can also form at 

sites of inflammation.   

 

5.4.1  Anti-dsDNA antibodies 

Shortly after their detection in 1957, [26-28]  antibodies to dsDNA were associated with renal 

manifestation of SLE. Furthermore, anti-dsDNA antibodies have been eluted from affected 

glomeruli [29-32]. The mechanisms underlying the presence of circulating anti-nuclear 
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autoantibodies, and anti-dsDNA autoantibodies in particular, are probably one of the key 

issues in understanding the pathogenesis of SLE. Even in patients with overt autoimmune 

disorders, presence of high titer autoantibodies can precede clinical symptoms by decades 

[25]. More than a 100 autoantibodies have been identified in lupus patients. However, their 

pathogenicity differ relative to their antigenic specificity [33]. 

Numerous publications report autoantibodies against DNA and DNA-containing 

particles (nucleosomes/chromatin) as a major constituent of glomerular immune complex 

deposits [34-37].  Release and exposure of relevant antigens recognised by nephritogenic anti-

dsDNA antibodies must therefore be crucial events in making target molecules available for 

the antibodies, and subsequently render the autoantibodies pathogenic  [38].  

Pathogenic anti-DNA antibodies are believed to represent high avidity IgG antibodies 

binding dsDNA. These antibodies proceed through somatic hypermutations and affinity 

maturation due to repeated stimulation with immunogenic DNA [39]. Some patients with SLE 

produce antibodies against dsDNA and nucleosomes but do not develop lupus nephritis. Thus, 

it is conceivable that there are distinct pathways or selection principles that determine their 

pathogenic impact. Two mechanisms have received attention over the years; antibodies may 

cross-react with native glomerular structures and induce inflammation [32;40-45], or 

alternatively, the nephritogenic effect of anti-dsDNA antibodies depend on binding to 

chromatin fragments associated with glomerular basement membranes (GBMs), leaving  

antibodies  non-pathogenic in the absence of exposed chromatin [20;46;47].  

It is almost impossible to stimulate an immune response to intact, native DNA, 

ribosomal RNA or tRNA unless certain biochemical modulations have taken place (as 

discussed in [48]). Thus, DNA is only regarded immunogenic when complexed with DNA-

binding peptides of a non-self [49-57] or self origin [58;59] .  
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A hapten is a small molecule that can elicit an immune response only when attached to 

a large carrier such as a protein. The hapten-carrier model was launched to explain how weak 

immunogens, such as DNA, can become targets of an immune response when in complex 

with a more potent immunogenic structure. According to this model, the hapten adjoins in the 

antibody-mediated internalisation of the carrier in APCs or in hapten-specific B cells. The 

carrier peptides are then presented and serve as T cell targets [39].   It has been demonstrated 

that nucleosome- and histone-specific T cells in both murine and human SLE have the 

potential to provide cognate help for DNA–specific B cells [56;58;60]. DNA–peptide 

complexes stimulate DNA-specific B cells and peptide-specific T cells analogous to the 

hapten carrier model for induction of anti-hapten antibodies. A consequence of sustained 

stimulation with dsDNA–peptide complexes is affinity maturation of the induced anti-dsDNA 

antibodies  [61-65].  

There is no incongruity between the danger model and the hapten-carrier principle. 

The fundamental virtue of a hapten-carrier complex is that it introduces a protein antigen that 

is not effectively displayed on host cells, analogous to ‘altered self’ antigens as presented in 

the danger model. Also, there is the possibility that certain hapten structures may represent 

danger signals on their own. For instance, High mobility group box protein 1 (HMGB1), a 

well-recognized endogenous danger signal, has been shown to provide an effective adjuvant, 

boosting the immune response against nucleosomes [66;67].  

The strength of binding between an antibody and a single epitope is termed affinity, 

whereas involvement of multiple binding sites by a single antibody yields functional affinity, 

called avidity. Whether antibody avidity is essential for antibody binding in vivo is 

controversial, but it is assumed that high avidity of anti-dsDNA antibodies contributes to 

pathogenicity [68-71]. The intrinsic affinity of circulating versus glomerular in vivo–bound 

anti-dsDNA antibodies in individual nephritic (NZB×NZW)F1 mice has been studied [72]. 
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Affinity was higher in antibodies eluted from kidneys compared to affinity of circulating 

antibodies in individual mice. However, affinity of antibodies in renal eluates from different 

nephritic (NZB×NZW)F1 mice with severe proteinuria varied considerably, from low affinity 

to very high [72]. These data suggest that intrinsic antibody affinity is not a key nephritogenic 

parameter.  

Dual specificity of antibodies for dsDNA and naturally exposed glomerular 

constituents represents the most logical explanation for why some but not all anti-dsDNA 

antibodies are pathogenic [32;42]. According to this model, only antibodies that cross-react 

with glomerular antigens will act as pathogens. In support of this, serum anti-DNA antibodies 

recognize inherent non-DNA/non-nucleosomal renal antigens [29;32;42;73-75], but dual 

specificity per se does not identify which of the cross-reactive renal ligands that actually bind 

these antibodies in vivo.  

An alternative model suggests that availability of chromatin fragments in circulation 

or in glomeruli are required for anti-chromatin antibodies to exert full pathogenic effect [76-

79]. Electron-dense structures (EDS) associated with GBM and the mesangial matrix were 

initially described in the 1960-70s [80-82]. Recently, these were demonstrated to constitute 

chromatin constituents, a major target for in situ–bound antibodies in both murine [46] and 

human lupus nephritis [30]. Binding of antibodies to other glomerular structures was not 

observed [20;30;46].  
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5.4.2  The role of chromatin - anti-DNA antibody complexes in induction and 

progression of lupus nephritis.  

Both molecular and genetic processes have been identified as initiators in the production of 

anti-dsDNA and anti-chromatin antibodies. These include the above-mentioned hapten-carrier 

model, [49;51;52;83-88] single gene mutations/gene alterations [89-94] and gene deficient 

mouse models [95-98]. Despite the yet unsettled mechanism accounting for autoantibody 

production in vivo, the availability of an antigen is imperative for an autoantibody to become 

pathogenic [48;99]. Whereas the pathogenicity of lupus autoantibodies most likely are linked 

to recognition of chromatin, the transformation of apoptotic into secondary necrotic chromatin 

is considered central in the pathogenesis of the disease.  An alternative source of chromatin 

could be the increased levels of microparticles (MP) containing DNA, RNA and nuclear 

proteins found in SLE patients [100]. MPs are secreted by dying cells [101;102] and have 

been attributed to both induction of tolerance in normal immunity and as supplier of self 

antigen in autoimmune responses [101].  

A tet-regulated T antigen–transgenic mouse model may provide an alternative 

explanation for how chromatin fragments are released and how they serve as target structures 

for nephritogenic antibodies.  De novo expression of polyomavirus large T antigen in a binary 

tet-off regulated T antigen transgenic mouse model resulted in activation of CD8+ and CD4+ T 

cells and in sustained production of antibodies to dsDNA, nucleosomes and T antigen [55].  In 

T antigen–expressing mice, EDS were observed in GBMs [48;103]. These EDS bound 

experimental antibodies to T antigen, dsDNA, histones and transcription factors as 

demonstrated by co-localization immune electron microscopy. This demonstrates that they 

contain chromatin fragments in complex with T antigen. In addition, these observations 

indicate that chromatin fragments may have been released from T antigen–expressing cells 

secondary to CD8+ T cell–mediated killing of cells that express that T antigen [103].  
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In situations in which high levels of exposed chromatin coincide with presence of anti-

chromatin antibodies, an immune complex-mediated process emerges. Such immune 

complexes may, either in situ in the organ, or in circulation, impose inflammation and 

subsequent organ damage. Deposition of immune complexes in tissue will further activate 

complement and induce cytokine secretion and inflammation [104].  Whether these immune 

complexes are formed in circulation or in situ is yet unknown. In this scenario however, it is 

conceivable that chromatin fragments act both as inducers of potentially nephritogenic 

autoimmunity and at the same time represent target structures for the autoimmune response.  

5.4.3  SLE and the clearance of dead cells 

To maintain a state of homeostasis, phagocytes administer the clearance of dead cells. These 

are recognized as dead by “eat me” signals exposed on their surface, mostly in a 

phospatidylserine-dependent manner. The cell and nucleus condense and become fragmented 

and subsequently engulfed by phagocytes [105]. After internalisation, the dead cell is 

transferred to lysosymes where their cellular components are degraded, metabolised and re-

used [106;107]. A hallmark of apoptosis is DNA fragmentation, the cleavage of chromosomal 

DNA into multimers of approximately 200 base pair nucleosomal units with a 3`-hydroxyl 

group; the mononucleosome [108;109]. This group is identified by the TUNEL assay, a 

widely used marker to detect apoptotic cells in vivo and in vitro. The enzyme that degrades 

DNA of apoptotic cells in lysozymes in macrophages, is DNaseII [110]. DNaseII is 

ubiquitously expressed in various tissues, particularly in macrophages [111]. In case of 

incomplete phagocytic clearance, either caused by impaired engulfment or due to the fact that 

the number of apoptotic cells overwhelms the capacity of the phagocytes, the cell`s plasma 

membrane ruptures and its cellular content is released into the microenvironment in a process 

called secondary necrosis [105]. This is a process able to provide the same danger signals by 
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non-infectious self, as infectious non-self structures (as proposed by Janeway [112]) or in 

Matzinger`s danger model [13;14].  

For the specific and efficient engulfment of apoptotic cells, the dead cells discharge 

molecules (“find me signals”), to recruit phagocytes. When necrotic cells interact with or are 

engulfed by macrophages, the macrophages produce pro-inflammatory cytokines [113], 

leading to a state of inflammation. The most important “find me signal” is probably 

lysophospatidylcholine (LPC), but the activated complement system is also involved [114]. 

Complement factors have been shown to mediate efficient clearance of apoptotic cells by 

means of macrophages [11;115] or immature dendritic cells [116]. Furthermore, it has been 

demonstrated that knockout of the C1q gene resulted in manifest nephritis as a result of 

reduced removal of apoptotic cells [11].  

To promote their engulfment, several proteins have been identified as recognition 

molecules to phosphatidylserine (“eat me signals”) on the surface of apoptotic cells.  Milk fat 

globule EGF factor 8 (MFGE8) is expressed on antigen presenting cells [117;118]. MFGE8-

deficient female mice, particularly of the B6/129 background, develop an age dependent SLE 

phenotype of autoimmune disease [117]. These mice produce high concentrations of anti-

dsDNA antibodies and suffer from glomerulonephritis.    

 As non-engulfed apoptotic cells are present in the germinal centres of lymph nodes of 

certain SLE patients, and macrophages from these patients often show reduced ability to 

engulf apoptotic cells, a deficiency in the clearance of apoptotic cells has been proposed to be 

a central mechanism in the pathogenesis of SLE  [119]. If the clearance of apoptotic cells is 

reduced, [18;46;77;78;120;121] it may explain the observed increase in the number of dead 

cells in glomeruli [46] and hence the initial loss of immune tolerance related to lupus nephritis. 

   Toll like receptors (TLRs) are pivotal modulators of the innate immune 

response due to their ability to recognise conserved molecular patterns that are either microbe 
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specific or endogenously released danger signals [122]. Chromatin fragments released from 

apoptotic blebs are consumed by immature dendritic cells and bind to TLR7-9 through 

exposed RNA structures or CpG DNA motifs, respectively. Because TLR7-9 are confined to 

endosomal compartments, their activity depends on the internalisation of their respective 

ligands by other receptors recognizing chromatin constituents [123]. Mammalian DNA binds 

to TLR9 through CpG motifs [124], and peptides derived from chromatin may be processed 

and then presented on the cell surface within MHC class II molecules. Signalling through 

TLRs induce dendritic cell maturation, upregulation of the co-stimulatory molecules CD80/86, 

and processing and presentation of antigenic peptides derived from chromatin. Such activated 

dendritic cells prime e.g. nucleosome-specific or Sm/RNP-specific T-helper cells that provide 

help to DNA- or RNP-specific B cells to be transformed into antibody-producing plasma cells 

[13;14;18;120;125;126]. This scenario may be sufficient to activate innate and adaptive 

immune systems to produce anti-dsDNA or anti-nucleosome antibodies.  

An alternative pathway that directs chromatin into macrophages and permits 

interaction with TLRs has been described. Means et al. [127;128] demonstrated a novel 

functional interaction between Fc receptors and TLRs. This interaction follows a pathway in 

which CD32 (FcγRIIa) transfers anti-dsDNA antibody–dsDNA-containing immune 

complexes to TLR9 in lysosomes, an interaction which induces plasmacytoid dendritic cell 

activation and IFNα production.  

5.4.4  Murine models in SLE 

Animal models provide a powerful tool to study disease mechanisms under well-defined 

conditions. Classical models of spontaneous and investigator-induced murine lupus, as well as 

more novel transgenic and recombinant knockout lineages have been particularly useful. One 

of the most widely used spontaneous model is the (NZBxNZW)F1 hybrid strain initially 

developed by Helyer and Howie [129],  a F1 crossbreed progeny of the New Zealand black 
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and the New Zealand white strain originally described by Bielschowsky et al. [130].  The  

female (NZBxNZW)F1 offspring spontaneously develop an autoimmune phenotype with 

proteinuria, glomerulonephritis, splenomegaly, arthritis and anti-dsDNA autoantibodies from 

about 20-35 weeks of age, until they eventually die from end stage renal failure or 

cardiovascular disease [131]. 

 The MRL-lpr/lpr is another widely used spontaneous model, initially described by 

Murphy and Roths in the late 1970s [132;133]. The MRL-lpr/lpr strain expresses a 

homozygote mutation for the apoptosis-inducing ligand Fas-lpr. The lpr mutation results in an 

alteration in the Fas gene and a defect of apoptosis, resulting in abnormal lymphoproliferation, 

anti-DNA antibody production, lupus-like nephritis and dermatitis [134;135]. In the MRL-

lpr/lpr strain, autoreactive B cells are activated in a T cell independent but TLR and B cell 

receptor dependent manner [136; 137].  

  

5.5  Lupus dermatitis  

Cutaneous lesions occur in a majority of lupus patients and constitute three of the 11 

American College of Rheumatology's (ACR) criteria for the classification of SLE [138]. 

Lupus dermatitis has traditionally been classified into three clinical subtypes: chronic, 

subacute and acute [139]. Discoid lupus erythematosus (DLE) is the most common subtype in 

chronic cutaneous LE, and is rarely associated with systemic disease. DLE is longstanding, 

heals with scarring and most commonly occurs as a localized process above the neck in sun 

exposed areas. Generalised DLE with lesions both above and below the neck is more 

frequently associated with SLE. 

Subacute cutaneous LE (SCLE) persists for weeks or months and typically heals 

without atrophy or scarring [140], although there may be postinflammatory hypopigmentation 

or teleangiectasias. The patients normally present with papulosquamous, psoriasiform or 
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annular-polycyclic plaques. SCLE was described in 1979 as a separate subset, intermediate in 

severity between DLE and acute cutaneous LE [140]. The distribution is normally widespread, 

and patients frequently have mild systemic disease [140;141]. About 50% of the patients fulfil 

the ACR criteria, and these patients commonly have high titers of anti-SSA or anti-SSB 

antibodies [142]. Druginduced SCLE is not infrequent [143]. Acute cutaneous LE (ACLE) is 

evanescent, heals without scarring, and is usually associated with active systemic disease. 

Considerable histological overlap exist between DLE and SCLE and differentiation between 

them cannot be established from the histological picture alone [144]. The typical clinical 

presentation of acute cutaneous LE (ACLE) is malar erythema, but other clinical 

manifestations as widespread morbiliform or exanthematous eruptions in sun exposed areas, 

or bullous or toxic epidermal necrolysis –like skin lesions may occur.  

The subtypes of lupus dermatitis are clinically but not necessarily histopathologically 

distinct, but recognising the different subtypes has traditionally been a helpful tool in 

predicting the likelihood of underlying systemic disease. By direct immunofluorescence, a 

granular band-like array of localized immunoglobulins and/or complement components can 

be found at the dermal-epidermal junction (for skin anatomy, see figure 1). The test is 

characteristic, but not pathognomonic for cutaneous lupus. It can yield positive results in skin 

of patients with any subclass of cutaneous lupus erythematosus as well as in normal, non-

diseased skin. Furthermore, it has been observed that as many as 20% of healthy young adults 

do have a positive lupus band test in sun exposed skin regions, whereas virtually none are 

positive in fully sun proctected non-lesional sites [145]. Still, the lupus band test is of clinical 

importance in differentiating DLE from SLE, and in differentiating LE from clinically similar 

skin disorders. It is also useful in separating SLE from other connective tissue disorders. A 

positive lupus band test has also been observed in skin of lupus prone MRL-lpr/lpr and 

(NZBxNZW)F1 mice [146].  



 19

 

The pathogenesis of lupus dermatitis is not fully elucidated. An increased level of 

apoptosis or a defective clearance of apoptotic cells are possible mechanisms, and several 

studies do suggest an abnormal or delayed clearance of apoptotic cells in lupus skin [147-155].  

In lupus dermatitis, the cells targeted for immunological damage through apoptosis are 

probably the basal keratinocytes [156]. It is well known that lupus dermatitis may be 

exacerbated if the skin is exposed to UV irradiation [157-159]. However, UV irradiation of 

normal skin may also induce apoptotic processes [160-162]. Other factors that have been 

associated with the onset or triggering of cutaneous lupus erythematosus include viruses, 

drugs, trauma and hormones [163].  

Interestingly, high mobility group box protein 1 (HMGB1) is demonstrated to be 

expressed extracellularly in cutaneous lesions of SLE. Extracellular HMGB1 expression 

within developing lesions of CLE peaked at 48 h after UVB irradiation of human skin and 

correlated with IL-1b and TNF expression [164]. HMGB1 is a DNA-binding pro-
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inflammatory cytokine released by monocytes and macrophages. This molecule can also be 

released by necrotic cells and late apoptotic cells. HMGB1-containing nucleosomes from 

apoptotic cells were recently shown to be able to induce secretion of IL-1, IL-6, IL-10 and 

TNF and expression of co-stimulatory molecules in macrophages and DCs.  

In 1970, Grishman and Churg published a study on electron microscopy 

examination of skin specimens from clinically normal and lesional skin of SLE patients. They 

found electron dense granular deposits below the epidermal basal membrane, in vessel walls 

and along collagen bundles. These deposits were similar to those found within the kidney 

and thought to represent immune-complexes [165]. The presence of immune deposits at the 

dermo-epidermal junction has been interpreted as evidence for tissue injury to be mediated by 

immune complexes. The nature of the deposits that define a positive lupus band test seem to 

be constituted by nucleosomes or chromatin and antibodies bound to them. Grootscholten et 

al. demonstrated by immunofluorescence presence of DNA and histones in the basement 

membrane zone [166] and results from the first paper of this thesis supports this finding at a 

molecular level, demonstrating that in vivo–bound autoantibodies co-localized with 

experimental chromatin-binding antibodies, including those specific for dsDNA, histones and 

the chromatin-associated transcription factor TATA-box binding protein (TBP) in sub-

epidermal EDS [167].  

 The antigenetic specificities of autoantibodies demonstrated by the lupus band test 

have not been determined, but these may well represent anti-chromatin antibodies that bind 

chromatin released from apoptotic cells. It has been demonstrated that nucleosomes possess 

high affinity for dermal basemement membrane constituents – which again can explain why 

released chromatin fragments deposit here [167]. Chromatin-containing immune complexes 

have similarly been observed sub-epidermally in lesional skin from MRL-lpr/lpr mice, and the 

presence of such complexes seemed to be associated with increased matrix metalloproteinase 
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activity [168]. MMP2 and MMP9 are both gelatinases involved in the remodelation and 

collagen turnover in the dermis [169;170]. An increase in MMP2 and MMP9 activities is 

hypothesised to disintegrate skin membranes (vascular and basal), potentially resulting in 

increased access for chromatin containing immune complexes [168].   

 

5.6  Lupus nephritis 

5.6.1  Clinical considerations and the ISN/RPS classification system for lupus nephritis. 

Lupus nephritis is a major cause of morbidity in SLE patients. Most commonly it develops 

early in the course of disease, but it can also present as a late complication [171]. Renal 

involvement is common, and up to 60% of all patients will develop lupus nephritis either as 

an initial manifestation of SLE or at some point during the course of the disease [172]. 10–

15% of the patients who develop lupus nephritis will progress to end-stage renal disease [173].  

One of the major clinical problems in diagnosing and treating lupus nephritis is that 

both clinical symptoms as well as laboratory finding have a low predictive value in 

identifying patients at risk of developing the more severe subtypes of the disease. Monitoring 

serum levels of anti-dsDNA and other groups of autoantibodies have provided unsatisfactory 

low sensitivity and specificity [69;174-176]. A proper diagnosis of lupus nephritis generally 

requires histopathological evaluation by means of renal biopsy, with a considerable 

procedural risk for the patient. Unfortunately, the prognostic information provided by a 

biopsy is limited by the fact that the renal affection may in early phases of disease be confined 

to focal pathology [177-179]. Still, due to the diversity of the clinical manifestations and the 

diversity of disease severity, the subtypes of lupus nephritis are primarily classified based on 

morphologic examination.  

The WHO classification of lupus nephritis was refined in 1982 with further 

modifications in 1995 [180]. It defined six major classes and a vast number of subclasses 
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which made an exact diagnosis complicated in daily practice. In a consensus conference in 

2003 a new International Society of Nephrology/Renal Pathology Society (ISN/RPS) 

classification system was proposed [181;182] (see Appendix for the ISN/RPS classification 

system). Both classification systems integrate the three modalities of light microscopy, 

immunofluorescence and electron microscopy. The ISN/RPS classification system divides 

lupus nephritis into six major classes, with the dominating pattern of cellular proliferation and 

matrix expansion defining the characteristics of major impact. Generally speaking, class I and 

II changes are considered mild renal disease defined by mesangial deposits in absence of 

glomerular capillary deposits. Subclasses III and IV are associated with rapidly progressive 

glomerular damage. Class V is associated with increased occurrence of thromboembolic 

glomerulonephritis, whilst class VI represents end stage nephritis with advanced sclerosis.  

 

5.6.2 The pathogenesis of lupus nephritis  

It is believed that a combination of systemic autoimmunity and local tissue response to 

immune injury underlies renal involvement in SLE. Substantial progress has been made to 

identify the pathogenic triggers that result in autoantibody production, yet many details are 

still lacking in the knowledge about the pathogenesis of the proliferative processes that lead to 

irreversible glomerular damage and compromised renal function. To further complicate this 

issue, the patterns of glomerular injury in human lupus nephritis are diverse (as discussed 

above). A histopathological hallmark is the appearance of immune complex deposits along 

glomerular membranes (for overview of renal anatomy, see figure 2) and within the 

mesangium of the glomerulus. Besides, mesangial and endothelial cell proliferation and 

leucocyte infiltration are frequent findings of active disease. The immune complexes typically 

consist of nucleosome-anti nucleosome immune complexes, but other antigens have also been 

identified, as complement factor C1q, Sm, SSA/SSB, ubiquitin and ribosomal proteins [183]. 
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The predominance of chromatin-associated antigens points at deficiencies in the processing 

and elimination of chromatin as central factors in the pathogenesis of the disease [78;120;184-

186].  

 

Whether chromatin-containing immune complexes are formed in situ by binding of 

circulatory autoantibodies to membrane bound chromatin fragments [46], or if this is due to 

cross-reactivity with GBM components such as laminin [42;187], α–actinin [32;74] or cell 

surface structures [44;188], is  an issue of debate. Accumulating evidence supports the former 

view. This is supported by observed immune complexes in mesangial matrix and GBM of the 

kidneys containing DNA, histones and other DNA-binding proteins [20;100;189-191]. 

Nucleosomes have also been shown to bind GBM components such as laminin and collagen 

IV with high affinity [47].  

Glomerular autoantibody deposition is pivotal in lupus glomerulonephritis.  The mere 

presence of anti-DNA antibodies is not sufficient to initiate the development of lupus 
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nephritis [192].  However, the levels of anti-nucleosome antibodies and anti-DNA antibodies 

correlate with the development of lupus nephritis while anti-α actinin antibodies do not 

[30;193]. Anti-DNA antibodies eluted from nephritic kidneys showed higher affinity for DNA 

compared with affinity of anti-DNA antibodies found in the circulation of BW mice [72]. This 

is further substantiated in experiments where monoclonal anti-DNA antibodies were 

repeatedly injected into normal BALB/c mice. This caused an increased accumulation of 

chromatin deposits in the mesangial matrix [194], and helps explain the renal consequences of 

glomerular binding of affinity-matured anti-dsDNA antibodies in situ; their chromatin-

associated targets are exposed in glomeruli [46].  Thus, anti-dsDNA antibodies execute a 

potential nephritogenic mechanism by complex formation with chromatin in glomeruli 

[20;46]. 

The source of the deposited chromatin found in glomerular matrices and basement 

membranes are not known (as discussed above), but recent studies have demonstrated that the 

fragmentation of chromatin in nephritic kidneys is impaired as demonstrated by experimental 

induction of apoptosis in ex vivo kidneys [1]. Reduced fragmentation was later shown to be 

linked to reduced DNaseI activity [195-197]. Improperly sequestered chromatin fragments 

seem not be cleared appropriately by phagocytes. These fragments may instead bind to 

membranes and be targeted by anti-DNA antibodies in the organs where they are released 

from dead cells.  

Immune complex deposits in the mesangium and in the GBM also induce complement 

activation and subsequent chemokine release and influx of inflammatory cells. Activation of 

renal endothelial cells, chemokines and infiltration of dendritic cells and macrophages are 

associated with onset of proteinuria [198], together with activation of the complement system 

[199]. This again leads to cellular proliferation with generation of urinary sediments, 

proteinuria and progression of the disease.  
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T- and B cells are vital cellular components of the adaptive immunity and central in 

the etiopathogenesis of lupus nephritis (reviewed in [200]). T cells were previously 

considered mainly to assist in B cell production of nephritogenic autoantibodies. During the 

past several years, the focus on the role of T cells in lupus nephritis has been changed to the 

emphasis of these cells as effectors of mediating tissue injury, as autoreactive T cells 

modulate T helper cell and effector functions via immunmodulatory cytokines and  infiltration 

of renal parenchyma, thus contributing to tissue injury both directly (via cytotoxicity) and 

indirectly through activation and recruitment of macrophages and natural killer cells 

(reviewed in [201-203]).  

An important finding confirming the crucial role of B cells in the intiation of lupus 

nephritis was elegantly illustrated in a study by Shlomchik et al., demonstrating that nephritis 

and vasculitis did not develop in B cell-depleted MRL-lpr/lpr J heavy chain (JHC) knockout 

mice [204], whereas development of glomerulonephritis was unaffected in JHD-MRL-Fas-lpr 

mice bearing genetically manipulated B cells incapable of secreting antibodies [205]. In 

general, B cells are mostly acknowledged for autoantibody  release, but B cell production of 

regulatory cytokines and direct interactions with T cells and dendritic cells have significant 

impact on cellular immune responses (reviewed in [206;207]).  B cells are highly efficient 

antigen presenting cells, and autoantigen presentation directly activates autoreactive T cells 

primed by professional APCs. B cells modulate T cell memory and regulate activation and 

development of dendritic cells. Subsets of differentiated effector and regulatory B cells 

produce immune modulatory cytokines such as IL-10 and TNFβ in particular [208].  

Recent advances in the field of epigenetics also require attention, as accumulating 

evidence point at epigenetic factors as central in the onset and progression of SLE.  The 

traditional mechanisms of epigenetic regulation include DNA methylation and histone 

modifications. DNA methylation involves the addition of a methyl group to the pyrimidinyl 
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ring of cytosine, primarily within CpG pairs, and is catalyzed by DNA methyltransferases 

(DNMTs) [209]. Methylation of CpG islands in promoter regulatory regions is associated 

with transcriptional inactivation of the corresponding gene, while demethylation of these 

regions creates a permissive transcriptional environment [210]. Recent data suggest that miR-

126 regulates DNA methylation in CD4(+) T cells and contributes to T cell autoreactivity in 

SLE by directly targeting DNA methyltransferase 1 [209] .   

MicroRNAs (miRNAs) belong to a family of short non-coding RNAs. A recently 

published comprehensive analysis of miRNA expression patterns in renal biopsies of lupus 

nephritis patients further demonstrates that miRNAs are involved in the pathogenesis of lupus 

nephritis [211].  

 

5.7  The role of acquired renal DNaseI deficiency in lupus nephritis.  

Enzymatic DNA fragmentation by the activation of different endonucleases is significant in 

both the process of apoptosis (reviewed in [212;213] and the elimination of DNA from 

necrotic cells (reviewed in [190;212]. The reduced clearance of apoptotic cell debris is 

assumed to play a causal role in necrotic transformation of apoptotic chromatin and in 

deposition of chromatin in glomeruli [18;77;120;214]. Secondary to this, chromatin fragments 

are inappropriately degraded and subsequently released into the local environment where they 

bind glomerular membranes and the mesangial matrix [78;99] with high affinity[47]. Until 

recently, there was no apparent explanation for the reduced clearance of chromatin 

[77;78;119]. Zykova et al. observed that nucleosomal DNA fragmentation in camptothecin-

induced apoptotic cells in freshly isolated kidneys from nephritic (NZB×NZW)F1 mice was 

markedly reduced compared with the effective fragmentation in similarly induced apoptotic 

cells in kidneys from non-autoimmune mice [1].   
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The endonuclease DNaseI, expressed primarily in tubular and to a lesser extent in glomerular 

mesangial cells, represents the major renal nuclease [215]. Reduced DNA fragmentation 

coincides with reduced levels of DNaseI mRNA and a near-absent DNaseI enzyme activity in 

nephritic kidneys [1;197]. Loss of DNaseI activity is not observed in kidneys from 

prenephritic (NZB×NZW)F1 or age-matched non-autoimmune mice [196;197]. Notably, as 

described in paper II, we found no reduction of DNaseI mRNA or enzyme activity in skin of 

nephritic autoimmune mice. This indicates that there is not a systemic loss of DNaseI activity. 

DNaseI activity has also been investigated in liver and spleen of lupus prone mice, 

demonstrating identical results as in skin and further confirming the loss of renal DNaseI as 

an organ specific process (Seredkina et al., manuscript under revision). By quantitative PCR 

analyses of DNase I, DNase II, endonuclease G, DNA fragmentation factor subunit, and cell 

death–inducing DNA fragmentation factor subunit–like effector B, the expression of DNaseI 

mRNA was the single nuclease dramatically reduced in the kidneys of proteinuric 

(NZB×NZW)F1 mice [1]. The strong association between the deposition of chromatin-

containing immune complexes within the GBM and the abrupt downregulation of DNaseI 

offers an attractive hypothesis to explain how tissue- specific changes in gene expression may 

induce antigens in the form of immune complex deposition [79;186]. It also suggests a 

potential link between systemic autoimmunity and single-organ disease.   

 

6  Aims of the thesis 

The aims of paper I and paper II were to investigate whether the molecular composition of 

immune complexes found in skin of lupus patients are identical to the composition of 

complexes in glomeruli. Secondly, we wanted to address whether the mechanism resulting in 

deposition of chromatin fragments in dermal structures are similar to what is seen in lupus 

nephritis. Thirdly, we aimed to determine if deposition in one of the organs (kidney) predicted 
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deposition in the other (skin). These studies were performed in both lupus patients and lupus 

prone mice.  

 

The main focus in paper III was to evaluate the impact of anti-dsDNA antibodies  and their 

relation to  renal DNaseI and matrix metalloproteinase (MMP) mRNA levels and enzyme 

activities in early and late murine lupus nephritis. Secondly, the studies were designed to 

analyse how regulation of DNaseI, MMP2 and MMP9 mRNA levels and enzyme activities 

correlate with each other, with production of antibodies to dsDNA, with successive deposition 

of EDS in the mesangial matrix and in GBM, and finally with progressive proteinuria, all 

important characteristics in lupus nephritis. Thirdly, we wanted to analyse if these factors in 

any way were interrelated, and if changes in their expression can explain basic processes 

accounting for the different stages of lupus nephritis, from mild to severe disease. In paper IV, 

we addressed similar issues as for paper III, translated to human lupus nephritis. We further 

investigated whether DNaseI downregulation resulted in exposure of chromatin and initiation 

of a signalling cascade potentially leading to upregulation of pro-inflammatory cytokines and 

matrix metalloproteinases. 

 

7 Summary of experimental results 

7.1.  Paper I. Circulating chromatin-anti-chromatin antibody complexes bind with 

high affinity to dermal-epidermal structures in murine and human lupus nephritis.  

Electron dense structures (EDS) containing IgG and chromatin are found in glomerular 

basement membranes (GBM) in murine and human lupus nephritis. Nucleosomes, the main 

constituent of chromatin, are known to have a high affinity for GBM, which could explain the 

accumulation of nucleosome-containg EDS in the GBM. It is well known that EDS are also 

found in relation to the basement membranes in lupus dermatitis. However, the ultrastructural 
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compositon of these EDS had not been described. In this study we did a comparative analysis 

of the molecular composition of immune complex deposits in paired skin and renal biopsies 

from patients and lupus prone (NZBxNZW)F1 and MRL-lpr/lpr mice by immune electron 

microscopy (IEM) and co-localization terminal deoxynucleotidyl transferase dUTP nicked-

end labelling (TUNEL) immune electron microscopy.  IEM analyses demonstrated that 

antibody deposits were confined to EDS in glomerular capillary membranes and the 

mesangial matrix, and subepidermally in skin. Presence of EDS in glomeruli however, did not 

predict similar deposits in skin. Chromatin-anti chromatin antibody complexes were found in 

capillary lumina in dermis and in glomeruli of nephritic patients and also in diseased mice. In 

vivo–bound autoantibodies co-localized with experimental chromatin-binding antibodies, 

including those specific for dsDNA, histones, or the chromatin-associated transcription factor 

TATA-box binding protein. To confirm that the experimental anti-chromatin antibodies used 

in the co-localization IEM assay were not cross-reactive, we applied the co-localization 

TUNEL IEM assay to demonstrate the presence of nicked endogenous extracellular DNA and 

its co-localization with in vivo–bound autoantibodies in membrane–associated EDS. This 

result is in harmony with the fact that chromatin fragments bind GBM and mesangial matrix 

with high affinity, as demonstrated by surface plasmon resonance (SPR). SPR analyses also 

demonstrated that chromatin constituents do indeed have a high affinity for epidermal 

basement membrane components. We therefore proposed that the chromatin-anti-chromatin 

antibody complexes possibly access skin through circulation, presumably dependent on other 

biological factors, to deposit within dermal structures other than blood vessels.  
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 7.2.  Paper II. Deposition of chromatin-IgG complexes in skin of nephritic MRL-

lpr/lpr mice is associated with increased local matrix metalloproteinase activities.   

Chromatin-IgG complexes are observed in glomerular basement membranes (GBM) of 

nephritic patients and in nephritic lupus prone mice. Similar deposits appear in skin and in 

capillary lumina. Surface plasmon resonance (SPR) has demonstrated that chromatin 

fragments possess high affinity to epidermal basement membrane components, but high 

affinity alone is not sufficient to promote extracellular deposition in tissues. This indicates 

that other factors play a role for the immune complexes to deposit in relation to dermal 

membranes. Recent studies from our group demonstrated upregulation of matrix 

metalloproteinase (MMP2 and MMP9) activities and decreased levels of DNaseI in murine 

nephritic kidneys. Our hypothesis was accordingly that an increased expression of epidermal 

basement membrane components and their disintegration of matrices by MMPs could result in 

an increased binding capacity for chromatin fragments. In this study we compared the 

composition of immune complex deposits in dermatitis and nephritis by immune electron 

microscopy and investigated whether glomerular deposits in nephritic kidneys predicted 

similar deposits in skin of lupus prone mice.  Analyses were performed on lupus prone 

(NZBxNZW)F1 and MRL-lpr/lpr mice in advanced stages of the disease. The expression of 

dermal basement membrane encoding genes, dermal MMPs and DNaseI mRNA levels were 

analyzed by qPCR. Activity of MMPs and DNaseI were correlated with immune complex 

deposition. The results demonstrated that immune complex deposition in murine dermatitis 

did not necessarily coincide with immune complex deposits in nephritic kidneys, even though 

their molecular compositions were similar. DNaseI levels and total nuclease activity in skin 

were stable during disease progression in contrast to the decline observed in nephritic kidneys. 

Depositions of chromatin-containing immune complexes were found sub-epidermally in skin 

lesions of nephritic MRL-lpr/lpr mice. This was associated with high activity levels of MMPs. 
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Hence we postulate that elevated dermal MMP2 and MMP9 activities may be important in the 

process of making extracellular matrices accessible for immune complex deposition.   

 

7.3.  Paper III Anti-dsDNA antibodies promote initiation, and acquired loss of renal 

DNaseI promotes progression of lupus nephritis in (NZBxNZW)F1 mice.  

Deposition of chromatin-IgG complexes in the mesangial matrix and glomerular basement 

membranes (GBM) morphologically define stages of lupus nephritis. Further, the levels of 

circulating anti-DNA antibodies have been associated with disease activity in lupus nephritis. 

In the present study we addressed the impact of antibodies to dsDNA, renal DNaseI and 

matrix metalloproteinase (MMP) mRNA levels and enzyme activities in early and late events 

in lupus nephritis in (NZB x NZW)F1 mice. The major focus was to analyse if these factors 

were interrelated, and if changes in their expression could explain basic processes accounting 

for lupus nephritis. The correlations were based upon circulating anti-DNA antibodies, degree 

of proteinuria, morphological changes assessed by immune electron microscopy and renal 

mRNA levels and corresponding enzyme activity/protein expression. We found that early 

phases of nephritis were associated with chromatin-IgG complex deposition in the mesangial 

matrix. A striking observation was that this event correlated with appearance of anti-dsDNA 

antibodies and mild or clinically silent nephritis. These events preceded down-regulation of 

renal DNaseI. Later, renal DNaseI mRNA level and enzyme activity were reduced, while 

MMP2 - and to a lesser extent MMP9 - mRNA level and enzyme activity increased. Another 

striking observation was that reduced levels of renal DNaseI were temporally associated with 

deficient fragmentation of chromatin from dead cells. Large fragments were retained and 

accumulated in GBM. These scenarios may help explain the basis for deposition of 

chromatin-IgG complexes in glomeruli in early and late stages of nephritis, loss of glomerular 

integrity and finally renal failure. 
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7.4.  Paper IV Renal up-regulation of Trap1 and p62/SQSTM1 is associated with 

DNaseI down-regulation during progression of murine and human lupus nephritis . 

Recent findings have demonstrated that transformation of mild glomerulonephritis into end-

stage organ disease coincided with an abrupt decrease in the renal expression of DNaseI in 

(NZBxNZW)F1 hybrid mouse. The acquired reduction in DNaseI resulted in reduced 

chromatin fragmentation and a consequent deposition of chromatin fragments in glomerular 

basement membranes accessible for nephritogenic anti-chromatin antibodies. In this 

translational study we have applied identical methods as those used in paper III, to kidney 

biopsies from patients with lupus nephritis.  We further addressed how exposure of chromatin 

presumably initiates a signalling cascade that lead to the upregulation of pro-inflammatory 

cytokines and matrix metalloproteinases. Data generated suggest two possible mechanisms 

accounting for DNaseI reduction. One mechanism is most likely due to transcriptional 

interference of the Trap1 gene. The heat-shock molecule Trap1 is encoded in the opposite 

direction of DNaseI, and the two transcripts overlap in their 3’- untranslated regions. 

Transcription of one may hence result in suppression of the other. The other pathway is yet 

unclear, but the possible effect of regulatory RNAs is discussed. As a probable link to the loss 

of DNaseI we demonstrate activation of Toll like receptors 7-9 and Clec4e receptor, with a 

subsequent upregulation of TNFα and IFNγ, and the MMP 2 and 9 in (NZBxNZW)F1 mice. 

The upregulation of the signalling factors were less convincing in human nephritis, compared 

to non-treated nephritic (NZBxNZW)F1 mice. It must be taken into consideration that all 

patients were under treatment with immunosuppressant and anti-inflammatory treatment, 

possibly inhibiting the activation of TLRs. In either case, the loss of renal DNaseI seems to 

initiate a cascade of inflammatory signals which eventually lead to the upregulation of matrix 

metalloproteinases responsible for disintegration of matrices and membranes.  
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8 Discussion 

8.1  Immune complex deposition and its importance in disease progression of lupus 

nephritis and lupus dermatitis 

It is well established that clearance of apoptotic cells is reduced in SLE [77;99;120;216]. This 

aberration transforms the silent, non-inflammatory removal of apoptotic cells into the 

potential extracellular release of chromatin structures. Chromatin fragments generated by 

nucleases in the context of apoptosis are normally encapsulated within blebs presenting “eat 

me” signals. This ensures clearance in a fast and silent manner. In SLE, retained and exposed 

extracellular chromatin may break this silence and initiate inflammation via secondary 

necrosis [216]. According to Matzinger’s danger model, [13-15] this provides danger signals 

that may initiate dendritic cell maturation via Toll-like receptor engagement.  In addition, 

apoptosis-induced changes in chromatin exposure may enhance immunogenicity and 

pathogenicity of chromatin in vivo [217].  Thus, the combination of danger signals and 

secondary structural alterations linked to apoptosis and necrosis contribute to inflammation 

and activation of dendritic cells with the potential to activate nucleosome-specific T cells 

which further may provide cognate help for DNA-specific B cells [13;14;56;59;120;121]. 

Eluted antibodies from diseased kidneys have demonstrated that these generally bound 

DNA and nucleosomes similar to or much better than they bound membrane constituents as α-

actinin, laminin or collagen [29;30;32].  This harmonises with the finding that in vivo-bound 

antibodies co-localise with experimental antibodies against chromatin components and with 

TUNEL-positive DNA in capillary membranes and mesangial matrix, both central loci for 

immune complex deposits [20;46].  Exposure and accessibility of chromatin in situ are 

consistent with nucleosomes as target structures for in vivo-bound antibodies, and analyses by 
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SPR confirm that nucleosomes possess high affinity for glomerular constituents as laminin 

and  collagen IV [47].    

In the circulation of SLE patients, nucleosomes are found as mono- and 

oligonucleosomes; in other words considerably smaller than the chromatin fragments 

observed in association with glomerular membranes [218-220]. Combining these data, it is 

reasonable to conclude that chromatin fragments exposed in glomeruli represent incompletely 

degraded nuclei due to renal nuclease deficiencies, in this context deficiency of renal DNaseI, 

as opposed to properly degraded chromatin into nucleosomes in circulation by normally 

expressed nucleases in organs other than  kidneys [197](Seredkina, manuscript under 

revision) .  

The hypothesis that nucleosomes enter the glomerular mesangium via the circulation 

cannot, however, be excluded for at least two reasons. There are published data showing 

nucleosome-containing constituents (DNA, TBP, Histone H3) within capillary lumina in 

nephritic kidneys [167]. Furthermore, Schiffer et al. suggest that early onset of proliferative 

glomerulonephritis and proteinuria is associated with activation of the renal endothelium, by 

upregulation of the chemokine CCL20 expressed on inflamed endothelial cells [198]. This 

may speak in favour of the importance of circulatory immune complexes in the pathogenesis 

of early lupus nephritis. Also, activation of resident macrophages in early lupus nephritis [198] 

may have a role in allowing nucleosome-containing immune-complexes to enter the 

mesangium, as activation of TLRs may explain glomerular membrane disintegration through 

increased local secretion of MMPs. The effect of bifunctional TLR7/9 inhibitors [221;222] as 

blockade on SLE disease progression also supports this hypothesis, as inhibitory 

oligonucleotides may prevent local MMP secretion and thereby leaving the glomerular 

membranes intact. Our finding in paper III [197] that early, mesangial lupus neprhitis 
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coincides with the presence of circulating anti-dsDNA antibodies, further supports this 

possibility.   

Large chromatin fragments due to acquired renal DNaseI shut-down, similar to those 

observed in CAD−/− [223] or DNaseI−/− mice [189;224], remain in the tissue in where they are 

released from dead cells. In that situation, exposure of chromatin fragments may explain why 

chromatin-specific autoantibodies gain pathogenic potential, and may furthermore explain 

why certain organs, such as kidneys, suffer from this pathophysiological autoimmune process: 

Provided the production of relevant anti-chromatin autoantibodies, the organ in which 

chromatin fragments are not handled appropriately will subsequently develop immune 

complexes.   

Another indication that points to the kidney as the site of origin of chromatin 

fragments is the finding that polyomavirus large T antigen is associated with these fragments 

in lupus nephritis [225]. The kidney represents the major host organ for polyomaviruses such 

as BK virus, and productive polyomavirus infection is regularly observed in lupus nephritic 

kidneys (reviewed in [83]). It is noteworthy that the expression of T antigen is the event that 

initiates and maintain productive polyomavirus infection (reviewed in [226]). This is further 

supported by the finding of Fenton et al., demonstrating that glomerular EDS in human 

nephritic kidney samples contain T antigen, DNA and histones, indicating that renal, 

extracellular chromatin may originate from polyomavirus-infected renal cells [225]. This is 

consistent with the fact that T antigen binds firmly to host chromatin in cells where 

polyomaviruses replicate [226]. 

 For lupus dermatitis, we could not demonstrate fluctuations in the DNaseI 

expression during the progression of the disease in our mice models [168]. The finding of 

intravascular chromatin containing immune complexes, together with the finding of T antigen 
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in dermal EDS and an increased MMP expression may all contribute to the hypothesis that the 

complexes may in fact originate in the kidneys when it comes to lupus dermatitis. However, 

other authors have found an increased apoptotic rate in diseased skin, supporting the idea of in 

situ formation of dermal immune complexes [227].   

 

8.2  Acquired loss of DNaseI activity and the role of matrix metalloproteinases 

Both caspase-activated DNase (CAD) and DNaseI are instrumental in degrading nuclear 

chromatin when apoptosis is initiated [212;213]. Subsequently, apoptotic cells are engulfed by 

macrophages, and CAD/DNaseI-fragmented chromatin is further degraded by DNaseII, 

Endonuclese G and DNaseIl1-3 in the lysosomes of macrophages. Thus, CAD, as well as 

DNaseI, have important roles as initiators of chromatin fragmentation during apoptosis, 

whereas other secondary nucleases account for progressive degradation of chromatin into 

nucleosomes (reviewed in [212;213]). Although there are several mediators of apoptosis and 

different apoptotic pathways (reviewed in [228]), the main focus in this context is an aberrant 

apoptotic (or secondary necrotic) process linked to acquired or sustained nuclease deficiencies 

that eventually results in exposure of chromatin fragments. The finding of downregulation of 

DNaseI in the kidney after initiation of anti-dsDNA antibody production indicates that loss of 

renal nuclease activity is not responsible for the appearance of anti-chromatin autoimmunity.  

Analyses of nuclear autoimmunity in a DNaseI knockout mouse model with the 129 × 

C57Bl/6 mixed genetic background indicated that normal DNaseI activity may protect against 

an anti-DNA autoimmune response [189;224], as experimental deletion of the DNaseI gene 

correlated with production of anti-dsDNA antibodies and development of lupus nephritis. In 

different genetic backgrounds, however, this lupus-like phenotype was not observed. This 

may indicate that a single deficiency of a given nuclease is not sufficient to induce potentially 

pathogenic autoimmunity to chromatin.  
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The idea of analysing collected longitudinal data based on progression of nephritis in a 

(NZBxNZW)F1 model was based on previous findings in our group demonstrating that renal 

DNaseI mRNA expression and enzyme activity were significantly reduced in mice with 

symptoms of lupus nephritis [1,195]. The temporal relationship between the acquired loss 

DNaseI activity and the occurrence of anti-dsDNA antibodies does not favour the role of 

DNaseI in the production of anti-DNA antibodies, nor in the initiation of the disease. 

However, the reduced expression of DNaseI mRNA correlated with the appearance of GBM-

associated immune complex deposits, consistent with the pattern seen in mebranoproliferative 

lupus nephritis [197].   The data presented in paper III also demonstrated a decrease in mRNA 

and protein level expression of DNaseI in nephritic mice with ultrastructurally confirmed 

immune complex deposits within the GBM, whereas mice with immune complexes purely 

confined to the mesangial matrix had renal DNaseI expression comparable to that of normal 

BALB/c mice. We therefore proposed a theory that anti-dsDNA antibodies are responsible for 

the initiation of mild nephritis, whereas the acquired loss of DNaseI may be important in the 

progression into more advanced stages of the disease (for illustration of this mechanism, see 

figure 3).    

 The mechanisms controlling DNaseI expression are yet to be fully understood, but 

promising results concerning transcriptional interference with the Trap1 gene (Thiyagarajan et 

al., manuscript submitted, Fismen et al., manuscript in preparation) and advances in the field 

of regulatory microRNAs are presumably important. Identifiying the exact mechanism by 

which DNaseI mRNA expression is downregulated will undoubtedly become important in 

context of therapeutic tools to restore the gene expression of DNaseI to its original level. 

Based on the apparent importance of DNaseI in the context of intracellular DNA processing, 

such inventions could potentially contribute to the removal of extracellular chromatin, e.g. 

prevent exposure of the antigen potentially responsible for triggering this serious pathological 
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cascade. Even though attempts to restore serum DNaseI activity in BW mice have been 

generally disappointing [229;230], targeting the intracellular tissue-specific DNaseI has yet to 

be tested.   

Figure 3 

Figure 3.  Exposed, extracellular chromatin is a central factor in the evolution of lupus nephritis—a model. 
In normal situations, chromatin is effectively removed in context of apoptosis. When chromatin fragments 
are not appropriately cleared they may be exposed in tissue or in circulation. Exposure of chromatin may 
have impact on the immune system. Chromatin may re-circulate as oligo-nucleosomes, and eventually  
activate dendritic cells. These cells present chromatin-derived peptides and upregulated co-stimulatory 
molecules to naı¨ve peptide-specific CD4+ T cells. Activated T cells may subsequently re-circulate and 
provide help to DNA- or nucleosome-specific B cells to be transformed into antibody-secreting plasma 
cells. In this situation the antibodies are potentially pathogenic, but to exert this potential, they must to 
bind exposed chromatin fragments. This may happen in the kidneys when Dnase-1 is downregulated, and 
may have an immense impact on the pathogenic effect of the autoantibodies. Chromatin in cells dying 
from, for example, apoptosis may, due to loss of Dnase-1, not be degraded, and instead of clearance, they 
become exposed as secondary necrotic chromatin in, for example, glomerular membranes, where they are 
targeted by induced anti-chromatin antibodies. Thus, chromatin fragments may exert two effects with 
fatal consequences for the kidneys: they may induce autoimmunity (nucleosomes) and they represent 
targets for the induced autoantibodies (chromatin fragments). 
 

Modified from Fismen et al. Immunology and Cell Biology (2011) 89, 90–99. With permission.  
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The reason why chromatin fragments get access to GBM (defining end-organ disease) 

may be due to the fact that released secondary necrotic chromatin fragments trigger local 

secretion of matrix-degrading enzymes, including MMPs, upon interaction with, for example, 

TLR9 [231;232] in infiltrating macrophages and dendritic cells. MMPs may degrade barriers 

constituted by membranes [233;234] and thereby allowing chromatin to associate with 

disintegrated membranes, and even to penetrate the GBM. Furthermore, engagement of TLR7 

and TLR9 by chromatin structures is instrumental in generation of autoimmunity to chromatin 

components [122;235-237]. The findings of Lenart et al. and Duramad et al. showing that 

inhibitory oligonucleotides can block TLR7/9-dependent activation of primary macrophages 

and progression of the disease may support these assumptions [221;238]. 

As a consequence of the interaction of chromatin with TLRs, a chain reaction may be 

initiated that implies activation of the innate immune system, upregulation of co-stimulatory 

molecules and possibly activation of chromatin-derived peptide-specific T cells. This may in 

the end activate B cells and induce the production of affinity-maturated anti-dsDNA and anti-

chromatin antibodies, at least in an autoimmune-prone background. 

Top of page  

8.3.  The unsettled role of TRAP1 and the need for further studies 

Silencing of the DNaseI gene may theoretically be caused by several regulatory pathways.  

Today, there is little information to explain this process. One mechanism might be the 

possible effect of methylation of the DNaseI gene.  One focus in our laboratory has been to 

investigate the role of regulatory RNAs and the role of transcriptional interference with the 

anti-sense gene Trap1 (Thiyagarajan et al., manuscript submitted, Fismen et al., manuscript in 

preparation). Data presented in this study indicate that DNaseI indeed may be silenced 
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through expression of the Trap1 gene, demonstrated both by inverse mRNA expression level 

and by confocal microscopy analyses of nephritic kidneys in BW mice. However, in several 

kidney samples of severe lupus nephritis, expression of Trap1 and DNaseI mRNA and protein 

levels were both reduced. This may point at other regulatory mechanisms than transcriptional 

interference such as microRNAs targeting the overlap region of the two transcripts. Thus, at 

least two different mechanisms could be involved in DNaseI gene silencing in context of 

lupus nephritis. Further studies on these issues are currently in progress in our laboratory.  

 

8.4  Limitations of the studies  

Like SLE in general, both lupus dermatitis and lupus nephritis are heterogenous disease 

entities. The flares and relapses further complicate studies on human subjects. The scant 

availability of human biopsies in a small research laboratory like ours makes it a challenge to 

get statistically significant results.  

On the opposite scale, a caveat of the animal studies – as for all researchers utilizing 

experimental animal models – this model does not capture the totality of human SLE – even 

though a reasonable number of objects are attainable. For example; the lupus phenotype of the 

MRL-lpr mouse is caused by a genetic defect in Fas/APO-1(CD95) or its ligand (Fas L), a 

genetic aberrancy absent in most lupus patients [239]. However, the strength of a murine 

model is the opportunity to investigate the role of particular cells or molecules in 

inflammatory pathways to help solve interconnected pieces of the puzzle. Further, animal 

studies allow detailed investigation of the progession of disease and of temporal associations 

of events in the pathogenesis. Still, the validity of the animal data relies on the assumption 

that the changes taking place in the kidneys are attributable to human conditions. Furthermore, 

the invasive nature of human kidney biopsies contributes to complicate translational research.  
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 Regardless of the limitations mentioned above, follow-up data of this work should 

include verification on a significant number of human kidney samples.  

 

9  Concluding remarks 

During recent years pathophysiological mechanisms behind SLE have been considerably 

elucidated. On the cellular level, there have been advances in the knowledge about interaction 

between immune complexes and the organ of deposition. We know that glomerular immune 

complexes are largely confined to mesangial matrix and glomerular membranes, containing 

undigested chromatin particles. On the genetic level, the number of aberrations known to be 

associated with human lupus has increased by fivefold since 2007, emphasising the 

complexity of inheritance that contributes to disease pathogenesis [240]. Approximately 35 

genes associated with lupus have either been replicated in multiple samples or are near the 

threshold for genome-wide significance. Some are rare variants that convincingly contribute 

to lupus in specific subgroups only. Strong associations have been found with genes in the 

major histocompatibility complex region, with Fcγ receptors and with genes coding for 

complement components (reviewed in [240]). Examples of newly discovered genes include 

Integrin αM [241], STAT4 [242] and MECP2/IRAK1 [243;244].  

 Epigenetics is another field of immense development and worldwide interest. 

Posttranscriptional modifications in the form of miRNAs or posttranslational modifications 

involving acetylations/methylations will undoubtedly shed new light upon the pathogenesis of 

lupus nephritis. Recent studies highlight the significance of epigenetic alterations in aberrant 

expression of immune factors (reviewed in [245]). Despite significant advances, the scarcity 

of novel therapies continues. Patients with lupus nephritis are currently treated with non-

specific immunosuppressive drugs. Although morbidity and mortality have improved 
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significantly over the past decades, treatment-related morbidity remains a major problem 

[246].  

The debate concerning SLE as a single disease, or rather a set of separate organ diseases, will 

hopefully be settled based on scientifically proven evidence. The clinical heterogeneity of the 

disease, the multiplicity of the involved pathogenic mechanisms and the lack of reliable 

biomarkers all contribute to the absence of clinical consensus. It should not be omitted that 

there seems to be an increasing support to the theory that SLE simply cannot represent a 

single disease entity, but rather a set of overlapping entities broadly linked by the presence of 

antinuclear antibodies [39;235;247]. SLE is undoubtedly a product of multiple and stepwise 

failures of immune regulation, leading to diverse and complex clinical scenarios.  The 

consequent interpretation of data discussed in this thesis is that lupus nephritis is a principally 

biphasic organ disease in which each phase has a distinct pathogenesis [186;197]. With 

increasing insight into the origins of the symptoms comprising the ACR criteria in the 

classification of SLE, this syndrome as it is defined today may in the future be split up into 

more restricted sets of disease entities characterized by new criteria, which may be 

aetiologically unrelated.  
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