
A Programmable Structure for Pervasive Computing
Extended Abstract

Ingar Mæhlum Arntzen
Dept. Computer Science

University of Tromsø, Norway
ingarma@cs.uit.no

Dag Johansen
Dept. Computer Science

University of Tromsø, Norway
dag@cs.uit.no

Abstract— This exstended abstract presents an asymmetric and
programmable (extensible) approach to pervasive computing. The
idea is to off-load computations from light portable clients into a
back-bone of seamlessly integrated servers. This way, a user can
extend and personalize his pervasive computational environment
by installing computations following his trajectory throughout
the day. Focus on this extended abstract is on structural issues
related to the back-end servers running mobile code off-loaded
from the mobile user.

I. I NTRODUCTION

Pervasive computing is based on an integrated environ-
ment saturated seamlessly with computers, sensors and com-
munication facilities. A typical user is moving about with
his handheld or wearable computing device interacting with
this environment. We embrace this asymmetric computational
model, but focus strongly on making it proactive and highly
personalized. The overall goal is to get the computers as
much as possible out of the human loop, and this is best
accommodated by a pervasive infrastructurepushing high-
precision, context sensitive information to its users.

Additionally, we are interested in moving a user’s compu-
tational infrastructure around. Once a user leaves a desktop
or embedded device supporting his computational needs, his
computations should be hoarded and brought along. This
includes moving data like, for instance moving an mp3-based
song around between audio players, and this without re-staring
the song at each place visited. At the other extreme, we
are moving commodity software like, for instance, Microsoft
Powerpoint and Word documents between the nodes a user
visits. The idea is to create a state-full, personal environment
at the fingertips of the user in a pervasive environment. We
have already demonstrated this concept using USB-memory
sticks, and by using a more client-server based central server
solution like in Aura [8].

To accommodate this proactive and extensible pervasive in-
frastructure, we suggest that a collection ofextensible servers
should form the back-bone. Hence, this back-bone network
should be made programmable through extensions, compu-
tations off-loaded and installed from the handheld devices.
This is not a new idea, since we have used our series of
TACOMA mobile agent systems the last 10 years to off-
load computations from light clients like, for instance, PDAs,
cellular phones and portable computers [13]. What is new,
however, is that we move along, install and cluster large

collections of personal software and data around a portable
user.

This type of software mobility has serious technical prob-
lems, be it a mobile agent or a filter being installed re-
motely. The problem we address in this exstended abstract
is how to construct a web server that can be programmed
(extended) with user code. Our experience from, for instance,
extending filter and sensor network servers with single-hop
mobile agents made us derive a general structure for this type
of programmable servers. This fundamental structure can be
viewed as a virtual computer running user extensions. This
structure (and applications derived from it) is the subject of
this extended abstract.

The rest of this extended abstract is organized as follows.
First, we present the overall ideas in the WAIF1 project. In
section III our general structure for personal, programmable,
push-based servers is presented, followed by two derived
WAIF applications. We are currently building a new series of
WAIF server prototypes and applications, and the full paper
intends to add much more experience details.

II. WAIF

The WAIF project investigates structuring techniques for
future generation distributed applications. Motivated by inad-
equacies of the current Web, the WAIF project is building a
push-based Web [14].

A. Push-based Web

The idea of a push-based Web is motivated by limitation of
the current Web architecture. The intention of the Web [3]
is to allow Internet users world-wide publish and retrieve
information easily. Although the Web is often believed to
fulfill this intention, some serious limitations are becoming
increasingly evident. Especially, the growing amount of pub-
lished real-time information [14] represents a great challenge
to the current solution. The reasons for this are problems
associated with the pull-based interaction scheme, induced by
the underlying client-server architecture. For instance, when a
user (or an application) needs real-time discovery of events
published by a remote source, they are forced to poll the
source until the event occurs. This has several unpleasant

1WAIF is a joint project between University of Tromsø, Cornell University,
and UC San Diego.http://waif.cs.uit.no/
Funded by NFK (IKT-2010 Program)



implications. First, from the user perspective, polling may be
time-consuming if it is not immediately rewarding. Second, if
users and applications all have to poll real-time information,
this will seriously threaten the scalability of both the Web and
the Internet. Third, since users are present on the Web only
as they actively pull information, this makes it very hard for
content providers to locate and service their customers. The
consequence is that users must do all the work associated with
locating and retrieving information.

One solution to these problems is designing a push-based
Web, where users may subscribe to remote events, instead
of polling them continuously. This improves scalability, and
leaves the users with little overhead. The subscriptions form
the links in the new Web, and when events occur at a publisher,
information is pushed along these links. In contrast to the pull-
based Web, this means that links capture relationships based
on how information is used, rather than how the publisher
intended it to be used [14]. A push-based Web may be crawled
and indexed much like the current Web, but in the push-based
Web, mechanisms for publishers to locate subscribers may be
equally important as the opposite.

A push-based Web is not a new idea. For instance, publish-
subscribe systems like Gryphon [2] and Siena [6] fit the above
description. These systems provide topic-based, or limited
content-based, subscriptions to published information. Global
knowledge of publishers makes it possible to guaranty data
delivery and perfect recall. This property is required by a wide
range of applications, but in an information space like the Web,
perfect recall makes no sense. In contrast, users of the Web
often accept only the most relevant information. This calls for
a push-based Web that also focuses on high precision. In WAIF
we do that, by filtering information as it is pushed towards the
user.

B. Web of Asynchronous Information Filters

The WAIF project is concerned with building a pro-
grammable and push-based infrastructure supporting a push-
based Web.

In WAIF, we focus on the single user and aim to provide
him with highly personalized and relevant information, in
a timely and push-based manner. We do this by allowing
individual users to offload personal information filters into
a programmable and push-based infrastructure. Collectively
these filters implement the information interests of a single
user. They are executed asynchronously, and occasionally they
push published real-time information back towards the user.

Providing relevant information is a great challenge, and it
implies maximazing both recall and precision. A mechanism
for locating new sources of information, and installing filters
on them, is essential for providing high recall. Precision is
achieved by pushing information through a fusion network of
cooperating filters. In WAIF, a single mechanism is provided
to help users locate information, install filters and connect
them into a fusion network. We call this a PONS, a Personal
Overlay Network System. The PONS produces a stream of

highly relevant information surfacing at some device in the
user proximity.

U

IN
T

E
R

FA
C

E

D
E

V
IC

E
S

WORLD
PHYSICAL WAIF

Fig. 1. The WAIF PONS.

Technologies for locating sources of information is an
integral part of the PONS. In fact, all kinds of existing pull-
based search technologies are applicable. The sources in the
push-based Web may be browsed, indexed or sectioned by
directory services. Still, push-based search technologies like
recommender systems seem more appealing, from a research
point of view.
Another challenge is to locate filters. For security reasons,
it may not always be advisable that users actually write
their own filters. Instead, users may locate code written by
trusted 3’rd parties. This may also be appealing for users with
little programming experience. For many WAIF publishers,
providing appropriate filters may be anatural part of their
service.
How basic filter patterns,nanofilters[14], may be derived, and
later parameterized, stacked and combined according to user
interests, is an important research issue in WAIF.

Allowing multiple users to install and interconnect filters
in an unguided way, may have severe consequences for the
system. Especially, the PONS must implement scalable sharing
of information, this being the main motivation for the push-
based Web. In WAIF we do this by stacking PONS filters
in accordance to a stepwise refinement policy. Topic-based
filters have general applicability, and may be shared by many
users. For this reason, topic-based filters should run close
to the source of information. Intermediate filter-servers may
offer content-based filtering, to a limited amount of users.
Context sensitive filters are required to perform the ultimate
personalization. Since this functionality is less likely to be
shared, it is reasonably placed close to the user.
Installation and interconnection of filters may well be hidden



for the user, or even automated.
WAIF is an application for a future pervasive computing

environment. We share the vision of Mark Weiser [17], that
users will interact with future computing systems using light
devices, either woven seamlessly into the surroundings, or
carried along. In such an asymmetric computing environment,
the infrastructure must support migration of the computations
of individual users. The WAIF infrastructure does exactly this,
focusing on computations related to push-based information
retrieval.

III. STRUCTURE

This section presents a general structure for a personally
programmable push-based virtual computer. For simplicity, we
collapse the first three words,personally programmable push-
basedinto the acronym 3P. This means that a 3P computer
allows individual users to extend its functionality by installing
and running code. The code reflects personal computational
interests, and may push results to its user. These properties
makes 3P computers well suited as back-end computers in a
pervasive computing infrastructure.

We have derived a general structure for 3P computers, a 3P
structure. This is done by building real WAIF applications, and
by leveraging experience from research in mobile agents [13],
[15].

A. Motivation

The need for a general 3P structure is motivated by the
following considerations. Experiences from mobile agents
research show that these applications are hard to program,
and that agreement on a complete operating and programming
environment is required for wider acceptance and applicabil-
ity [12]. This is even more so, when individual users are to
program a multitude of filter servers, ranging from high end
filter clusters to low end hand-held devices. The 3P structure
provides a uniform programming model for 3P servers in a
pervasive computing infrastructure.

B. Problem

The main problem of push-based information services is
making appropriate push-decisions, at all times.Relevance,
expressivenessandadaptabilityare important properties in this
matter. Existing push-technologies are discussed briefly with
regard to these properties.

An ideal information producer pushes all therelevant
information to its consumer, and nothing but therelevant
information. This corresponds to high recall and precision,
respectively. To be able to do this, the information producer
needs a description of consumer interests, as a basis for push-
decisions. Theexpressivenessoffered by the description lan-
guage should allow the consumer to express interests precisely,
yet easily.
Another important property is theadaptability. If the consumer
suddenly changes his interests, it is critical that his interests are
quickly and and easily updated. An interesting special case is
when the consumer looses interest, completely or temporarily.

It should then be possible for the consumer to close the push
communication. In some casesexpressivenessandadaptability
are conflicting goals.

A number of attempts have been made to implement push-
based information services, not all of them a great success.
For instance, online newspapers have tried to push news items
by email. Although intuitively a useful service, reducing the
need to poll the newspaper website, it has not gained wide
popularity. Theexpressivenessof such services is typically
limited to a topic-based subscription scheme. Even worse is
the low adaptability. Tuning of news interests is not provided
through the receiving client, the email-reader. Instead, readers
usually must update a user profile at the newspaper website.
Filtering email on the email server is another approach, but
here too, the user friendliness is relatively low. There is
often a fine line separating relevant news fromspam, and the
combination of lowexpressivenessand lowadaptability is not
a good one.
Another approach to implementing push communication, is
just offloading polling from the consumer to the consumer
client. Publishing real-time updates on sport events using the
web browser is one example. Another example is publishing
of news items on RSS2 feeds. Since both the polling and
control mechanisms may be implemented by the client, the
adaptability may be better for these solutions, compared to
email.

A discussion of publish-subscribe systems, and recom-
mender systems will be included in the final paper.

C. Idea

A major limitation of current push-based technologies is
that consumers are not given appropriate tools to control the
flow of pushed content. We advocate a solution where the
consumer is given ownership and absolute control over the
push communication. By controlling thepush-channel, we
assert that the consumer must control both what information
goes into it, and what is filtered on the way. This corresponds
to controlling recall and precision, respectively.

The WAIF idea is to maximize both theadaptabilityand the
expressivenessof the push-channel, by allowing consumers
to upload and execute code asynchronously at the producer
side. This code makes both push and filtering decisions on
behalf of the consumer. In fact,only consumer code has access
to the push-channel. As a consequence, the producer is no
longer concerned with push-decisions. Instead, he services the
consumer by providing a rich executing environment for the
consumer code.

This solution allows for a high level ofadaptability. By
differentiating between code that pushes information and code
that filters information, both recall and precision may be tuned
by the consumer. In effect, the consumer may implement a
personal control policy. We call these code typesgenerating
code andreducing code. Separation of concerns is another
reason for distinguishinggeneratingandreducingcode. Often,

2RSS: Rich Site Summary, Really Simple Syndication, RDF Site Summary.



push-decisions are a function of content alone, while filtering
decisions may be based on context as well. The special case
of closing thepush-channeltemporarily is easily solved by
installing a filter that discards all pushes.

Consumer interests are expressed explicitly by writing both
generatingand reducing code. This way, theexpressiveness
of the solution is limited only by the programming language,
and the limitations enforced by the execution environment.
We believe that this level ofexpressivenessby far outperforms
current push-based technologies. In addition theexpressiveness
enhancesadaptability, instead of damaging it.

D. Requirements

Motivated by the above discussion, we list some general
requirements to the 3P structure.

1) User code must be easily installed/uninstalled.
2) User code must run asynchronously.
3) The service must sequencegeneratingandreducingcode

correctly.
4) User code must have access to a push mechanism.
5) A user must only receive pushes generated by code

owned by himself.
6) The service may support multiple users.
7) User code may have private storage.
8) User code may have access to stored data.
9) User code may have access to incoming data streams.

E. Structure

An overview of the general 3P structure is illustrated by
figure 2. The structure describes a logical computer, and does
not specify its physical implementation. The logical computer
has two main parts,execis where user code is executed, and
store is the persistent storage accessible for the user code.
The in andout buffers are interfaces to the extern world. For
instance, a message pushed from another producer arrives at
the in buffer, where it is made accessible for user code. The
out buffer is used when user code decides to push a message
to its user, or another 3P server. A simple information filter is
presented by figure 3, as a trivial example of user code. The
filter is started with a reference to the incoming message, and
makes a decision to push or discard it, on behalf of its owner.
User code with more complex functionality may also access
the storage.

The 3P structure describes a virtual computer, and does
not specify its physical implementation. For instance, the 3P
structure may be implemented by a large cluster, or opposite,
a single CPU may host a stack or network of 3P structures.
The overall functionality of the 3P virtual computer is filtering
data, and consequently it may be seen as a large 3P filter. The
structure may therefore be applied recursively, and on different
abstraction layers.

1) Extensibility: The structure requirements 1 and 2 states
that push-based services must be programmable by individual
users. This means that the structure must implement a mech-
anism that allows users to install, run and uninstall user code
easily, at any time.

DATA

CODE

USERS

IN

TIME

EXEC STORE

API
STORE

OUT

Fig. 2. The general Structure.

We achieve this level of extensibility by requiring user code
to be expressed as a collection of finite tasks. In addition,
the execution is triggered by systemevents. A single, infinite,
virtual process may then sequentially execute tasks according
to the order of the triggering events. For example, the code in
figure 3 is a single finite task. The system generates a specific
event, when an incoming message has arrived, and thisevent
triggers the virtual process to load and execute all tasks bound
to this event. This way, the resulting sequence of finite tasks
may be viewed as a continuously running user application. In
figure 2 this sequence is represented as a circular thread of
control, with three tasks scheduled for execution.

Installing and uninstalling user code in this scenario is
easy. When user code is installed, it is simply added to the
collection of tasks owned by a user, and its execution is bound
to the occurrence of a specific systemevent. Uninstalling user
code conversely involves removing tasks from the collection,
together with the corresponding event bindings.

item = self.in.get()
if item[’topic’] == ’sport’:

push(item) # to me

Fig. 3. A Python user code example.

2) Execution:The execution of tasks is triggered by system
events. Four differenteventtypes are identified as essential to
the structure: They areTimeEvents, InEvents, OutEventsand
DataEvents.

• TimeEventsallow code execution to be scheduled at a spe-
cific moment in time. For instance, a user may program
a filter to delay certain pushed items until after work.
TimeEventsalso allow code execution to be periodic.
This makesTimeEventsan integral part of the execution
model, since this is a way of implementing iteration. This
is discussed further in section III-E.5.



• InEventsallow code execution to be triggered by the ar-
rival of an incoming data item. This mechanism is essen-
tial for subscribing to, or filtering real-time data streams,
and hence implements requirement 9. This mechanism
embodies the very motivation for this work. A code
example is given by figure 3.

• OutEventsimply that a data item is pushed to theout
buffer by a generating task. By binding code toOut-
Events, the code may override earlier push-decisions by
discarding the buffered data item. This way a user may
close a stream of pushed items temporarily, without unin-
stalling any code. Bindingreducingcode to theOutEvents
ensures the sequencing demanded by requirement 3.

• DataEventsare associated with storage activity. For in-
stance, code may be triggered by updates on specific data
entries, performed by other tasks. This mechanism may
be used for synchronization of task execution.

3) Push mechanism:Requirement 4 and 5 state that a push
mechanism must be provided by the structure, and that it must
ensure that user code may only push data items to its owning
user. Note that this does not imply that multicast push is
forbidden. It only means thateach receiver of the multicast
must install personal code subscribing to the multicast data.

In figure 3 a push primitive is provided by the programming
language for invoking the push mechanism. The receiver of
the push is always the owner of the code, so no receiving
address is necessary. Each user has to register its identity on
the system, previous to installing any code. This identity is
referenced as owner by all installed code elements, and is
used by the push mechanism. The structure hence implements
requirement 6 if more than one identity is accepted by the
system.

4) Storage: The storage has several roles to play in the
structure. It is clearly necessary for stateful user code to store
data persistently. This is expressed by requirement 7.
Equally important is viewing storage as a resource for the
code. After all, the contents of the store may be the reason
why code is installed in the first place. If requirement 8 is met,
user code may be allowed to e.g. crawl, analyze or aggregate
read-only data provided by the host.

In order for user code to access storage easily, the structure
must provide a uniform storage API to all persistent data.
A general graph storage abstraction is chosen because it is
flexible enough to implement both the hierarchic filesystem
and the relational database [9], [11]. In addition, the graph
edges are a natural placeholders for meta-data, and allows for
advanced search facilities to be implemented. The data model
may be extensible, so that application-specific higher level data
models may be constructed.

5) Programming model:Requiring code to be expressed
as finite tasks with event bindings has implications on the
programming model. Especially, an infinite loop within a task
is illegal. Instead, the programmer must make use of the
iteration services provided by the structure. A task may be
iterated periodically by binding toTimeEvents. If the body
of the loop is finite, this body should be selected as a task.

This means that user code may have to be split into several
tasks, with different event bindings, that collectively forms an
application.

The mapping from events to tasks is essential to the overall
control flow. For instance, a singleInEventmay trigger multi-
ple tasks. In some of these cases it may be necessary to specify
a sequence for the execution of these tasks. Another problem
is that these tasks may not be waiting for the same type of
data items. In order to execute only relevant tasks, a guarding
expression should be supplied. It is possible to organize these
expressions in a hierarchy, for efficient event-task lookup.

6) Implementation:We are currently implementing a pro-
totype 3P structure in Python. Our intention is to build the
3P general enough to demonstrate a wide range of WAIF
applications, including the online newspaper and thePersonal
Filesystemdiscussed in section IV.

Non-functional requirements like efficiency, scalability or
security will not be important features of the prototype,
although we acknowledge that properties are essential for
deployment. Instead, the final paper will bring a more detailed
description of implementation aspects, the execution model
and the programming model. We will also provide a richer
set of user code examples to illustrate the flexibility of the
structure.

IV. A PPLICATIONS

This section discusses two applications of the general 3P
structure, that we are currently building. The two applica-
tions are important components in a pervasive computing
infrastructure, an information producer and a consumer. The
prototype producer application is anOnline Newspaper, and
the consumer is aPersonal Filesystem. The online newspaper
pushes news items directly to its reader, via thePersonal
Filesystem. Figure 4 illustrates this, and that both the online
newspaper and thePersonal Filesystemare modelled by the
structure described in section III. The stream of news is
filtered, both at the newspaper, and at thePersonal Filesystem.

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

JOURNALIST READER

ONLINE

NEWSPAPER

PERSONAL

FILESYSTEM

INTERNET

Fig. 4. Online newspaper pushing news items to a reader.



A. Online Newspaper

Online newspapers are a simple example of a back-end
service in a pervasive computing infrastructure, that can push
information to a portable client. Articles are published contin-
uously 24/7, and readers may navigate or search the content
through a Web interface. Still, for online newspapers the
limitations of this pull-based interaction scheme are evident.
Readers waiting for news are forced to polling, and the
newspaper can only serve its customer during that short second
between the request and the reply.

The motivation for building a push-based online newspaper
is clear. Readers want to specify what and when news items
should be pushed to them, they need to filter out spam, and
they need to create their own personalized services. Future
customers may even accept to pay for this, so there is a real
incentive to build push-based online newspapers.

1) Push: Adopting the general structure leads to the fol-
lowing description of an online newspaper. All news items are
published to thein buffer. The newspaper provide its own code
to archive all published news items correctly. Each reader may
install personal code on the system. This code has read access
to the archive, and a limited private storage. Readers may bind
code to theInEventand then push interesting news items as
they are being published. A helpful newspaper publishes a
documentation on the article format, the data model of the
archive, and possibly also some suggested code snippets.

2) Personalization: The traditional pull-based interaction
(not obsolete) should be implemented through the system as
well. This means that therequestgoes to thein buffer, triggers
system code that fetches the appropriate file from the archive,
and pushes it to the user as a reply. If that is the case, the
reader may easily extend this functionality with logging of
his own activity. This is useful for personalization purposes.
For instance, if the reader activity bursts on a certain topic,
code could be added that responds by e.g. crawling the archive
for related information. If something is found, it is pushed to
the reader as a suggestion.

3) Filtering: After installing a wide variety of personal
code that generates information, somereducing code is
needed. Code triggered by theOutEvent may regulate the
amount of pushed messages that are allowed. This may for
instance be tuned easily by using a volume control slide. This
way, the suggestion mentioned in section IV-A.2 will never
disturb the user, if the volume is tuned to ’quiet’.

B. Personal Filesystem

In a pervasive computing environment, where back-end ser-
vices push information to a user device, the classical problem
of information overload is worsened with the consumer. Even
if he is able to control the flow of pushed information, he
still has to decide if and where to store the received content.
It is crucial that the overhead with pull-based interaction, is
not simply transformed into push overhead. This would be
the case if the consumer is forced to react to every push that
arrives. We solve this problem by automating the receipt of
pushed data items. APersonal Filesystem, located on a home

computer, interrupts the pushed information. It has access to
information on the user context, and the devices with which he
is interacting. This information is used to filter pushed data in
a highly personalized and context sensitive way. The prototype
we are implementing is based on the general 3P structure.

1) Motivation: Future filesystems will provide better search
facilities, and together with the low cost of discs, this leads
to the assumption that filesystem users of tomorrow will store
much larger quantities of personal information. For instance,
it should be possible to store every single push that a user
ever gets. It might even be a good idea, if the search facilities
provide Memex[5] like functionality and findsthat interesting
article on frogsthat was pushed some three years ago. This
view of storage usage may lead to a situation where users want
most of their pushes to go directly into the filesystem without
being previously presented for the user. This is opposite to
the current situation, where little is stored if the user does not
do it himself. This effectively means that the user is filtering
information for his filesystem. It should rather be the other
way around.

2) Personal Filesystem:Using the general 3P structure
leads to the following description of aPersonal Filesystem.
All pushed messages arrive at thein buffer. Personal code
is installed to archive most of it directly, and to maintain a
specific way of organizing the archive. Other code snippets
specify that some message types have high importance, and
should be presented for the user. These messages may be de-
layed, batched, collapsed or delivered immediately, depending
on the priority or the user context. Since code may be triggered
by DataEvents, it is possible to monitor the archive and push
alarms when interesting situations occur, like when the buffer
of delayed pushes reaches a certain limit.

Allowing filesystem functionality to be extended with user
code also allows a number of activites not related to incoming
data. For example, the filesystem may easily be extended with
new search facilities. Installing one task to iteratively index the
archive, and another, triggered by search queries, to perform
index lookups.
Another example is monitoring of user interaction with the
filesystem, e.g. using a text editor. If the user is writing a doc-
ument on a specific topic, the filesystem may be programmed
to react to this in a ways relevant to a single user only. Code
working on behalf of the user in aPersonal Filesystem, may
be essential to effective management of an enormous amount
of personal information.



REFERENCES

[1] Oxygen: Pervasive human-centered computing.
[2] M.K Aguilera, R.E. Strom, D.C. Sturman, M.Astley, and T.D. Chandra.

Matching events in a content-based subscription system. InSymposium
on Principles of Distributed Computing, pages 53–61, 1999.

[3] Tim Berners-Lee, Robert Cailliau, Jean-Francois Groff, and Bernd
Pollermann. World-wide web: The information universe.Electronic
Networking: Research, Applications and Policy, 1(2):74–82, 1992.

[4] K.P. Birman. The process group approach to reliable distributed
computing.Communications of the ACM, 36(12):36–53, 1993.

[5] V. Bush. As We may Think.Atlantic Monthly, 176(1):641–649, January
1945.

[6] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and evaluation of
a wide-area event notification service.ACM Transactions on Computer
Systems, 19(3):332–383, 2001.

[7] E. Freeman and D. Gelernter. Lifestreams: A storage model for
personal data.ACM SIGMOD Bulletin (ACM Special Interest Group
on Management of Data), 25(1):80–86, March 1996.

[8] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project aura:
Toward distraction-free pervasive computing, 2002.

[9] J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C. Wong. Mylifebits:
fulfilling the memex vision, 2002.

[10] R. Grimm, T. Anderson, B. Bershad, and D. Wetherall. A system
architecture for pervasive computing. pages 177–182, September 2000.

[11] David Huynh, David Karger, and Dennis Quan. Haystack: A platform
for creating, organizing and visualizing information using rdf, 2002.

[12] D. Johansen. Mobile agents: Right concept, wrong approach. January
2004.

[13] D. Johansen, K. J. Lauvset, R. van Renesse, F. B. Schneider, N. P.
Sudmann, and K. Jacobsen. A tacoma retrospective.Software Practice
& Experience, Wiley, 2002. To be published.

[14] D. Johansen, R. Van Renesse, and F. Schneider. WAIF: Web of Asyn-
chronous Information Filters. InProc. of the International Workshop of
Future Directions in Distributed Computing (FuDiCo), Betrinoro, Italy,
June 2002.

[15] D. Johansen, R. van Renesse, and F. B. Schneider. Operating System
Support for Mobile Agents. InProceedings of the 5th Workshop on Hot
Topics in Operating Systems (HOTOS-V), pages 42–45, Orcas Island,
WA, May 1995. IEEE Computer Society.

[16] D Tennenhouse. Proactive computing.Communications of the ACM,
43(5):43–50, 2000.

[17] Mark Weiser. The computer for the 21st century.SIGMOBILE Mob.
Comput. Commun. Rev., 3(3):3–11, 1999.


