
Arctic Beans Containers Composition of
Non-functional Services Using Composition Filters

Jie Yang

University of Tromsø
Department of Computer Science

Tromsø Norway

jie@cs.uit.no

Gordon S. Blair
Lancaster University

Computing Department
Lancaster, UK

gordon@comp.lancs.ac.uk
of

2ndof address
Telephone number, incl. country code

2nd E-mail

Anders Andersen
University of Tromsø

Department of Computer Science
Tromsø, Norway

aa@cs.uit.no

ABSTRACT
It is becoming clear that modern middleware platforms must
provideboth deploy-time configuration and run-time
reconfiguration to accommodate rapid changing requirements and
also to be able to operate in dynamic environments. J2EE is a key
example of a middleware architecture that supports enterprise
applications via its Enterprise JavaBeans (EJB) component model.
EJB provides limited configurability in terms of a fixed set of
non-functional middleware services at deployment-time (via a
declarative deployment descriptor). However, EJB along with
other related enterprise architectures generally do not provide
enough support for re-configuration or evolution. At best, there is
limited support in some platforms for replacing or updating
particular services. This paper discusses the design of
configurable and re-configurable middleware architecture and also
the key role of separation of concerns for such platforms. The
paper also describes the Arctic Beans component model which
uses the Composition Filters model to capture such concerns and
also support their safe composition. The paper also explains how
this model can be used to construct an Arctic Beans container, in
the style of EJB. The main contribution of the paper is to
demonstrate that adaptable middleware platform can be developed
using separation of concern technologies, specifically the
composition filters model.

1. INTRODUCTION
As pointed out in [1], most existing middleware platforms are
developed with an underlying black-box philosophy that hides the
underlying middleware architecture and offers fixed services to
their users. Based on this, it is argued that “next generation
middleware platform should be configurable, to meet the needs of
a given application domain, dynamic reconfigurable, to enable the
platforms to respond to changes in their environment, and
evolvable, to meet the needs of changing platform design” [1].

This argument applies to the full range of middleware platforms
available. In this paper, we are particularly concerned with the
arguments for flexibility in the context of the Java 2 Enterprise
Edition (J2EE), which is designed to support the rapid
development of enterprise applications with particular focus on
client/server and multi-tier middleware architectures. More
specifically, we are mainly concerned with the Enterprise Java

Beans (EJB) technology. EJB provides limited configurability in
terms of a fixed set of middleware non-functional services at
deployment-time (via a declarative deployment descriptor).
However, EJB along with many other related enterprise
architectures generally do not provide enough support for re-
configuration or evolution. At best, there is limited support in
some platforms for replacing or updating particular services.

Complexity is a key issue in contemporary middleware platforms
and it is this complexity which often hampers attempts to provide
more flexibility. In particular, in such platforms, it is necessary to
consider and eventually integrate a number of potentially
overlapping concerns (e.g. security, transactional behavior, etc.).
Given this, separation all concerns is crucially importance in
software systems in general, but particularly in the area of
middleware. Good support for separation of concerns can reduce
complexity, improve reusability and simplify evolution. However,
programming language mechanisms and associated platforms
typically do not support separation of concerns very well,
resulting in the problems of tangling and scattering that
significantly complicate software maintenance, evolution,
integration, and reuse [2]. Adaptive programming [3], AspectJ [4],
Hyperspace [5] and the Composition Filters (CF) model [6] are
examples of techniques that have recently been proposed to
address this problem. In this paper, we are particularly interested
in the Composition Filters (CF) model as a modular extension of
the traditional object model that provides both intra-class and
inter-class composition of crosscutting concerns [6, 7].
Crosscutting concerns are expressed modularly and orthogonally,
thus the adaptability and reusability of concern are increased. This
analysis applies in particular (but not exclusively) to non-
functional aspects of middleware. Each individual kind of non-
functional service may be considered a separate concern
dimension [5] and modeled separately [8, 9]. AspectJ2EE [10]
and JBoss [11] are two examples that achieving better flexibility
and extensibility of middleware platform with techniques of
separation of concerns.

In this paper, we focus on the design of configurable and re-
configurable middleware with particular attention to EJB-like
platforms (although many of the arguments generalize to other
enterprise architectures and indeed more general styles of
middleware). In particular, we investigate the role of composition

filters in providing the necessary separation of concerns and
structure to support the dynamic properties we seek. A key
motivation for investigating this approach (over for example other
aspect-oriented technologies) is the ability to reason about
composition and the subsequent correctness of middleware
instances. As an added dimension, we also consider the
integration of an underlying reflective component technology
providing a more principled approach to introspection and
adaptation of the resulting structures.

More specifically, we present the Arctic Beans component model,
which employs the Composition Filters model for expressing the
concerns relating to non-functional services (and also potentially
in the future other concerns, e.g. relating to self-* properties). We
also present the Arctic Beans container architecture as a particular
instantiation of the more general architecture offering
configurability and re-configurability of those services in the
container.

The rest of paper is structured as follows. Section 2 provides the
necessary background information on composition filters and
component technology. Section 3 then describes the design of the
Arctic Beans component model, and the Arctic Beans container
architecture. Finally, future work and conclusions are discussed in
section 4.

2. BACKGROUND

2.1 Composition Filters Model
The Composition Filters (CF) model [6, 7] enhances the
conventional object model by intercepting and manipulating all
incoming and outgoing messages. It contains three selective parts:
filter modules, superimposition mechanism and the
implementation object.

The filter modules specify how messages should be handled in
terms of the concept of filters and the semantics of filter types.
More specifically, the filter module part contains input filters and
output filters that manipulate respectively incoming and outgoing
messages of an object. The semantics associated with acceptance
and rejection of a message depends on the semantics of the filter
type (Dispatch, Error, Wait, Meta) of the filter. Further details of
the filter types can be found in [6, 7].

The superimposition mechanism specifies selected behaviors and
the location where the behavior should be superimposed. It
contains a selectors part and other sections. The selectors part
specifies the location of the superimposition through a number of
join point selectors. A number of sections specify selection of
object behaviors that are superimposed upon the locations
declared by the selectors.

The implementation object is an enhanced conventional object
that offers an interface of two types of methods: regular methods
for functional behavior of the object, and conditional methods
(also called conditions) for filters to test the state of the object.

The CF model can be used to model separation of concerns with
filter modules for the concerns specification, the implementation
part for the implementation of the underlying behavior, and the
superimposition mechanism for composition of crosscutting
concerns.

A CF class can represent a concern that crosscuts its objects by
specifying composition of the concern with its filter module set;
this is also called intra-class modeling of crosscutting concerns.
Crosscutting concerns over several CF classes are modeled by
encapsulating each concern within a CF class and specifying
composition of the software artifacts through the superimposition
mechanism.

2.2 JBoss
JBoss is an extensible server [11, 12], which allows the user to
extend middleware services by dynamically deploying new
components into the JBoss server at run time. There are two kinds
of components in the JBoss system: EJB components and JBoss
service components:

• EJB components are Java objects that conform to the
Enterprise JavaBeans (EJB) architecture [13] and thus
implement a set of Java interfaces for either remote or local
client. EJB components are used to implement the business
logic for the appropriate application domain. JBoss containers
then provide an execution environment for such components.

• JBoss service components are Java objects that conform to the
JBoss component model convention and expose a
management interface to address issues like services lifecycle
and dependencies between services to their client. The JBoss
service component model extends and refines the JMX service
component model (MBeans) [14]. JBoss service components
are used to implement middleware services for a JBoss-based
system. There are two kinds of JBoss service components:
Service MBeans and Deployable MBeans. Service MBeans
add service life-cycle operations to the original management
interfaces. Deployable MBeans encapsulate service MBeans
in a deployment unit according to an EJB-like convention, and
also manage dependencies between those service MBeans.

2.3 The JBoss EJB Container
In a JBoss [11] system, a generalized EJB container manages the
deployed EJB component and provides the EJB component with
pluggable middleware non-functional services such as instance
pooling, instance caching, persistence, security, and transactions.
The abstraction of an EJB container is realized by a container
MBean together with the set of plug-ins. There are two kinds of
container plug-ins: (a) well defined plug-ins are used to
implement specific services, like bean instance pooling, bean
instance caching, and management of bean persistence, and (b)
server-side interceptors are used to implement non-functional
services of the container.

EJB containers are JBoss service components themselves. The
JBoss EJB container provides both base-level interfaces and meta-
level interfaces. Base-level interfaces are the interfaces of the EJB
component. In contrast, the meta-level interfaces are the MBean
management interfaces of JBoss service components.

At deployment time, the EJB container is configured by
specifying all the information required to create the container in
XML files. JBoss provides a default container configuration for
the standard EJB components with a global configuration file
(standardjboss.xml), and an alternative configuration
with a local configuration file (jboss.xml) optionally
included by a given EJB component. Configuration of non-

functional services is supported by manually changing the server-
side interceptors in the configuration file of the EJB container.

3. OVERALL DESIGN

3.1 The design of Artic Beans Component
Arctic Beans components are software components used to
encapsulate middleware non-functional services. They are built on
top of two models: the CF model and the OpenCOM component
model [15]. By combining those two technologies, the Arctic
Beans component model provides better support for dynamic
adaptation and evolution of both Arctic Beans components and
middleware platforms constructed from this technology. In
essence, OpenCOM provides the necessary level of openness and
the CF approach associated support for (correct) composition.

As mentioned in the previous section, middleware non-functional
services may be designed as separate concerns to maintain
conceptual decomposition and provide better reusability. In our
design, a concern is represented by the CF model, because it can
express crosscutting concerns with modularity and orthogonality
[6].

The Arctic Beans component model applies the CF model as
follows:

• The CF model supports the assembly of components of
various (potentially heterogeneous) component models.
Components of different component model may also coexist
in the Arctic Beans component, and provide different
functionalities for the containing Arctic Beans component.

• Composition of non-functional concerns is facilitated by the
superimposition mechanism. The CF model provides
composition of crosscutting concerns at the inter-class level;
various concerns are composed through superimposition
mechanism. As non-functional services are represented as
concerns, configuration and reconfiguration of non-functional
services can thus be facilitated by inter-class level concern
superimposition.

• Construction and reconstruction of individual concern is
supported by unification of functionalities of sub components.
The CF model provides also composition of crosscutting
concerns at intra-class level; behaviors of sub-components are
represented as filter modules and composed together within a
CF object and the associated superimposition mechanism.
This feature of the CF model is capable of composing the
functionality of internal components together, and
recomposing them later if needed. This has the nice feature of
not just separating underlying concerns but also of having a
clean separation of concerns between such features and their
composition (cf. research on co-ordination and components).

In order to support dynamic adaptation of Arctic Beans
components, Arctic Beans components need to provide meta-
interfaces for architecture introspection and adaptation. For this,
we adopt the OpenCOM reflective component technology.
OpenCOM is a minimal, lightweight component technology
designed for the construction of low level systems software
including middleware and embedded systems. A key feature of
OpenCOM is its intrinsic support for reflection, through a number
of meta-interfaces. These interfaces support both introspection
and adaptation at the level of individual components and their

interfaces and also crucially at the level of software architectures
[15]. An Arctic Beans component contains an OpenCOM
component as an internal component and delegates invocation of
corresponding reflective operation to the appropriate meta-
interfaces of this underlying OpenCOM component.

As shown in figure 1, the structure of an Arctic Beans component
consists of three filter modules (the ImportService filter module,
the InjectMetaInterface filter module and the ExportService filter
module), a superimposition mechanism, and an implementation
object.

The main functionality of the Arctic Beans component is to
impose middleware non-functional services. Such services are
firstly implemented as JBoss service components, and then
encapsulated in the Arctic Beans component. The ImportService
filter module declares a JBoss service component with the
implemented service to be included in the Artic Beans component.
With the help of the superimposition mechanism, the JBoss
service component is incorporated in the Arctic Beans component
instance.

As mentioned above, an Arctic Beans component provides
reflective functionalities including, in particular, architectural
introspection. This functionality is included into the Arctic Beans
component by the InjectMetaInterface filter module. Together
with the superimposition mechanism, the InjectMetaInterface
filter module specifies reflective functionalities of an OpenCOM
component to be included in the Arctic Beans component
instance.

An Arctic Beans component need also specify a destination (base)
program where the services provided by this Arctic Beans
component are woven into, in other words, which objects that are
allowed to invoke/access those services and which kind of
services are exported to those objects. The ExportService filter
module specifies the kind of services to be exported. This
specification contains all the interfaces required, including meta-
level interfaces of OpenCOM and management interfaces of the
JBoss service component, as all those interfaces are required for
the destination program to function properly. In other words, the
ExportService filter module specified all the interfaces and sub
components needed to form a component assembly. The specified
interfaces conform to the OpenCOM component model
specification.

The superimposition part of the CF model groups different
superimposition tasks together, where different task can have
different selected destination programs and behaviors. An object
is aware of the imported behavior superimposed on it at the
instantiation time of the object. For the case of Arctic Beans
components, there is a specific superimposition task that
cooperates with each filter module. The selected behavior is added
either to the Arctic Beans component instance itself (e.g. through
the ImportService filter module) or the selected EJB container
type. At instantiation time, the EJB container instance is aware of
the available non-functional services and configures them
accordingly.

An Arctic Beans component also contains internal (sub)
components as its building blocks. Those sub components can be
components of different component models, for example, JBoss
service components or OpenCOM components and they may
coexist (usefully) within the containing Arctic Beans component.

A sub component can be included in an Arctic Beans component
in two different ways: (a) when a sub component is not shared by
other CF components, it is located within the containing Arctic
Beans component; (b) when a sub component is shared by other
CF components, it is located outside of the Arctic Beans
component and is available to the Arctic Beans component via its
object reference.

In order to achieve better harmony and to provide cohension, an
Arctic Beans component needs to handle the issues of sub
components interaction. Interactions between sub components are
handled at the implementation object.

An Arctic Beans component provides two kinds of interfaces:
base-level interfaces and meta-level interfaces:

• The base-level interfaces are the union of available interfaces
of its sub components and implementation object thus
providing the main functionality of the Arctic Beans
component. For example, in the case of an Arctic Beans
component that realizes a transaction model, the JBoss service
component interfaces that realizes transaction services all
belong to this group.

• The meta-level interfaces provide reflective capabilities for
the component. They are a union of available meta-level
interfaces of its sub-components and implementation object.

For both base-level and meta-level interfaces of Arctic Beans
components, operation invocations are handled in the same way.
An invocation message first arrives at the filters, it then passes
along the filters until a particular filter accepts it and dispatches it
for execution.

As an illustration of the approach, we provide an example of a
sample specification of a transaction service as shown in figure 2.

The ImportService filter module specifies the transaction
service TA with its methods StartTransaction(),
StopTransaction() and AbortTransaction(). The
invocation of the service is then delegated to the transaction
service through a Dispatch filter delegate. The
ImportService filter module is further composed into the
concern instance by the superimposition mechanism.

The InjectMetaInterface filter module attaches meta-level
interfaces to the concern through an OpenCOM component
SubComponent. The functionality included into the concern are
IMetaArchitecture(), IMetaInterface(),
ILIfeCycle() and IConnection(). The
InjectMetaInterface filter module is also composed to the
concern instance by the superimposition mechanism.

The ExportService filter module specifies all the interfaces
included to export this transaction service. The interfaces included
are all operations for the transaction service and all operations that
realize the reflective functionality. The concern ABCompTA is
defined as a shared object and the ExportService filter
module holds an object reference to it. The superimposition
mechanism superimposes the concern to all containers of type
ABContainer.

3.2 The Arctic Beans Container
An Arctic Beans container is an example of an Arctic Beans
component that provides an execution environment for EJB style
components. It also supports adaptation of non-functional services
of the EJB container.

The design of Arctic Beans container needs to handle the
following issues: (1) Obtaining available filter modules that
implement non-functional services. (2) Composing those filter
modules together in the specified order. (3) Maintaining the
integrity of the container structure.

As every non-functional service is specified as an ExportService
filter module of an Arctic Beans component and superimposed
into the Arctic Beans container, the available filter modules are
made available to the container in an arbitrary order [16].

Filter modules superimposed into the Arctic Beans container
implement all the interfaces of an OpenCOM component. It is
actually an OpenCOM component in the form of a CF filter
module, and can thus be connected together as with any
OpenCOM component. An associated OpenCOM component
framework [15] maintains an internal structure of interconnected
OpenCOM components and provides functionality for
introspection and change of the internal structure. An Arctic
Beans container uses this component framework structure to
connect those non-functional services.

ExportService

ImportService

InjectMetaInterface

Implementation

object

Su
pe
rim
po
sit
ion

me
ch
an
ism

Component

OpenCOM

Component

Figure 1: Arctic beans component.

Integrity of the container structure is maintained by a centralized
composition rules component that implements an IAccept
interface. The component framework sends invocation to the
IAccept interface when changing its internal structure and the
associated object must approve of the changes.

An Arctic Beans container provides configuration and
reconfiguration of non-functional services as follows:

• Connection of filter modules using the OpenCOM component
framework.

• Configuration of non-functional services by container
composition of internal objects at instantiation-time. Since the
Arctic Beans container is based on the CF model, elements of
the CF model are combined easily with the feature of intra-
class composition, that is, with the CF message manipulation
language programming. Therefore, configuration of non-
functional services of Arctic Beans container is implemented
directly using CF message manipulation programming.

• Reconfiguration of non-functional services with updated
information at run-time. An Arctic Beans container holds
object references to two centralized components with
information of all the available filter modules of the container,
and the general composition rules. When there is a need for
dynamic reconfiguration, the container can be reconstructed
by repeating the container composition process again with the
updated information.

As shown in figure 3, an Arctic Beans Container contains a
ContainerMetaInterface filter module, a superimposition
mechanism and the implementation object.

An Arctic Beans container uses a designated filter module,
ContainerMetaInterface, to specify the provided functionality and
participating sub-components: the original EJB component,
OpenCOM component frameworks and associated Accept
components, and the Repository component. The
superimposition mechanism weaves the filter modules into the
Arctic Beans container. The implementation object connects the
IAccept receptacle of the component framework to the IAccept
interface of the Accept component, and implements the provided
operation IContainerComposition() by combination and
reconciliation behaviors of involved sub-components.

Sub-components involved in the ContainerMetaInterface filter
module are defined as either internals or externals. The original
EJB container component and the OpenCOM component
framework are designed as internals, and thus available within the
container. The OpenCOM Accept component and the Repository
are designed as externals; they are located as outside the Arctic
Beans container within the same JBoss server, and are accessible
through object references.

The original EJB container component is the original EJB
container that configures the non-functional services from the
deployment descriptor file. It contains user specified non-
functional service order of the EJB component at deployment time
of the EJB component, and implements the set of interfaces that
conform to the EJB component model.

The repository provides information on all the filter modules
superimposed into the Arctic Beans container class. The
OpenCOM component framework carries out the actual task of
non-functional service connection using OpenCOM component

concern ABCompTA begin

filtermodule ExportService begin
 externals
 TAService: ABCompTA;
 methods
 StartTransaction();
 StopTransaction();
 AbortTransaction();

 IMetaArchitecture();
 IMetaInterface();
 ILifeCycle();
 IConnections();
 inputfilters

startService: Meta =
{[*]TAService.[StartTransaction|
StopTransaction|AbortTransaction]};
dispMetaOperation: Dispatch =
{IMetaArchitecture,IMetaInterface,
ILifeCycle,IConnections};

end filtermodule ExportService;

filtermodule ImportService begin
 externals
 MyTA: TA;
 methods
 StartTransaction();
 StopTransaction();
 AbortTransaction();
 inputfilters

delegate: Dispath = {inner.*,
MyTA.[StartTransaction|
StopTransaction|AbortTransaction]}

end filtermodule ImportService;

filtermodule InjectMetaInterface begin
 internals
 SubComponent: OpenCOMComponent;
 methods
 IMetaArchitecture();
 IMetaInterface();
 ILifeCycle();
 IConnections();
 inputfilters

disp: Dispatch = {inner.*,SubComponent.*}
end filtermodule InjectMetaInterface;

superimposition begin
 selectors

allABContainers =
{*->select(oclIsTypeOf(ABContainer)) };

 filtermodules
 allABContainers <- ExportService;
 self <- ImportService;
 self <- InjectMetaInterface;
end superimposition;

implementation in Java;
class ABCompTAClass
{
}
end implementation;
end concern ABCompTA;

Figure 2: Transaction service implemented as concern

ABCompTA.

reflective capabilities. The OpenCOM Accept component verifies
the composed structure.

The resulting Arctic Beans container is an assembly of software
components that has several filter modules, each related to a
particular non-functional service, a ContainerMetaInterface filter
module for composition of sub-components of those filter
modules, and an implementation object.

An Arctic Beans container provides two kinds of interfaces: base-
level interfaces and meta-level interfaces. Base-level interfaces
are the set of interfaces of the EJB component. The meta-interface
provides the IContainerComposition() operation for architecture
introspection of the container.

An example of an Arctic Beans container is shown in figure 4.
The filter module ContainerMetaInterface specifies an
extra sub-component needed for container composition. The
original EJB container and OpenCOM component framework are
made available as internals OrgContainer and MyCF; the
Accept component of OpenCOM and the Repository as externals
CompositionVerification and MyFilterModules.
The meta-level operation IContainerComposition() is
declared here and implemented at the implementation object.

When a message invokes one of the operations implemented by
original EJB container, it is delegated to OrgContainer by the
dispatch filter disp. Invocation of

IContainerComposition() is delegated to the
implementation object.

4. EVALUATION AND CONCLUSION
It has been pointed out that next generation middleware should be
both more configurable and reconfigurable and that separation of
concerns is a key factor in supporting such features. The selection
of an appropriate technology is therefore important for
middleware designers. AspectJ2EE is a new aspect language that
is used to handle composition of services to user applications in
the context of J2EE at deployment time. Composition of services
is performed by application assembler in AspectJ2EE. JBoss 4.0
is another example that uses separation of concerns technology for
non-functional services composition at deployment time with
JBoss AOP framework.

In this paper, we have studied the role of Composition Filters in
providing the necessary level of separation of concerns to deal
with the complexity of middleware, and have demonstrated how
non-functional concerns as well as container architectures can
benefit from the expressibility of the Composition Filters
approach. Through the design of our Arctic Beans container
architecture, we are convinced that adaptable middleware
platform can be achieved by using separation of concerns
provided by the Composition Filters model and reflection
provided by OpenCOM component model.

The Composition Filters model is used to both unify the
functionalities of sub-components within individual concerns, and
superimpose concerns into the target program (such as EJB
containers) at component instance level. By combining
OpenCOM component model and Composition filters model, the
ability for introspection and adaptation of service components and
expressiveness of service behavior are nicely integrated. We do
this combination at two levels, the individual concern level and
the container architecture level. The flexibility and adaptability
can therefore be provided at both levels.A prototype
implementation of the architecture has been prepared using JBoss,
v 4.0, together with the Compose* tool.

Implementation

Object

IContainerComposition ()

OpenCOM

CF

ContainerMetaInterface

Superim
positio

n

mechanism

Original
container

OpenCOM

Accept

Repository

Figure 3: Arctic beans container.

concern ABContainer begin

filtermodule ContainerMetaInterface begin
 internals
 OrgContainer: EJBContainer;
 MyCF: OpenCOMCF;
 externals

CompositionVerification:
 OpenCOMAcceptComponent;

 MyFilterModules: Repository;
 methods
 IContainerComposition();
 inputfilters
 disp: Dispatch = {inner.*,OrgContainer.*}
end filtermodule ContainerMetaInterface;

superimposition begin
 filtermodules
 self <-ContainerMetaInterface;
end superimposiiton;

implementation in Java;
class ABContainerClass
{

public int
IConatinerComposiiton(MyFilterModules,

OrgConatiner,
ExtraConstraints,
MyCF,
ComposiitonVerification)

 {

 }
}
end implementation;
end concern ABContainer;

Figure 4: Artic Beans container

This work is part of the larger Arctic Beans project at Tromsø and
ongoing projects are looking at the application of such
architectural concepts to dealing with the non-functional concerns
of transactions and security. Attention is also being given to the
role of context in supporting adaptation in container architectures
and on the application of this technology to mobile computing.

5. ACKNOWLEDGMENTS
The research described in this paper is funded by Telenor (R&D)
in Tromsø, Norway, as part of Arctic Beans project. The Arctic
beans project is also funded by the Norwegian Research Council
(IKT2010).

6. REFERENCES
1. Blair, G.S., et al., The design and implementation of

Open ORB 2. IEEE Distributed Systems Online, 2001.
2(6).

2. Elrad, T., et al., Discussing aspects of AOP. Commun.
ACM, 2001. 44(10): p. 33-38.

3. Lieberherr, K., D. Orleans, and J. Ovlinger, Aspect-
oriented programming with adaptive methods. J
Commun. ACM, 2001. 44(10): p. 39-41.

4. Kiczales, G., et al., An Overview of AspectJ. Lecture
Notes in Computer Science, 2001. 2072: p. 327-355.

5. Rouvellou, I., S.M.S. Jr., and S. Tai. Multidimensional
Separation of Concerns in Middleware. in In
Proceedings of the Multidimensional Separation of
Concerns in Software Engineering,. 2000: published in
conjunction with the 2000 International Conference on
Software Engineering (ICSE 2000), 4-11 June, 2000.

6. Bergmans, L. and M. Aksit, Composing Crosscutting
Concerns Using Composition Filters. Communications
of the ACM, 2001. vol. 44 No. 10: p. 51-57.

7. Bergmans, L. and M. Aksit, Principles and Design
Rationale of Composition Filters, in Aspect-Oriented
Software Development, R.E. Filman, et al., Editors.
2005, Addison-Wesley. p. 63-96.

8. Chung, L., et al., Non-Functional Requirements in
Software Engineering. Series: The Kluwer International
Series in Software Engineering. Vol. Vol. 5. 1999:
Springer. 476 p.

9. Lamsweerde, A.v. Goal-Oriented Requirements
Engineering: A Guided Tour. in Proc. RE'01 - 5th IEEE
International Symposium on Requirements Engineering.
2001. Toronto: IEEE CS Press.

10. Cohen, T. and J.Y. Gil. AspectJ2EE = AOP + J2EE:
Towards an Aspect Based, Programmable and
Extensible Middleware Framework. in 18th European
Conference on Object-Oriented Programming. 2004.
Oslo: Springer-Verlag.

11. Fleury, M. and F. Reverbel. The JBoss Extensible
Server. in Middleware 2003 ACM/IFIP/USENIX
International Middleware Conference. 2003. Rio Othon
Palace Hotel, Rio de Janeiro, Brazil: Springer-Verlag.

12. Reverbel, F., B. Burke, and M. Fleury. Dynamic
Deployment of IIOP-Enabled Components in the JBoss
Server. in In Component Deployment: Second
International Working Conference (CD 2004). 2004.
Edinburgh, UK, . Springer-Verlag.

13. Sun Microsystems, Enterprise JavaBeans Specification,
Version 2.1. 2003.

14. Sun Microsystems, Java Management Extensions -
Instrumentation and Agent Specification, v1.1. 2002.

15. Grace, P., G.S. Blair, and S. Samuel. ReMMoC: A
Reflective Middleware to support Mobile Client
Interoperability. in International Symposium on
Distributed Objects and Applications (DOA). 2003.
Catania, Sicily (Italy).

16. Vinkes, C., Superimposition in the Composition Filters
Model, in Electrical Engineering, Mathematics and
Computer Science. 2004, University of Twente: Twente.
p. 164.

