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1. Introduction 
1.1 Enterococci 

Enterococci have been known for over a century to be capable of causing infections in 

humans [1, 2]. For a long time, these infections were limited in numbers and mostly caused by 

Enterococcus faecalis. In the last decades enterococci have emerged as important nosocomial 

pathogens, largely due to their intrinsic antimicrobial resistance and their vast capacity to 

acquire antimicrobial resistance [3, 4]. Their genomic plasticity has also contributed to their 

adaptation to the hospital environment. In the early 1980s E. faecalis accounted for 90% of 

enterococcal  infections [5]. Subsequently, ampicillin resistant Enterococcus faecium started 

to emerge [6], and in 1986 transferable high-level vancomycin resistant enterococci (VRE) 

was discovered [7, 8]. In addition, E. faecium was shown to easily acquire resistance to other 

antimicrobials [9]. Since then, a gradual increase in enterococcal infections has been seen. E. 

faecium infections have increased relative to E. faecalis and have partially replaced E. faecalis 

as a cause of hospital associated infections. Now the prevalence of infections caused by E. 

faecium is close to that of E. faecalis [10-12]. E. faecalis have also been shown to acquire 

antimicrobial resistance, high-level gentamicin resistance (HLGR) in particular, but resistance 

to ampicillin and vancomycin is infrequent [13]. Enterococcal infections are now the 3rd and 

4th most frequent microorganism isolated from hospital associated infections in the US and 

Europe, respectively [10, 14]. 

 

 1.1.1 General characteristics of enterococci 

 

Enterococci are commensals of the human and animal intestinal flora [15-17]. They are also 

commonly used in food fermentation [18-20] and easily detectable in environmental sources 

such as in water, plants and soil [21-23]. Until the 1980s, species that today belong to the 

Enterococcus genus were classified as streptococci. In 1984 DNA homology studies showed 

that  Streptococcus  faecalis and Streptococcus  faecium were so distantly related to 

streptococci that they were transferred to another genus; Enterococcus faecalis and 

Enterococcus faecium, respectively [24]. In the beginning of the 19th century, S. faecalis and 

S. faecium were considered the same species [1], but during the 1940s and 1950 studies 

showed that the two organisms had different biochemical characteristics and by the mid-

1960s they were accepted as two distinct species [25]. A number of other enterococci have 
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been isolated [5, 26], and by 01.02.2012 there were 47 species in the Enterococcus genus 

registered in the Taxonomy browser in GenBank 

(http://www.ncbi.nlm.nih.gov/taxonomy/?term=enterococcus).  Enterococci belong to the 

phylum Firmicutes and the family of Enterococcacae. They are Gram positive facultative 

anaerobic organisms that are catalase negative, with the ability to hydrolyse esculin in the 

presence of bile. They can grow under harsh conditions, including both 10°C and 45°C , in 

the presence of 6,5% NaCl, and at pH 9,6. In addition, enterococci survive for 30 minutes at 

60°C [27]. The GC-content in the enterococci is low (36-40%), but can vary within the 

genome [28-30]. Sequencing of E. faecium and E. faecalis genomes have shown that both 

have an open pan genome, which means there is no limit to the number of genes that can be 

part of the joint genome of all bacteria within the species. It also revealed that the genomes 

are very flexible, with a large ability to recombine, that are at least in part due to the high 

numbers of  IS- and other mobile genetic elements present in these genomes [28, 29, 31-34]. 

 

 1.1.2 Clinical significance of enterococci 

 

 1.1.2.1  Hospital associated infections  

 

Hospital acquired infections (HAI) are described as an infection occurring during 

hospitalization. Definition criteria often include that the infection was neither present nor 

incubating at the time of hospital admission. As a consequence, in many epidemiological 

surveillance systems, these infections are required to appear no earlier than 48 hours after 

hospital admission to be defined as HAI [14, 35, 36]. The European Centre for Disease 

prevention and Control (ECDC) have estimated the prevalence of HAI in European acute care 

hospitals to range from 3,5%-10,5% with an average of 7,1% among admitted patients. From 

this prevalence, the cumulative incidence have been estimated to approximately 5,1% [14]. 

This means that for every 100 persons who are admitted to the hospital, 5 persons will get a 

hospital acquired infection. The economic burden of HAI is a comprehensive and complex 

calculation, and the transferability between different studies have proven low [37]. To give an 

idea of the increased cost attributable directly to HAI, we can calculate the cost of the 

lengthened hospital stay as a result of HAI. A prudent valuation has estimated that HAI 

lengthen the hospital stay with an average of 4 days [38].  The average hospital stay has been 

calculated to cost EUR 435 per day [39], which means that for every 100 persons admitted to 
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the hospital, HAI will increase the costs with EUR 8700. This is only estimating the direct 

cost of the lengthen stay, not considering any indirect costs such as cost related to the need for 

additional medical procedures, the need for isolation, loss of income, increased morbidity or 

increased mortality. The share of deaths contributable to HAI is substantial. The US CDC 

estimated the direct attributable mortality of HAI to be 0,9%, in addition it contributed to 

2,7% of deaths [38]. Combined with antimicrobial resistance, the consequences of HAI are 

even greater: higher costs, more morbidity and more mortality. Carmeli et al. shoved that for 

VRE infections the multiplicative effect for lengthened hospital stay was 1,73 and for hospital 

cost 1,4. Morbidity was also significantly increased and the risk of death was doubled [40].    

 

 

 1.1.2.2 Epidemiology 

 

Enterococci are a common cause of HAI worldwide. In Europe, the prevalence of 

enterococcal HAI is around 8%, and enterococci are only outnumbered by Escherichia coli, 

Staphylococcus aureus and Pseudomonas aeruginosa [14]. Although enterococci do not reach 

the top-ten list of nosocomial outbreak pathogens [41-43], ECDC has placed them on the list 

of pathogens posing a major threat to healthcare systems [14]. This is in large part a result of 

the increasing antimicrobial resistance in enterococci. In the US, 80% of E. faecium isolates 

are vancomycin resistant [10]. In Europe the prevalence of VRE has traditionally been low, 

and in the Scandinavian countries prevalence is still below 1%. However, increasing rates of 

VRE have been reported from many European countries, and in Greece and Ireland the 

prevalence is even >30% [44]. 

In Norway, as in the rest of the world, the prevalence of enterococcal infections is increasing, 

and E. faecium isolated from blood cultures have increased nearly a 4 –fold, while the number 

of E. faecalis isolates have doubled (Figure 1). The success of E. faecium has been tributed to 

the success of hospital adapted lineages of this species (see later). In Norway enterococci are 

the 5th most common aetiological agent causing bacteraemia [45]. In parallel to the increase in 

enterococcal infections in Norway, an increase of high-level gentamicin resistance (HLGR) 

have been observed (Figure 2;[45, 46]. This seems to be part of an international trend 

occurring in both European, Asian and South American countries [47-53]. 
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Figure 1: A) Number of blood culture isolates of E. faecalis, E. faecium and all enterococci combined 

in Norway during 2003-2010. B) Prevalence of high-level gentamicin resistance (HLGR) in blood 

culture isolates of E. faecalis, E. faecium and all enterococci combined in Norway during 2003-2010. 

Numbers collected from NORM (http://www.unn.no/rapporter/category10270.html) 
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  1.1.2.3 Disease and treatment 

 

Enterococci are considered opportunistic pathogens. As commensals of the human gut flora 

they do not normally cause infections in healthy people, with the exception of occasional 

urinary tract infections.  However, enterococci have proven very competent in causing 

opportunistic infections in hospitalized patients, particularly in debilitated hosts [54-57]. 

Several studies have shown that exposure to antimicrobials facilitates changes in the intestinal 

microbiota, which promote colonisation by enterococci [58-62]. It has also been shown that 

increased density of colonizing enterococci in the intestine precedes bloodstream infections 

[62]. Other risk factors for colonization and subsequent infections with enterococci include 

admission to a critical care unit, co-morbidity, exposure to other patients with hospital 

adapted enterococci, long period of hospitalization, haemodialysis and solid organ and bone 

marrow transplantation [40, 63-67]. Most studies investigating risk factors focus on 

vancomycin resistant enterococci, but the crucial determinant giving enterococci the ability to 

colonize and infect a host is not only vancomycin resistance. Hence one could assume the risk 

factors for acquiring enterococcal infection should be somewhat similar between vancomycin 

resistant (VR) and vancomycin susceptible enterococci (VRE). 

 

Enterococci can cause a variety of infections, most of them facilitated by indwelling devices 

or structural anatomic abnormalities. Urinary tract infections (UTI) are the most common 

enterococcal infection, and often associated with urinary catheters [68]. If not accompanied 

by bacteraemia, it generally only requires single-drug therapy, although seriously ill patients 

with pyelonephritis may benefit from combination therapy [68, 69]. Intra-abdominal and 

pelvic infections are often polymicrobial in origin. Although enterococci are detected in 20% 

of these [70], it is debatable to what extent they contribute to the infections [71]. However, 

these infections are common sources of bacteraemia [72, 73], hence antimicrobial therapy 

active against enterococci is regularly recommended [70]. Bacteraemia is not necessarily 

accompanied by an infection, but is none the less a bacterial invasion of the body. The source 

of the bacteraemia is often an infection or an indwelling device, but translocation of 

enterococci across intact intestinal epithelial cells may also lead to bacteraemia [72, 74]. The 

percentage of patients were endocarditis is the cause of enterococcal bacteraemia varies from 

about 1% to 32% in different studies [75]. Enterococci account for 5-20% of cases of 

endocarditis and are thus the 2nd -3rd most common cause of endocarditis. Enterococcal 
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meningitis is rare accounting for about 0.3% to 4% of meningitis cases [76, 77]. Severe 

enterococcal infection generally requires combination therapy [75, 78-80].  

 

 1.1.3.5 Antimicrobials used to treat enterococcal infections 

 

Enterococci are traditionally treated with a combination of cell wall active antimicrobials such 

as β-lactams or glycopeptides, and aminoglycosides [80]. However, the increased rates of β-

lactam and glycopeptide resistance in E. faecium and aminoglycoside resistance in both E. 

faecium and E. faecalis have called for the use of other and perhaps less efficient drugs.  

 

Aminoglycoside antibiotics were one of the early discovered antibiotics and have been in use 

for over 60 years. They bind to the 30S ribosomal subunit, which plays a crucial role in 

providing high-fidelity translation of genetic material [81], rendering the ribosome 

unavailable for translation and thereby resulting in cell death [82]. Aminoglycosides have a 

broad antimicrobial spectrum covering a wide variety of aerobe Gram negatives and some 

Gram positives [83]. They display concentration-dependent bactericidal activity and is 

effective even when the bacterial inoculum is large [84]. The aminoglycosides are seldom 

drugs of first choice for monotherapy of infections, except for some cases of uncomplicated 

urinary tract infections [85]. Because of their synergism with cell wall synthesis inhibitors, 

they are recommended as part of an empirical combination therapy for severe infections such 

as septicaemia, nosocomial respiratory tract infections, complicated intra-abdominal 

infections and enterococcal endocarditis [80, 86-93]. Synergism presumably arises as the 

result of enhanced intracellular uptake of aminoglycosides caused by the increased 

permeability of bacteria after incubation with cell wall synthesis inhibitors such as β-lactams 

and glycopeptides [91, 94, 95]. Resistance rarely develops during the course of treatment [96, 

97]. Gentamicin is the aminoglycoside most often used, because of its low cost and reliable 

activity against Gram negative aerobes [98]. The major limitations of aminoglycosides is a 

relatively low therapeutic index with both nephrotoxicity and ototoxicity, and that they are not 

absorbed orally due to their cationic nature and thus must be given parentally by either an 

intravenous or intramuscular route [96, 98].  

 

Cell wall active antimicrobials such as β-lactams and glycopeptides act by inhibiting the 

synthesis of the peptidoglycan layer of bacterial cell walls [99, 100]. Penicillins are 
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considered bacteriostatic against enterococci, and are the most widely used antimicrobials in 

the world [101]. Glycopeptides only work on Gram positive bacteria and is considered 

bacteriostatic against enterococci [3, 102]. In the last decade several antimicrobials with effect 

on enterococci have emerged. They all exhibit less than 100% clinical and microbiological 

success, usually around 70% [80, 103]. To improve their efficacy and reduce the development 

of resistance, it is preferable to employ them as part of a combination regimen [80, 103]. 

Linezolid inhibits protein synthesis and is active against all clinically important Gram positive 

bacteria, although it only displays a bacteriostatic effect [104, 105]. Daptomycin interferes 

with the cytoplasmic membrane causing depolarization and cessation of protein-, DNA and 

RNA-synthesis [106, 107]. It has concentration-dependent bactericidal activity against 

enterococci [108, 109]. Quinupristin-dalfopristin (Q/D) is a streptogramin antibiotic that is 

only active against E. faecium. It inhibits protein synthesis and is considered bacteriostatic 

against enterococci [110]. Tigecyclin is a broad-spectrum antibiotic that inhibits the protein 

synthesis. A recent review showed that it was more effective against enterococci than other 

Gram positive bacteria, but infections included were mostly skin and soft tissue infections and 

intra-abdominal infections [111, 112].  

 

 1.1.3 Antimicrobial resistance in enterococci  

 

The discovery of antibiotics is considered one of the most significant health related events of 

modern times and antibiotic therapy is one of the cornerstones in modern medicine. Use and 

misuse of antimicrobials in human medicine and animal husbandry over the past 70 years 

have caused an unremitting selection pressure that has given rise to innumerable 

microorganisms resistant to these medicines. The use of antimicrobials are positively 

correlated to the emergence of resistant bacteria [113, 114]. Several bacteria in the hospital 

setting in many countries worldwide are now multiresistant [10, 14], leaving few treatment 

options. Hence, the development of antimicrobial resistance by bacteria constitutes a major 

threat to human health (http://www.who.int/drugresistance/en/). 

 

  

 

http://www.who.int/drugresistance/en/


Ph.D Thesis 2012 Introduction Rosvoll, T. C. S. 

11 
 

 1.1.3.1 Intrinsic resistance 

 

Intrinsic resistance is a species characteristic, and thus present in all members of the species.  

Enterococci are resistant to most β-lactam antibiotics due to a penicillin-binding protein 

(PBP) that has a low affinity for beta-lactam agents [115, 116].  For ampicillin, 

ureidopenicillins, penicillin and imipenem the resistance is only low level. E. faecium  

generally display higher MICs than E. faecalis [5]. Enterococci display low level resistance to 

aminoglycosides (se later) and lincosamides [5]. E. faecalis also possesses an efflux pump 

conferring resistance to lincosamides and dalfopristin [117]. In addition, many wild-type 

enterococci possess endogenous efflux pumps that excrete chloramphenicol  making them low 

level resistant [118]. Most enterococci are susceptible to co-trimoxazole in vitro, but this 

combination does not work in vivo, because enterococci are able to incorporate exogenous 

folic acid which enables them to bypass the inhibition of folate synthesis caused by co-

trimoxazole [5]. 

 

 1.1.3.2 Acquired resistance 

 

A diversity of antimicrobial resistance genes have been demonstrated in the human gut 

microflora [119]. As inhabitants of the human intestinal flora, enterococci are in a position to 

acquire resistance genes from this  community, thus making them notoriously difficult to treat 

and enabling them to transfer resistance genes to even more pathogenic bacteria, such as vanA 

to S. aureus [120, 121].  

 

Aminoglycoside resistance 

All enterococci and other facultative anaerobes have intrinsic low-level resistance to 

aminoglycosides because of impaired uptake (Figure 2) [122]. Minimal inhibitory 

concentrations (MICs) range from 4 µg/mL to as high as 256 µg/mL, and the MIC of 

gentamicin typically range from 6 to 48 µg/mL. In general these strains are assumed to be 

susceptible to ampicillin-gentamicin or vancomycin-gentamicin synergism, provided that they 

are not highly resistant to ampicillin or vancomycin [123]. In addition to the intrinsic 

resistance, all E. faecium strains produce a chromosomally encoded aminoglycoside 

acetyltransferace, AAC(6’)-Ii, which eliminates synergism between cell wall-active 

antimicrobial and the aminoglycosides tobramycin, kanamycin, netilmicin and sisomicin 
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[124, 125]. It is also proposed that the EfmM metyltransferase, reducing susceptibility against 

kanamycin and tobramycin is encoded by all E. faecium [126].   

 
 

 
Figure 2: Main mechanisms of antibiotic resistance in enterococci: Resistance to ampicillin occurs through 

alterations of penicillin-binding protein 5 (PBP5), which leads to low affinity for β-lactams. Enterococci exhibit 

intrinsic low-level resistance to aminoglycosides such as streptomycin or gentamicin owing to low uptake of 

these highly polar molecules. High-level resistance results from the acquisition of aminoglycoside-modifying 

enzymes or, for streptomycin, can result from ribosomal mutations that result in altered target binding. 

Resistance to the glycopeptide vancomycin occurs through a well-characterized mechanism of reduced 

vancomycin-binding affinity, involving alterations in the peptidoglycan synthesis pathway. Resistance of 

Enterococcus spp. to the streptogramin quinupristin–dalfopristin (Q–D) involves several pathways, including 

drug modification (by virginiamycin acetyltransferase (Vat)), drug inactivation (through virginiamycin B lysase 

(Vgb)) and drug efflux (via the ATP-binding cassette protein macrolide–streptogramin resistance protein 

(MsrC)). Resistance to linezolid is rare, but the most common pathway involves mutation in the 23S ribosomal 

RNA ribosome-binding site. Resistance of E. faecalis to the lipopetide daptomycin has been shown to involve 

altered interactions with the cell membrane and requires the membrane protein LiaF and enzymes involved in 

phospholipid metabolism, such as a member of the glycerophosphoryl diester phosphodiesterase family (GdpD) 

and cardiolipin synthase (Cls).  

Reprinted by permission from Macmillan Publishers Ltd: [Nature Reviews Microbiology] (2012 Mar 16;10(4):266-78. doi: 

10.1038/nrmicro2761.), copyright (2012) 
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The major mechanism of high level aminoglycoside resistance in clinical isolates of both 

Gram negative and Gram positive bacteria is enzymatic modification of the aminoglycosides 

(Figure 2). Three families of enzymes that perform co-factor dependent drug modification in 

the bacterial cytoplasm have been recognized: aminoglycoside phosphotransferases (APHs, 

the only one that produces high-level resistance), aminoglycoside acetyltransferases (AACs) 

and aminoglycoside nucleotidyltransferases (ANTs). 

The bifunctional enzyme AAC (6’)-Ie-APH (2”)-Ia found in enterococcal, streptococcal and 

staphylococcal isolates renders them high level resistant (MIC >2000g/mL) to virtually all 

clinically available aminoglycoside antibiotics, except streptomycin and to some extent, 

arbekacin [9, 123, 127-129]. Genes encoding aminoglycoside-modifying enzymes are often 

located on plasmids, which permit cell-to-cell dissemination of the aminoglycoside resistance 

trait. The aac(6’)-Ie-aph(2”)-Ia gene is generally flanked by inverted repeats of IS256, 

making up composit transposons such as Tn5281 in E. faecalis [130], Tn4001 in S. aureus 

[131] and Tn4031 in Staphylococcus epidermidis [132], which promote rapid dissemination at 

a molecular level [133].  

Other types of resistance 

Glycopetide resistance can be mediated by 9 different van-type gene clusters (vanA, vanB, 

vanC, vanD, vanE, vanG, vanL, vanM or vanN) [134-137] of which VanA- and VanB-type 

vancomycin resistance are considered the most clinically relevant. Their gene loci are most 

often located on transposons either on plasmids or on the chromosome [138, 139]. 

Vancomycin resistance is caused by replacing a glycopeptide-binding precursor in the 

peptidoglycan synthesis with a precursor that does not bind glycopeptides [138]. Hence, the 

cell wall synthesis will not be inhibited by vancomycin. 

 

High level of resistance to β-lactams has most commonly been associated with point 

mutations in PBP5 (penicillin binding protein 5), that lowers the affinity for β-lactams [116]. 

In rare cases, the β-lactam resistance is due to production of a β-lactamase [140].  

 

In addition, enterococci can acquire resistance to other antimicrobials such as 

chloramphenicol, tetracyclines,  macrolides, lincosamides, streptogramins, and  

fluoroquinolones [5, 141] as well as for all the most recently introduces antibiotics such as 

linezolid and daptomycin [4, 142-145]. 
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 1.1.4 Population structure and hospital adaptation of enterococci 

 

  1.1.4.1 E. faecium 

 

In the last two decades, E. faecium have evolved as a common nosocomial pathogen, 

increasing the total burden of enterococcal infections and partially replacing E. faecalis as a 

cause of HAI [11]. In the beginning of the millennium, genotypic population studies [146, 

147] showed distinct genetic lineages spreading in the hospital, suggesting the existence of a 

specific subpopulation of E. faecium associated with hospital acquired infections, different 

from the community and animal population. Ampicillin resistance and esp (enterococcal 

surface protein- a putative virulence gene) were the early markers associated with this 

subpopulation [146, 148]. Later a pathogenicity island (PAI) containing esp [149], IS16 [29, 

150] and quinolone resistance was also linked to these strains [151, 152]. In addition, putative 

virulence genes [153, 154], and several surface proteins are enriched in this hospital 

associated subpopulation [155, 156]. A large genotypic study of population structure, typing 

over 400 isolates by Multi locus sequence typing (MLST) and analyzing it with eBURST, 

confirmed the existence of a subpopulation of E. faecium representing clinical and hospital 

outbreak strains [157]. It demonstrated genetic clustering of hospital associated strains, named 

clonal complex 17 (CC17) that was strongly associated with ampicillin resistance and the esp 

containing PAI. ST17 was presumed to be the founder of this clonal complex.  A microarray-

based comparative genomic hybridization of mixed whole genomes, hybridized against 97 

isolates also supported the presence of a distinct phylogenetic group of hospital associated 

strains [29]. Many publications worldwide have acknowledged CC17 as by far the most 

prevalent genetic subcluster causing hospital acquired infections [51, 153, 158-160]. The 

seven major hospital associated STs (ST16, ST17, ST18, ST78, ST192, ST202 and ST203) 

accounts for 56% of the hospital associated isolates [161]. Later it has been reported that 

eBURST based clustering of MLST data to determine evolutionary decent is inaccurate in 

species with high levels of recombination such as E. faecium [162]. By using other 

approaches such as ClonalFrame [163] based phylogenetic trees, constructed from the 

concatenation of the seven MLST housekeeping genes [164], or a Bayesian modeling 

approach using BAPS software [161, 165], it has been showed that the CC17 subpopulation 

has not recently evolved from a single common ancestor; the hospital associated 

subpopulation  is not clonal (ST17 is not the founder), but rather polyclonal. This polyclonal 

subpopulation constitutes several lineages that seem to have co-evolved into the clade now 
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commonly known as hospital associated E. faecium. A recent study that inferred phylogeny 

from 21 publically available E. faecium genomes by aligning 100 orthologs, showed a distinct 

separation of community-associated and hospital associated strains. They estimated the two 

lineages to have diverged over 300 000 years ago [33].  

The hospital adapted subpopulation of E. faecium seems to have exploited a novel ecological 

niche- the hospital setting. They seem to be less fit when living outside the healthcare 

boundaries as the seven major hospital associated STs (ST16, ST17, ST18, ST78, ST192, 

ST202 and ST203) are only sporadically (41/513) found among non-hospital isolates [161]. 

This type of niche-exploitation often starts with adaptive changes [166]. Exactly which traits 

have given these strains the upper hand in the hospital setting is not known, but several 

properties have been suggested. Ampicillin resistance is one of the markers strongest 

associated with this subpopulation, thus it is suggested that the acquisition of ampicillin 

resistance was one of the vital traits enabling the strains to enter the hospitals and evolve into 

successful nosocomial pathogens [157].  This type of adaptive change may give rise to an 

amplifying selective process where isolates with the adaptive change (e.g. ampicillin 

resistance), more easily can acquire additional adaptive changes (e.g. changes in metabolism 

and other cellular processes) improving their relative fitness [167, 168]. The flexibility of the 

E. faecium genome is believed to significantly contribute to the hospital adaptation. Mobile 

genetic elements (MGE), particularly IS elements are believed to increase the genome 

plasticity and facilitate adaptive changes, thus enhancing the genetic variability in the hospital 

adapted strains [29, 32]. In the last years it has become apparent that megaplasmids are 

abundant among E. faecium, suggesting they play a role in the adaptation of E. faecium to 

particular hosts [49, 169-171]. Considering that megaplasmids had not been recognized 

among enterococci before the 1990s [172], and have been shown to play a role in both 

colonization, virulence and resistance in hospital associated E. faecium (se later) [173-175] 

they may have played an important role in the recent success of these strains.  

 

 1.1.4.2 E. faecalis  

The available data indicates that E. faecalis has an epidemic population structure dominated by a 

limited number of genetic lineages with an overrepresentation of clonal complexes CC2, CC9, CC10, 

CC16, CC21, CC30,CC40 and CC87 [13, 176-178]. CC2, CC9 and CC87 are considered high risk 

CCs, as they are enriched in multidrug resistant isolates causing infections in hospitalized patients [13, 

168, 176]. CC2 is a globally dispersed hospital associated lineage highly capable of causing 
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infections [13, 178-180]. Solheim et al. showed that over 250 genes were significantly 

enriched in CC2 isolates. Most of these genes have not been characterized, but some genes 

were shown to be located within mobile elements such as phage03, a putative integrative 

conjugative element and a vanB associated genomic island [179]. 

CC87 is particularly dominating in Poland [181], but are also found in other European 

countries as well as in the US [13, 176]. CC9 is spread globally, but high rates have especially 

been reported in Spain [176, 177, 182].  

 

The seven most prevalent STs among clinical and outbreak-associated E. faecalis (ST6, ST9, 

ST16, ST21, ST28 ST40 and ST87), account for only 37% of the hospital associated isolates 

[161]. In contrast this is 56% for the seven most prevalent hospital associated E. faecium STs. 

Some E. faecalis STs (ST16, ST21, ST28 and ST40) are also found frequently in the 

community, including farm animals and food products isolates [13, 176], indicative of a 

reduced host specificity. It has been shown that near 60% of patients diagnosed with 

Vancomycin resistant (VR) E. faecalis bacteraemia in an US hospital, where infected prior to 

hospitalisation, and that bacteraemia caused by VR E. faecalis was significantly more likely 

to be present on admission than bacteraemia caused by VR E. faecium [183]. A recent study 

showed that CC21, CC16 and CC40 showed better in vitro fitness than those linked to 

nosocomial infections (CC2, CC9, CC87) [184]. This indicates that hospital associated CCs 

have acquired genetic elements, encoding specific traits (antibiotic resistance, virulence 

genes) making them successful in the hospital environment, but less fit in the environment. 

The most recent study on E. faecalis population structure of human isolates [13] showed that 

CC2 and CC87 were found exclusively in hospitals. It also showed that the six most 

commonly detected CCs (CC2, CC16, CC21, CC30, CC40 and CC87) accounted for 57% of 

the hospital isolates. Comparison of gene tree topologies of individual MLST genes indicates 

that recombination rates in E. faecalis are even higher than in E. faecium [185]. Hence, 

recombination seems to be the driving force in diversification and evolution of this species 

[168, 176, 177, 186]. Thus it is may be more accurate to consider CCs rather than STs as 

genetic lineages in E. faecalis. 
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1.2 Horizontal gene transfer in enterococci 
 

Horizontal gene transfer (HGT) allows bacteria to rapidly acquire complex new traits, and it is 

a key driving force in bacterial evolution [187-189]. The ability to acquire mobile genetic 

element (MGE) encoding traits such as antibiotic resistance, has contributed to the emergence 

of enterococci, particularly E. faecium and E. faecalis, as leading hospital pathogens [29, 

186]. Sequencing of the enterococcal genome have revealed a large accessory genome, 

especially in E. faecium; up to 38% [30]. The frequency and the diverse origin of mobile 

genetic elements seen in enterococci [28, 30, 32] suggests that the barriers to acquire foreign 

DNA is low. The clinical isolate E. faecalis V583 possesses over 600 kilobases more, than the 

non-clinical E. faecalis strain OG1RF, and most of this come from MGE [28, 31]. One of the 

proposed reasons for this is the lack of a complete CRISPR (clustered, regularly interspaced 

short palindromic repeats) element in V583. The CRISPR element is proposed to operate as a 

defence mechanism against invading DNA such as plasmids and phages [190, 191]. It has 

been shown in E. faecalis that there was a significant association between the absence of a 

complete CRISPR elements and the presence of antimicrobial resistance [192]. CRISPR 

elements seem to be rare in E. faecium [192, 193]. 

 

 1.2.1 Mechanisms for HGT 

  

There are generally 3 ways DNA can be transferred horizontally between bacterial cells, 

namely by conjugation, transformation or transduction. 

Transduction is bacteriophage (bacterial virus) mediated transfer of host DNA from one 

bacteria to another. It does not require cell to cell contact [194, 195]. Sequencing of 

enterococci have shown integration of phage DNA in the enterococcal genome [28, 30, 32] 

and transduction have been shown to transfer antibiotic resistance both intra- and interspecies 

[196, 197], but the role of bacteriophages in the genome plasticity of enterococci needs to be 

further explored. 

Transformation is the process where a cell takes up naked DNA from the extracellular 

environment. Bacteria that have the ability to undergo transformation is said to be competent, 

and this is not a trait occurring naturally in the enterococci [198]. In both transduction and 

transformation the DNA sequences are usually rescued by a RecA-dependent homologous 

recombination [199]. Hence transduction and transformation commonly result in DNA 
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replacement rather than addition, and requires DNA sequences that have significant 

homology. 

Conjugation is a process where a conjugative element such as a transposon or a plasmid is 

transferred between bacteria via a contact dependent semiconservative replication process. 

Plasmid mediated conjugative transfer is by far the most common mechanism of horizontal 

gene transfer [200, 201]. Conjugation requires two sets of genes, the mobility (MOB) genes 

and the mating pair formation (MPF) genes, in addition it will need an origin of transfer (oriT) 

[202]. The MOB genes code for a relaxase and DNA processing proteins, responsible for the 

relaxosome, and for the coupling protein that links the relaxosome to the mating channel. 

MPF genes encode for the membrane–associated mating pair formation complex, a form of 

type 4 secretion system (T4SS) that provides the mating channel [202]. The initial step in the 

conjugation process is the mating pair formation, where the donor and recipient connect 

physically. The second step involves relaxase-mediated nicking of the plasmid at oriT and 

formation of the relaxosome (coupling of single-stranded DNA and a protein complex). The 

relaxosome docks to the coupling protein which helps mediate transport through the T4SS 

into the recipient cell, followed by establishment and replication of the plasmid in the 

recipient [203], or in case of a transposon, incorporation into the recipient chromosome [204]. 

Mobilizable plasmids lack the genes that encode the functions that enable cells to couple 

(MPF) prior to DNA transfer, but usually encode the MOB functions needed specifically for 

transfer of their own DNA. Transfer can happen if a conjugative element supplies the MPF 

genes in trans [202].The simplest mobilizable plasmids only contain the oriT and will need 

both MOB and MPF genes supplied in trans in order to be mobilized [205].    

 

 1.2.2 Host range of HGT  

 

Enterococci are considered notorious regarding acquisition and transfer of resistance genes. 

They can acquire resistance determinants from several species [206-208] and even more 

disturbing, transfer resistance genes to other potentially pathogenic bacteria. Enterococci have 

been shown to transfer resistance genes to clinically important bacteria such a Clostridium 

difficile, E. coli, S. aureus, streptococci and Listeria spp. [121, 209-213]. In addition, the 

presence of the same gene or plasmid, in several genus and species further indicates that 

intergenic transfer is not uncommon. Tn916, first discovered in E. faecalis [214], have been 

detected in, or transferred to over 35 different bacterial genera[215-217]. According to the 

new plasmid classification system [218], several plasmid families (1- reppIP501, 7- reppUSA02, 
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13-reppC194) are detected in both enterococci, staphylococci and streptococci, indicating 

transfer among these species.  

 

It has been shown both in vitro and in vivo, that antimicrobials can enhance gene transfer 

between bacteria [219-221]. Due to the selective pressure antimicrobials exert on the 

environment, the dissemination of resistance genes is closely associated with the use of 

antimicrobials [222]. Several studies have shown that conjugative transfer in nature is much 

more frequent than under laboratory conditions, and that it readily occurs in the digestive tract 

[223-227]. Considering the abundance of both antimicrobials and microbes in a hospital 

setting the intestine of a patient treated with antimicrobials can thus be considered a perfect 

place for transfer of antimicrobial resistance determinants.  Hence, the enterococci are placed 

right in a hotspot for genetic transfer. 

 

 1.2.3 Plasmids and other mobile genetic elements 

 

Mobile genetic elements (MGEs) can generally be divided into two major types; those 

elements that can move from one bacterial cell to another, such as plasmids and conjugative 

transposons, and elements that can move from one genetic location to another in the same cell 

(transposable elements), such as IS elements, transposons and integron cassettes. The 

transposable elements may move on to a plasmids or conjugative transposon (Figure 3) and 

thus facilitate its movement between bacterial cells [228]. All these MGEs may carry genes 

that are beneficial to their host and improve their ability to survive, but in addition, the MGE 

itself offer a number of opportunities regarding genetic diversity. Transposon and integron 

cassettes require some form of recombination (such as homologous, illegitimate or site-

specific) to transfer from one DNA site to another. Hence, if transferred to a plasmid, this may 

result in rearrangements of plasmid DNA and further increases the plasmid diversity [139, 

228, 229]. Moreover transposable elements may alter the gene expression when they insert 

into a plasmid either by disrupting a coding region or by insertion into the promoter region 

causing either a disruption of the existing promoter or creating a more efficient promoter 

[139]. Often when a gene moves on to a plasmid, its copy number in the cell will rise above 

one unit per cell and thus the overall mutation rate for that gene will increase. In addition, 

many plasmids are self-transmissible or mobilizable, so when a gene moves on to a plasmid, it 

increases its chance of moving between bacteria.  Relocating to a plasmid after HGT also 
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increases the chance of being established in a new bacterium, as there is no need to integrate 

into the bacterial chromosome and thereby risk interrupting an essential gene [230]. Thus 

MGEs contribute to both bacterial adaptability and diversity, and in this context plasmids are 

considered key players.  

 

 1.2.3.1 MGE  

 

Recent multigenome analysis of E. faecalis and E. faecium showed that both organisms can 

efficiently acquire and integrate foreign DNA in their gene pool [28, 30, 185, 231]. Mobile 

genetic elements hence play a crucial role in the diversification of these species. 

As mentioned, mobile genetic elements (Figure 3) other than plasmids and phages include 

transposable elements (IS elements, composite transposons and complex transposons), 

integron cassettes and genomic islands, and these elements may or may not be conjugative, 

depending on if they code for, or are part of an element that code for transfer [232]. 

Transposable elements can translocate to new sites in the genome without requiring extensive 

DNA homology. They encode a protein or protein complex called a transposase which 

mediates the transposition. In addition they usually have short inverted repeats (IR) sequences 

of both ends of the element that are binding sites for the transposase [232, 233].  

  

Elements that only code for the functions needed for transposition is known as an insertion 

sequence (IS) element [234]. IS elements are widespread and over 2000 different ISs have 

been identified [235]. Transposition mechanisms for most IS elements are known to be 

conservative, which means that the element is cut out from the donor in a double stranded 

form and inserted as a whole into the recipient (“cut and paste”), leading to degradation of the 

donor DNA molecule. Replicative transposition is also known to occur, leaving both the 

donor and the recipient with a copy of the gene [234, 236]. IS elements are abundant in 

enterococci [28-30], and seem to play a particular role in hospital adaptation of E. faecium.  

 

Transposable elements that codes for other genes in addition, e.g., antibiotic resistance, are 

called transposons. A transposon can be classified either as a composite transposon or a 

complex transposon [232]. When IS elements function in a pair to move the DNA segment 

caught between them, the element is called as composite transposon [232, 237]. The IS 

elements form either inverted repeats (for example Tn5281/4001) [130]  or direct repeats (for 
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example Tn4003) [238], and the central gene(s) usually encode a function (such as 

antimicrobial resistance) giving the composite transposon an identifiable phenotype. Different 

composite transposons may also merge together to form a large composite transposon. Hence 

composite transposon can differ much in size such as Tn9 only existing of 2,5 kb DNA [239] 

while Tn5385 holds approximately 65 kb [240]. Transposition mechanisms for composite 

transposons generally follow that of their IS elements. Composite transposons in enterococci 

have mostly been associated with aminoglycoside resistance [130, 240-242], but some carry 

resistance to glycopeptides [243, 244].  

 

Complex transposons [139, 232] have a more complicated structure than other transposable 

elements, but the name only implies that it is not a composite transposon or a transposing 

phage. Tn3-related transposons [245] are considered classical complex transposons. The 

genes that do not hold transposition functions are integrated into the body of the element, 

rather than being flanked by genes coding for transposition. Complex transposons vary in size 

and may carry several different genes in addition to those encoding the transposition, 

including composite transposons and integrons. If complex transposons carry genes enabling 

cell to cell transfer, it is described as a conjugative transposon or an integrative conjugative 

element (ICE) [204]. Mobilizable and conjugative complex transposons are widespread in 

enterococci, and they are often major contributors to antibiotic resistance in this genus [139]. 

Most important is the complex transposon Tn1546 [246], largely responsible for the rapid 

emergence of vancomycin resistance in E. faecium [137].  

 

Genomic islands are distinct units within the chromosome, with a different G+C content than 

the core genome. The difference in G+C content indicate a different evolutionary descent and 

thus these elements have most likely been acquired through horizontal gene transfer [247]. 

Genomic islands may encode genes for their own conjugative transfer [248]. A subset of 

genomic islands are the pathogenicity islands (PAIs) that encode virulence determinants 

(often in addition to other genes), and is present more frequently in pathogenic strains 

compared to less pathogenic strains (of the same or related species) [232, 247]. PAIs are 

found in both E. faecium [149] and E. faecalis [149], and have been shown to transfer both 

intra- and interspecies [249, 250].  

 

Integrons are site-specific recombination systems that can capture small mobile genes called 

gene cassettes. These genes contain a specific site (attC) that can recombine with the integron, 
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and they often encode antimicrobial resistance. Several gene cassettes can be captured by one 

integron. To further facilitate their spread, integrons may be part of a transposon (Figure 3) 

[251]. Integrons are not well studied in enterococci, but a recent study found that integrons 

commonly detected in both Gram negative and Gram positive species, were present in 

enterococci [252]. This rather exciting finding needs to be confirmed. 

 

 
Figure 3. The modular and hierarchical composition of MGEs. Gene cassettes are inserted 

into integrons by integrase mediated site-specific recombination. Integrons may be flanked by 

IS elements of the same family making composite transposons, which in turn may be inserted 

into a dispersive element like a conjugative plasmid. The plasmid thus becomes a vessel for 

the transportation of other MGEs. Reprinted by permission from Royal society publishing. Philos Trans R 

Soc Lond B Biol Sci. 2009 Aug 12;364(1527):2275-89. Conjugative plasmids: vessels of the communal gene 

pool. Norman A, Hansen LH, Sørensen SJ. 

 

 1.2.3.2 Plasmids 

 

Plasmids represent a vast reservoir of genetic variability that are shared among many bacterial 

species, and they exhibit a rich diversity of form, function and utility [200]. They  are defined 

as extrachromosomal genetic elements that replicate independently of the bacterial 

chromosome [253], although the majority of replication functions are provided by the host 
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cell [254]. Typically plasmids are circular molecules of double stranded DNA, although some 

bacteria have linear plasmids [255]. 

 

Plasmids was first described in 1952 by Lederberg, who used the term to describe 

extrachromosomal hereditary determinants [256]. They have been reported in a wide range of 

host, including prokaryotes, archaea and eukaryotic fungi [257, 258]. Plasmids do not encode 

essential cellular functions in a non-selective environment, but may confer a selective 

advantage under certain conditions, such as enzymes for the utilization of unusual carbon 

sources [259, 260], resistance to substances such as heavy metals [261] and antibiotics [228, 

262], and synthesis of toxins and other proteins that allow the successful infections of higher 

organisms [263]. These non-essential genes are often referred to as adaptive or accessory 

genes.  

 

Plasmids generally replicate by one of three different mechanisms, the theta mechanism, the 

strand displacement replication or the rolling-circle replication [264]. 

Plasmids depend on having an origin of DNA synthesis of its own (oriV). In addition, most 

plasmids encode for specific replication initiator proteins (rep) that binds to this oriV [254, 

264]. To ensure their stable maintenance in the host cell plasmids employ a variety of 

mechanisms; If it is not a high-copy number plasmid (over 5-10 copies) it will need an active 

partitioning (par) mechanism to direct better than random segregation and thus secure stable 

plasmid inheritance over many generations [265]. Another problem plasmids need to solve is 

dimerization due to the tendency of identical gene copies to recombine. To prevent any 

subsequent impediment of segregation of the plasmid into the daughter cells, plasmids have 

developed multimer resolution systems (mrs) to resolve dimerization [266]. Further securing 

their stable inheritance, many plasmids have acquired toxin-antitoxin (TA) systems (se later), 

that will kill or impair growth of bacteria that do not inherit the plasmid [266]. In addition, if 

plasmids encode functions for mobilization or conjugative transfer they further increase their 

chances for survival. These different genes or gene loci are often organized into functional 

modules and clustered together with relatively few interruptions from insertions of accessory 

genes (Figure 4). Together these modules constitute the plasmid backbone [267]. It seems that 

being clustered together reduces the chance of any gene being disrupted by an insertion of any 

kind. Accessory genes are frequently acquired at about the same place in the plasmid, 

avoiding backbone genes. This suggests that events disrupting backbone functions may lead 

to reduced fitness of the plasmid and eventually such plasmids will be lost [200, 268]. 
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Clustering of the backbone modules seems to be favoured by evolution: optimizing the 

reproductive capability and increasing the efficiency of spread, minimizing the burden on the 

host and maximizing the benefit are major driving forces. The organization of the plasmid 

maintenance genes will therefore continue to improve until the refinement potential is 

exhausted [268]. 

 

 
 

Figure 3: Plasmid modularity. Schematic view of plasmid modularity 

 

 1.2.3.3 Toxin Antitoxin systems 

 

One way for the plasmid to increase its chances of stable inheritance is by harbouring a 

functional toxin antitoxin (TA) system that kills or impair growth of cells who fail to receive 

the plasmid [269]. TA systems consist as the name imply of a toxin and an antitoxin. The 

toxin in its free form attacks cellular targets, causing reduced growth or cell death, but it is 

inhibited by binding of the antitoxin. As long as the plasmid is present, both the toxin and the 

antitoxin will be expressed, rendering the toxin inactive. If the gene pair is lost (e.g. loss of 

the encoding plasmid), the more unstable antitoxin will be degraded before the toxin, 

permitting the toxin to attack its target. Four TA loci, axe-txe, ω-ε-ζ, mazEF and relB have 
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been detected in enterococci [270-273], but only ω-ε-ζ and axe-txe have been shown to 

promote plasmid stabilization in enterococci [270, 271, 274-276]. 

 

 1.2.3.4 Plasmid typing 

 

The ability to detect and group plasmids based on their phylogenetic relationship could give 

valuable information regarding their distribution in nature, their relationship with their host 

cell, and in the case of resistance -their role in dissemination of antimicrobial resistance. In a 

more clinical context the plasmid content in bacteria can be used as an additional marker 

(together with other characteristics such as MLST, resistance genes and virulence genes) for 

comparative analysis of strains during epidemiological investigations. 

 

When plasmids first were discovered, there were no methods for physical detection of 

plasmids and the presence of plasmids were known by the phenotypes they conferred in the 

bacteria. Consequently many plasmids were named after the genes they carried or the 

phenotype they conferred, like the hemolysin-bacteriocin plasmid and the resistance plasmids 

described in E. faecalis [277], or the ColE1 plasmid in Escherichia coli [278] that encode the 

protein colicin E1. For a period during the sixties plasmid typing was based on the ability to 

inhibit F-fertility, but a desire to use more fundamental plasmid properties for classification 

impelled a scheme based on replication and partitioning systems, namely the incompatibility 

(Inc) grouping of plasmids [279-282]. Plasmid incompatibility relies on the fact that plasmids 

who have closely related replication control and/or partitioning systems are unable to be 

stably inherited in the same host in the absence of external selection [281]. Inc typing works 

by introducing a plasmid, by conjugation or transformation, into a strain carrying another 

plasmid. If the second plasmid destabilized the inheritance of the first, the two are said to be 

incompatible and are designated the same Inc group. There are a number of difficulties in 

creating pairwise combinations of plasmids from bacteria. For instance it is difficult to select 

for a plasmid with no suitable marker gene, or distinguish entry exclusion from 

incompatibility. Minor genetic divergences between closely related plasmid may be enough to 

weaken the incompatibility reaction and result in interpretation difficulties. In addition, 

multiple replicons may cause misleading conclusions and point mutations may change the 

plasmids incompatibility behaviour [283]. As a response to these concerns a classification 

scheme in Gram negatives based on replicon typing vas developed by Couturiere et al. [284]. 
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This scheme is based on Southern blot hybridization with specific DNA probes that contain 

the genes involved in plasmid maintenance used on purified plasmid DNA. The classification 

of replicon groups could mostly be correlated with Inc groups. Both these methods are quite 

time consuming and not very suitable for typing plasmids in a large bacterial population. In 

recent years polymerase chain reaction (PCR) based replicon typing have been developed for 

both Gram positive and Gram negative bacteria [218, 285, 286] enabling large scale plasmid 

typing [171, 272, 287]. This typing system relies on the homology of genes dealing with 

replication. Due to the modularity of the functions for replication, propagation, stability and 

mobilization/transfer, replicon typing systems may not be congruent with the Inc typing or 

typing systems based on other survival functions such as mobilization or conjugation [288, 

289].   

    

 1.2.3.5 Rep typing system in enterococci 

 

The PCR based plasmid typing system for Gram positives developed by Jensen and co-

workers is based on homology of conserved areas of the replication initiation genes (rep). An 

alignment of 111 published plasmid sequences derived from 100 Gram positive bacteria and 

two Gram negatives was used to define replicon families. A plasmid family was defined if 

two or more distinct sequences (alleles) from two or more plasmids clustered together, with a 

cut-off value above 80% for both DNA sequences and proteins. All together 19 plasmid 

families and 19 unique sequences were defined [218], and 12 of these plasmid families have 

been identified in E. faecium and E. faecalis (Table 1). Recently a megaplasmid name pLG1, 

with a novel replication initiation gene was fully sequenced [290], thus adding another rep 

gene to the rep typing system. 

 

 1.2.3.6 Plasmids in the enterococci  

 

Plasmids are abundant in enterococci [171, 272], and seem to play a role in hospital 

adaptation, at least in E. faecium [170, 171]. As described above, there are many ways of 

grouping plasmids (replication mechanisms, Inc typing, transferability, resistance gene 

carriage, etc.).Traditionally enterococcal plasmids have been classified into 3 groups by a 

mixture of these methods; the Inc 18 group of plasmids (rep group 1, represented by pIP501 

and partially rep family 2, represented by pRE25), the rolling circle replication (RCR) 
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plasmids (mostly rep family 4 and 6, represented by pMBB1 and pS86, respectively) and the 

pheromone responsive plasmids of E. faecalis (rep family 8 and 9, represented by pAM373 

and pCF10) [172]. Mixing different plasmid classification methods when grouping plasmids 

is not very clarifying. Although the traditional grouping of enterococcal plasmids is relatively 

congruent with the new PCR replicon typing system, it misses some new and important 

plasmids such as pRUM (rep family 17) [270], pHTβ (unique rep family) [291] and 

megaplasmid pLG1[290]. In addition to these classifications, a plasmid family named 

RepA_N has been proposed [292]. RepA_N include rep family 8 and 9 as well as rep family 

17 and the pLG1 plasmid, hence it is not congruent with previous classifications of 

enterococcal plasmids.  

In recent years it has become apparent that large plasmids (>100kb), also known as 

megaplasmids are widespread in the E. faecium population [49, 170, 171, 293]. They seem to 

influence the ability of E. faecium to cause infections by both enhancing the colonization 

capacity [173], and increase virulence [174, 175] [175]. In addition megaplasmids seem to 

both carry and disseminate antimicrobial resistance genes in an effective manner [174, 290] 

[170, 171, 272]. Recently it was shown that megaplasmids of E. faecium can harbor 

alternative carbon utilization mechanisms, though this trait was only found in isolates 

colonizing humans rather than causing infections [260]. We recently revealed that all 

megaplasmids in blood culture isolates from Norway in 2008 harbored the pLG1 rep gene 

[171], thus suggesting a particular megaplasmid is spreading in the E. faecium population. 

Interestingly, megaplasmids have not been described in enterococci as late as around 2000 

[172].
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Table 1. Overview of plasmid families detected in enterococci 
 
Replicon 
family 

Other known plasmids in 
the family 

Information about the rep group 

1  
(pIP501) 

pAMβ1, pBT233, 
pGB354, pIP680, pIP816, 
pMD101, pRE25, 
pSM19035, pTEF1 

Belong to the Inc18 group of plasmids, broadly distributed among low G+C Gram 
positive bacteria such as enterococci, streptococci and staphylococci [172].  Transferable 
to Gram negative species [210]. Shown to confer vancomycin resistance transfer within 
and between species [272, 293-295].  

2  
(pRE25) 

pEF1, pIP816, pVEF1, 
pVEF2 

Enterococcal plasmids of both animal, healthy human and clinical origin. pRE25 is a 
multi-resistance plasmid [262, 296], while pIP816, pVEF1 and pVEF2 has been shown 
to confer vancomycin resistance [297, 298]. Commonly found in both E. faecalis and E. 
faecium [171, 272, 299, 300]. Assumed narrow host range [218], except for pIP816 and 
pRE25 that have a broad host range due to its additional reppIP501 gene [262, 298]. 

4  
(pMBB1) 

pCRL291.1, pKC5b Small cryptic plasmids found in both enterococci and lactobacilli. Broad host range 
[218]. 

6  
(pS86) 

p703/5, pAMα1, pEF47, 
pEFC1, pLCR255 

Small theta replicating plasmids found in both enterococci and streptococci [218, 301, 
302]. Broad host range [218].  

8  
(pAM373) 

pEJ97-1 Pheromone-responsive plasmids found in E. faecalis. Confer antibiotic resistance and 
virulence traits such as aggregation substance [303]. Narrow host range [218, 292]. 

9 
 (pCF10) 

pAD1, pPD1, pTEF1, 
pTEF2 

Pheromone-responsive plasmids found in E. faecalis. Confer antibiotic resistance and 
virulence traits such as Aggregation substance [28, 304, 305]. pTEF1 and pTEF2 have 
been shown to promote chromosomal diversification in E. faecalis [250]. Narrow host 
range [218, 292]. 

11 
(pEF1071) 

pB82, pEFR Plasmids from enterococci. Commonly found in E. faecium [171, 299]. Assumed narrow 
host range [218]. 

13 
(pC194) 

pSK89, pSSP1, 
pWBG1773 

Small plasmids generally found in staphylococci. pC194 confers chloramphenicol 
resistance [306]. Broad host range [218, 307]. 

14  
(pRI) 

pEFNP1, pKQ10, 
Aus004_p2, Aus004_p3 

Small mobilizable plasmids commonly found in E. faecium [171, 308]. Assumed narrow 
host range [218]. 
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* Here reppPLG1 represent megaplasmids. The rep type has not always been investigated in megaplasmids, but later I will argue (se discussion) that megaplasmids 
generally belong to the reppLG1 family.

 

  

17  
(pRUM) 

Aus004_p1 Plasmids commonly found in E. faecium, [30, 218, 270, 272, 299]. Known to harbour 
the axe-txe TA system [270, 272]. Assumed narrow host range [218, 292]. 

18  
(pEF418) 

p200B, pEF415, Plasmids from enterococci. Commonly found in Chinese VR E. faecium [299]. Assumed 
narrow host range [218]. 

U4  

(pMG1) 
pHTβ Plasmids found in E. faecium [171, 272, 291]. pHTβ has been shown to confer 

vancomycin resistance [291], while pMG1 like plasmids have been shown to carry 
gentamicin resistance determinants [309]. Unknown host range. 

U  

(pLG1) 
 *Plasmids that are ubiquitous in E. faecium [49, 170, 171, 293]. Known to confer several 

antimicrobial resistance determinants such as vancomycin [290, 293], and HLGR [171]. 
Shown to encode determinants that enhance both colonization abilities and virulence in 
murine peritonitis [173, 174]. Assumed narrow host range [292]. 
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2. Aims of study 
 

The overall aim of this study was to investigate the prevalence and distribution of plasmids in 

hospital adapted enterococci, and to determine their contribution in the dissemination of 

antimicrobial resistance determinants.  

 

Paper I 

Plasmids play an important role in the spread of antibiotic resistance, but modest knowledge is 

currently available about enterococcal plasmids. We wanted to investigate the overall plasmid 

prevalence and distribution in an international collection of E. faecium strains using a newly 

developed rep-typing system in combination with a traditional S1 nuclease method and determine 

the genetic linkage of specific rep-types to vancomycin resistance and plasmid stabilising toxin-

antitoxin systems. 

 

Paper II 

During 2003 to 2008 high level gentamicin resistance (HLGR) increased dramatically among 

blood culture isolates of E. faecium in Norway. The aim of this study was to determine the 

molecular mechanism(s) involved in the increased prevalence of HLGR in Norwegian invasive E. 

faecium, and to examine both population structure and plasmid epidemiology in order to 

elucidate their role in HLGR dissemination.  

 

Paper III 

An increase of HLGR was also reported among blood culture isolates of E. faecalis in Norway 

during 2003 to 2008. The aim of this study was to determine the molecular mechanism(s) 

involved in the increased prevalence of HLGR in Norwegian invasive E. faecalis, and to 

elucidate the population structure. In addition we wanted to determine if E. faecalis and E. 

faecium share a common gene-pool for HLGR determinants, and to what extent plasmids 

contributed in the spread of HLGR within the E. faecalis population as well as between E. 

faecalis and E. faecium.  
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3. Summary of main results 
Paper I 

• The study revealed that plasmids are common in E. faecium, with an average of 2,3 

plasmids per isolate, and 0-4 replicon genes detected in the isolates.  

 

• The average number of plasmids were significantly higher in isolates belonging to Clonal 

Complex (CC)17 (now more commonly named “hospital associated isolates) than non-

CC17 isolates. 

 

• The most common replicon types detected were pRE25 (60%), pRUM (40%), pIP501 

(18%), and pHTβ (15%). Of these pIP501 and pHTβ were almost exclusively present in 

hospital associated isolates.  

 

• Toxin- antitoxin loci were found in 61% of the isolates.  axe-txe (n=42) were more 

frequently detected than ω-ε-ζ (n=18). 

 

• Co-hybridization analyses showed that axe-txe was commonly linked to the pRUM 

replicon type, and ω-ε-ζ commonly linked to pRE25 replicon type.  

 

• We most commonly detected co-hybridization between van and replicon type pIP501, but 

co-hybridization was also detected for pRE25, pRUM and pHTβ replicon type. In 

addition we detected co-hybridization of vanA to 150 kb plasmids of unidentified replicon 

types. 
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Paper II 

 

• MLST revealed a polyclonal strain collection and detected 26 STs. The most common 

STs detected; 203 (n=28), ST17 (n=18), ST18 (n=10), ST202 (n=8) and ST192 (n=7) are 

typical hospital associated STs. 

 

• High level gentamicin resistance (HLGR) was observed in 57% of the isolates, and most 

prevalent in ST203 (20/28), ST17 (15/18), ST202 (7/8) and ST192 (6/7).  

 

• The 99 isolates harboured none to six plasmids ranging in size from <10 kb to >400 kb 

with an average of 3,1 plasmid per isolate. 

 
• The most prevalent replicon types detected were reppLG1 (90%), reppRE25 (73%), reppRUM 

(66%) and reppRI1 (62%), with an average of 3,2 rep genes per isolate.  

 
• Nearly all HLGR-isolates (98%) were positive for the aac(6')-Ie-aph(2")-Ia gene, and it 

was plasmid located in all but one isolate. All aac(6')-Ie-aph(2")-Ia positive plasmids co-

hybridized to reppLG1. 

 

• The prevalence of ω-ε-ζ and axe-txe was 65 and 66 % respectively. 76% of the isolates 

had one or both TA loci. 57% of reppLG1hybridizing plasmids co-hybridized with axe-txe. 

 

• Isolates belonging to major hospital associated STs had a significantly higher prevalence 

of plasmids, rep genes, putative virulence genes and TA-systems, compared to the 

remaining isolates.  

 

• All donors were able to transfer the HLGR determinant into E. faecium (BM4105-RF 

and/or 64/3) with transfer frequencies ranging from 4 x 10-2 to 6 x 10-7 TC per recipient 

cell.  
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Paper III 

• The HLGR population was dominated by ST6 (CC2) (21/30), and CC2 and CC87 

accounted for 90% (27/30) of the HLGR isolates. PFGE showed that these genetic 

lineages were diverse and not consistent with any outbreaks. The non-HLGR isolates 

were mostly unrelated. 

 

• All HLGR-isolates were positive for the aac(6')-Ie-aph(2")-Ia gene, and hybridization 

analyses revealed that it was present on the chromosome in all except one isolate. 

 

• In E. faecalis, IS256 flanked the aac(6')-Ie-aph(2")-Ia gene on both sides, while it was 

missing on the left side in E. faecium. 

 

• The prevalence of the tested replicon types was higher in the HLGR isolates compared to 

the non-HLGR isolates: reppCF10 (93%vs. 21%), reppRE25 (50% vs. 29%),) and reppMBB1 

(47% vs. 14%), except for reppS86 (13% vs. 21%), reppAM373 (0 vs. 14%), and reppRUM (0 

vs. 7%), respectively. The pCF10 replicon type was present in all ST6 isolates and in 78% 

of the remaining HLGR isolates. 

 

• The ω-ε-ζ  toxin- antitoxin system was present in 50% of all isolates. 

 

• The HLGR determinant was transferable between E. faecalis, as well as between E. 

faecalis and E. faecium. Transfer of the HLGR determinant from both chromosome to 

chromosome, chromosome to plasmid, plasmid to chromosome and plasmid to plasmid 

were detected.
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4. General discussion 

 

Enterococci are known for their notorious capacity to acquire and disseminate resistance genes 

[3, 4]. They are a frequent cause of hospital acquired infections, and often multidrug resistant [10, 

14]. In addition enterococci can transfer resistance genes to other and more pathogenic bacteria, 

such as transfer of vancomycin resistance to MRSA [120]. It is acknowledged that plasmids 

contribute significantly to the spread of resistance genes in enterococci. However, not much is 

known about which plasmid types confer resistance, and even less is known about their 

occurrence and distribution in enterococcal populations. In our studies we have examined the 

molecular epidemiology of enterococcal plasmids within defined enterococcal populations. 

Moreover, we have looked into their contribution in acquisition and dissemination of 

antimicrobial resistance.  

 

4.1 The plasmid classification system 

 

Plasmids play a significant role in the biology of enterococci. They represent an immense 

reservoir of genetic variability and contribute to genetic exchange between bacteria [200]. The 

ability to detect and classify plasmids based on their phylogenetic relationship would provide an 

essential tool for investigating their distribution among bacteria and to elucidate their significance 

in the host cell, such as their role in dissemination of antimicrobial resistance. A simple method 

for plasmid detection would be a very useful tool to trace resistance plasmids in a clinical setting, 

such as the hospital, for epidemiological surveillance. Hence, the new PCR based plasmid 

classification system for Gram positive bacteria, targeting replication initiation genes, can be of 

great value in the detection and identification of enterococcal plasmids [218]. The classification 

system is based on DNA and protein homology of replication initiation genes, and cut-off is sat at 

80% identity for both. Although the new classification system has significant advantages, it also 

has some limitations; underling that it should be used in combination with other methods: 

 i) The classification system is not directly based on incompatibility; plasmids from the same 

replicon family may be compatible with each other and coexist in the same bacterium, but only 

one replicon is detectable by PCR. Thus, if we detect one rep type by PCR and see multiple 
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bands by S1 nuclease/PFGE typing, it can lead to misinterpreting plasmids as “unknown rep 

type”. Hybridization assays may then result in multiple hybridizing bands, and it will not be 

known if the results are based on plasmid dimerization, or actually two different plasmids. If only 

PCR’s are performed, it will lead to the under estimation of number of plasmids in the bacterium.  

ii) Available sequence information suggest that some plasmids, such as pRE25 [262] may have 

several rep genes, which makes it difficult to group the plasmid into a specific family. It may also 

lead to over estimating of the number of plasmids. S1nuclease/PFGE results can be difficult to 

interpret as there may be several reasons, in addition to multiple rep genes in one plasmid, for 

detecting fewer plasmids with S1 nuclease assays compared to rep typing. The plasmid could be 

very small and have run out of the gel, the plasmid could be very large and is still in the well, or 

the plasmid could be fragmentised due to physical sharing or unspecific S1 cutting and no clear 

band would be visible. Hybridization assays will usually clarify this problem. iii) When using the 

original primers and control strains (as defined by Jensen et al) to make probes, another problem 

may arise. When the classification system was developed, the number of plasmids analysed in 

each rep family was limited and primer sequences were in general targeting the supposed most 

conserved region. Newly detected plasmids that were not analysed in the classification scheme 

may in theory be detected by the PCR primers but differ so much in the region between the 

primers that the similarity threshold is below hybridization stringency.  This can generally be 

solved by using different plasmids within a rep family as probe template, or to use the PCR 

positive, hybridization negative isolate as probe template. Lowering the hybridization stringency 

may also solve the problem. iv) This plasmid classification system is only based on plasmids with 

sequenced replication initiation genes. Hence, plasmids with a new rep gene will remain 

undetected by this system. This was the case in paper I, were the rep gene of pLG1 was not 

included yet. It resulted in a higher plasmid count by S1 nuclease/PFGE, than by rep typing. v) 

Another limitation of this classification system is due to the modularity of plasmids; two 

plasmids may in theory only share the rep gene, and still be classified as the same plasmid type, 

even if the rest of the gene content differs.  

 Nonetheless, being aware of these weaknesses and taking them into account when performing 

plasmid typing in combination with other methods such as S1nuclease/PFGE and hybridization 

assays – this plasmid classification system have proven very useful in both detecting plasmids 

and dedicating different traits to plasmid types. It has been of great value in plasmid 
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epidemiology surveys (paper I-III). The rep typing system could only account for 60% of the 

plasmids detected by the S1nuclease/PFGE assay (paper I). In paper II we supplemented with the 

rep gene from the newly sequenced plasmid pLG1, and this resulted in a very good agreement 

between the number of plasmids detected by S1 nuclease/PFGE, and number of rep genes 

detected. As both methods may over or underestimate the number of plasmids, we can assume 

the total number is generally correct when using both methods. Hence, we anticipate that the 

enterococcal plasmid classification system based on rep-typing now detects the major plasmid 

families, at least in E. faecium. However, the overall agreement in plasmid numbering between 

rep-typing and S1 nuclease/PFGE results, as shown in paper II, needs to be further explored in 

other E. faecium populations.  

 

4.2 Plasmids in enterococci  

 

The plasmid population in enterococci has not been extensively studied, and their contribution to 

important phenotypic traits such as the ability to colonize the host, enhance the virulence of 

bacteria and acquire and disseminate antimicrobial resistance is still poorly elucidated. In all 

three papers we aimed to investigate the plasmid distribution within E. faecium (paper I and II) 

and E. faecalis (paper III) populations, and elucidate to what extent the different plasmid types 

were linked to defined antimicrobial resistance determinants.  We detected a high prevalence of 

plasmids, particularly in E. faecium, and several replicon types (up to 5), were identified in the 

same bacterium (paper I-III). The detectable plasmids varied greatly in size, from less than 10 kb 

to larger than 400 kb (paper I-III). Size diversity was also seen within each plasmid group, but 

this variation was less than in the total plasmid population. reppRE25 -type plasmids varied 

between 25 and 80 kb, while reppRUM –type plasmids were below 100 kb. reppLG1 -type plasmids 

were generally above 150 kb (paper I and II). The size variation within each plasmid group may 

reflect the flexibility of the plasmid scaffold, were genes easily can move in and out. 

Occasionally we detected a reppRE25 or reppRUM -type plasmid above 100 kb, but then co-

hybridization to another rep type was also seen, suggesting plasmid co-integrates (paper II- 

unpublished results).  
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It seems that each species has a distinct plasmid population that is not commonly shared between 

them (paper I-III), the exception being reppRE25-type plasmids that are commonly found in both 

species (paper I-III), and the broad host range reppIP501-type plasmids (Inc18 family) that are 

found in a variety of Gram-positive bacteria [172]. E. faecium and E. faecalis seem to have 

species specific plasmid groups (paper II and III). These plasmid groups seem to play a 

significant role in both genetic variability and genetic exchange between bacteria. In E. faecalis 

the pheromone sensitive plasmids (like pCF10, pAD1 and pAM373) transfer between E. faecalis 

at high rates [310, 311]. We disclosed that reppCF10 –type plasmids was involved in dissemination 

of both plasmid and chromosomal resistance determinants (paper III). This is in agreement with 

previous studies, which have shown that pheromone sensitive plasmids often confer antimicrobial 

resistance [303, 305, 312] and may play an important role in chromosomal recombination and 

diversification [250]. In E. faecium, megaplasmids have recently been brought to our attention as 

they may confer resistance to several antimicrobials (paper I) [290, 293], and have been 

commonly detected in E. faecium strains from both environmental, animal and human clinical 

and community  samples worldwide (paper I and II) [49, 170, 290, 293, 313]. Megaplasmids 

have been shown to increase both the ability for gastrointestinal colonization and virulence in 

murine peritonitis [173, 174] as well as to confer alternative carbon utilization pathways [260] 

and resistance to copper and mercury [313]. These observations support the notion that 

megaplasmids may contribute significantly to the adaptability of E. faecium. Megaplasmids differ 

in size between bacteria, from about 150 kb to larger than 400 kb (paper II), and we have 

observed that they frequently alter size when being transferred into a new strain (unpublished 

results and paper II, data not shown). This suggests that megaplasmids provide significant genetic 

flexibility and that genetic elements readily move in and out of the plasmid. Due to the 

omnipresence of megaplasmids they probably provide E. faecium with increased adaptability in 

many different environments, not only in the hospital setting.  Megaplasmids are a new term in 

enterococci. They have only been reported in isolates from 1995 and onwards in several recent 

publications [49, 170, 290, 293, 313] paper I. This may be a result of limitations in plasmid 

detection methods in previous studies, or that megaplasmids may be a more recent phenomenon 

resulting from “old” plasmid types gaining larger genetic elements, and maybe new plasmid 

backbone combinations making the plasmid particularly flexible. Another possibility is that it is a 

recently introduced rep type. Only a few studies have investigated the rep type of these 
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megaplasmids, but those who have, always found them to be reppLG1 [293, 313]. Re-examination 

of isolates from paper I showed that 85% of isolates with visible megaplasmids were reppLG1 PCR 

positive (unpublished results). In paper II, reppLG1 –type megaplasmids were present in over 90% 

of the isolates, and were the sole distributor of HLGR; further supporting the clinical significance 

of megaplasmids in E. faecium. Our results (unpublished results and paper II) combined with 

other studies [293, 313] and (Hegstad, personal communication), suggest that most E. faecium 

megaplasmids belong to the reppLG1 family.  

 

Based on known rep genes, the general number of plasmids seems to be higher in E. faecium 

compared to E. faecalis. This might be caused by several compatible plasmids with the same rep 

type, but this seems less likely as our hybridization data (paper III) generally indicate one 

plasmid band per rep probe. Plasmids of unknown replicon type, not detected by PCR, may also 

be one explanation, though S1 nuclease/PFGE assays (paper I-III) suggest that there is a real 

difference in plasmid numbers between E. faecium and E. faecalis. An explanation for the 

relative lower plasmid number in E. faecalis may be the prominent role pheromone responsive 

plasmids play in genetic shuffling within the E. faecalis population, and hence a decreased need 

for other plasmids.  

Resistance plasmids in enterococci 

Epidemiological studies targeting the contribution of specific plasmid types in the dissemination 

of resistance genes in enterococci are limited, with a partial exception of pheromone responsive 

plasmids. Plasmid mediated dissemination of vancomycin resistance is perhaps the best studied 

antimicrobial resistance in enterococci [7, 272, 291, 293, 294, 297, 298, 314, 315]. In paper I we 

showed that plasmids with reppIP501, was the most common carrier of vancomycin resistance. 

Other plasmid types known to confer vancomycin resistance is pHTβ (paper I) [316] (paper I) , 

reppRE5- [293, 315] (paper I), reppRUM- [317] (paper I) and reppLG1-type [290, 293]. Plasmids of 

reppIP501 type are known to have a broad host range, and have been linked to the spread of vanA 

to S. aureus [294]. To what extent other plasmid types contribute to propagation of resistance 

determinants to other genus is largely unknown, although reppRUM, and reppLG1 are believed to 

have a narrow host range [290, 292].  
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High level gentamicin resistance (HLGR) determinants have mostly been detected on plasmids in 

enterococci [318-321], but the plasmids were not further characterized except for size. Hence, it 

is not known if there are particular plasmid types that confer gentamicin resistance. HLGR 

determinants have though been detected on pMG1 like plasmids [309], but the significance of 

this plasmid type in HLGR dissemination is unknown. In Norway (paper II) reppLG1 type 

plasmids are major contributors to the spread of HLGR in E. faecium, but it is yet to be 

elucidated if this is a widespread trend. Interestingly, in paper III we were able to transfer the 

HLGR encoding gene residing on reppLG1 –type plasmids in E. faecium to the chromosome of E. 

faecalis (OG1RF and JH2-2) No plasmids were detected in the E. faecalis TCs, suggesting that 

the plasmid is transferable to, but not maintained in E. faecalis. This indicates that reppLG1 –type 

plasmids are not able to replicate in E. faecalis and support a narrow host range of reppLG1 –type 

plasmids, consistent with their relatedness to the RepA_N family [292]. In paper II we were not 

able to document transfer of the HLGR determinant from E. faecium to E. faecalis. We did 

however observe growth on the TC plates, but none of the assumed TC’s harboured the HLGR 

encoding gene (50 colonies for each mating were screened by PCR). Recently, we disclosed that 

the plates used in that transfer study most likely contained below 100 µg/ml gentamicin 

(EUCAST clinical breakpoint for HLGR is 128 µl/ml). Since enterococci generally are low level 

resistant to gentamicin, recipients could probably grow on the TC plates without the acquisition 

of HLGR. So even if transfer did happen, the TCs would be outnumbered by the recipients, and 

therefore could not be detected.   

In two E. faecalis isolates the HLGR determinant resided on reppCF10 –type plasmids (paper III), 

and observations in paper III indicate that reppCF10 –type plasmids were involved in transfer of the 

chromosomal HLGR determinant. Moreover it was observed in over 90% of the HLGR encoding 

isolates compared to only 20% in the non-HLGR isolates. This suggests that this plasmid type 

contribute in the spread of HLGR, but its role in HLGR dissemination in E. faecalis needs to be 

further examined.  

Toxin antitoxin systems 

Plasmid carriage generally represents a fitness cost to the host bacterium, with a reduction in 

growth rate measured in vitro to be 1-6% [267, 322]. To prevent being lost in a non-selective 

environment, plasmids apply several maintenance strategies to overcome the fitness cost, such as 
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minimizing size, tight gene regulation and low copy number [323-326]. Another useful trait to 

promote plasmid stabilization is toxin-antitoxin (TA) systems [269]. In enterococci both relB, 

mazEF, ω-ε-ζ and axe-txe TA systems have been detected (paper I-III) [270, 273], but only ω-ε-ζ 

and axe-txe  have been shown to promote plasmid stabilization in enterococci [270, 271, 274-

276]. We have shown that TA-systems are commonly detected in enterococci, and associated 

with some of the most prevalent enterococcal plasmid types such as reppIP501, reppRE25, reppRUM, 

and reppLG1 (paper I-III). A prevalent co-hybridization of ω-ε-ζ and reppRE25 was detected in 

isolates from both Europe and the US (paper I and II). In paper I, axe-txe was localized to 

plasmids of reppRUM –type in the majority of axe-txe positive isolates investigated. Interestingly, 

in paper II we detected a prevalent co-hybridization of axe-txe and reppLG1 –type megaplasmids. 

reppRUM and reppLG1 both belong to the repA_N family [292], and the prevalent linkage of axe-txe 

to this family may suggests that the axe-txe - repA_N replicon linkage is particularly stable and 

beneficial.  

 

4.3 High level gentamicin resistance 

 

The prevalence of HLGR among enterococci has increased across the world [47-52], and has in 

general been associated with the aac(6’)-Ie-aph(2”)-Ia gene [318, 319, 321, 327-329]. Our 

results are in line with this, as we detected the aac(6’)-Ie-aph(2”)-Ia gene  in 56/57 HLGR E. 

faecium and 30/30 E. faecalis isolates (paper II and II). In E. faecium we located the gene to 

reppLG1 -type megaplasmids (paper II). The aac(6’)-Ie-aph(2”)-Ia gene  has commonly been 

detected on plasmids [319, 321, 327, 328], but to my knowledge it has not been reported on 

plasmids above 100 kb. In E. faecalis the aac(6’)-Ie-aph(2”)-Ia gene was located on the 

chromosome (paper III). This has previously only been sporadically reported [321, 327], and 

more studies are needed to elucidate if this is a novel widespread trend in E. faecalis. 

Interestingly 70% of the E. faecalis HLGR isolates tested belonged to clonal complex 2 (CC2). 

The routes of propagation (clonal dissemination of bacteria or dissemination of plasmids or 

transposons) that are most common for HLGR dissemination in enterococci have mostly been 

unknown. Some studies have suggested plasmids of particular sizes (rep type was not 

investigated) as the mediator [318-321], but the potential contribution of clonal dissemination 

was not very well investigated in these studies.  
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The aac(6’)-Ie-aph(2”)-Ia gene is commonly flanked by inverted repeats of IS256, known as 

Tn5281 in enterococci. Different flanking patterns have been detected and this pattern may be 

used to infer recent transfer of Tn5281 between bacteria. Several studies have investigated the 

IS256 flanking pattern of Tn5281. They showed great variation in the patterns both within and 

between studies [318, 319, 321, 328-331]. No common trend was seen in E. faecium, while IS256 

flanking both sides was slightly the most common detected pattern in E. faecalis. A few studies 

have investigated the flanking patterns in both E. faecalis and E. faecium isolates collected from 

single hospitals in Japan, Thailand and Tunisia, respectively [329-331]. None of the studies 

reported a consistent flanking pattern within one of the species, suggesting several propagation 

routes for the HLGR determinant, even within the same hospital. These observations are in 

contrasts to our findings in paper II and III where we detected one common flanking pattern for 

E. faecalis and another common flanking pattern for E. faecium. In E. faecalis, the aac(6’)-Ie-

aph(2”)-Ia gene was flanked by IS256 on both sides, in all but one isolate, while in E. faecium 

the left side IS256 was missing in all isolates.  

In E. faecium the HLGR determinant resided on reppLG1 type plasmids (paper II). Together with a 

high transfer frequency of the HLGR determinant (paper II) and detection of a common IS256 

flanking pattern (paper III), this suggest that HLGR dissemination in E. faecium is promoted by 

reppLG1 –type plasmids. In E. faecalis the HLGR dissemination was at least partly linked to the 

spread of CC2. E. faecalis transfer studies revealed a highly mobile HLGR determinant, which 

imply that propagation of the HLGR determinant itself may also be a cause of HLGR 

dissemination in E. faecalis (paper III). What the HLGR determinant includes has not been 

further elucidated. Tn5281 have been shown to be part of larger composite elements such as 

Tn5384, Tn5385 and Tn924 [240-242]. PCR revealed that a Tn5281 –like element is present in 

our isolates, but further analyses were not performed (paper III). We cannot exclude the 

possibility of a conjugative HLGR determinant, but our results indicate that plasmids are 

involved in the dissemination in both E. faecalis and E. faecium (paper III).     

Further examination of the flanking elements of chromosomal Tn5281-elements need to be 

performed.  Tn5281 have been shown to be part of larger composite elements such as Tn5384, 
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Tn5385 and Tn924 [240-242]. PCR revealed that a Tn5281-like element was present in 

Norwegian E. faecalis isolates, but further analyses were not performed (paper III).   

Our results suggest that Norwegian clinical isolates of E. faecium and E. faecalis do not readily 

share a common pool of Tn5281 elements (paper II and III). Whole genome sequencing of E. 

faecium and E. faecalis strains has shown that their genetic content is very different [28, 30, 32, 

34, 161]. Even though interspecies transfer of genetic determinants have been shown in several 

studies [249, 332-336], the species barrier is maintained, suggesting that stable transfer events 

between the two species is not a very prevalent in vivo. 

 

4.4 Population structure in E. faecium and E. faecalis 

 

The general population structure in E. faecium is well investigated, and several recent 

publications have discussed the somewhat surprising subpopulation of hospital adapted E. 

faecium [33, 157, 161, 164, 168, 185].  According to a study by Galloway-Peña and co-workers, 

this subpopulation separated from the rest of the population over 300 000 years ago [33]. This 

was rather unexpected as the hospital adapted E. faecium population is a fairly new phenomenon 

[337]. This subpopulation is polyclonal and spans significant genetic diversity. Even so, hospital 

adapted E. faecium  are less diverse and more closely related than the community associates 

strains [33]. They also share many properties making them more or less distinguishable from the 

community associated population [29, 146, 148-154]. Although it is a polyclonal population, it is 

generally dominated by a few genetic lineages [161]. Genotyping of the Norwegian blood culture 

population is in agreement with these findings (paper II). We found bacterial isolates comprising 

a diversity of STs. However, those isolates enriched in plasmids, resistance and virulence genes 

generally belonged to only a few STs, while more susceptible isolates, harboring fewer plasmids 

and putative virulence genes, belonged to a variety of STs.  

  

Thus it appears that a few genetic lineages are thriving in the hospital, and seem to have acquired 

several traits making them more fit in that environment. One of the assumed reasons for this is a 

concept known as “genetic capitalism” or “the Mathew effect”; the rich tend to become richer 

[167, 168]. This means that by acquiring useful genetic traits, the bacterium will increase its 
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adaptability to the hospital environment and further increase its ability to acquire new genetic 

determinants. This was seen in our isolates (paper I and II). The ST’s comprising the highest 

number of isolates (and thus could be considered more successful) harbored more plasmids, 

resistance genes, putative virulence genes and TA systems (paper II). We also observed a positive 

correlation between number of plasmids and number of putative virulence genes in all isolate 

(paper II, data not shown), further supporting “the richer tend to become richer” hypothesis. It is 

believed that mobile genetic elements (MGEs), particularly IS elements, have provided the 

hospital associated lineages with the genetic flexibility needed to adapt to the hospital 

environment [28, 29, 32]. The prominent position of reppLG1 –type megaplasmids in the entire E. 

faecium population give reason to hypothesize that this plasmid provides further access to 

accessory DNA enhancing their adaptability. Whole plasmid sequence analyses of an extended 

representative number of pLG1-plasmids and linked functional genomics analysis are necessary 

to approach this hypothesis.  

 

The population structure of E. faecalis is not as well characterized as for E. faecium, but several 

recent studies have shed some light on the subject [13, 34, 176, 178, 180-182, 186, 293]. 

Previous studies have showed a diverse E. faecalis population, dominated by particular genetic 

lineages [176]. It has been shown that the most common genetic lineages found in the hospital 

setting are also prevalent in the environment, indicating that the E. faecalis population is not very 

host specific [161, 178]. However, a recent large European study on contemporary human E. 

faecalis isolates revealed that the most commonly detected CCs in the hospitals accounted for 

nearly 60% of the infections and that several of these lineages were almost exclusively detected 

in the hospital [13]. These results indicate a more specialized population of E. faecalis thriving in 

the hospitals. Our results further support this notion, as the majority of isolates belonged to the 

most commonly detected CCs (paper III). The population structure seen in our study, where 6 

CCs comprises over 90% of the HLGR isolates, is in contrasts to the genetic diversity observed 

in previous studies [13, 176, 178]. This epidemic population structure can result from some 

unknown Norwegian conditions that have caused a selective pressure promoting certain clones. 

Another possibility is that a particularly hospital adapted E. faecalis genetic lineage is emerging 

in the hospitals, outcompeting less specialized lineages. One could hypothesize that genetic 

capitalism is a driving force, also in this population as we observed a higher prevalence of 
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plasmids in ST6 isolates compared to other isolates, in addition to all ST6 isolates being HLGR 

positive. This enrichment of antimicrobial resistance in ST6/CC2 isolates has been reported in 

several publications [13, 178, 186, 338] and Solheim and co-workers found over 250 genes 

enriched in CC2 isolates [179]. A recent study further support hospital adaptation of isolates from 

specific CCs, as they showed a general in vitro fitness reduction in isolates belonging to CCs 

typically linked to hospital acquired infections (including CC2), compared to isolates of CCs 

frequently found in the community [184]. This suggests that isolates belonging to hospital linked 

CCs harbor traits particularly useful in the hospitals environment that evens out the reduced 

fitness.  
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5. Concluding remarks 

Little research has been done regarding plasmid epidemiology in enterococci. Hence little is 

known about the significance of different plasmid types in conferring and disseminating 

antimicrobial resistance. 

We have shown that plasmids are abundant in enterococci, particularly in E. faecium, and 

unravelled the most commonly detected plasmids groups in enterococci, including reppPLG1 

megaplasmids in E. faecium. We have also revealed plasmids that commonly confer vancomycin 

resistance and high level gentamicin resistance (HLGR), and demonstrated their transferability. 

We have linked plasmid stabilizing toxin-antitoxin systems to particular plasmid types, including 

those conferring antimicrobial resistance. In addition we have investigated the HLGR 

determinants in Norwegian invasive E. faecium and E. faecalis and disclosed a plasmid and 

chromosomal location respectively. Finally, we have elucidated the population structure of 

Norwegian invasive E. faecium and E. faecalis, revealing a polyclonal E. faecium population and 

a more epidemic E. faecalis population with a particular dominance of CC2.  

In summary, these results have provided increased knowledge about the plasmid population in 

enterococci. Further studies of enterococcal plasmids epidemiology is needed to confirm if our 

findings are widespread. It is also important to monitor the plasmid population in enterococci to 

better understand changing trends in plasmid epidemiology, and to possibly intervene in the 

spread of antimicrobial resistance.
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