
In the thesis the local classification of 2-dimensional solvable Lie algebra action on the plane is given. 
Normal forms of such actions are found. The classification applied to classification of 2

nd
 order 

differential equations that are solvable in quadratures.
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Chapter 1

Introduction

In this thesis we investigate equivalence classes of 2 dimensional solvable Lie

Algebras acting on the plane.

Definition 1. Let g be a solvable Lie algebra over R, dim g = 2 and [g, g] 6=

0. Let ρ : g→ D(R2) be a representation of this algebra into the Lie algebra

of vector fields on R2 such that ker g = 0. We say that two representations

ρ1, ρ2 are locally equivalent at a point a, if there exist a local diffeomorphism

φ : R2 → R2 where φ(a) = a, such that ρ2 = φ∗ ◦ ρ1.

Representatives of equivalences classes are called normal forms

Sophus Lie in [5] described finite dimensional Lie algebras acting on the

plane. From this classification one can extract (See below Theorem 3) the

normal form of the locally transitive action of the 2-dimensional solvable Lie

algebra on the plane. Singular, or non-transitive actions of Lie algebras(and

Lie groups) is still ”Terra incognita”. Mainly, they concern to actions of

Lie algebras and groups with fixed point. Thus, for actions of compact Lie

groups, we have the following result

Theorem 1 (E.Cartan). Let G be a compact Lie group, which acts on the
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2 CHAPTER 1. INTRODUCTION

manifold M in such a way that g(a) = a for all g ∈ G. Then there exists

local coordinates such that the action will be linear.

R. Hermann [2] proved that actions of semi-simple Lie algebras in a

neighborhood of a fixed point can be linearized on the formal level. Later

S.Sternberg and V. Guillem [7] proved that this result can not be extended

to the analytical case.

For non semi-simple Lie algebras there is the classical S. Sternberg theorem

on linearization [6]:

Definition 2. Let λi be the eigenvalues of the linear part of Xi at zero, i.e.

the matrix ||∂Xi
∂xj

(0)||. We say our system has resonance ,if there exist an

eigenvalue λi such that:

λi =
∑
j

mijλj

Where mij are non-negative integers and
∑

jmij ≥ 2.

Theorem 2 (Sternberg). Let X be a vector field, of the form:

X =
∑
i

Xi(x1, . . . , xi)∂xi .

Where Xi(0) = 0 for all i. If the vector field X has no resonances then there

are local coordinates in which X has the linear form

X =
∑
i

λixi∂xi

For several Lie algebras V. Lychagin proposed in [3], [4] some spectral

sequences which give formal classifiaction, and formal normal forms in a

neighborhood of a singular orbit.
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In this thesis we analyze in details the case of 2 dimensional non-abelian

solvable algebras.

We pick a X, Y in the Lie algebra such that

[X, Y ] = X

g = 〈X, Y 〉

Let O(a) denote the g-orbit of the point a ∈ R2, and by O(1)(a) denote the

orbit of the derived subalgebra g(1). We split our consideration into three

cases:

1. dimO(a) = 2.

This is the classical case where the action is transitive.

2. dimO(a) = 1.

In this case we will call the action weak singular.

3. dimO(a) = 0.

In this case we will call the action singular.

Throughout this thesis we pick coordinates in such a way that the point

under consideration is at the origin.

Chapters 2,3, and 4 contain detailed description of the normal forms of g-

actions. In the last chapter 5 we find differential invariant algebras for these

actions, which then apply to find ordinary differential equations solveable by

quadratures.
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Chapter 2

Transitive Action

Let g be a 2-dimensional non-abelian Lie algebra over R, and let X, Y be a

basis in g such that

[X, Y ] = X

We will use the same notations X, Y for the images ρ(X) and ρ(Y ).

Assume that the action is transitive at the point a ∈ R2, or in other words,

assume that the vectors X0, Y0 ∈ T0R2 are linear independent.

The following result is due to Sophus Lie [5]

Theorem 3 (Sophus Lie). Let the solvable non-abelian Lie algebra g, dim g =

2 , act transitively in a neighborhood of O ⊂ R2. Then there are local coor-

dinates (x, y) such that

X = ∂x,

Y = x∂x + ∂y.

5



6 CHAPTER 2. TRANSITIVE ACTION

Proof. First choose coordinates such X = ∂x. Let

Y = α(x, y)∂x + β(x, y)∂y.

In these coordinates, the commutator relation gives

αx∂x + βx∂y = ∂x.

Therefore there is a local diffeomorphism Θ : (x, y)→ (x, f(y)) such that

Θ∗(Y ) = x∂x + ∂y



Chapter 3

Weak singular action

In this chapter we investigate the case when dimO(a) = 1. Let O(1)(a)

denote the g(1)-orbit of the point a. We split our classification into two cases:

1. The orbit of the derived subalgebra is singular i.e. O(1)(a) = 1,

2. The orbit of the derived subalgebra is a curve i.e. O(1)(a) = 0.

Since dimO(a) = 1, on of the vectors Xa, Ya ∈ TaR2 is nonzero. Therefore

we can choose coordinates (x, y) in a neighborhood of a ∈ R2, such that the

corresponding vector field equals to ∂x.

We need the following lemma which describes the local behavior of vector

fields on the line R.

Lemma 1. Let X = b(x)∂x be a vector field on R, such that X(0) = 0. Then

there exists a local diffeomorphism φ : R → R, φ(0) = 0, such that φ∗(X)

has one of the following forms

• λx∂x,

if b(x) has a zero of order 1 at 0.

7



8 CHAPTER 3. WEAK SINGULAR ACTION

• xk∂x if b(x),

has a zero of order k at 0 where k is even.

• ±xk∂x
if b(x), has a zero of orderk at 0 where k is odd.

• b(x)∂x,

if b(x), is a flat at 0.

Proof. See for example, [1].

3.1 Non singular orbit of the derived subal-

gebra

In this section we assume, that dimO(1)(a) = 1, or that Xa 6= 0. Then we can

choose local coordinates (x, y) in such a way that X = ∂x, in a neighborhood

of the point a ∈ R2. Then

Y = α∂x + β∂y,

in these coordinates, and the commutator relation [X, Y ] = X gives the

system of differential equations on the functions α and β:

αx = 1 βx = 0.

Therefore, we can assume that in these coordinates:

α = x βx = b(y).
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Note that transformations of the form

(x, y)→ (x, Y (y)),

do not change the form of X, and in Y they act on the vector field b(y)∂y.

Therefore, applying lemma 1 we get the theorem:

Theorem 4. Let g act in such a way, thatdimO(a) = 1 dimO(1)(a) = 1.

then there are local coordinates (x, y) at a neighborhood of the point a ∈ R2,

such that

X = ∂x.

And the vector field Y has one of the following forms:

1. x∂x + λy∂y,

2. x∂x + yp∂y,

3. x∂x ± yq∂y,

4. x∂x + b(y)∂y,

where p, q are natural numbers, p ≥ 2, q ≥ 3, and b(y) is a flat function at

the point 0.

3.2 Singular orbit of the derived subalgebra

Consider now the case, when dimO(a) = 1, and dimO(1)(a) = 0 i.e. the

case when Ya 6= 0, but Xa = 0.

Then there are local coordinates (x, y) such that Y = ∂x. The commutator
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relation [X, Y ] = X can be rewritten for the functions α, β, when

X = α(x, y)∂x + β(x, y)∂y,

as the following system of differential equations:

αx = −α βx = −β.

Solving these equations we get

X = e−x (α(y)∂x + β(y)∂y)

Where α(0) = β(0) = 0.

Again we apply lemma 1 on the vector field β(y) and arrive at the theorem:

Theorem 5. Let dimO(a) = 1 and dimO(1)(a) = 0. Then there are local

coordinates (x, y) in a neighborhood of the point a ∈ R2, such that

Y = ∂x,

and the vector field X has one of the following forms:

1. e−x(α(y)∂x + λy∂y),

2. e−x(α(y)∂x + yp∂y),

3. e−x(α(y)∂x ± yq∂y),

4. e−x(α(y)∂x + β(y)∂y).

Where α(y) is an arbitrary function,α(0) = 0, λ 6= 0 p, q are natural numbers

p ≥ 2, q ≥ 3 and β is a flat function at 0.



Chapter 4

Singular action

In this chapter we investigate the case when O(a) = a, or when Xa = Ya = 0.

The general procedure divided on the three steps:

1. Find restrictions on the linear term of a representation from the com-

mutator relation [X, Y ] = X.

2. The commutator relation gives us a differential equation on the coef-

ficients of the vector fields X, Y , which we investigate formally, under

the condition that the vector field Y has no resonances.

3. Investigate when the formal solution can be extended to a smooth so-

lution.

Let A,B be the linear parts of X, Y at the point a respectively i.e. A =

[X]1a, B = [Y ]1a the 1-st jets of adX and adY at a.

The commutator relations [X, Y ] = X of the vector fields, gives the following

commutation relation of opertors [A,B] = A.

We assume that B 6= 0 and split our investigation into the two cases:

1. The representation of X has a non-vanishing first jet at a i.e.A 6= 0.

11



12 CHAPTER 4. SINGULAR ACTION

2. The representation of X has vanishing first jet at a i.e. A = 0.

4.1 The vector field X has a non-vanishing

first jet

We need the following version of the Lie Theorem on representations of solv-

able Lie algebras.

Proposition 1. Let A = [X]1a 6= 0, B = [Y ]1a 6= 0. Then there is a basis of

TaR2, such that

A =

0 1

0 0

 , B =

λ− 1 0

0 λ

 .
Where λ ∈ R

Proof. Since B is a real operator, we have three possibilities for B:

1. Eigenvectors of the operator B form a basis of TaR2.

2. The operator B has complex eigenvalues.

3. The operator B has one real eigenvalue.

Consider the first case.

Choose a basis e1, e2 that are eigenvectors for the operator B i.e.

Be1 = λ1e1 Be2 = λ2e2.

The commutator relation [A,B] = A acting on e1 gives us:

[A,B]e1 = λ1Ae1 −BAe1 = Ae1,

BAe1 = A(λ1 − 1)e1.
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For e2 we have:

[A,B]e2 = λ2Ae2 −BAe2 = Ae2,

BAe2 = A(λ2 − 1)e2.

Therefore, if Ae1 and Ae2 are non-zero vectors, they are eigenvectors for the

operator B, with eigenvalues (λ1 − 1) and (λ2 − 1) respectively.

This implies that λ1 = λ2 − 1 and λ2 = λ1 − 1. This is a contradiction and

the condition that A 6= 0, show that either Ae1 = 0, or Ae2 = 0.

Let us say that Ae1 = 0. The commutator relation shows that tr(A) = 0.

Therefore Ae2 = e1 and

λ1 − λ2 = 1.

Consider the second case.

Then the complexification BC of the operator B has the eigenvector basis

e, e ∈ TCR2

a . Then we have that

BC(e) = λe BC(e) = λe.

Then, similarly to the case above, we get that Ae = e and Ae = 0, but

Ae = Ae = e. This contradiction shows that the eigenvalues of B are real.

Finally, Assume that the operator B has a Jordan matrix and let B act

on e1 and e2 in the following way:

Be1 = λe1, Be2 = λe2 + e1.
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The commutator relation [A,B] = A acting on e1 gives that

BAe1 = ABe1 − Ae1,

= (λ− 1)Ae1,

and

BAe2 = ABe2 − Ae2 = A(λe2 + e1)− Ae2,

= (λ− 1)Ae2.

But λ−1 6= λ and one of the vectors Ae1 or Ae2 is nonzero. This contradiction

proves the proposition

Remark. Operator B has two eigenvalues λ1 and λ2, where λ1 − λ2 = ±1.

In the previous proposition we let λ denote the eigenvalue of the vector which

does not belong to kerA

From this we get the corollary:

Corrolary 1. There are local coordinates (x, y) in the neighborhood of the

point a ∈ R2, in which the vector fields X and Y have the following form:

X = x∂y + α(x, y)∂x + β(x, y)∂y

Y = (λ− 1)x∂x + λy∂y + α̃(x, y)∂x + β̃(x, y)∂y,

where functions α, α̃, β, β̃ have zeros of second order at 0 i.e.

α(0) = α̃(0) = β(0) = β̃(0) = 0,

and

d0α(0) = d0α̃(0) = d0β(0) = d0β̃(0) = 0,
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4.1.1 Resonance conditions

In this section, we investigate the resonance conditions for the vector field

Y , in order to apply the S.Sternber linearization theorem.

Theorem 6. Let λ − 1 and λ be the eigenvalues of the linear part of the

operator B = [Y ]1a, and let

λ 6∈ Q[0, 1] ∪ {1 +
1

n
|n ∈ N} ∪ {−1

q
|q ∈ N}

Then there are local coordinates (x, y) in a neighborhood of the point a ∈ R2,

such that

Y = (λ− 1)x∂x + λy∂y

Proof. The result will follow form the Sternber linearization theorem. We

show that the conditions on λ are exactly conditions under which the operator

B has no resonances. Thus, we analyse the resonance conditions for B.

Assume that

m1λ+m2(λ− 1) = λ,

Where m1,m2 ∈ Z+ and m1 +m2 ≥ 2.

From this equation we get that

λ =
m2

m1 +m2 − 1
.

Therefore, λ should be a ration number. Let us put λ = p
q
, where p, q ∈ Z

are coprime, and q > 0.
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Then,

m2 = kp,

m1 +m2 − 1 = kq,

for some k ∈ Z.

Therefore the resonance conditions on λ are equivalent to the inequalities:

kp ≥ 0, kq ≥ 1, k(q − p) ≥ −1.

The relations kq ≥ 1 and q > 0 imply that k > 0, and therefore p ≥ 0.

Therefore we analyst the final inequality

k(q − p) ≥ −1.

We have the following cases:

k(q − p) = −1 =⇒ k = 1, q − p = −1

k(q − p) ≥ 0 =⇒ q ≥ p.

This lead us to the following resonance set for λ:

• When k = 1, λ = p
q

= q+1
q

= 1 + 1
q
, and

• when q ≥ p, then 0 ≤ λ = p
q
≤ 1.

We now consider the second resonance condition

n1λ+ n2(λ− 1) = λ− 1,

Where n1, n2 ∈ Z+ and n1 + n2 ≥ 2.
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From this equation we get that

λ =
n2 − 1

n1 + n2 − 1
.

And the resonance conditions can be written as

n2 = lp,

n1 + n2 − 1 = lq,

for some l ∈ Z.

Finally, the resonance conditions are equivalent to the following system of

inequalities

n2 = lp+ 1 ≥ 0,

n1 = l(q − p) ≥ 0,

n1 + n2 = lq + 1 ≥ 2.

Alternatively

lq ≥ 1, lp ≥ −1, l(q − p) ≥ 0.

Conditions, lq ≥ 1 and q > 0 gives that l > 0, and therefore

lp ≥ −1, q − p ≥ 0

They give the following cases:

• lp = −1, or l = 1, p = −1, then λ = p
q

= −1
q
.

• lp ≥ 0, or l ≥ 0, q ≥ p, then 0 ≤ λ = p
q
≤ 1.

Therefore, the resonance values of λ for the second resonance condition, are
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rational number from the interval [0, 1], or λ = −1
q
, where q ≥ 2.

The union of all these set, will give us all resonant values of λ. Discarding

this, Sternberg’s linearization conditions proves the theorem.

4.1.2 Formal Solution

From now on we assume that the conditions in Theorem 6 hold, and therefore

there are coordinates (x, y) in a neighborhood such that the vector field Y is

linear.

Lemma 2. In the coordinates (x, y), the vector field X has the following

form.

X = ky2q∂x + x∂y,

where q is a natural number, k ∈ R and λ = − 2
2q−1

Proof. Let

X = α(x, y)∂x + β(x, y)∂y

where function α has a 2nd order zero at the point, and βx = 1, βy = 0, and

Y = (λ− 1)x∂x + λy∂y.

Then the commutator relation relation [X, Y ] = X gives the system of dif-

ferential equation:

Y (α) = (λ− 2)α, (4.1.1)

Y (β) = (λ− 1)β.
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The formal series for function α and β will have the form:

α =
∑
ij

aijx
iyj

β = x+
∑
kl

bklx
kyl,

where i, j, k, l ∈ Z+ and i+ j ≥ 2, k + l ≥ 2.

From (4.1.1) we get the following linear system of equations

((λ− 1)i+ λj − λ+ 2 = 0)aij = 0,

((λ− 1)k + λl − λ+ 1 = 0)bkl = 0.

Assume that aij 6= 0 and bkl 6= 0, some pairs (i, j) and (k, l). Then we get

the equations on λ:

i(λ− 1) + jλ− λ+ 2 = 0,

k(λ− 1) + λl − λ+ 1 = 0.

Solving these equations gives

λ =
p

q
=

i− 2

i1 + j − 1
=

k − 1

k + l − 1
, (4.1.2)

and we should discard the solutions which gives a resonant λ.

Consider the equation of k, l. Here we have that

λ =
k − 1

k + l − 1
= 1− l

k + l − 1
.

Therefore, λ ∈ Q[0, 1] if k ≥ 1, and λ = − l
l−1

, when k = 0. Thus, we have

no nontrivial solutions for non-resonant λ.
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Consider the equation of i, j.

We have

λ =
i− 2

i+ j − 1
= 1− j + 1

i+ j − 1
.

Therefore λ ∈ Q[0, 1] if i ≥ 2.

For the case i = 1, we have

λ = −1

j
, j ≥ 1,

and for the case i = 0

λ = − 2

j − 1
, j ≥ 2.

Therefore, the only non-resonant λ, correspond to the case i = 0, j = 2q and

λ = − 2
2q−1

where q ∈ N.

X = ky2q∂x + x∂y,

Y =
1 + 2q

1− 2q
x∂x +

2

1− 2q
y∂y.

This lemma shows that on the formal level, we can transform vector fields

X and Y to the following form:

X = ky2q∂x + x∂y,

Y =
1 + 2q

1− 2q
x∂x +

2

1− 2q
y∂y.

Thus we have proved the following theorem:

Theorem 7. Let the eigenvalues λ, λ − 1 be non-resonant. Then there are
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local coordinates (x, y) in a neighborhood of the point a ∈ R2, such that∞-jets

of X and Y have the canonical form:

1.

X = x∂y, Y = (λ− 1)x∂x + λy∂y.

2.

X = x∂x + y2q∂x, Y =
1 + 2q

1− 2q
x∂x +

2

1− 2q
y∂y.

Where q ∈ N.

Remark. Assume that k 6= 0. We can then take a diffeomorphism of the

form

φ(x, y) −→ (tx, ty),

where t 6= 0. This diffeomorphism preserves the vector field Y and will act

on X in the following way:

φ∗(X) =
k

t2q−1
y2q + x∂x.

By choosing t = k
1

2q−1 , we can assume that k = 1.

4.2 The vector field X has no first jet

In this section we start to investigate the case, when A = [X]1a = 0, but

B = [Y ]1a 6= 0. Then for the operator B we the following options

• Operator B is diagonalizable and has real eigenvalues λ1, λ2.

• Operator B has complex eigenvalues λ, λ.

• Operator B has eigenvalue λ with multiplicity 2.
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We now treat all these cases separately and use the same methods as applied

in the previous chapter.

4.2.1 Operator B is a Jordan form

Let us choose local coordinates (x, y) in such a way, that the operator B

takes the Jordan form

B =

λ 1

0 λ


in the basis ∂x, ∂y of TaR2.

The resonance conditions for vector field Y has the form:

λ(m1 +m2 − 1) = 0.

Since m1 +m2 ≥ 2, we have resonance when λ = 0 only.

Assuming λ 6= 0, we can apply the Sternberg theorem to vector field Y and

get the following representations of vector fields X and Y :

X = α(x, y)∂x + β(x, y)∂y,

Y = λ(x∂x + y∂y) + x∂y.

Here α, β have second order zeroes at 0.

The commutator relation [X, Y ] = X gives us the following system of equa-

tions for functions α, β:

Y (α) = (λ− 1)α, (4.2.1)

Y (β) = (λ− 1)β + α.
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Consider first formal solutions of the system.

Let

α =
∑
ij

aijx
iyj,

β =
∑
kl

bklx
kyl,

be the formal series with i+ j ≥ 2 and k + l ≥ 2.

It is easy to check that:

Y (xiyj) = λ(i+ j)xiyj + jxi+1yj−1.

Therefore ,

Y (α)− (λ− 1)α =
∑
i+j≥2

[λ(i+ j − 1)aij + aij + (j + 1)ai−1 j+1]xiyj,

and

Y (β)−(λ−1)β−α =
∑
k+l≥2

[λ(k + l − 1)bkl + bkl + (j + 1)bk−1 l+1 − akl]xkyl.

Thus, the system of differential equation (4.2.1), on the formal level, is equiv-

alent to the following system of linear equations for coefficients aij, bkl:

(λ(i+ j − 1) + 1)aij + (j + 1)ai−1 j+1 = 0, (4.2.2)

(λ(k + l − 1) + 1)bkl + (l + 1)bk−1 l+1 − akl = 0, (4.2.3)

where i, j, k, l are natural numbers such that i+ j ≥ 2 and k + l ≥ 2.

Let i+ j = n+ 1, where n ≥ 1 is fixed.

Then the first part of the system (4.2.2) gives the following linear system for



24 CHAPTER 4. SINGULAR ACTION

vector ||aij||, i+ j = n+ 1:

(nλ+ 1)aij + (j + 1)ai−1 j+1 = 0. (4.2.4)

Therefore, if nλ 6= 0 we will only have a trivial solution of (4.2.4). Then

taking aij = 0, we get only a trivial solution for bkl.

Now let λ be a rational number of the form

λ = − 1

n
,

where n ≥ 1.

Then equation (4.2.4) has solution

aij = 0,

where j ≥ 1 and ai 0 is arbitrary.

Thus we have a non-trivial solution for α. If α is trivial, investigation of β

will be analogous to this case.

Assume α non trivial.

We have that j = 0 and i is arbitrary. Equations for bi,j, where i + j =

n+ 1, take the form

(j + 1)bi−1 j+1 = aij.

Therefore,

bi−1 j+1 = 0,

if i 6= 2 and b1 n is arbitrary.
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Thus, we have found the solutions

α = k1y
n+1 β = k2x

ny + k3x
n+1,

in the case when nλ+ 1 = 0.

Summarizing we get the following theorem.

Theorem 8. Let [X]1a = 0, and B = [Y ]1a has nonzero eigenvalues of mul-

tiplicity 2 and corresponds to the Jordan form. Then ∞-jets of X and Y at

the point a ∈ R2 has the following form

1.

Y = λ(x∂x + y∂y) + x∂y,

X = 0,

if nλ+ 1 6= 0, for all n ∈ N.

2.

Y = λ(x∂x + y∂y) + x∂y,

X = k1y
n+1∂x + (k1x

ny + k2x
n+1)∂y

where k1, k2, k3 ∈ R and nλ+ 1 = 0 n ∈ N.

Remark. Take a diffeomorphism of the form:

φ : (x, y) −→ (tx, ty).

This will preserve the normal form of Y and in the normal form for X it
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will transform the coefficients in the following way:

(k1, k2) −→ (tnk1, t
nk2).

Therefore, for odd n, we have the following options for (k1, k2):

1. (k1, k2) = (1, 0),

2. (k1, k2) = (0, 1),

3. (k1, k2) = (1, k),

where k 6= 0.

If n is even we get the following list

1. (k1, k2) = (±1, 0),

2. (k1, k2) = (0,±1),

3. (k1, k2) = (±1, k),

Where k 6= 0 .

4.2.2 Operator B has complex eigenvalues

The resonance conditions for the vector field Y , will then be:

<(λ)(m1 +m2 − 1) = 0,

=(λ)(m1 −m2 − 1) = 0.

From this we see immediately that we have resonance, iff <(λ) = 0.

Consider the action of operator B on the complexification of TaR2, and choose
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coordinates x, y such that the vectors

∂z =
1

2
∂x − i∂y,

∂z =
1

2
(∂x + i∂y),

are eigenvectors for B.

In these coordinates the vector fields X and Y have the form

X = α(z, z)∂z + α(z, z)∂z,

Y = λz∂z + λz∂z.

Here α is a complex function of second order at 0.

Viewing the commutator relation [X, Y ] = X as a differential equation on

the function α we get the following equation:

Y (α) = (λ− 1)α. (4.2.5)

Now we expand α through the formal series

α =
∑
kl

aklz
kzl,

where k + l ≥ 2.

Then the equation (4.2.5) takes the form

∑
k+l≥2

(kλ+ lλ)aklz
kzl = (λ− 1)

∑
k+l≥2

aklz
kzl.
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Therefore,

(kλ+ lλ− (λ− 1)akl) = 0,

and we get nontrivial solution iff

kλ+ lλ− (λ− 1) = 0 (4.2.6)

for some natural numbers k, l, k + l ≥ 2.

Let λ = λ0 + iλ1, where λ0 = <λ, λ1 = =λ 6= 0. Taking the real and

imaginary parts of equation (4.2.6), we get the system

kλ0 + lλ0 + 1 = 0, (4.2.7)

kλ1 − lλ1 − λ1 = 0.

Since we consider the complex case, λ1 6= 0, we have that

k = l + 1.

Putting this relation into the first equation of the system (4.2.6), we get

2lλ+ 1 = 0.

Summarizing, we get the following result;

Theorem 9. Let [X]1a = 0, and B = [Y ]1a have complex eigenvalues (λ, λ)

where =(λ) 6= 0, <(λ) 6= 0. Then ∞- jets of X and Y can be written in one

of the following normal forms:
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•

Y = λz∂z + λz∂z,

X = 0,

If 2l<(λ) + 1 6= 0, for all l ≥ 1.

•

Y = λz∂z + λz∂z,

X = a(z, z)∂z + a(z, z)∂z,

where

a(z, z) = αz|z|2l,

α ∈ C/0, and 2l<(λ) + 1 = 0.

Remark. A diffeomorphism

φ : (x, y) −→ (tx, ty)

will preserve the normal form for vector field Y , and acts on X in the fol-

lowing way:

α −→ α|t|2l.

Therefore, in the normal form 2., we can take a parameter t, so that

|α| = 1.
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4.2.3 Operator B has real eigenvalues and is diagonal-

izeable

Let (λ1, λ2) be eigenvalues of operator B, and assume that this pair is not

resonant. Then due to Sternberg linearization theorem, we can choose local

coordinates (x, y) in a neighborhood of the point a ∈ R2 in such a way that:

X = α(x, y)∂x + β(x, y)∂y,

Y = λ1x∂x + λ2y∂y.

Where α and β are functions of second order.

Viewing the commutator relation [X, Y ] = X as a differential equation, we

get the following system of equations:

Y (α) = (λ1 − 1)α, (4.2.8)

Y (β) = (λ2 − 1)β, (4.2.9)

on the functions α and β.

Writing the formal series

α =
∑
i+j≥2

aijx
iyj,

β =
∑
k+l≥2

bklx
kyl,
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Of these equation we get the following system of linear equation on coeffi-

cients aij, bkl

(iλ1 + jλ2 − λ1 + 1)aij = 0, (4.2.10)

(kλ1 + lλ2 − λ2 + 1)bkl = 0, (4.2.11)

where i+ j ≥ 2 and k + l ≥ 2.

Define the following sets

Σ1 = {(i, j)|(i− 1)λ1 + jλ2 = −1, where i+ j ≥ 2},

Σ2 = {(k, l)|kλ1 + (l − 1)λ2 = −1, where k + l ≥ 2}.

Then the following result holds:

Theorem 10. Let [X]1a = 0 and operator B = [Y ]1a has is diagonalizable with

real eigenvalues which are not resonant.

Then there is a local system coordinates (x, y) in a neighborhood of the point

a ∈ R2, such that ∞ jet of X and Y at the point have the following normal

forms;

Y = λ1x∂x + λ2y∂y,

X = (
∑

(i,j)∈Σ1

aijx
iyj)∂x + (

∑
(k,l)∈Σ1

bklx
kyl)∂y.
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4.2.3.1 The function α has a non-vanishing second jet

In this section we investigate the case when the function α in the represen-

tation:

X = α(x, y)∂x + β(x, y)∂y,

Y = λ1x∂x + λ2y∂y,

has non trivial second jet.

Theorem 11. Let the linear terms of Y be diagonalizable in, and let the

function α have a nontrivial 2nd jet. Then there exists local coordinates

(x, y) such that ∞-jets of X and Y are one of the 6 following forms:

1.

Y = −x∂x − y∂y,

and X has one of the forms

X =
(
x2 + k1xy + k2y

2
)
∂x +

(
k3x

2 + k4xy + k5y
2
)
∂y,

X =
(
k1x

2 + xy + k2y
2
)
∂x +

(
k3x

2 + k4xy + k5y
2
)
∂y,

X =
(
k1x

2 + k2xy + y2
)
∂x +

(
k3x

2 + k4xy + k5y
2
)
∂y.

Where ki are arbitrary real numbers.
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2.

Y = −x∂x + γ1y∂y,

X = x2∂x + kxy∂y,

where k is an arbitrary real number and γ1 ∈ Q−−Q−1 , Q−1 = {−q|q ≥

2} ∪ {−1
q
|q ≥ 2}.

3.

Y = − 2

n
x∂x − y∂y,

and X has one of the forms

X = xy∂x + (ky2 + xn)∂y,

X = xy∂x + ky2∂y,

where k is an arbitrary number and n ≥ 3 is a odd number.

4.

Y = γ2x∂x − y∂y,

X = xy∂x + ky2∂y,

where k is an arbitrary real number and γ2 ∈ Q−−Q−2 , Q−2 = {−q|q ≥

2} ∪ {−2
q
|q ≥ 3}.

5.

Y = − 1

n
(x∂x +

1 + n

2
y∂y),
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and X has one of the forms

X = ±y2∂x ± xny∂y,

X = y2∂x,

Where n is an even number.

6.

Y =
1

2n− 1
(3x∂x + (n+ 1)y∂y),

and X has one of the following forms

X = ±y2∂x + xn∂y,

X = y2∂x,

where k is an arbitrary real number and n ∈ N − (N3. N3 = {k|k =

3p− 1, p ≥ 2} and n ≥ 2.

Proof. Given that:

X = α(x, y)∂x + β(x, y)∂y,

Y = λ1x∂x + λ2y∂y.

We expand the functions α and β through the formal series

α =
∑
i+j=2

aijx
iyj,

β =
∑
i+k≥2

bklx
kyl.
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In order to find all the possibilities for normal forms we will split our inves-

tigation into 3 cases

1. i = 2 and j = 0,

2. i = j = 1,

3. i = 0 and j = 2.

4.2.3.1.1 Case 1 Given that i = 2, j = 0. From (4.2.10) we find that

λ1 = −1,

λ2 =
k − 1

l − 1
.

if l 6= 1. l = 1 is a special case, and will be investigated later. We now get

the following resonance conditions

m1
k − 1

l − 1
−m2 = −1.

Where m1,m2 are non negative and m1 +m2 ≥ 2. We always have a solution

of this equation by setting m1 = l − 1 and m2 = k except for two cases

• k = 0, l = 2,

• k = 2, l = 0.

Both these cases give that λ1 = λ2 = −1 which does not have any resonances.

Therefore we have the normal form

X = k1x
2∂x + (k2x

2 + k3y
2)∂y,

Y = −x∂x − y∂y.
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Where k1 6= 0, k2 and k3 are arbitrary.

We now investigate the case where l = 1.

From (4.2.11) we get that k = 1 and λ2 is arbitrary. We now investigate the

resonance conditions

−m1 + λ2m2 = −1,

−n2 + λ2n2 = λ2.

If either of these equations are satisfied, we must discard this value for λ2.

We solve the equation for λ2 to get the expressions

λ2 =
m1 − 1

m2

,

λ2 =
n1

n2 − 1
.

Where m1 + m2 ≥ 2 and n1 + n2 ≥ 2. We see immediately that, for any

non-negative rational we may find m1,m2 or n1, n2 that satisfy this equation.

However if we fix m1 = 0 we find that λ2 = −1
q

where q ≥ 2 gives resonance.

Also if fixing n2 = 0 gives us that if λ2 is a negative integer less than or equal

to -2, gives us resonance. Discarding these cases we arrive at the normal

forms:

X = k1x
2∂x + k2xy∂y,

Y = −x∂x + γy∂y.

Where γ ∈ Q− −Q−2 , where Q−2 = {−q|q ≥ 2} ∪ {−1
q
|q ≥ 2}
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4.2.3.1.2 Case 2 Given that i = j = 1 we find from (4.2.10) that

λ2 = −1,

λ1 =
l − 2

k
.

The case when k = 0 is a special case and will be investigated later. We note

that λ2 is either a non negative rational or it is equal to

λ1 = −2

q
.

Where q ≥ 2 We write the resonance conditions, and solve them for λ1 and

arrive to the equations

λ1 =
m2

m1 − 1
,

λ1 =
n2 − 1

n1

.

If either of these equations can be satisfied for fixed values of l and k, λ1, λ2

will be resonant.

We see immediately that if λ1 is a non-negative rational number it will be

resonant, so this case must be discarded.

The case when n2 = 0 will give that

λ1 = −1

q
.

When q ≥ 2 will be resonant. Looking back at our possibilities for λ1, we

find that the only the case where

λ1 = − 2

n
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where n is odd and n 6= 1, will remain.

This shows us that l = 0 and k is an odd number greater than 1. We then

arrive at the normal form

X = k1xy∂x + k2x
n∂y,

Y = − 2

n
x∂x − y∂y.

where n is a odd number larger than 1.

When l = 1 we have a special case where λ1 = λ2 = −1 which does not

have resonance, and the vector fields are of the form

X = xy(k1∂x + k2∂y),

Y = −x∂x − y∂y.

Where k1 and k2 are arbitrary reals.

We now treat the case when k = 0. From (4.2.11) we get that λ1 may

be arbitrary and l = 2. The restriction on λ1 will be analogous to the case

when i = 2 j = 0 and l = 1. We arrive at the vector fields

X = k1xy∂x + k2y
2∂y,

Y = γx∂x − y∂y.

Where γ ∈ Q− −Q−2 , where Q−2 is the same as in the earlier case.
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4.2.3.1.3 Case 3 We have that i = 0 and j = 2, we find from (4.2.10)

that λ1 = 2λ2 + 1. From this (4.2.11) gives us that

λ2 =
1 + k

1− 2k − l
. (4.2.12)

We note that this must always be negative and solve the resonance conditions

for λ2. We have resonance if one of the following equalities hold.

λ2 =
1−m1

2m1 +m2 − 2
,

λ2 =
n1

1− 2n1 − n2

.

We rewrite these equations to find some solutions

λ2 =
(m1 − 1) + 1

2(m1 − 2) + (m1 + 3)− 1
, (4.2.13)

λ2 =
(n1 − 1) + 1

2(n1 − 1) + (n2 + 2)− 1
. (4.2.14)

We look (4.2.12) and find resonances by the following equalities:

m1 = 2 + k, n1 = 1 + k,

m2 = l − 3, n2 = l − 2.

This shows us that this method will always find n1 and n2 that give us

resonance given l and k, expect for the cases

1. l = 2 and k = 0,

2. k ≥ 1 and l = 1,

3. l = 0 and k ≥ 2.
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All the trivial cases for m1 and m2 will be contained within our possibilities

for n2 and n2.

However we may have other solutions to these cases where this approach does

not work, and they must therefore be investigated in detail.

Case 1 We have that l = 2 and k = 0 and look to (4.2.12) to see that

λ1 = λ2 = −1. When the eigenvalues are equal, we will never have resonance.

We therefore arrive at the representations

X = y2(k1∂x + k2∂y),

Y = −x∂x − y∂y.

Where k1 and k2 are arbitrary reals.

4.2.3.1.3.1 Case 2 Recall that l = 1 and k ≥ 1. We begin by looking

to (4.2.12) to see that

λ2 = −1 + k

2k
.

We now investigate which values of k that have resonance.

First we investigate for m1 m2 by looking to the equation:

−1 + k

2k
= − m1 − 1

2m1 +m2 − 2
.

Where k ≥ 1, m1,m2 ∈ N and m1 +m2 ≥ 2.

Solving this equation gives us:

2m1 + (1 + k)m2 = 2.
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Due to our restrictions on m1,m2 and k this equation will never have a

solution.

Now we investigate n1 and n2

−1 + k

2k
= − n1

2n1 + n2 − 1
.

Where n1, n2 ∈ N and n1 + n2 ≥ 2. Solving this we arrive to the equation

2n1 + (n2 − 1)(1 + k) = 0.

Due to our restrictions on n1, n2 and k, the only possibility we have to satisfy

this equation is when n2 = 0. This gives us that we will have resonance when:

k = 2n1 − 1.

where n1 ≥ 2.

We then arrive at the vector fields

X = k1y
2∂x + k2x

ny∂y,

Y = − 1

n
(x∂x +

(1 + n)

2
y∂y).

Where n ∈ (Neven ∪ {1}).

Case 3 Recall that l = 0 and k ≥ 2.We look to (4.2.12) and see that

λ2 = − 1 + k

2k − 1
.
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We now investigate which values of k that have resonance.

First we investigate for m1 m2 by looking to the equation:

− 1 + k

2k − 1
= − m1 − 1

2m1 +m2 − 2
.

Where k ≥ 2, m1,m2 ∈ N and m1 +m2 ≥ 2.Solving this equation gives us

3m1 + (1 + k)m2 = 1.

Due to our restriction on k, m1 and m2, this equation will never have a

solution.

We now investigate n1, n2

−1 + k

2k
= − n1

2n1 + n2 − 1
.

Where n1, n2 ∈ N and n1 + n2 ≥ 2. Solving this we arrive to the equation

3n1 + (k + 1)(n2 − 1) = 0.

Due to our restriction on k, n1 and n2 we only have the possibility of n2 = 0.

This shows that we have resonance when

k = 3n1 − 1.

where n1 ≥ 2. We arrive at the vector fields

X = k1y
2∂x + k2x

n∂y,

Y =
1

2n− 1
(3x∂x + (n+ 1)y∂y).
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Where n ∈ N− ({1} ∪ N3. N3) = {k|k = 3n− 1, n ≥ 2}.

4.2.3.1.4 Superpositions Having found all these representation, we must

take a superposition whenever they have the same eigenvalues. Finally we

will argue when it is possible to remove arbitrary coefficients. We gather all

these results in the table below

Table 4.1: Normal forms
Case (λ1, λ2) Normal form of X restrictions

1 (−1,−1) k1x
2∂x + (k2x

2 + k3y
2)∂y none

2 (−1, γ) k1x
2∂x + k2xy∂y γ ∈

(
Q− −Q−2

)
3 (− 2

n
,−1) k1xy∂x + k2x

n∂y n ≥ 3 odd
4 (−1,−1) xy(k1∂x + k2∂y) none
5 (γ,−1) k1xy∂x + k2y

2∂y γ ∈
(
Q− −Q−2

)
6 (−1,−1) y2(k1∂x + k2∂y) none
7 (− 1

n
,−n+1

2n
) k1y

2∂x + k2x
ny∂y n even or equal 1

8 ( 3
2n−1

, n+1
2n−1

) k1y
2∂x + k2x

n∂y n ∈ N− (N3 ∪ {1})
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4.2.3.1.4.1 λ1 = λ2 = −1. Here all 8 cases will have some solution.

We therefore take a superposition of every possibility to arrive at the normal

form

Y = −x∂x − y∂y,

X =
(
k1x

2 + k2xy + k3y
2
)
∂x +

(
k4x

2 + k5xy + k6y
2
)
∂y.

Where ki are arbitrary reals.

If one of these constants are non-zero, it is possible to pick a diffeomorphism

that brings it to 1. We now investigate the intersections.

4.2.3.1.4.2 Case 2 With the exception of γ = −1, there are no inter-

section of these eigenvalues with any of the other cases. Therefore we have

the normal form

Y = −x∂x + γy∂y,

X = k1x
2∂x + k2xy∂y.

Where k1 and k2 are arbitrary reals.

Since k1 6= 0 we can take the diffeomorphism φ : x → k1x, to remove the

constant k1.

4.2.3.1.4.3 Case 3 Here we have an intersection with case 5 when

γ = − 2

n
.
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Y = − 2

n
x∂x − y∂y,

X = k1xy∂x + (k2y
2 + k3x

n)∂y.

Where n is an odd number greater than 1.

If we have that k3 6= 0 we can take the diffeomorphism

φ :x→ n
√
k1k3x,

:y → k1y.

This maps both constants k1 = k=13. The case when k3 = 0 will be

treated later.

4.2.3.1.4.4 Case 5 When γ 6= −1 and γ 6= − 2
n
, we have the normal

form

Y = γx∂x − y∂y,

X = k1xy∂x + k2y
2∂y.

If we take the diffeomorphism φ : y → k1y we have that k1 = 1.

4.2.3.1.4.5 Case 7 If n 6= 1 this does not intersect with any of the

other cases. We have that

X = k1y
2∂x + k2x

ny∂y,

Y = − 1

n
(x∂x +

1

2
(1 + n)y∂y).
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Where n is an even number and k1, k2 arbitrary.

When k2 6= 0 we take a diffeomorphism which is a scales x and y in the way

φ : x→ tx, y → sy. We now find values for s and t such that the constants

k1 and k2 be mapped to 1.

k1t

s2
= 1,

k2

tn
= 1.

Since n is an even number we cannot remove the sign of k1 and k2. Analo-

gously, if k2 = 0 we cannot remove the sign of k1.

4.2.3.1.4.6 Case 8 If n 6= 2 this gives us a unique case, where the

normal form is

X = k1y
2∂x + k2x

n∂y,

Y =
1

2n− 1
(3x∂x + (n+ 1)y∂y).

If k2 6= 0 we again remove the arbitrary constant by a diffeomorphism φ :

x→ tx, y → sy and get the equation

k1t

s2
= 1,

sk2

tn
= 1.

Investigating this equation we find that we can remove the sign of k2 but not

k1. If k2 = 0 we can always set k1 = 1.
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4.3 Smooth classification

Assume that we take coordinates (x, y) in which vector field Y is linearizable

Y = λ1x∂x + λ2y∂y,

with the condition λ1λ2 > 0.

Let then

X = α(x, y)∂x + β(x, y)∂y,

be a representation of X.

Theorem 12. Let

X = α(x, y)∂x + β(x, y)∂y,

and

X̃ = ˜α(x, y)∂x + ˜β(x, y)∂y,

be two vector fields such that the commutator relations [X, Y ] = X and

[X̃, Y ] = X̃ hold for both.

Assume the ∞-jet of functions (α, β) coincide:

[α]∞a = [α̃]∞a , [β]∞a = [β̃]∞a

Then α = α̃, β = β̃ in a neighborhood of the point a ∈ R2

Proof. Assume α and α̃ satisfy the differential equation

Y (α) = (λ1 − 1)α,

Y (α̃) = (λ1 − 1)α̃.
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Therefore the difference

ε = α− α̃,

which is a flat function at the point a ∈ R2, also satisfies this equation.

Consider a trajectory

(x(t), y(t)) =
(
eλ1tx0, e

λ2ty0

)
.

of the vector field Y , and let

φ(t) = ε(x(t), y(t)),

be the restriction of the function ε on this trajectory.

Then we have

φ̇ = (λ1 − 1),

and therefore

φ(t) = e(λ1−1)tφ(0) = x(t)
1− 1

λ1 φ(0).

Since λ1λ2 > 0 we can always approach the origin by letting t → ±∞.

We see that φ behaves as a power of x as we approach the origin, which

contradicts that ε is flat. The case for β is analogous to this.

Remark. If λ1λ2 < 0, the trajectories of the representation, never approach

the singularity. We see immediately that xλ1y−λ2( or x−λ2yλ1) is an invariant

to this action. If we take a flat function f , we can always have a superposition

of a flat solution f(xλ2y−λ1) as a flat solution to the commutator relation.



Chapter 5

Applications to differential

equations

In this section we apply the results of the previous sections to differential

equations. By letting these Lie algebras act on J0(x, y), the representation

of g will be the symmetry algebra of a family of second order differential

equations. Since our collection of normal forms is rather large, we only in-

vestigate some selected representations. We wish to restrict our investigation

to finding kth order differential equations of the form

F (x, y, y′, . . . , y(k)) = C.

In order to find the first order differential equations, we take the first prolon-

gations of X and Y , and find their basic invariant f1 through the formula

X(1)(f1) = Y (1)(f1) = 0.

Finally we take the second prolongation of the vector fields and find the their

common invariance f2.

49
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We can now find any higher order invariance through the Tresse derivatives:

fi =
dfi−1

dx
df1
dx

.

Where df
dx

is the total derivative of f .

In order to illustrate how this invariance is computed, we examine the transi-

tive case thoroughly, and list the results for some of the normal forms found

in the previous sections.

5.1 Transitive Action

Corrolary 2. The class of first order differential equations with a 2 dimen-

sional symmetry algebra with a transitive action is

y′ey = C.

And the class of second order differential equations is

F (y′ey, y′′e2y) = C.

The class of k-th order differential equation is

F (f1, . . . , fk) = C.

Where f1 = y′ey, f2 = y′′e2y and fk is given by

fk =
dfk−1

dx
df1
dx

.
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Proof. From 2 we have that

X = ∂x,

Y = x∂x + ∂y.

Taking the first prolongation of these vector fields we get

X(1) = X = ∂x,

Y (1) = x∂x + ∂y − y1∂y1 .

The invariant of the vector field X(1) is any arbitrary function of y, y1. The

vector field Y however will have invariance, satisfying the partial differential

equation
∂f1

∂y
= y1

∂f1

∂y1
.

Which has solution

f1 = y1e
y.

We now wish to find second order invariance

Y (2) = x∂x + ∂y − y1∂y1 − 2y2∂y2 .

Solving the differential equation Y (2)(f2) = 0 gives us finally that.

f2 = y2e
2y0 .

Any higher order invariance are Tresse derivatives of these functions, for
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example 3rd order invariance will be:

f3 =
df2
dx
df1
dx

=
ey(2y2y1 + y3)

y2
1 + y2

.

5.2 Weak Singular Action

In this section we find the differential invariance of some of the vector fields

we found in 3

Corrolary 3. The class of first order differential equations which have the

symmetry algebra

X = ∂x,

Y = x∂x + ky∂y,

is

(y′)ky1−k = C.

And the second order differential equations is given by

F
(
(y′)kyk−1, (y′′)ky2−k) = C.

Any higher order differential equations, are given by Tresse derivatives as

described in 2

Corrolary 4. The class of first order differential equations which have the
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symmetry algebra

X = ∂x,

Y = x∂x + y2∂y,

is
y′

y2
e−

1
y = C.

And the second order differential equations is given by

F

(
y′

y2
e−

1
y ,

(y′′y − 2(y′)2)

y3
e−

2
y

)
= C.

Any higher order differential equations, are given by Tresse derivatives as

described in 2

Corrolary 5. The class of first order differential equations which have the

symmetry algebra

X = ∂x,

Y = x∂x ± y3∂y.

Is given by
y′

y3
e
∓ 1

2y2 = C.

And the second order differential equations is given by

F

(
y′

y3
e
∓ 1

2y2 ,
(y′′y − 3(y′)2)

y4
e
∓ 1
y2

)
= C.

Any higher order differential equations, are given by Tresse derivatives as

described in 2



54 CHAPTER 5. APPLICATIONS TO DIFFERENTIAL EQUATIONS

5.3 Singular Action

Corrolary 6. The class of first order differential equations which have the

symmetry algebra

Y =
3

2n− 1
x∂x +

n+ 1

2n− 1
y∂y

X = y2∂x

Is given by (
−2xy′ + y

y′

)n+1

y−3 = C.

And the second order differential equations is given by

F

((
2(y′)3x+ y2y′′

y(y′)3

)n+1

y−3,

(
−2xy′ + y

y′

)n+1

y−3

)
= C.

Any higher order differential equations, are given by Tresse derivatives as

described in 2

Corrolary 7. The class of first order differential equations which have the

symmetry algebra

Y = − 1

n
x∂x −

n+ 1

2n
y∂y

X = y2∂x

Is given by
−2xy′ + y

y′
y−

2
n+1 = C.
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And the second order differential equations is given by

F

((
2(y′)3x+ y2y′′

y(y′)3

)n+1

y−2,

(
−2xy′ + y

y′

)n+1

y−2

)
= C.

Any higher order differential equations, are given by Tresse derivatives as

described in 2

Remark. We can use these results to find higher order differential differen-

tial equations solvable by quadratures. Taking the differential equation

F (Y (k), Y (k−1), . . .) = 0.

Where the derivative is the Tresse derivative.

If this differential equation has a known symmetry algebra and Y (k) are Tresse

derivatives of invariants of some other symmetry algebra. The differential

equation has a symmetry algebra of both the invariants corresponding to Y

and of F . If this is of dimension equal to the order of the differential equation,

the Lie-Bianchi theorem will give us that it is solvable by quadratures.
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