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Summary 

Johannes Kepler (1571-1630) was an iconographic scientist and one of the forefathers 

of the scientific revolution. His ground-breaking work on astronomy has been 

extensively used in the study of scientific progress. I have continued this tradition in 

this thesis, and have studied Kepler’s original work in order to understand his theory 

development. More specifically, I have studied Kepler’s analysis on planetary orbits, 

how he deduced the correct planetary orbits from his analyses and what exactly his 

theories stated.  

 

Kepler has been regarded as a great mathematician, but his work on the planetary 

orbits has been considered as being mixed with lucky guesses and mysticism. I have 

proved in this thesis that these prejudices are unfounded. I have demonstrated that 

Kepler managed to develop a coherent theory that connected force models to specific 

kinematical expressions, and that these expressions produced the correct elliptical 

orbit. I claim that Kepler proved the elliptical orbit on the basis of mathematical - 

physical models that introduced basic elements of classical mechanics, which were in 

many ways equivalent to the later Newtonian mechanics. I have also revealed several 

features of the sophisticated scientific method Kepler used to achieve this goal in this 

thesis, and I claim that Kepler´s new astronomy was not merely an introduction of a 

new theory, but a new way of systematically analysing dynamical systems in order to 

reveal the underlying causes for the behaviour of the system. 

 

In the process of his scientific work, Johannes Kepler revolutionized the natural 

sciences by developing some of the most elementary parts of mathematical physics 

and the foundations for the modern scientific method. In many ways, Johannes Kepler 

gave birth to mathematical physics. 
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1 Introduction 

1.1 What is this study about? 

The main questions dealt with in philosophy of science are to understand how and 

why science produces knowledge. In order to understand the production of new 

knowledge, we must aim to grasp the reasoning of the scientist as presented by the 

scientist himself, and use the reasoning process as a basis to develop tools for 

analysing the on-going epistemological1 processes. This line of analysis relies to a 

high degree on studies of actual scientific practice, i.e. reproducing the steps that are 

indispensable for the scientist themselves. Therefore historical case studies of 

scientific discoveries have a prominent role to play in our quest to understand the 

process of developing new hypotheses and theories. 

This PhD thesis is dedicated to studying the reasoning processes of an 

iconographic historical scientist, Johannes Kepler (1571-1630). The overall aim of 

this thesis is to thoroughly analyse Kepler’s reasoning processes and arguments 

leading up to his theory of planetary motions, in order to understand the historical 

development of modern science and theory development.  

 

                                                
1 Epistemology; from Greek !"#$%&µ' (epist(m(), meaning "knowledge, science", and )*+,- (logos), 
meaning "study of") is the branch of philosophy concerned with the nature and scope (limitations) of 
knowledge. 
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1.2 Background for the study - the Case Study Method 

In the last 20 years there has been growing interest in the study of discovery processes 

within science. The method of this study has largely followed the ideas of the 

cognitive psychologist Howard Gruber (Gruber 1980, 1981). Gruber suggested that 

close readings of research notes and a thorough study of the whole work of a 

researcher should be more prominent in bringing forth new information on discovery 

processes. This is called the Case Study Method (Gruber 1980), and although this 

method is all well and good both in intention and actual practice, the relation between 

history and philosophy (and in Gruber’s case cognitive psychology) is not clear cut. 

My own attitude is that the Case Study Method cannot be a well-defined 

methodology. The methodologies we employ to study our subjects very much define 

what we will find. This is hardly a surprise. Our choice of research strategy and 

methodology should be based on the knowledge of previous research strategies, their 

findings and their shortcomings. But most important of all is that the methodology 

must be tailored to the goals of our own research. 

 The philosophical motivation for the case study presented in this thesis grew 

out of a discipline within philosophy of science labelled Model-based Reasoning. 

This discipline’s main interest lies in studying and developing theories on theory 

development. The methodological foundation of this discipline corresponds to 

Gruber’s ideas and Nancy Nersessian’s method of Cognitive Historical Analysis. 

Nersessian presents the main ideas of this method in her paper “How Do Scientists 

Think”. The paper consists of both a historical and a psychological dimension. The 

historical dimension of the Cognitive Historical Analysis is in line with Gruber’s Case 

Study method:    

The historical dimension of the method has its origins in the belief that to understand 
scientific change the philosophy of science must come to grips with the historical 
processes of knowledge development and change. This is the main lesson we should 
have learned from the “historicist” critics of positivism (Nersessian 1992).  

In other words, Nersessian claims that any theory that purports to explain how 

scientific change occurs and how knowledge is gained, must take actual practice as 

its basis. It is of course possible to develop theories on knowledge development (or 

theories on the impossibility of explaining theory development) based on various 

philosophical theories, but we will not know if our theory has anything to do with 
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actual theory development. Furthermore, Nersessian states: “The cognitive dimension 

of the method reflects the view that our understanding of scientific social practices 

needs to be psychologically realistic”. Thus, this method of Cognitive Historical 

Analysis emphasizes that a formal interpretation must be able to account for real cases 

of theory development: “Equally as important as problems concerning the rationality 

of acceptance – which occupy most philosophers concerned with scientific change – 

are problems about the construction and the communication of new representational 

structures.” That is, the focus in the historical studies should be on types of 

representations used and how these are communicated.  

 Facing the question of how historical studies and the philosophical or 

psychological analysis of them relate, makes the real methodological problems 

surface. Nersessian is fairly straightforward on this: “We need to find out how human 

cognitive abilities and limitations constrain scientific theorizing and this cannot be 

determined a priori” (Nersessian 1992). And furthermore: “The challenging 

methodological problem is to find a way to use the history of scientific knowledge 

practices as the basis from which to develop a theory of scientific change” 

(Nersessian 1992). Nersessian’s goal is to integrate insights from cognitive 

psychology and “the historical findings about the representational and problem-

solving practices that have actually brought about major scientific changes”. Such an 

attempt will inevitably lead to an “essential tension” between the aims of the historian 

and the psychologist or philosopher. Whose aim is going to steer the study? Should 

the psychologist apply cognitive theories to historical cases? Or should theory on 

cognition be developed from scratch based on the historical cases? The first scenario 

is possible but not viable, since all we do is to exemplify our theory. The theory has 

already defined what theory change is, and all we do is to search for instances that 

match the theory. This is a rather trivial Popperian verification problem and is not the 

attitude of Nersessian. The second scenario is not viable either. To use a historical 

case study to be the sole basis for an epistemological theory would require a sort of 

tabula rasa attitude towards the actual aim. But of course, we have some ideas of 

what an epistemological theory should look like. Furthermore, our aim is not to 

reinvent the wheel. The reason for taking the actual processes of theory change as a 

serious source for psychological and philosophical analysis is that they can provide 

novel insights on the epistemology of these processes. The tension in the Case Study 

Method lies in finding a manner in which we can allow the case study to inform us, 
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and not only supply examples validating existing theories on theory change. 

Nersessian’s solution is this:  

Cognitive historical analysis is reflexive. It uses cognitive theories to the extent 
that they help interpret the historical cases – at the same time it test to what 
extent current theories of cognitive processes can be applied to scientific 
thinking and indicates along what lines these theories need extension, 
refinement, and revision (Nersessian 1992: 7).  

This is also the basis for my own attitude. The real crux lies in finding a procedure 

that provides us with novel information from our case study. I think this procedure 

cannot, be settled once and for all before starting the analysis of the case in question.  

Although I appreciate many aspects of Nersessian’s methodology, I find it 

necessary to attempt to establish an even closer connection between Philosophy of 

Science and History of Science. The reason for this is that I not only want to analyse 

the history of conceptual and representational change, but also the scientists` 

arguments causing these changes. My view is that the philosophy of science should 

become more of an empirical science where the “argument” is the object of study. 

This view poses a series of problems that all empirical sciences face concerning 

observation and theory. We do not observe the ‘facts’ around us objectively. Facts, 

what we see and study, are always theory laden. But there is a significant difference 

here: an argument is not studied as an object. An argument is inter-subjective. An 

argument is presented with the intention that those who read it will follow a certain 

reasoning pattern, in order to convince the audience about a certain state of affairs. 

Hanson writes: 

Logicians are concerned with arguments, logicians of science with scientific 
arguments. Their enquiries presuppose answers to worries about the conceptual 
“stuff” of arguments: unless you know what is being argued you cannot 
determine the argument’s soundness (Hanson 1962). 

That is, if one has the intention of analysing an argument, one must first of all 

understand what it purports to argue. This is not as easy as it seems. Earlier arguments 

are not only expressed with concepts that have afterwards undergone a considerable 

change, they are also often expressed in a language not familiar to scientists today (let 

alone philosophers). For example, Newton did not use the newly developed 

differential calculus in his Principia Mathematica (1687). The mathematical 

reasoning in this revolutionary book is expressed in a geometrical language that is 

very different from the new calculus. This means that, to be able to understand the 

reasoning, it is essential to understand the language it is expressed in.  
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 In any case, we have to understand the reasoning as it is actually performed in 

the language it is expressed in to be able to analyse it and to assess if the logical 

analysis provides valuable and/or relevant information. Our primary aim, either as 

historians or philosophers of science, is not merely to find instances of inductive, 

deductive or abductive reasoning, but to understand what is argued for and how it is 

argued for. In this quest, the adequacy of our own tools for analysing this process 

must also be under scrutiny. But what can then be the foundation whereupon we judge 

our tools as adequate or inadequate? One such foundation should be the actual 

reasoning processes. The attentive reader could now think that I have trapped myself 

in a circular argument. If our aim is to gain philosophical understanding of the 

scientist’s reasoning processes, then how can these same reasoning processes work as 

a foundation for judging our philosophical tools? The way out of a circular argument 

is appreciating the difference between having an analytical understanding of 

reasoning processes (their syntax) and understanding the scientific arguments (their 

semantic content). It is a (philosophical) myth that one cannot understand, follow and 

even judge an argument if one does not have adequate tools of formal logic for 

analysing the argument. An astronomical argument for instance, is first of all an 

astronomical argument. This means that if we read the argument with the skills of an 

astronomer, we should be able to follow, understand and judge it. This does not mean 

that there is no distinction between the argument and the analysis of it. But it is 

essential that we are able to see that all the important aspects of the argument, read as 

a colleague of the scientist, are captured by the analysis. 

 Norwood Russel Hanson argues in his paper “The Irrelevance of History of 

Science to Philosophy of Science” (Hanson 1962) that the relationship between 

Philosophy of Science and History of Science is asymmetric. He argues that history of 

science has no insights to offer relevant to the understanding of valid scientific 

reasoning: “The logical relevance of history of science to philosophy of science is nil” 

(Hanson 1962: 585). Hanson implies in his analysis that logic is a non-empirical 

analytic a priori science, while history of science is an empirical science. In other 

words, Hanson considers philosophy of science to be a science that applies tools 

developed in an analytic a priori science (philosophy) on empirical subject matters 

(e.g. history). Hanson’s objective, like Nersessian’s and my own, is to understand 

how science develops. Furthermore, I share Hanson’s ambition of understanding the 

role of different forms of reasoning and arguments in the process of formulating and 
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approving new hypotheses and theories. However, the tools for analysing such 

arguments must guarantee that they answer these objectives, and .in my opinion, there 

is no manner of validating that the tools of logic can handle these objectives 

satisfactorily. If a logical analysis of a scientist’s arguments does not manage to 

explain if and how the arguments work, it would be fallacious to conclude that it is 

something wrong with the scientist’s reasoning. The study of real arguments bringing 

forth scientific progress must therefore have priority over preconceived conceptions 

of the logical structure of (scientific) arguments in general. 
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1.3 Why use Johannes Kepler as a case study?  

Johannes Kepler’s astronomical work is a classical study object in both history and 

philosophy of science. The studies on Kepler’s work concern his two famous laws 

concerning the orbits of planets developed in his book Astronomia Nova (1609, 

henceforth AN). The first law states that the planets move in ellipses, and the second 

law states that the radial line sweeps out equal areas in equal times. His popularity as 

a study object stems both from his introduction of the two planetary laws and his 

exceptionally meticulous notations on his own reasoning processes. Also, he is an 

interesting study object because of his purported infamous preconceptions, and many 

historians have claimed that he let himself be restricted by his mystic beliefs (Kuhn 

1962: 152-153).2 Many historians and philosophers of science have also found him 

confused (Koyré 1973: 271; Koestler 1961: 334-336), and his conclusions have often 

been interpreted as lucky guesses (Gingerich 1989: 68; Koyré 1973: 271). One of the 

reasons why he has been considered as confused was his tendency to move seemingly 

erratically among different methods of analysis, such as analysis of observation data, 

motion, and geometrical form, and speculation on the causes.  

Although Kepler’s research on the planetary orbits has been extensively 

studied both philosophically (Hanson 1958; Peirce 1931; Mittelstrass 1972; Westman 

1972; Duhem 1969) and mathematically (Whiteside 1974; Davis 1989; Stephenson 

1994; Aiton 1969), I claim that many important parts of his reasoning process have 

been overlooked and misinterpreted. I claim to have been able to fill these gaps 

through close reading of his original work and through a reconstruction and analysis 

of his arguments, concepts and reasoning process. I have found that the steps in 

Kepler’s reasoning that have been labelled confused or false, are the very steps that 

drove his theory forward. After learning Kepler’s mathematics and following his 

reasoning, it was possible for me to understand the process as an astronomer, see how 

his reasoning steps made good mathematical and physical sense, and ultimately 

understand how these steps led to the development of new concepts and hypotheses. 

The fact that I was able to follow and acknowledge Kepler’s reasoning is a sign that 

                                                
2 Thomas S. Kuhn writes: ”Individial scientists embrace a new paradigm for all sorts of reasons and 
usually for several at once. Some of these reasons – for example, the sun worship that helped make 
Kepler a Copernican – lie outside the apparent sphere of science entirely” I hope that the present work 
will convince the reader that this kind of metaphysical speculation was not the final arbiter of Kepler’s 
commitment to the Copernican system. 
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theoretical knowledge is developed. This knowledge is not merely historical as in 

reporting the reasoning process, but conceptual as in becoming convinced of an 

astronomical state of affairs.  

So what was more intelligible to me as a “contemporary” to Kepler, than to 

me as a modern philosopher? It was the fact that Kepler tried to develop a new 

theoretical foundation for astronomical theories and aimed to base this new 

foundation on causal explanations of planetary motions. Astronomers before Kepler 

constructed geometrical models and checked them with observational data, but Kepler 

demonstrated that one could in principle construct an infinite number of geometrical 

models that would fit the data. Kepler thought bigger than his contemporaries, and 

tried to integrate data, mathematical representations and causes in one unifying 

theory, and in doing so he revealed fundamental aspects of dynamical phenomena, 

and developed means to represent these aspects through mathematics. The analyses of 

Kepler’s arguments in AN cannot be accounted for solely by formal logic, but his 

reasoning is nevertheless undoubtedly scientifically sound. In this thesis I will 

demonstrate that it is perfectly possible to analyse, reproduce and explain the role of 

the different steps of reasoning in Kepler’s work.!

 !
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2 Kepler’s theory of science and its influence on his new astronomy 

Kepler included an excerpt of Ramus’ Scholae Mathematicae (1569) on the very title 

page of his Astronomia Nova. In the excerpt, Ramus reacts to astronomical theories in 

general and to Copernicus’ theory specifically: “ In later times, on the other hand, the 

tale is by far the most absurd, the demonstration of the truth of natural phenomena 

through false causes”. Ramus then challenges astronomers to construct astronomy 

without hypotheses, an astronomy that was to be based solely on observations, 

arithmetic and geometry. By ‘hypotheses’ Ramus referred to models of the planetary 

system using mechanisms for representation that cannot be observed. This included, 

in Ramus’ understanding, epicycles and deferents, eccentrics and equants etc. (see 

explanations of concepts in Appendix 1), together with preconceived assumptions on 

the organization of the planetary system like the Copernican model, which places the 

Earth in the centre, seemingly without empirical justification (Aiton 1975). Ramus 

offered his own professorship as a prize to the person who could fulfil these criteria.  

Kepler’s jocular response to Ramus’s challenge was: “Conveniently for you 

Ramus you have abandoned this surety by departing both life and professorship. Had 

you still held the latter, I would in my judgement, have won it indeed, inasmuch as, in 

this work, I have at length succeeded, even by the judgement of your own Logic” 

(Kepler 1609/1992: 28). This response is fairly bold, considering that Kepler 

introduced a whole array of new geometrical and causal hypotheses in AN. Why did 

he then claim that he had fulfilled Ramus’ criteria? 

 The explanation is found in Kepler’s theory of science. In the following 

sections, I will present this theory of science and his view on the type of hypotheses 

that astronomy had to encompass. Kepler discussed these issues explicitly and 

extensively in Apologia pro Tychone contra Ursum.3 This book entails detailed 

                                                
3 The work is presented as a “defence” of Tycho Brahe in a priority dispute. In 1588 Reimarus Ursus 
(Nicolaus Reimers Bär, 1551-1600) published his work called Fundamentum Astronomicum, in which 
he presents a geo-heliocentric model. This provoked Tycho Brahe to accuse Ursus of plagiarism. 
Kepler had, unfortunately, sent a letter to Ursus in 1595 praising him of his theory and his skills as a 
mathematician. Ursus presented this letter without Kepler’s consent in his De hypothesibus 
astronomicis tractatus (1597), where Ursus strikes a counter attack on Brahe. This became a serious 
embarrassment for Kepler, especially since Kepler started working for Brahe in 1600 in Prague. Brahe 
had planned to write a two-volume refutation of Ursus’ claim. When Kepler came to Prague Brahe 
managed to convince Kepler to write the second volume, forcing him to do this by exploiting Kepler’s 
embarrassment over the letter to Ursus. As it turned out, Kepler used this opportunity to write a treatise 
more on epistemological and methodological issues, using Ursus as an opponent, than on the defence 
of Brahe. Apologia was written around Christmas 1600, but was not published until 1858 (Kepler and 
Jardine 1984: 1-28). 
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accounts of several topics on philosophy of science, analyses of some foundational 

problems of astronomical science at the time, and a historical account of various 

planetary models. Further, discussions on how astronomical theories are built up are 

also found in the prefaces of Kepler’s Astronomia Pars Optica (1605, Optics) and 

Epitome of Copernican Astronomy (1618-1621, Epitome). Even though there exist 

several thorough accounts of Kepler’s analyses on the status of astronomy and its 

theoretical problems,4 few have demonstrated how his philosophy of science actually 

directed his analyses in AN. With this introduction, I aim to place the papers included 

in this thesis within the right methodological and theoretical context of Kepler’s own 

theory of science. 

 

  

                                                
4 See especially Jardine’s comments to his own translation of the Apologia in the The Birth of History 
and Philosophy of Science (Kepler and Jardine 1984).  
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2.1 The sceptic’s view on astronomical theories 

Kepler’s philosophy of science was developed as a response to the instrumentalist or 

sceptical view of astronomy that evolved in the 16th century. Especially two factors 

led Kepler’s immediate predecessors and contemporaries to adopt this view. The first  

was the rejection of Aristotelian cosmology, which had hitherto provided the sole 

metaphysical explanation of the organization of the world. The second factor was the 

acceptance that many competing planetary models, e.g. Copernicus’, Ptolemaiios’ and 

Tycho Brahe’s models, saved the same phenomena equally well for selected 

observations.5 Kepler actually referred to Osiander’s notoriously sceptic preface of 

Copernicus’ Revolutionibus Orbium Celestium (1543)6 in his answer to Ramus. 

Kepler believed, that Ramus’ naïve realist position was founded on the same faulty 

view of astronomical practice and theories that he considered the sceptics to hold. For 

Kepler, the fact that several kinematical-geometrical models of the solar system saved 

the phenomena did not mean that there were no true theories of the planetary system. 

We will come back to Kepler’s arguments, but let us first take a closer look at the 

sceptics’ view of astronomy. 

  In the first half of the 16th century, the German universities went through 

important reforms, inspired by the growing humanist ideas (Westman 1975). One of 

the important scholars behind these academic changes was Philipp Melanchthon 

(1497-1560). Melanchthon was an active leader in the humanist movement both at the 

Universities of Tübingen and Wittenberg. In Wittenberg, he became a well-known 

scholar, teacher, and the intellectual origin of the so-called “Wittenberg 

interpretation”. However, the term “Wittenberg interpretation” refers more to the 

view of Melanchthon’s students, than to the view of Melanchthon himself. His 

students tended to embrace Copernicus’ model to a greater extent than Melanchthon 

himself did. But this is not to say that they embraced Copernicus’ theory as a true 

depiction of the planetary system. It was recognized that Copernicus’ theory was in 

many respects geometrically equivalent to Ptolemy’s theories, and Copernicus’ theory 

became part of the astronomy curriculum alongside Ptolemy’s theories. The reason 

                                                
5 The equivalencies were not exact, but neither of the models seem to be fundamentally better at 
explaining the data and for several observations the models did not differ significantly.  
6 The preface of Copernicus’ Revolutionibus Orbium Celestium was written anonymously and added 
after Copernicus’ death. Owen Gingerich describes in his book The Book Nobody Read how Kepler 
came to know that Andreas Osiander was the writer, and that Kepler was the first to state this in print 
in AN (on the aforementioned front piece) (Gingerich 2004). 
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the Wittenberg circle embraced Copernicus’ theory was its technical features, 

especially the fact that Copernicus had managed to get rid of the dreaded equant, and 

preserved the circular uniform motion for all the planets. Copernicus’ theory was 

actually seen as a restoration of astronomy to its roots, rather than representing a 

revolutionary new world-view. What is interesting here, is that most members of the 

Wittenberg circle did not express any cosmological preferences.7 

 As a generalization of the attitudes among intellectuals at German universities 

around 1540-1560, we can say that the usefulness of some of Copernicus’ techniques 

was fully acknowledged, but the attitude towards astronomy as a science delivering 

true theories of the world, was at best undecided. Nicholas Jardine (1979) makes an 

interesting and thorough re-analysis of the different positions in the 16th century in his 

paper “The Forging of Modern Realism”. From Jardine’s analysis it is obvious that 

many of the so-called instrumentalists are better viewed as sceptical realists. An 

instrumentalist is one who asserts that theories in principle cannot be determined as 

true or false, thus he views theories merely as tools of representation and prediction. 

A sceptic, on the other hand, is a realist who has developed a sceptical attitude 

towards the theories of his profession. Those who held a sceptical view on astronomy 

in the 16th century claimed that there were certain constraints on astronomy that made 

it difficult or impossible to justify the theories.  

  These constraints can be exemplified with Melanchthon’s criteria for gaining 

true knowledge: 1) experientia universalis – “by applying the senses to their proper 

objects under normal circumstances we are able to obtain knowledge of the properties 

of the various kinds of terrestrial objects”, 2) noticia principiorum – with the mind 

gain (a priori) knowledge of mathematical truths and certain general principles (the 

whole is greater than its proper part), 3) intellectus ordinis in syllogismo – we are able 

to grasp syllogistic form, which help us to extend our initial stock of knowledge by 

way of syllogistic inference (Jardine 1979).  

As Jardine has interpreted Melanchthon’s first criteria, it is impossible to grasp 

the general characteristics of all non-terrestrial phenomena by normal sensory 

experience. By requiring that the senses should be applied “to their proper objects” 

and “under normal circumstances” celestial phenomena are effectively ruled out. We 
                                                
7 The only person who took a stance was Rheticus. He was drawn towards the fact that Copernicus’ 
theory was a comprehensive model for the universe. It demonstrated, for him, that the world was 
harmonious and written in the language of geometry (alluding here to Plato).  
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will come back to Kepler’s view on astronomical observations in Section 2.4, but 

Kepler had at least a nascent awareness that even everyday experiences are theory 

laden. In a sarcastic reply to Patricius’ view that truth is simply what you see, Kepler 

referred to a ‘miracle’ seen by a friend. A spider hanging in front of a window had 

come between the eyes of the friend and a cow grazing outside the window, giving 

the appearance of a multi-legged cow (Westman 1972: 241). Clearly, no observation 

is independent of point of reference. 

Melanchthon’s second criterion captures the mathematical part of astronomy, 

and as such, makes it an important exercise for abstract reasoning. But mathematical 

models were not anchored in ordinary perception. They were not facts of perceptual 

experience (Erfahrung), but the hypothetical saving of the phenomena.  

 The third of Melanchthon’s criteria concerns valid scientific reasoning. The 

syllogistic form secures that a true conclusion follows from true premises. But true 

conclusions can also follow from false premises. If the premises in question save the 

phenomena, it does not follow that the premises are true. Such reasoning is to commit 

the fallacy of affirming the consequent. Since both Ptolemy’s models and Copernicus’ 

model could describe the same facts equally well, and since it was agreed that both 

could not be true at the same time, it seemed to follow that at least one of the models 

had to be false. That is, from one of the false models the true appearances could be 

deduced. The fact that seemingly competing models saved the same phenomena had 

been a fundamental cosmological problem since Averroes’ (1126 – 1128) time 

(Jardine 1979). After the sceptics’ refutation of Aristotelian cosmology as a blueprint 

for astronomical models, there did not seem to be any other possibility than giving up 

the notion that astronomy could and should render true models of the world. 
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2.2 Kepler’s refutation of the sceptical stance 

Kepler’s response to this situation was quite curious. He wrote: “for the truth to be 

legitimately inferred the premises of a syllogism, that is, the hypotheses, must be 

true” (Kepler and Jardine 1984: 139). But how do we know the truth of hypotheses if 

the syllogism cannot guarantee it? Kepler’s answer was as follows: 

If a man assesses everything according to this precept, I doubt indeed whether he will 
come across any hypothesis, whether simple or complex, which will not turn out to 
have a conclusion peculiar to it and separate and different from all the others. Even if 
the conclusions of the two hypotheses coincide in the geometrical realm, each 
hypothesis will have its own peculiar corollary in the physical realm (Kepler and 
Jardine 1984: 141). 

This quote entails two claims. The first claim is the idea that “each hypothesis will 

have its own peculiar corollary in the physical realm.” At the time Kepler wrote this, 

he had not developed his physical theory. Indeed, he probably did not know what the 

physics explaining the planetary motions would look like. He refers to the “physical 

realm” merely as a collective term for hypotheses presenting causes of the planetary 

motions and organization. Nevertheless, if it is assumed that the various kinematical 

artefacts, like epicycles an equants, represent effects of causes, then the various 

kinematical models (Ptolemaiian, Copernican or Brahean) must each have their very 

own physical models. 

The second claim in the quote above is that the hypotheses coincide in the 

geometrical realm. The argument for this claim, and the meaning of the claim, 

demonstrates a significant insight on kinematics and relative motion: 

Well then, isn’t it necessary for one of the two hypotheses about the primary motion 
(to take an example) to be false - either the one that says that the earth moves within 
the heavens, or the one which holds that the heavens are turned about the earth? 
Certainly if contradictory propositions cannot both be true at once, these two will not 
both be true at once: rather one of them will be altogether false. But is not the same 
conclusion about the primary motion demonstrated by both means? Do not the same 
emergences of the signs of the zodiac follow, the same days, the same risings and 
settings of the stars, the same features of the nights? Does what is true follow equally 
from what is false and what is true then. Far from it! For the occurrences listed above, 
and a thousand others, happen neither because of the motion of the heavens, nor 
because of the motion of the earth, insofar as it is a motion of the heaven or of the 
earth. Rather, they happen insofar as there occurs a degree of separation between the 
earth and the heaven along a path which is regularly curved with respect to the path of 
the sun, by whichever of the two bodies that separation is brought about. So the 
above-mentioned things are demonstrated from two hypotheses insofar as they fall 
under a single genus, not insofar as they differ. Since, therefore, they are one for the 
purpose of the demonstration, for the purpose of demonstration they certainly are not 
contradictory propositions. And even though a physical contradiction inheres in them, 
that is still entirely irrelevant to the demonstration. So this example certainly does not 
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show that what is true can follow both from what is true and from what is false 
(Kepler and Jardine 1984: 142). 

The two hypotheses mentioned in the quote above, “the earth moves within the 

heavens” and “heavens are turned about the earth” are observationally equivalent 

hypotheses, or with Kepler’s own words equipollent hypotheses. Both hypotheses 

have the ability of representing the same observations equally well: “Do not the same 

emergences of the signs of the zodiac follow, the same days, the same risings and 

settings of the stars, the same features of the nights?” Hence, the observations 

themselves are incapable of rendering any difference in the ability of various models 

to account for the appearances.  

However, Kepler’s insight is not that different models “save the phenomena”, 

but that they are essentially the same model. With the benefit of hindsight, we can see 

that the excerpt “there occurs a degree of separation between the earth and the heaven 

along a path which is regularly curved with respect to the path of the sun, by 

whichever of the two bodies that separation is brought about” refers to what we today 

call relative motion. This interpretation is corroborated by the treatment of the same 

problem in Kepler’s earlier Mysterium Cosmographicum:  

For it can happen that the same [conclusion] results from two suppositions which 
differ in species, because the two are in the same genus and it is in virtue of the genus 
primarily that the result in question is produced. Thus Ptolemy did not demonstrate 
the risings and settings of the stars from this as a proximate and commensurate 
middle term: ‘The earth is at rest in the centre’. Nor did Copernicus demonstrate the 
same things from this as a middle term: ‘The earth revolves as a distance from the 
centre’. It sufficed for each of them to say (as indeed each did say) that these things 
happen as they do because there occurs a certain separation of motions between the 
earth and the heaven, and because the distance of the earth from the centre is not 
perceptible amongst the fixed stars [i.e. there is no detectable parallax effect] (Kepler 
Gesammelte Werke, I: 15-16, translated in Kepler and Jardine 1984: 216).8 

Thus, the reason that both the Copernican and Ptolemaiian models predict the correct 

data is that they both deduce the data from the exact same relative motion  

(“a certain separation of the motions between the earth and heaven”).9 In other words, 

the two models are equivalent with respect to representing the same true relative 

motion. The only difference between them is that the relative motion between the sun 

and the Earth are described from two different perspectives or reference points. This 
                                                
8 The term “genus” is important in the quote above. It refers to the classification under which we 
choose to model the phenomenon. Ptolemy’s, Copernicus’ and Brahe’s models all classified the 
phenomenon as a kinematical phenomenon - qua kinematics they are equal. 
9 Jardine (in Kepler and Jardine 1984: 217) points out that although the principle of kinematic relativity 
and the connected vocabulary of absolute and relative motion did not exist until the mid 17th century, 
many 16th century astronomers show a clear grasp of cases of relative motion. 
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argument is essentially different from an argument of under-determination of 

hypotheses by data.  

Kepler discussed the equivalencies of hypotheses again in the first and second 

of total five parts of AN. In the first part of AN (Chapters 1-6), he kept a sharp focus 

on the various appearances of the motion from different perspectives, and discussed in 

detail whether, and to what degree, the various models and tools of representation 

were equivalent (e.g. helio- versus geocentric systems, epicycles versus an eccentric 

with an equant, and real sun versus the mean sun). This discussion on the equivalency 

of kinematical models was strategically important in AN, since it introduced 

epistemological reasons to abandon the misguided tendency to save the phenomena 

with various geometrical tools.   
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2.3 In imitation of the ancients – the Vicarious Hypothesis 

Kepler developed a new model “in the imitation of the ancients” in the second part of 

AN (Chapters 7-21). This model was called the Vicarious Hypothesis, since it 

ultimately failed to predict both longitudes and correct distances. Kepler developed 

the Vicarious Hypothesis in Chapter 16, and based it on two assumptions inherited 

from the ancients; the planet moves in a perfect circle and the equant point is at a 

fixed position on the line of apsides (Kepler 1609/1992: 284). The equant point was 

the main kinematical device among the ancients, and is merely defined as the point 

around which the angular motion of a planet (or the sun in a geocentric model) is 

uniform. The Vicarious Hypothesis differed from all other existing models in that it 

employed the sun as a reference point for describing the planets’ motions. Even 

Copernicus’ theory was not strictly heliocentric. 10 

Kepler constructed the Vicarious Hypothesis on the basis of four observations 

of Mars taken at opposition. Observing Mars at opposition removed the effect of the 

second inequality, i.e. the motion of the Earth.11 The resulting model was an eccentric 

circle (i.e. the sun is placed off centre), where the equant is opposite to the sun 

relative to the centre of the apsidal line, but closer to the centre than the sun.  

The Vicarious Hypothesis predicted the correct longitudes well within the 

observational accuracy. However, by using latitude observations (where Mars’ orbital 

plane is inclined to the orbital plane of the Earth) Kepler found that the model 

produced incorrect distances to the sun. Moreover, these latitude measurements 

indicated that the orbit should be close to bisected, i.e. that the sun and the equant 

point are opposite of, and equally spaced from, the centre of the orbit (Chapter 19, 

AN). When adjusting the Vicarious Hypothesis to a bisection of the eccentricity, he 

found that the new model predicted an error of 8’ in the octants (Kepler 1609/1992: 

                                                
10 In the other models, even in Copernicus’ heliocentric model, the reference point was not the sun, but 
a point called the ‘mean sun’. The mean sun was the point around which the Earth (in Copernicus’ 
heliocentric model) moved with uniform angular motion. Copernicus also believed that the centre of 
the Earth’s orbit was the mean sun. Kepler had earlier shown that the intersection of all the planets’ 
orbital planes went through the sun. He therefore saw this as a clear indication that any model should 
take the true sun as the reference point for describing the planets’ motions. 
11 An important pair of concepts was the ancients’ distinction between first and second inequality. The 
first inequality is the variation in the speed of the planet (as seen against the fixed stars), ignoring the 
effect of the second inequality. The second inequality is the apparent (from earth) speeding up of a 
planet that is in conjunction with the sun, and the slowing down or backwards motion of a planet that is 
in opposition with respect to the sun. In a heliocentric reference frame the second inequality arises 
from the motion of the observer’s location on a moving earth. 
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286). Kepler concluded that the assumptions for developing the model had to be 

abandoned: 

But what was assumed was: that the orbit upon which the planet moves is a perfect circle; 
and that there exists some unique point on the line of apsides at a fixed and constant 
distance from the centre of the eccentric about which point Mars describes equal angles in 
equal times. Therefore, of these, one or the other or perhaps both are false, for the 
observations used are not false (Kepler 1609/1992: 284). 

Thus, the geometrical devices of the ancients, the circle and the equant, were not 

fitted to describe the plants’ motions given that the sun was used as the point of 

reference. They must therefore be viewed as unfounded preconceptions of how to 

represent the motions of the planets. 

One of the central claims I make in this thesis is that Kepler introduced a new 

way of doing astronomy. This new astronomy was based on an epistemological view 

that has specific methodological implications. This epistemological view is argued for 

in Chapter 21 in AN, and marks the transition from the methods in ‘imitation of the 

ancients’ to the method of analyses instigating the new astronomy.  
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2.4 The truth in false hypotheses 

Kepler reiterates his view on “false” models at the start of Chapter 21: “I particularly 

abhor that axiom of the logicians, that the truth follows from the false” (Kepler 

1609/1992: 294). He extended here his former criticism of this type of reasoning to all 

types of seemingly false hypotheses that give (some) correct predictions. The 

immediate relevant cases were the Vicarious Hypothesis and the equant and 

circularity, but the point was evidently meant to be general. In the subsequent 

argument he applied the same basic geometrical devices (“principles”) as in the 

Vicarious Hypothesis (i.e. circles and an equant) in order to demonstrate that a model 

based on these principles can be made to save the data. By successively adjusting the 

model, he demonstrated that he could produce a model that accounted for longitudes 

at the apsides, quadrants and octants within the observational accuracy.  

This analysis demonstrated two insights concerning epistemology and method 

of scientific research. The first insight is: 

Further, as these false principles are fitted only to certain positions throughout the 
whole circle, it follows that they will not be entirely correct outside those positions, 
except to the extent (as shown in this example) that the difference can no longer be 
appraised by the acuteness of the senses (Kepler 1609/1992: 298). 

That is, it is always possible to construct a posteriori a model of the phenomena that 

will fall within the observational accuracy. The model might have some peculiar 

empirical results to it, but it deviates so little from other models that it cannot be 

detected by observation. Thus, a method that proceeds by developing models that fit 

the data is not a sensible scientific method. Neither is it a very convincing strategy for 

validating a model. This view is corroborated by his comment on a later occasion, 

when a model he constructed on the basis of two physical principles failed to predict 

the correct data: 

You will say that we have come out worse, since in ch. 48 we came nearer the truth in 
our results. But, my good man, if I were concerned with results, I could have avoided 
all this work, being content with the vicarious hypothesis. (Kepler 1609/1992: 494). 

The second insight concerns the aforementioned “axiom of the logicians”:  

It is at least now clear to what extent and in what manner the truth may follow from 
false principles: whatever is false in these hypotheses is peculiar to them and can be 
absent, while whatever endows truth with necessity is in general aspect wholly true 
and nothing else (Kepler 1609/1992: 298). 

In other words, the reason a false hypothesis predicts something true is not necessarily 

accidental. The parameters of the model that produces the correct result represent 
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some of the features of the phenomenon correctly. Likewise, the parameters of the 

model that produce incorrect results do not do the predictive work. The models that 

produce true predictions are therefore often only partly true. The epistemological 

point is that one has to acknowledge and preserve the aspects of the models that are 

true of the phenomenon. One should never discard all features of the model even 

though the model as a whole is not physically viable. Rather, the ‘false’ model can be 

an important guiding light in the search for a correct understanding of the planets’ 

motions.       

 These two epistemological insights played an essential role in laying the 

methodological basis for Kepler’s research in AN. According to Kepler, saving the 

appearances was not a viable method for developing astronomical theories. However, 

‘false’ models could expose kinematical aspects that the data themselves did not 

show.  
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2.5 The key to a causal hypothesis 

 The insight on “false” models from Part 2 of AN (Chapter 21) was put into practice in 

Part 3. In this part Kepler started his foray into new territory and his search for “the 

key to a deeper astronomy”, by using the false equant to search for a common 

kinematical characteristic among the planets. 

All the existing major planetary models assumed that the Earth’s orbit (or the 

sun’s motion about the Earth for geocentric models) was fundamentally different from 

the other planets’ orbits. These models accounted for the fact that the planets, except 

the Earth, had a point of uniform motion outside of the geometrical centre of their 

orbits, i.e. they had an equant. The earth-sun system, on the other hand, was assumed 

to have the point of uniform motion at the centre of the orbit, i.e. it was assumed not 

to have an equant. 12  

Kepler had for a long time assumed that the cause of the planets’ motions was 

common to all. This meant that if the other planets had some kinematical 

characteristics in common, one would also expect to find this characteristic in the 

Earth’s orbit. He had already in his Mysterium Cosmographicum (1596) suspected 

that the Earth might have an eccentricity like all the other planets:   

In chapter 22 of the Mysterium Cosmographicum, when I was giving the physical 
cause of the Ptolemaic equant or of the Copernican-Tychonic second epicycle, I 
raised an objection against myself at the end of the chapter: if the cause I proposed 
was true, it ought to hold universally for all planets. But since the earth, one of the 
celestial bodies (for Copernicus), or the sun (for the rest) had not hitherto required 
this equant, I decided to leave the speculation open, until the matter were clearer to 
astronomers. I nevertheless entertained a suspicion that this theory might perchance 
also have its equant (Kepler 1609/1992: 305-306). 

We have seen that Kepler demonstrated that Mars’ eccentricity was bisected, i.e. that 

the geometrical centre of the orbit cut the distance between the sun and equant point 

in half. If it could be shown that also the Earth’s orbit was bisected he could be quite 

confident that this eccentricity had a common cause. This would be the key to his 

physics: 

In this third part I first approach the second inequality. Here I shall use 
unquestionable observations to demonstrate, with either a confirmation or a 
refutation, all that I have hitherto supposed as principles but had doubts about. Once 
this is found it will be like a key: the rest will be opened up (ibid.: 305). 

                                                
12 See e.g. Pannekoek (1961) for a comprehensive description of the various models. 
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Kepler therefore set out to analyse the orbit of the Earth in order to figure out whether 

it has an equant and, if so, where it should be placed.13  

To make measurements of the Earth’s orbit is no simple task, since the 

observer is located on the Earth itself. Kepler used measurements of Mars, which he 

turned into measurements of the Earth. In order to do that, he had to know the exact 

position of Mars relative to the Earth and to the Earth’s equant point (mean sun). One 

of the major problems he faced was that he did not have the exact distances of Mars, 

only the longitudes. He solved this by using observations at exactly one Mars year 

(687 earth days) apart, thus he knew that Mars would be located at the exact same 

spot each time. With a clever use of Tycho Brahe’s model and data along with the 

Vicarious Hypothesis model (both models providing correct longitudes) he could 

fairly accurately position the Earth’s equant point (Small 1804/1963; Stephenson 

1994).  

Another important aspect of Kepler’s analysis is that he performed the 

calculations in all Copernican, Ptolemaian and Tychonic frameworks, i.e. by 

assuming the organization of the planetary system in accordance with these 

hypotheses. In the earlier chapters Kepler had discussed in detail how certain features 

of the various models were model-specific. The present calculation of the eccentricity 

was proved to be evident in all three types of models. Kepler could therefore conclude 

that the calculations gave the real placement of the equant, and that the result was not 

merely an accidental effect of one model of representation. 

The result of the analyses was that the centre of the orbit of the Earth, as was 

previously proven for Mars, is bisecting the line between the sun and equant point 

(Kepler 1609/1992: 323-324). Thus, the bisection was proven to be a general 

kinematical aspect for all the planetary orbits.14 In a bisected eccentric orbit we have 

that the motion at the apsides is inversely proportional to the distance from the sun. 

This correlation between distance between the sun and planets’ and the planets’ 

motions at the apsides (the starting point of Paper 1 in this thesis) was the key that 

                                                
13 Lucid accounts of Kepler’s proof that the Earth indeed had a bisected eccentricity have been given 
by Small (1804/1963), still remarkably relevant, and later by Stephenson (1994: 49-61). For the 
present, we do not need to go into the technical details, but some of the aspects of the reasoning 
process reveal some features of Kepler’s method of analysing data. 
14 The bisection had previously been only proved for Mars’ orbit, but the effect of the incorrect 
assumption that the Earth did not have an equant was that all the other planets’ equants seemed to 
oscillate. By taking into account that the Earth in fact did have an equant Kepler could conclude that 
the other planets’ equants were fixed (or nearly fixed) (Small 1804/1963: 198).    
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would expose the underlying causes of the motions, and the basis for Kepler’s new 

astronomy.  

  

2.6 What was Kepler’s new astronomy? 

2.6.1 Kepler’s view on theories and their validation 

Ramus’ challenge to the astronomers quoted above, was to develop an astronomy 

“without hypotheses.” Both the naïve realist (Ramus) and the sceptics viewed the 

geometrical models, with epicycles and equants, as fictitious hypothesis. The naïve 

realist would have liked to get rid of these devices, while the sceptics believed they 

were necessary in order to save the phenomena. Kepler’s reaction to both of these 

views was that they misunderstood the epistemic role of hypotheses in astronomy. 

Kepler presented his arguments against these views in his critique of Ursus 

scepticism in Apologia. He criticized Ursus for equating ‘hypothesis’ with ‘aitema’, 

which in the Aristotelian sense can mean ‘illegitimate or false assumption’.15 Kepler’s 

explanation for his criticism was based on the manner the term ‘hypothesis’ is used in 

geometry. The geometer classifies his propositions into three different kinds: axioms, 

postulates and hypotheses. Axioms are propositions acknowledged as certain and 

postulates are propositions that are not certain, but regarded as true for the sake of 

argument (e.g. a drawing of a straight line is seldom exactly straight, but for the sake 

of argument the line is postulated to be straight). In the course of a demonstration 

both postulates and axioms can play the role of hypotheses if these were the 

assumptions to be demonstrated. Thus, a hypothesis is the status an assertion has 

when it is under scrutiny. Kepler applied this view to astronomy: 

We, however, call ‘a hypothesis’ generically whatever is set out as certain and 
demonstrated for the purpose of any demonstration whatsoever (Kepler and Jardine 
1984: 138). 

Kepler’s claim is categorical. Everything that is assumed for the sake of a 

demonstration is a hypothesis. Kepler also meant by this that these things we assume 

are hypothetical. That is, they are assumed to be true for the purpose of 

demonstration, but otherwise the beliefs might as well be false. Earlier in Apologia, 
                                                
15 In Posterior Analytics Aristotle defines ‘aitema’ both as ‘an assumption capable of proof but 
assumed without proof’ and ‘a false or illegitimate assumption’. It is the latter definition Ursus uses 
(see Kepler and Jardine 1984: 42, fn. 38). 



 32 

Kepler likened this attitude to that of the mathematician who wants to demonstrate 

some characteristics of a circle. He does not need to draw a perfect circle, it suffices 

to assume the figure to be circular and then see what follows from the assumption. 

That is, there might not exist any circular object in the world, but given that some 

object is circular it would have this or that characteristic qua circular. In this manner 

these propositions and premises are better labelled ‘hypotheses’.  

Thus in every syllogism the hypotheses are what we otherwise call ‘propositions’ or 
‘premises’. But in a longer demonstration, which includes many subordinate 
syllogisms, the premises of the initial syllogisms are called ‘hypotheses’. That is, in 
the ordinary use ‘hypotheses’ are only part of the first syllogisms in a whole array of 
syllogisms (Kepler and Jardine 1984: 139).  

As a consequence of his attitude, Kepler claimed that everything we set as certain in a 

demonstration is a hypothesis: 

Thus in astronomy suppose we demonstrate with the help of numbers and figures 
some fact about a star we have previously observed, from things we have seen when 
carefully and meticulously examining the heavens. Then in the demonstration we 
have set up, the above-mentioned observation constitutes a hypothesis upon which 
that demonstration chiefly rests (ibid.). 

Thus, the ‘facts’ are both what we set out to demonstrate (“with the help of numbers 

and figures”), and at the same time they constitute a hypothesis that the demonstration 

rests upon. In the spider-cow example mentioned above (Section 2.1.) we saw that 

Kepler criticized the notion of ‘objective’, theory independent, observation.    

Kepler continued: 

We thereby designate a certain totality of the views of a practitioner, from which 
totality he demonstrates the entire basis of the heavenly motions. All premises, both 
physical and geometrical, that are adopted in the entire work undertaken by the 
astronomer are included in that totality (ibid.). 

He then went on to explain where this totality of views might come from: 

They are included if the practitioner has for his convenience borrowed them from 
elsewhere. And they are likewise included if he has already demonstrated them from 
observations, and now in the reverse manner, requires that what he has demonstrated 
should be conceded to him by the learner as hypotheses: from which hypotheses he 
promises to demonstrate by syllogistic necessity both those observed positions of the 
stars (which had in the first place been used by him as hypotheses) and also, so he 
hopes, those which are about to appear in the future (ibid.).  

Kepler’s criteria for a plausible theory lay in the status of the ‘totality of views’ and 

the testing of this totality of views. Jardine points out in an essay accompanying his 

translation of Apologia (Kepler and Jardine 1984: 283-286) that the concept of a 

‘theory’ was not developed at this point. Kepler seems to use the term ‘hypothesis’ 
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sometimes as we do it today, and sometimes as an equivalent to ‘a theory’. But 

Kepler’s reference to ‘totality of views’ is here equivalent to what we would call a 

theory, with the exception that when the theory is assumed for the sake of 

demonstration, it is to be taken as a hypothesis. However, Kepler’s point here is that 

astronomical theories must constitute a whole set of causal explanations and 

representations, and even the data entered into the formulation of hypotheses. Again I 

would like to stress Kepler’s epistemological point that data alone cannot prove the 

truth of a kinematical model or distinguish between two kinematical models. Many 

scholars seem to believe that Kepler tried to fit geometrical models to data, but Kepler 

considered it to be a methodological mistake to lay much weight on verifying 

kinematical models on data. He wanted to prove that the data followed from the 

‘totality of views”. But what should this totality of views consist of in astronomy and 

how should such a theory prove the phenomena? 
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2.6.2 What the totality of views consists of in astronomy 

The totality of views, or ‘the edifice’, of astronomy had to account for several levels 

of representations and explanations, according to Kepler. These levels of 

representations, or ‘parts’, are described in his Apologia (1600) and in the forewords 

of his Optics (1604) and Epitome (1618-1625) (see Appendix 3 for translation). I will 

focus here on the Optics and the Epitome, since these entail the most detailed and 

precise descriptions.16 

In the spring of 1602 Kepler realized that the path of Mars could not be 

perfectly circular. He understood that his book on Mars’ orbit, i.e. the AN, would not 

be finished as early as he had hoped. Since it was expected of him to publish, he took 

a break from the work on Mars to write the Optics, which was published in 1604. In 

the foreword of the Optics Kepler presented a thorough and intricate exposition of the 

various parts that enter into astronomy: 

Astronomy, which deals with the motions of the heavenly bodies, principally has two 
parts: One consists of the investigation and comprehension of the forms of the 
motions, and is mainly subservient to philosophical contemplation. The other, arising 
from it, investigates the positions of the heavenly bodies at any given moment, and 
has practical orientation, laying the foundations for prognosis (Kepler 1604/2000: 
13). 

In Kepler’s view, astronomy has as a goal to explain the heavenly motions and this 

explanation provides the ability to predict the planet’s positions. Furthermore, 

astronomy is dependent on two types of demonstrations in order to fulfil its purpose: 

“in astronomical demonstrations there are two kinds of principles: one, the 

observations, and the other, the physical or metaphysical axioms” (Kepler 1604/2000: 

13). The observations are divided into three parts: 

The first is the mechanical part, dealing with instruments, suitable for observing the 
celestial motions, and the way of using them, which that phoenix of astronomers, the 
late Tycho Brahe, published five years ago. The second is the historical part, 
comprising the observations themselves. […] the third, optical part of astronomy, 
which I am treating now, through a brief recounting, as if included among the 
principles, of the old things that Witelo treated methodically, or the new things that 
Tycho Brahe treated here and there, on this subject (Kepler 1604/2000: 13). 

The fourth part of astronomy Kepler concerns the second principle, the physical or 

metaphysical axioms: 

The other kind of principles in astronomical demonstrations, the physical or 
metaphysical principles, together with the subject matter itself of astronomy, which is 

                                                
16 For the account in Apologia see Jardine and Kepler 1984: 154.  
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principally the motions of the heavens, a physical matter, makes up the fourth part of 
astronomy, namely, the physical part…(Kepler 1604/2000: 13-14) 

In the Epitome, which was a series of books published between 1618 and 1621, 

Kepler presented a very similar division: 

The astronomical task consists chiefly of five parts, the Historical, which has to do 
with Observations, the Optical, which has to do with Hypotheses, the Physical, which 
has to do with the causes of Hypotheses, the Arithmetical, which has to do with 
Tables and Calculation, [and] the Mechanical, which has to do with Instruments 
(Kepler 1953: 23). 

The only difference here is that in the latter version arithmetic (or setting up 

astronomical tables) is included as a fifth part.  

In and of itself, it is interesting that Kepler emphasized that doing astronomy 

incorporates all these subjects. A main focus in this thesis is on the parts that enabled 

him to explain the planetary motions. Let us therefore take a closer look at this part of 

astronomy. We continue the quote from Optics above: 

…the physical part, which deals with the efficient causes of the motions, or the 
movers; the formal causes, or figures that the movers strive for; the material cause or 
orbs; and the physical intension or remission of motions; which part, if God should 
grant me life, I shall encompass by the means of Commentaries on the motions of 
Mars …which I think I can call the key to a deeper astronomy (Kepler 1604/2000: 
13-14). 

Hence, Kepler’s focus in AN was on the physical part, which entailed the key to a 

deeper astronomy. The Epitome was written after the AN, so his description of the 

physical part was based on his finished theory. Kepler discussed the physical part 

under the heading On the causes of Hypotheses in the Epitome: 

The third part, the Physical, is commonly held to be unnecessary for the Astronomer, 
even though it is most essential in order to reach the aim of this part of Philosophy, 
and cannot be resolved by anyone but the Astronomer. For Astronomers should not 
be given pure licence to make whatever speculation they like without reason; indeed, 
you should be able to render probable also the causes of your Hypotheses, which you 
present as the true causes of the Appearances, and thus stabilise [establish] the 
principles of your Astronomy in the higher science, namely Physics or Metaphysics; 
without being shut out from those Geometrical arguments, Physical or Metaphysical, 
that are provided for you by the very stepping out from the discipline proper, 
concerning things pertaining to the higher disciplines, as long as you avoid meddling 
with any petition of the Beginning (Kepler 1953: 25). 

Again, Kepler professed that the physical part is necessary in order for the astronomer 

to reach his goal.  

In the Epitome, Kepler made a subtle shift in his notion of the primary goal of 

astronomy from revealing the true motions (for which you need to study the causes of 

these motions) to the causes themselves. Under the heading What is Astronomy? 
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Kepler stated: “It is a science that provides the causes behind the things in the sky and 

amongst the stars that appear to us down on Earth, things that give rise to the changes 

of the times: when these things are understood, we may be able to predict the face of 

the sky, that is, the appearances that have taken place in the past” (Kepler 1953: 23). 

Let us bear in mind though, that Kepler’s ‘cause’ is not restricted to efficient causes. 

For example, the cause of the apparent retrograde motion of the outer planets on the 

sky is that the observer is placed on the moving Earth. This cause would be a ‘formal’ 

cause. While the cause of the actual motion of the planets is an ‘efficient’ cause.  

Kepler explained the relation between physics and astronomy under the 

heading What is the relationship between this science and the other sciences?: “It is a 

part of Physics, because it searches for the causes of natural things and events: and 

because the movements of objects in the sky are among its subjects: and because its 

only aim is this, to establish how the edifice of the world and its parts are pieced 

together” (Kepler 1953: 23). That is, astronomy is a discipline within physics, not 

merely a discipline that invokes physical considerations.  

We must be careful to not assume our modern meaning of the concept 

“physics” when interpreting what he meant, but likewise we must not superimpose 

meanings from earlier scientists and philosophers without reference to Kepler himself. 

Kepler demonstrated time and again in Apologia and Optics an aptitude to sharp 

criticism of the tradition. It is clear however, that “physics” for Kepler involved 

accounting for the ‘efficient’ causes of the planet’s motions.  

An important aspect of mathematical physics is that cause and effect are 

formalized by mathematics, and this has been a central theme in the debate regarding 

Kepler’s work. Did Kepler express and analyse the physical causes he developed 

appropriately with mathematics? This subject will be discussed thoroughly in all the 

papers included in this thesis. But Kepler’s own account of the relation between 

physics and mathematics is found in the last statement under the same heading of 

Epitome as above (What is the relationship between this science and the other 

sciences?): 

It [astronomy] is, however, subordinated to the genus of Mathematical disciplines, 
and it uses Geometry and Arithmetic as two wings; taking into account the quantities 
and figures of the objects and movements of the world, measuring and counting time, 
and using time to establish its demonstrations: and bringing speculation in its entirety 
into use, or praxis (Kepler 1953: 23). 
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To paraphrase Kepler: geometers prick up your ears! Here is a statement that 

encapsulates Kepler’s view on the role of mathematics in astronomy. As a discipline 

astronomy is subordinated to the genus of mathematics. Read in connection to the 

previous points, especially where he stated that physics needed to be included, we see 

that Kepler did not reduce astronomy to a mathematical discipline. Rather, he 

required that the analysis on causation (and all other aspects of the phenomenon) had 

to be expressed in mathematics. That is, he set out the requirements for a “mixed 

science” view of astronomy. This view does not cohere with the interpretation that 

Kepler’s mathematical analyses of the planetary systems was restricted to the 

kinematical aspects of the phenomena. It is a statement that is in full accordance with 

modern mathematical physics where the cause-effect relation should be expressed 

mathematically.  
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2.7 Summary of Kepler’s philosophy of science 

Kepler’s main critique of the sceptics and realists was that they had misunderstood the 

status of the seemingly competing models of the planetary system. Kepler pointed out 

that the different models were not rivals; they were actually all true geometrical 

representations of the same relative motion. He understood that the problem with the 

existing models was that they all were built on unfounded preconceptions 

(hypotheses) on how to represent the planetary motions (theoretical devices like 

equants, circles etc.). Kepler demonstrated that constructing a model on the basis of 

these preconceptions could not represent all relevant kinematical features. But, such 

models can often save the phenomena so well that their inaccuracies cannot be 

detected. He demonstrated that it is always possible to save the phenomena by 

unfounded geometrical devices. 

This problem called for a new methodology; Kepler claimed that the aim of 

analysing data was not to save the phenomena, but to expose and explain the true 

motions. He postulated that only the search for the causes of the motions would 

produce accurate and true descriptions of the planets’ motions. However, Kepler also 

pointed out that there is always something true in accurate, but false models. He 

applied the false idea of the equant hypothesis (the Vicarious Hypothesis) to 

demonstrate that a universal kinematical feature is found in a bisection of the orbits. 

This bisection is equivalent to a correlation between the distance to the sun and the 

planets’ motions. It was this very correlation that exposed the planetary motions to an 

exploration of their causes, and paved the way for a new astronomy.  

 Kepler’s new way of analysing the planetary motions (his new astronomy) 

included a view of theories as a collection of causal and representational models. He 

stressed that it was essential that all the elements in the theory had to be expressed in 

mathematics in order for the theory to explain the appearances.  
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3 Presentation of papers 

 

The four original papers included in this thesis describe (i) the building blocks of the 

edifice of the new astronomy (Papers 1 and 3), (ii) the method by which Kepler 

develops the building blocks (Papers 1 and 3), (iii) how the edifice is erected on these 

building blocks (Papers 2 and 4) and finally, (iv) the various conceptual and 

mathematical analyses and inventions that the whole enterprise is dependent on (all 

papers). I will first discuss the main findings of these four papers through four central 

themes, and then attempt to place my work in the context of existing literature on 

Kepler’s work. All the mathematical expressions used in the papers are reproduced in 

Table 1 of Appendix 2, along with their different kinematic and physical 

interpretations. 
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3.1 Theme 1; the kinematical basis for the correct orbit 

The kinematical basis for the correct elliptical orbit is described in Papers 1 and 3. I 

demonstrate in these papers, that there are in total four expressions describing the 

planets’ motion.  

The first two expressions, discussed in Paper 1, were developed on the basis of 

the correlation discussed in Section 2.5 of this introduction (Chapters 32 to 39 in AN). 

This correlation is commonly referred to as the “distance law” in the literature. I 

demonstrate, that the correlation in question is actually the source of two laws of 

motion, i.e. Distance Law (1) and (2) (Table 1 of Appendix 2). Distance Law (1) 

expresses the motion of the planet as an angular motion, while Distance Law (2) 

expresses a component transverse to the sun-planet radius. However, as these two 

distance laws did not fully describe the planets’ motions, Kepler needed one more 

component in order to explain why the planets moved in an eccentric orbit. At this 

point, Kepler had also found that the orbit had to be some sort of oval. Therefore, the 

missing component had to account for both the eccentricity and the oval nature of the 

orbit.  

Kepler’s first attempt at introducing the missing component and his first 

attempt at describing an oval orbit, are not treated in detail in this thesis, but they are 

shortly presented in Paper 2 (Chapters 45 to 50 in AN, see also Section 4 on future 

research needs below). Kepler’s second attempt at introducing the missing 

component, i.e. Kepler’s introduction of the correct distances (Chapter 56), is 

discussed shortly in Paper 1 and at length in Paper 3. In this attempt, Kepler suggested 

a component describing a sinusoidal motion along the radius between the sun and 

planet. I demonstrate that Kepler developed two expressions for this component in 

Paper 3 (Equations (3)/(4) and (5) in Table 1, Appendix 2).  

Equations (1), (2), (4) and (5) are given as differential equations (expression 

(4) is the differential of (3)). Kepler himself represented the relations as ratios of 

increments. I demonstrate in Paper 1 that these ratios are tantamount to differential 

equations. As such, these five expressions represent the dynamics of the planets’ 

motion in Kepler’s theory. 
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3.2 Theme 2; the physical foundation, method and mathematics 

The differential equations all have different validations and physical interpretations. 

These differences are a consequence of Kepler’s method of analysis. One of the 

overall claims in this thesis is that there is a close connection between the method of 

analysis, the validation of the equations and the physics. 

Kepler developed Distance Law (1) “empirically” by assuming that the 

correlation between the sun and planet found at the apsides held throughout the orbit 

(see Section 2.5). Equation (3) for the radial distance was developed by a similar 

criterion; Kepler found that the distance expressed by (3) fell within the observational 

accuracy and could be expressed as a simple sinusoidal function of the so-called 

‘eccentric variable’. I suggest that Kepler sought correlations between variables that 

could express the motion of the planet as a simple function of a parameter or 

parameters. Subsequently, the reason why the parameter(s) in question could express 

the motion had to be explained by a model of forces. I argue in Paper 1, that this 

manner of systematic search for correlations represents a significant turn towards 

modern physics and modern science in general.  

Kepler’s subsequent search for the causes of (1) and (3) was based on the fact 

that they expressed motions as a function of parameters of the orbit. I describe in 

Paper 1 how Kepler developed a force model explaining why the distance to the sun 

was correlated to the planet’s motion. The features of this force model were all taken 

from well-known natural phenomena, notably light and magnetism. These model 

features defined the quantitative aspects of the force in question in such a manner, that 

the effect of this force described a transverse component of motion, i.e. Distance Law 

(2).  

I discuss the second force model purported to explain the motion along the 

radius (Chapter 57 in AN) in Paper 3. As with the first force model, Kepler borrowed 

several features from magnetism. The second model described how two forces, one 

pulling and one pushing the planet along the sun-planet radius, interact to create a 

sinusoidal motion. Kepler introduced the law of the balance as a dynamical principle 

for interacting forces in the analysis of this model. I argue that the development and 

the analysis of the model is sound and that the result represents a sound theoretical 

causal hypothesis on how a sinusoidal motion can be generated.  
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Equation (5) is the quantitative expression for the force acting on the planet. 

Given Kepler’s principle of inertia, this expression also represents the motion the 

forces cause. However, this equation employs variables that are not employed in the 

expression he set out to explain in Equations (3)/(4). The validation that the two 

expressions for the radial motion are equivalent can only be done for the correct orbit 

(Paper 4). 

 In sum, Distance Law (1) and Equations (3)/(4) were supposed to be true on 

the basis of simple correlations pointing towards a probable causal basis, while 

Distance Law (2) and expression (5) were deduced from the parameters of force 

models. To the best of my knowledge, these reasoning processes have so far been 

overlooked in the literature.  
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3.3 Theme 3; computing time on the basis of the kinematics 

A central problem for establishing the correct orbits of the planets is to determine the 

time it takes for a planet to reach a certain position. What we know as “Kepler’s 

second law” is such a measure of time, stating that the radius between the sun and 

planet sweeps out equal areas in equal times.  

I demonstrate in Paper 2 that Kepler used the previously mentioned Distance 

Laws (1) and (2) to compute time. The primary time measure for Kepler, called the 

Keplerian time measure, was the one based on Distance Law (1), while the secondary 

time measure, called the Newtonian time measure, was based on Distance Law (2). 

The secondary time measure is the well-known “area law”, but this time measure is 

merely hinted at and applied only occasionally in AN.  

The two time measures are found by solving integrals on the basis of the two 

distance laws (Table 2, Appendix 2). I demonstrate in Paper 2 that Kepler solved 

summations tantamount to integration on the basis of Distance Law (1). Many 

historians have interpreted his measure of time as being somewhat qualitative or 

imprecise (see Section 3.5). I argue to the contrary that his calculation of time is 

precise. However, the Keplerian time measure merely related time to certain 

parameters of the orbit, not to the parameters determining the actual position of the 

planet (the true anomaly, see Appendix 1).  

Furthermore, Kepler demonstrated that on the assumption of a circular orbit, 

sector areas of the orbit do not measure the Keplerian time measure. I show in Paper 2 

that the two time measures are only equivalent for the correct ellipse.  
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3.4 Theme 4; the synthesis of the new astronomy 

What induced Kepler to embrace the elliptic form of the orbit? What was the basis of 

the proof? Was the proof inferred as the best fit to data? Or was it a mixture of the 

best fit to data and “qualitative physical principles”? I claim in Paper 4, that the 

physical foundation Kepler laid down in AN (presented in Papers 1 and 3), is exactly 

sufficient to describe why the planets move in elliptical orbits.  

Kepler demonstrated this by constructing the ellipse and then proving that the 

physics described the elliptical orbit. First he proved that the Keplerian and 

Newtonian time measures were satisfied, and then that the two distance laws were 

satisfied at each instant. This second part is particularly important, since it involves 

the proof that the instantaneous motion in the ellipse is a consequence of the 

components of motions described by the aforementioned differential equations. The 

interpretation of this proof is challenging, since it does not apply components of 

motion directly, but relies on coordinating Distance Laws (1) and (2) and the 

distances produced by (3). 

 Kepler’s new astronomy is not merely another theory of the planets’ orbits; it 

represents a new approach to astronomy. The final proof of the correct orbit depended 

on a well-built edifice. The different parts of this edifice involved models of forces, 

equations describing the motions, mathematical methods for representing these 

motions, and computing values on the basis of these equations.  
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3.5 Previous interpretations of Kepler’s work 

Previous interpretations of Kepler’s work on the planetary motions have been 

remarkably varied. In this section I will shortly present some of the areas where my 

interpretations both differ from and coincide with other interpretations. 

 

3.5.1 Interpretations of Kepler’s geometry and metaphysical commitment 

One of the overarching reasons for the varied interpretations of Kepler’s scientific 

work concerns Kepler’s guiding principles. What exactly convinced Kepler that he 

was on the right track or that his models were correct?  

A common view among historians of science has been that Kepler sought 

geometrical forms or symmetrical curves. The general assumption has been that the 

geometrical form and fit with data were final arbiters for Kepler (Whiteside 1974: 14; 

Davis 1989: 95).  

I agree to a certain extent that Kepler had “metaphysical” guiding principles, 

but that these did not differ in any essential way from guiding principles of modern 

scientists. Kepler believed that God had created a harmonious well-ordered universe, 

but this does not necessarily mean that geometrical symmetry was his final arbiter. I 

claim in my papers that he considered the geometry as a tell-tale of the causal 

principles generating the orbit, but the form of the orbit by itself was never the final 

arbiter, nor were the data. 
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3.5.2 Interpretations of Kepler’s mathematics, physics and distance laws 

Interpreting Kepler’s reasoning is a daunting task when it comes to his mathematics 

expressing the motions. The reason for this is that Kepler did not have the benefit of 

formalized modern calculus. Instead, he tweaked geometry to perform the necessary 

tasks. I owe much of my growing understanding of Kepler’s mathematics to Davis’ 

works (Davis 1989, 1992). Davis has done a tremendous job of analysing the 

increment ratios and generally putting the focus on Kepler’s mathematical precision, 

and her work has had very important influence on my work on Kepler. The central 

differences that set my analyses on Kepler’s work apart from Davis’, concern the 

relation between the kinematical expressions of the planet’s motions and their causal 

foundation (Paper 1 and 3), and the time measurement deduced on the basis of the 

distance laws (Paper 2). 

I have found the clearest exposition of the mathematical relations that 

introduces the distance laws in Small’s and Davis’s works (Small 1804/1963; Davis 

1992). They both recognize that (1) and (2’) are possible to deduce for the apsides of 

the bisected eccentric orbit. Nevertheless, my interpretation of the distance laws 

deviates from Davis’ and many others (for details see Paper 1). To my knowledge, the 

force model developed in Chapters 33 to 38 in AN has not been interpreted as having 

any deductive significance for the establishment of the motion of the orbit before. The 

various accounts on the matter all seem to view the physical model as an attempt at 

saving Distance Law (1). I on the other hand claim that the force model explicates a 

specific component of motion transversely to the radius, expressed as Distance Law 

(2) (Paper 1). 

The deviation of interpretations has consequences for several of the following 

analyses. I will here mention three central discussions where the different 

interpretations have profound consequences.    

If the transverse component (Distance Law (2)) is not assumed to express one 

specific component, then the problem of deciding the variation in distances does not 

become a problem of combining specific components to generate an orbit. Other 

scholars, with the notable exception of Wilson (1974), have concluded that the 

discussion on the distances was to adjust the geometrical form of the path from an 

eccentric circle to an oval. According to my interpretation, the force model explained 



 47 

a concentric motion about the sun, while the fact that the orbit was eccentric and oval 

called for another specific component of motion (Papers 1 and 3). 

The other consequence of the different interpretations of the distance laws that 

I would like to mention concerns the computation of time (Paper 2). Most scholars 

(Kepler 1609/1929; Stephenson 1994; Aiton 1969) have recognized that the sums of 

distances are not equivalent to areas of the orbit, given a circular orbit. Caspar (in 

Kepler 1609/1929: 45) has pointed out that the three different time measures (the 

equant hypothesis, the area law and the distance sum) are not equivalent, but he 

viewed these three time measures as competing hypotheses. Furthermore, he believed 

that Kepler had to decide which of the time measures were correct on the basis of 

observations. However, if my analysis is correct, Kepler assumed that both the 

distance sum (associated with Distance Law (1)) and the area-law (associated with 

Distance Law (2)) were true of the correct orbit while the equant hypothesis was 

altogether abandoned as a viable kinematical description.  

The last consequence concerns the final proof of the orbit. I argue in Paper 4 

that the proof of the correct orbit relies on the assumption that the two time measures 

are equivalent. The part that has vexed most scholars (Kepler 1609/1929; Aiton 1969) 

concerns the coordination of the distance laws expressing the instantaneous motion(s) 

of the planets. It is not possible to make sense of Kepler’s proof if the whole set of 

equations (presented in Table 1, especially Distance Laws (1) and (2)) is not assumed.   
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3.6 Concluding remarks on the presentation of the papers 

I have demonstrated that Kepler managed to develop a coherent theory that connected 

force models to specific kinematical expressions, and that these expressions produced 

the correct elliptical orbit. An essential factor for Kepler’s success in consolidating 

the coherence of the theory was that he subsumed all the causal features of the system 

under mathematics. I claim that Kepler proved the elliptical orbit on the basis of 

mathematical - physical models that introduced basic elements of classical mechanics, 

which were in many ways equivalent to later Newtonian physics. 

I have also revealed several features of the sophisticated scientific method Kepler 

used to achieve this goal in this thesis, and I claim that Kepler´s new astronomy was 

not merely an introduction of a new theory, but a new way of systematically analysing 

dynamical systems in order to reveal the underlying causes for the behaviour of the 

system. I hope that the conclusions from the case study presented in this thesis can be 

a source for revising both our understanding of the historical development of modern 

science and our philosophical theories on theory development. 
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4 Future research needs 

There are two important parts of Kepler’s work that I have not included in this thesis 

that require further analysis.  

The first part is the complete analysis of Kepler’s physical model of the radial 

motion. Paper 3 is somewhat incomplete with regard to the full analysis of the 

physical aspects of this model. The physics of the model require that the force would 

also vary inversely to the distance. Kepler gives an explanation for why the distance is 

cancelled out both in AN and in the Epitome. My preliminary analyses of this 

explanation indicate that Kepler’s physics is challenged by the Keplerian inertia 

principle. I hope to be able to complete this analysis in the near future.  

The other part concerns Kepler’s first suggestion of how an oval orbit could be 

generated in Chapters 45 to 50 of AN. The analyses Kepler performed in these 

chapters did not introduce any physical models or kinematical expressions that are 

included in his final edifice. However, I assert that this part has to be re-analysed in 

the light of the findings of this thesis.  

Philosophical analysis on theory development has relied heavily on case 

studies, and Kepler’s work has been among the most referred cases. In recent years 

there has been a growing interest in fields studying theory development, such as 

abduction (reasoning to new hypotheses) (Paavola 2004; Aliseda 2004; Magnani 

2004), model-based reasoning (Nersessian 1995; Cartwright 1994; Portides 2005) and 

the use of analogies in science (Gentner 1983; Gentner 2002; Abrantes 1999; Holyoak 

and Thagard 1995). It will be fruitful to use the findings in this study to further 

develop these fields of philosophy of science. At the same time an analysis of 

Kepler’s methods of scientific enquiry would benefit greatly from the philosophical 

insights these fields can offer, and I hope to be able to take part in this exchange in the 

future.   



 50 

References 

Abrantes, P. 1999. Analogical Reasoning and Modeling in the Sciences. Foundations 
of Science 4 (3):237-270.  

Aiton, E. J. 1969. Kepler’s 2nd Law of Planetary Motion. Isis 60 (201):75-90. 
Aiton, E. J. 1975. Johannes Kepler and the Astronomy Without Hypotheses. Japanese 

Studies In The History of Science 14. 
Aliseda, A. 2004. Logics in Scientific Discovery. Foundations of Science 9 (3):339-

363. 
Cartwright, N. 1994. The Metaphysics of the Disunified World. PSA: Proceedings of 

the Biennial Meeting of the Philosophy of Science Association:357-364. 
Davis, A. E. L. 1989. A Mathematical Elucidation of the Bases of Kepler's Laws 

Thesis for the Ph.D. degree: University of London. 
Davis, A. E. L. 1992. Kepler's `Distance Law' -- Myth not Reality. Centaurus 35 

(2):103-120. 
Duhem, P. 1969. To save the phenomena : an essay on the idea of physical theory 

from Plato to Galileo. Chicago: University of Chicago Press. 
Gentner, D. 2002. Analogy in Scientific Discovery: The Case of Johannes Kepler. 

Model-based reasoning: Science, technology, values. In L. Magnani & N. J. 
Nersessian (Eds.), Model-based reasoning: Science, technology, values 
(pp.21-39). New York: Kluwer Academic/ Plenum Publisher. 

Gentner, D. 1983. Structure-mapping: A theoretical framework for analogy. Cognitive 
Science 7 (2):155-170.  

Gingerich, O. 1989. Johannes Kepler. In Planetary astronomy from the Renaissance 
to the rise of astrophysics: Tycho Brahe to Newton, eds. René Taton, and 
Curtis Wilson. Cambridge: Cambridge University Press. 

Gingerich, O. 2004. The book nobody read : chasing the revolutions of Nicolaus 
Copernicus. New York: Walker & Co. 

Gruber, H. E. 1980. Cognitive psychology, scientific creativity, and the case study 
method. Boston Studies in the Philosophy of Science: On Scientific Discovery 
34:295 - 322. 

Gruber, H. E. 1981. On the Relation Between 'Aha Experiences' and the Construction 
of Ideas. History of Science 19:41-59. 

Hanson, N. R. 1958. Patterns of discovery: an inquiry into the conceptual foundations 
of science. New York: Cambridge University Press. 

Hanson, N. R. 1962. The irrelevance of history of science to the philosophy of 
science. Journal of Philosophy 59:574-585. 

Holyoak, K. J., and Paul Thagard. 1995. Mental leaps : analogy in creative thought. 
Cambridge, Mass.: MIT Press. 

Jardine, N. 1979. Forging of Modern Realism - Clavius and Kepler against the 
Skeptics. Studies in History and Philosophy of Science 10 (2):141-173. 

Kepler, J. 1604/2000. Optics : Paralipomena to Witelo & optical part of astronomy. 
Trans. William H. Donahue. Santa Fe, N.M.: Green Lion Press. 

Kepler, J. 1609/1929. Neue Astronomie. Trans. Max Caspar. München: R. 
Oldenbourg. 

Kepler, J. 1609/1992. New astronomy. Trans. William H. Donahue. Cambridge: 
Cambridge University Press. 

Kepler, J. 1953. Kepler Gesammelte Werke. Bd. 7, Epitome astronomiae 
Copernicanae. Edited by W. Van Dyck, M. Caspar, F. Hammer. München: 
Beck.  



 51 

Kepler, J. and Jardine, N. 1984. The birth of history and philosophy of science 
Kepler's A defence of Tycho against Ursus : with essays on its provenance and 
significance. Cambridge: University Press. 

Koestler, A. 1961. The watershed : a biography of Johannes Kepler. The science 
study series, vol. 14. London: Heinemann. 

Koyré, A. 1973. The astronomical revolution : Copernicus, Kepler, Borelli. Paris: 
Hermann ; London : Methuen ; Ithaca, N.Y. ; Cornell University Press. 

Kuhn, T. S. 1962. The structure of scientific revolutions. Chicago: University of 
Chicago Press. 

Magnani, L. 2004. Model-Based and Manipulative Abduction in Science. 
Foundations of Science 9 (3): 219-247. 

Mittelstrass, J. 1972. Methodological elements of keplerian astronomy. Studies in 
History and Philosophy of Science 3:203-232. 

Nersessian, N. J. 1992. How Do Scientists Think? Capturing the Dynamics of 
Conceptual Change in Science. Minnesota Studies in the Philosophy of 
Science XV:3 - 43. 

Nersessian, N. J. 1995. Opening the Black Box: Cognitive Science and History of 
Science. Osiris 10:194-211. 

Paavola, S. 2004. Abduction As a Logic and Methodology of Discovery: The 
Importance of Strategies. Foundations of Science 9 (3):267-283. 

Pannekoek, A. 1961. A history of astronomy. London: Allen & Unwin. 
Peirce, C. S. S. 1931. Collected papers of Charles Sanders Peirce. Vol. 1-2, 

Principles of philosophy ; Elements of logic. Cambridge, MA: Harvard 
University. 

Portides, D. P. 2005. A Theory of Scientific Model Construction: The Conceptual 
Process of Abstraction and Concretisation. Foundations of Science 10(1):67-
88. 

Small, R. 1804/1963. An account of the astronomical discoveries of Kepler : A 
reprinting of the 1804 text. Madison: University of Wisconsin Press. 

Stephenson, B. 1994. Kepler's physical astronomy. Princeton, N.J.: Princeton 
University Press. 

Tønnessen, S. 2009. On The Case Study Method. In Enhet i mangfold. Festskrift i 
anledning Johan Arnt Myrstads 60-årsdag, eds. Anita Leirfall, and Thor 
Sandmel. Unipub forlag. 

Westman, R. S. 1972. Kepler's theory of hypothesis and the 'realist dilemma'. Studies 
in History and Philosophy of Science 3:233-264. 

Westman, R. S. 1975. The Melanchthon Circle, Rheticus, and the Wittenberg 
Interpretation of the Copernican Theory. Isis 66 (2):164-193. 

Whiteside, D. 1974. Keplerian planetary eggs, laid and unlaid, 1600-1605. Journal for 
the History of Astronomy 5:1-4. 

 
 

 
 



!



Paper 1 



!



Paper 2 



!



Paper 3 



!



Paper 4 



!



Appendix 1 



!



Appendix 1 – Glossary 

 
 

 
Fig. 1. Bisected eccentric circle 
  

 

 
Fig. 2. Ellipse correlated to auxiliary 
circle 
 

 

The geometrical references in the list of concepts and variables below refer to both 

Figures 1 and 2 above, unless otherwise stated. The concepts that originate from Kepler’s 

work are marked with a (K). For conventional concepts that Kepler used in an 

unconventional way I give both the conventional and Kepler’s meaning1. Kepler’s work 

Astronomia Nova (1609) is referred to as AN.  

 

  

                                                
1 The definitions are largely based on “A Glossary of Technical Terms” in The General History of 
Astronomy Volume 2: Planetary astronomy from the Renaissance to the rise of astrophysics Part A: Tycho 
Brahe to Newton (Taton and Wilson 1989) and the “Glossary” in Kepler´s Physical Astronomy by Bruce 
Stephenson (1994).  
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Anomaly: the position of a heavenly body in the heavens, often measured from the  

aphelion or perihelion/perigee in terms of degrees, minutes and seconds. 

Aphelion: the point farthest from the sun (in a heliocentric system, D). 

Apsidal line: the line connecting the apsides (line AC).  

Apsides: the two points a planet occupy in its path that are respectively closest to (D) and  

farthest from (C) the body (or point in space) it is believed to revolve around.  

Arc: part of a concentric circle. Kepler customarily used ‘arc’ to designate the  

corresponding angle it subtends. Thus, arc should not be treated as part of the 

actual path of an orbit (Davis 1992).  

Bisection of eccentricity (or only bisection): the distance between the centre (B) and the  

equant point (E) is equal and opposite in direction to the distance from the centre 

(B) to the central body (A). 

True (coequated) anomaly: angle about the sun measured from the line of apsides to the  

point where the planet actually is (!CAQ). It measures the longitudes of a planet. 

Deferent: the circle an epicycle travels along. The epicycle’s centre follows a circular  

path around the sun (e.g. in some of Kepler´s early models) or the Earth (e.g. 

Ptolemaiian models), this path is called the deferent. 

Eccentric or eccentric circle: a circular orbit about some central astronomical body (i.e.  

the Earth in geocentric systems or the sun in heliocentric systems) where the 

central body is not located in the centre of the circle. References to an ‘eccentric’ 

often implies that the equant concur with the centre of the circle. This is not the 

case for the orbits discussed in the papers included in this thesis, where eccentric 

merely refers to the fat that the sun is located outside the centre (at A) 

Eccentric anomaly (K): angle about the centre of the ellipse measured from the line of  

apsides to the point the planet would have occupied if the path were a circle 

(!CBQ). The measurement can also be the length of the eccentric arc from the 

apside to the planet. In an unknown orbit the eccentric anomaly is undefined with 

regard to longitudinal position. In the correct ellipse (CPD, Figure 2) the eccentric 

anomaly is defined on the auxiliary circle (CQD) by projecting the position of the 

planet P onto the circle via the normal to the apsidal line (QH). 

Eccentricity: the distance between the centre (B) and the central body (A). 



Ecliptic plane: plane of the Earth’s orbit. 

Epicycle: a small circular orbit whose centre moves on the deferent. Kepler used an  

epicycle to represent the radial motion in Chapter 56. This was merely a device 

used to represent the distance and was not intended to represent the actual motion 

in an epicycle in the traditional way. 

Equant (or equant point): the point around which a body moves with uniform angular  

velocity. 

Optical equation: difference between eccentric anomaly and true anomaly (!BQA in  

Figure 1). Typically applied to change angular reference point from the centre (B) 

to the sun (A), or vice versa. In chapter 40 Kepler referred to the ‘optical 

equation’ as an area, this area being the isosceles triangle QBO since the area and 

the angle are proportional. 

Physical equation: also physical equation of centre: the part of the equation that arose  

from the fact that the motion around the centre varied. Kepler explained the 

physical equation by the planets radial component of motion (Chapter 38/39 of 

AN). If the orbit had moved uniformly in a concentric, the physical equation 

would be zero. In Chapter 40 of AN the concept is used as the excess of the mean 

anomaly over the eccentric anomaly.  

Mean anomaly: measures the time elapsed since the planet was in aphelion. The measure 

is given in degrees, one period equals 360°, or in radians. The mean anomaly is 

given by !CEQ in models using an equant. Kepler abandoned the equant and 

developed other measures for the mean anomaly (see Paper 2 in thesis). 

Mean sun: for a geocentric model, it is the positions on the sky where the sun would have  

been if it’s apparent motion had been uniform. Conversely, in Copernicus’ model 

it is the point around which the earth moves with uniform angular motion. It 

should be noted that Copernicus also believed that the centre of the Earth’s orbit 

was in the mean sun.  

Perihelion: the point in the path that is closest to the sun (only for heliocentric models). 

True sun: the point where the sun is actually located.  

  



Inequality, first and second: Change in the speed an/or direction of the planet’s motion.  

Kepler inherited the pair “first inequality” and “second inequality” from the 

ancients. The first inequality is the variation in speed of the planet, ignoring the 

effect of the second inequality. The second inequality is the apparent (from Earth) 

speeding up of a planet that is in conjunction and slowing down or backwards 

motion of a planet that is in opposition. In the heliocentric models the second 

inequality arises from the fact that the observer is located on the moving Earth. 
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Appendix 2 - Mathematical relations and deductions 

The mathematical relations, deductions and equations presented below are the found 
in Johannes Kepler’s correct solution of the elliptical orbit, referred to in Papers 1-4 in 
this thesis. Please note that at the time Kepler established these various relations he 
did not know for certain that they were true descriptions of the states of the planet. 
The trueness of the equations relied on whether they could be proved to work in union 
to generate an orbit within the limits of observational accuracy. This proof is found in 
Chapter 59 of Astronomia Nova (1609, henceforth AN) (see Paper 4).  
 
Equation (1), Paper 1: Equation (1) is a fairly straightforward deduction from the 
bisected eccentric circle, deduced in Chapter 32. However, the deduction holds only 
at the apsides. Kepler simply assumed that this relation will hold for the rest of the 
orbit. 
 
Equation (2)/(2’), Paper 1: This equation is developed from a causal model in 
Chapter 33, and further analysed in the subsequent Chapters 34 to 38. It represents 
one component of motion driving the planet around the sun perpendicular to the 
radius, i.e. the line connecting the planet and the sun. 
 
Equation (3), Paper 3: The distance of the planet from the sun, presented in Chapter 
56. The distance is based on the natural motion this represents (see it’s derivation in 
Equation 4) besides it’s fit with observations. 
 
Equation (4), Paper 3: The derivative of (3). Kepler represents the incremental 
distances, dr, geometrically via an epicycle in the AN. The epicycle is not meant to 
represent a motion at this point, only the relation between the increments of distances 
and eccentric anomalies. From the geometrical figure Kepler recognised the “natural” 
relation between increments of distance and eccentric anomaly pointing towards a 
probable causal mechanism.  The expression is derived more accurately in the 
Epitome of Copernican Astronomy, 1618-1621 (p. 134).  
 
Equation (5), Paper 3: Developed from a causal model consisting of two interacting 
forces where the interaction at each point is determined by the eccentric anomaly. 
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Figure and main identities of the circle and ellipse!
 

 
Fig. 1. Auxiliary circle and ellipse related by the ordinate QH. 

A   is the sun 
B    is the centre of the orbit 
C and D   are the apsides 
G    is the position at the quadrant of the ellipse 
F    is the position at the quadrant of the circle 
Q    are the intermediate positions on the circle 
P    are the intermediate positions on the ellipse 
!CAQ = !   the true anomaly 
! CBQ = ",   the eccentric anomaly  
BC = BD = a   radius of circle and later major axis of ellipse 
BF = b   minor axis of ellipse 
AB = ae   where e is the eccentricity of the orbit  
QT    called the ‘diametral distance’ by Kepler in Chapter 40.  
 
On the assumption that the orbit is a circle we have the distance 
r = AQ 
 
On the assumption that the orbit is an ellipse we have the distance 
 
r = AP  
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Differential equations and integrals 
Table 1: Differential equations and physical interpretations 

Nr. = Number. Ch. = Chapter in AN.* (3) is not a kinematical description at all. It merely describes the 
length given the eccentric anomaly.** The motion described here is unspecified with regard to time. 
But it is motion since the progression of ! is dependent on time. Furthermore, ‘instantaneous’ is not 
applied in the modern form where the independent variable time is thought to approach zero. Here it is 
used generally where the independent variable, either describing time or space, is thought to approach 
zero or being “as small as you want”. This concerns any instance where time is not the independent 
variable (as in (1) and (2’)). (3*) ae versin!; distance covered since the planet was at aphelion. 

Nr. Relations Ch. Kinematical 
description Causal description 

(1)  32 

Angular motion around 
eccentric anomaly. 

Implicit expression of 
resultant motion. 

Form: differential. 

Implicit expression of the sum 
of forces. Instantaneous. 

(2)  33 
Motion transverse to 

the radius. 
Form: differential. 

Explicit expression of force 
transversal to radius. 

Instantaneous. 

(2’)  33 
Angular motion around 

true anomaly. 
Form: differential 

Implicit expression of force 
acting transverse to the radius. 

Instantaneous. 

(3) r(! ) = a(1+ ecos! )
 

56 

Geometrical 
description*: The 

distance of the planet at 
certain eccentric 

anomalies. 
Form: integral. 

 

(4)  57 
“Motion”** along the 

radius. 
Form: differential. 

Unspecified forces. 
Instantaneous**. 

(5)  57 
Motion along the 

radius. 
Form: differential. 

Causal factors implied in the 
expression 

1. One repulsive and one 
attractive force (effective 

cause).  
2. Resultant dependent on the 
angle the axis of forces makes 

with the sun. 
 

(oc) 
 

   

dt
d!

" r

dst

dt
! 1

r

dt
d!

" r2

dr
d!

" aesin!

dr
dt

! sin"

d!
d"

= c
1
r
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Table 2. Differential equations and integral solutions 

Number Incremental time Integral Integral solutions 

(1) 
 

dt(! )! rd!  
 

1 

 

Keplerian time measure t ! r d!"  

 

(2) 
 

dt(! )! r2d!  
2 

 

Newtonian time measure: t ! r2" d!  

 
 

 !
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Elementary geometrical relations of the ordinate construction 

(See Paper 3 and 4) 
 

  (i) 

Various lines are given 

  (ii) 

  (iii) 

 
 

(iv) 

The ratios of the sines of the true and eccentric anomalies can then be found 

   

 
 

(v) 

Relation between sector areas of the circle and ellipse. From (i) we have 

 

   

From proposition 5 of Archimedes’ on Spheroids Kepler could state 
 

   

Again from Archimedes proposition 5 and a proof by Commandino Kepler deduces in 
the following  

  a. 

Since the triangles HPA and HQA share the same height AH, while their bases are HP 
and HQ respectively, we get that 

  b. 

 
From a and b we get that 

  (vi) 

 

 

b
a

= PH
QH

PH = r sin!

QH = asin!

AH = r cos!
= a(cos" + e)

b
a

= PH
QH

b
a

= rsin!
asin"

b
r

=
sin!
sin"

 

PH =
b
a

QH

 

areaCGD =
b
a

areaCQD

 

Segment CPH =
b
a

Segment CQH

 

!PHA =
b
a
!QHA

 

areaCPA =
b
a

areaCQA
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Additional relations and deductions 

Optical cause or Requirement 1 (Paper 4) 

  (oc) 

Deduction 1 – from distance-laws: given that Distance Laws (1) and (2) are true for 

the correct orbit, they determine a specific property of the correct path. From 

distance-law (1) we get an expression of increments of time 

   

If we substitute the increments of time in Distance Law (2) for the expression 

determined by (1) we get a specific property that the correct orbit of the planet must 

satisfy, i.e. the optical  

   

 Q.E.D.  

The optical cause is deduced directly from the differential equations describing the 

motion of the planet.   

d!
d"

! r

dt ! rd"

rd!
d"

# r2

d!
d"

# r



 7 

Deduction 2 – differentiation of ellipse 

If we know that the correct orbit is the sun-focused ellipse and that ordinates to the 

apsidal line determine the relation to the circumscribing circle we can also deduce the 

optical cause. A characteristic of the ordinate constructed ellipse is 

  (v) 

Inserting for distance r expressed by the eccentric anomaly ((3) in table 1) we get 

   

Differentiating with respect to ! and using the chain rule on the left side of the 

equation (we suppose that the true anomaly can be exressed as a function of the 

eccentric anomaly): 

   

Using (iv) we get 

   

Hence,  

   

 Q.E.D.  

  

b
r

=
sin!
sin"

sin! = bsin"
a(1+ ecos" )

d sin!
d!

d!
d"

= b
a

d
d"

sin"
1+ cos"
!
"#

$
%&

cos! d!
d"

= b
a

cos"(1+ ecos" ) + esin2 "
(1+ ecos" )2

d!
d"

=
b
a

r
a(cos" + e)

cos" + e(cos2 " + sin2 ")
(1+ ecos")2

= b
r
r2

cos" + e
cos" + e

d!
d"

=
b
r
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Correlation of arcs and increments of areas on the basis of Requirement 1 

(A different version is found in Paper 4) 

Increments of transverse arc, dsT, is given by 

   

Using the optical equation (Equation oc) we get 

   

Arcs on the auxiliary circle is given by 

 dsc = ad!   

where dsc is arcs on the circle. For equal incremental arcs on the auxiliary circle 

(corresponding to equal increments of eccentric anomaly) we have 

 
dsT

dsc

= b
a

  

Adding ! r to the fraction of arcs (by the rule of expansion of fractions) gives 

 

1
2 rdsT

1
2 rdsc

= b
a

dAe

dAc

= b
a

  

 Or  

 dAe ! dAc   

where dAe is an incremental sector area of the ellipse and dAc is the corresponding 

incremental sector area of the circle, both with vertices at A.  

  

dsT = rd!

rd! = bd"  !  dsT = bd"
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Requirement 2  

Deduction 1 – deducing Requirement 2 (Paper 4) 

 (5) –Radial motion deduced from force model (Paper 3) 

  (5) 

 (4) – Radial motion justified from ‘natural’ oscillation (Paper 1 and 3) 

   

We want to demonstrate that these radial increments correspond in the same time 

interval. (4) does not express time, but we have that time is related to the eccentric 

anomaly in distance-law (1). Premise: Time from Distance Law (1) 

   

(1) in (5) gives: 

   

We can now find the condition for an orbit where the two expressions for radial 

increments are equivalent: 

 
 

 

From (v) we know that the ordinate related ellipse satisfies this condition. 

Hence, (4) and (5) is proved to be equivalent in the elliptic orbit. 

  

dr ! sin!dt

dr ! aesin!d!

dt ! rd!

dr ! sin! (rd" )

 

sin! (rd") # sin"d"

$
sin"
sin!

# r
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Time measures 

Newtonian time measure  

Increment of time based on Distance Law (2): 

   

Increment of time to incremental areas:
 

   

since dA = ! r2d!. Integral measure of time (Integral 2, Paper 2)
 

  Integral 2 

Areas swept out by the radius measure the time. This holds for any path as long as the 

angular motion around the sun is given by (2)/(2’). 

Keplerian time measure 

Increment of time based on Distance Law (1) 

   

Integral measure of time (Integral 1, Paper 2) 

  Integral 1 

 

Requirement 1* 

Given that the both Integral 1 and Integral 2 measure the times we can formulate a 

requirement on the areas of the orbit  

   

 

  

dt(! )" r2d!

dt(! )" r2d!
" rdsT

" dA

t(! )" r2 d!#

dt(! )" rd!

t(! )" r d!#

t(! ) = t(" )
Integral 2 #  Integral 1
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The circle 

On the assumption that the orbit is a circle we have that the sector areas is not a 

solution to Integral 1. 

The distance in the circle is given as 

   

Kepler developed Figure 2 as a measure tantamount to Integral 1. He could not 

compute the area of this figure. 

 

 
Fig. 2. Geometrical solution to Integral 1 on the assumption of a circular orbit 

 

The ellipse 

In the correct ellipse the distance is given by 

   

The solution to Integral 1 

 

t(! )" r# (! )d!

= a(1+ ecos! )d!#
= a(! + esin! )

  

 

The solution to Integral 2 is trivially areas. Sector areas  of the circle is given by 

                        area CQB = ! a2!  

                        area QBA = ! a2esin!  

!          area CQA = ! a2(!+esin!)  

Hence, the solution to Integral 1 is proportional to Integral 2 by a factor of ! a2, and 

we can conclude that Requirement 1* is satisfied in the ellipse. 

AQ = a 1+ e2 + 2ecos!

r(! ) = a(1+ ecos! )
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What is Astronomy? 
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C;A9BE:!8?9>G:!8?;8!8;H=!@N;<=!9>!8?=!:HI!T;:!:==>U!;8!C;A9BE:!@N;<=:!;>D!@B:989B>:!B>!N;>D!;>D!
;8!:=;5!<;>!B>NI!F=!:9>GN=D!BE8!LABJ!=;<?!B8?=A!FI!J=;>:!BL!0:8AB>BJIP!
! VP!&8! 9:!:E@=A9BA!8B!.?AB>BNBGI5!F=<;E:=!8?=!JBC=J=>8:!9>!8?=!:HI!<;8=GBA9:=!89J=!;:!
K=NN!;:!8?=!@BN989<;N!I=;A:5!;>D!8?=I!@N;<=!8?=9A!:9G>;8EA=!B>!?9:8BA9<;N!=C=>8:P!
! WP! &8! 9:! :E@=A9BA! 8B! -=8=BABNBGIP! %BA! 8?=! :8;A:! ;A=! JBC9>G! ;>D! 9>LNE=><9>G! /;8EA=!
F=NBK!8?=!JBB>5!;>D!=C=>!8?=!?EJ;>!F=9>G:!8?=J:=NC=:!9>!;!<=A8;9>!:=>:=P!
! XP!&8!<BJ@A9:=:!;!:EF:8;>89;N!@;A8!BL!*@89<:5!F=<;E:=!98!?;:!;!:EFQ=<8!9>!<BJJB>!K98?!985!
T>;J=NIU! 8?=! N9G?8! BL! BFQ=<8:! 9>! 8?=! :HIM! ;>D! F=<;E:=! 98! A=C=;N:!J;>I! 9NNE:9B>:! BL! C9:9B>! ;:!
A=G;AD:!8?=!LBAJ!BL!8?=!KBAND!;>D!BL!JBC=J=>8:P!
! YP! &8! 9:5! ?BK=C=A5! :EFBAD9>;8=D! 8B! 8?=!genus! BL!-;8?=J;89<;N! D9:<9@N9>=:5! ;>D! 98! E:=:!
S=BJ=8AI!;>D!0A98?J=89<!;:!8KB!K9>G:Z!8;H9>G!9>8B!;<<BE>8!8?=![E;>8989=:!;>D!L9GEA=:!BL!8?=!
BFQ=<8:! ;>D! JBC=J=>8:! BL! 8?=! KBAND5! J=;:EA9>G! ;>D! <BE>89>G! 89J=5! ;>D! E:9>G! 89J=! 8B!
=:8;FN9:?!98:!D=JB>:8A;89B>:M!;>D!FA9>G9>G!:@=<EN;89B>!9>!98:!=>89A=8I!9>8B!E:=5!BA!praxis.!
!

How many-sided, then, is the task and toil of the Astronomer? 
 
! "?=! ;:8AB>BJ9<;N! 8;:H! <B>:9:8:! <?9=LNI! BL! L9C=! @;A8:5! 8?=!#9:8BA9<;N5!K?9<?! ?;:! 8B! DB!
K98?!*F:=AC;89B>:5!8?=!*@89<;N5!K?9<?!?;:!8B!K98?!#I@B8?=:=:5!8?=!,?I:9<;N5!K?9<?!?;:!8B!DB!
K98?!8?=!<;E:=:!BL!#I@B8?=:=:5!8?=!0A98?J=89<;N5!K?9<?!?;:!8B!DB!K98?!";FN=:!;>D!.;N<EN;89B>5!
T;>DU!8?=!-=<?;>9<;N5!K?9<?!?;:!8B!DB!K98?!&>:8AEJ=>8:P!



How do these parts differ? 
 
! "#$%&'(%! )&)*! &+! $%*,*! -./$,! 0.)! 0&-*! 12$%&'$! 3*&4*$/20.#! 5*4&),$/.$2&),6! 1%20%!
0&)$/27'$*! $&! 8%*&/96! &/! :'47*/,6! 1%20%! 0&)$/27'$*! $&! Praxis6! ,2)0*! $%*/*! ./*! 0*/$.2)!
)'47*/,;! $%.$! ./*6! ,&! $&! ,-*.<6! $%*! #.)('.(*! &+! $%*!3*&4*$/202.),=! $%*! $%/**! +&/4*/! %.>*6!
%&1*>*/6!4&/*!$&!5&!12$%!8%*&/96!1%*/*.,!$%*!$1&!#.$$*/!%.>*!4&/*!$&!5&!12$%!Praxis?!
!

@)!@7,*/>.$2&),!
!

Describe for me the first of these parts, the Historical. 
 
! 8%*!A2,$&/20.#!-./$!5*,0/27*,6!$&!7*(2)!12$%6!%&1!$%*!+.0*!&+!$%*!1&/#5!.--*./,!$&!',6!
.)5!B,2)(#*,!&'$C!1%.$!2,!0%.)(2)(!5'/2)(!.!5.96!1%.$!5'/2)(!.!9*./6!&/!2)!$%*!0&'/,*!&+!#&)(*/!
-*/2&5,!&+!$24*=!1%.$!.--*./,!52++*/*)$#9!.)5!1%.$!,$.9,!$%*!,.4*!.$!>./2&',!-#.0*,!&)!#.)5!&/!
.$! ,*.?! D*.##9! /./*! &/! )&$.7#*! *>*)$,6! ,'0%! .,! *0#2-,*,! &+! $%*! E')! &/!F&&)6! &/! ,-*0$.0'#./!
0&)G')0$2&),6! 2$! 0'##,! +/&4! %2,$&/20.#! ,&'/0*,?! F&/*! ,'7$#*! &7,*/>.$2&),! &+! ,2)(#*! ,$./,6!
%&1*>*/6! 2$! 0&##*0$,! +/&4! $%*! 7&&<,! &+! 0/*527#*! .'$%&/,6! ).4*#96! Hipparchus6! Ptolemy6!
Albategnius6!Arzacheles! .,!1*##! .,! &$%*/! .'$%&/,! 02$*5! 79! $%*,*6! .)5! 7/2)(,! $%*4! $&(*$%*/6!
1%2#*! .552)(! *>*)! +'/$%*/! &7,*/>.$2&),! -/&>25*5! 79! $%*! -/*,*)$! (*)*/.$2&)! &+! &7,*/>*/,=! 2)!
$%2,!/*,-*0$!$%*!2)0/*527#*!52#2(*)0*!&+!Tycho Brahe!,'/-.,,*,!$%.$!&+!.##!&$%*/,6!12$%!%2,!,*/2*,!
&+! 0&-2&',! .)5! 4&,$! $/',$1&/$%9! &7,*/>.$2&),6! 4.5*! -*/,&).##9! .)5! .#4&,$! 12$%&'$!
2)$*//'-$2&)!&>*/!.!-*/2&5!&+!.#$&(*$%*/!HI!9*./,?!
! !!8%',6! &7,*/>.$2&),! &+! $%2,! <2)5! &'(%$! $&! 7*! 0&4-./*5! 12$%! *.0%! &$%*/! 2)! .!
,&-%2,$20.$*5!4.))*/6! .)5! $&!7*! ,2)(#*5!&'$! +/&4!*.0%!&$%*/! 2)!1*##!5*+2)*5!(/&'-,6! .)5! 2)!
1*##!5*+2)*5!-*/2&5,!&+!$24*6!,&!$%.$!,242#./!$%2)(,!+2$!,242#./!$%2)(,=!2)!.7&'$!$%*!,.4*!4.))*/!
$%.$!Aristotle6! 1%*)! 5*,0/272)(! $%*! A2,$&/9! &+! ")24.#,6! ,$./$*5! &'$! 79! *,$.7#2,%2)(! .! 4&,$!
,&-%2,$20.$*5! %2,$&/9! &+! .)24.#,6! 79! ,2)(#2)(! &'$6! +&/! .##! ,-*02*,! $%.$! %.5! 7**)! 5*+2)*5! $&!
7*#&)(!$&!$%*!,.4*!genus6!$%&,*!$/.2$,!$%.$!$%*,*!%.5!2)!0&44&)!12$%!$%*!/*,$?!
!

@)!A9-&$%*,*,!
!

Describe for me also the second part of the Astronomical Task. 
 
! 8%*! ,*0&)5! -./$6! $%*! @-$20.#6! ,$/2>*,6! .+$*/! %.>2)(! 0&),25*/*5! $%*,*! >./2*$2*,! &+!
@7,*/>.$2&),!.)5!$%*!7*#&)(2)(!$&(*$%*/!&+!0*/$.2)!&7,*/>.$2&),!2)!0*/$.2)!(/&'-,6!$&!-*)*$/.$*!
2)$&!$%*!0.',*,!$%.$!4.<*!species!$%.$!./*!,&!'$$*/#9!.$!>./2.)0*!12$%!$%*!$/'$%!$.<*!-#.0*!7*+&/*!
$%*! *9*,! &+! %'4.)! 7*2)(,6! species! $%.$! ",$/&)&4*/,! 0.##! "--*./.)0*,6! B&/C! 2)! 3/**<!
phaenómena.! A*/*6! $%*! 2)$*##*0$'.#! 0.-.02$9! &+! *.0%! -*/,&)! 5*025*,! %&1! 4.)9! $9-*,! &+!
.--*./.)0*,! %*! ,.>*,! .)5! *,$.7#2,%*,! 79! 4*.),! &+! ,&4*! ,2)(#*! +&/4! &+! 4&>*4*)$! $%.$!
-*/-*$'.##9! /*4.2),! ,242#./! $&! 2$,*#+6! &/! 79! 4*.),! &+! ,&4*! ,2)(#*! +2('/*! &+! 7&52*,J! 79!
.00&44&5.$2)(! $%*! *)$2/*! 4*$%&5! &+! %2,! 5*4&),$/.$2&)! $&! #.1,! .)5! 8%*&/*4,6! 7*! $%*9!
3*&4*$/20.#!&/!@-$20.#6!.!4*$%&5!$%.$!2,!,'7&/52).$*5!$&!3*&4*$/9=!.)5!$%*!/*,'#$!2,!$%.$!&)*!
-*/,&)6!79!$.<2)(!+&/4,!&+!4&>*4*)$,!&+!$%2,!<2)5!2)$&!.00&')$6!0&4*,!0#&,*/!$%.)!.)&$%*/!$&!
$%*!>*/9!:.$'/*!&+!$%2)(,?!8%',6!.#$%&'(%!%*!2)!$%2,!,$/*)'&',!.)5!7#2)5!(/.--#2)(!+&/!0.',*,!
$&'0%*,!'-&)!$%*!#.1,!&+!:.$'/*6!B1%2#*C!7*2)(!#*5!.,$/.9!+/&4!$%*!$/'$%!2)!,&4*!0&),$2$'*)$,!
&+! %2,!@-2)2&),6! $%*9! B2?*?6! $%*!",$/&)&4*/,KC!4.9!)&)*$%*#*,,! ,.>*! $%*! .--*./.)0*,!&+! $%*!
,<9!79!4*.),!&+! $%*,*=!0&)>*)$2&).##96!1*!0.##! $%*!&-2)2&)! $%.$!*.0%!+.4&',!.'$%&/!',*,! 2)!
&/5*/! $&! *L-#.2)! $%*! 0.',*,! &+! $%*! "--*./.)0*,! &+! $%*! ,<96! A9-&$%*,*,=! 7*0.',*! $%*!
",$/&)&4*/!%.,!$%*!%.72$!&+!



!"#$%&'()*+%(,*$!(-.(,*",/(01"$2+3(4#(*$2!+15(,-(4+(,.6+("4-6,(,*+(7-.13/($!(!688-!+3(
9hypotithéntos:/($,(5-11-)!(4#(,*+(%+0+!!$,#(-5(,*+(;+-2+,.$0"1(3+2-%!,.",$-%!/(,*",(,*+(
"88+"."%0+!(,*",(".+(0-%,"$%+3($%(,*+("4-<+=2+%,$-%+3(*$!,-.$0"1(!$&%",6.+/(*"<+(-006..+3(-%(
8.+0$!+1#(,*+(%624+.(-5(-00"!$-%!("%3(",(,*+(,$2+(,*+#(3$3>(
( ?-)"3"#!/(,*+.+(".+(,*.++(!60*(5-.2!(-5(@#8-,*+!+!/(0"11+3(,*+(Ptolemaean/(,*+(
Copernican/("%3(,*+(Tycho-Brahean>(
( A*+(0-%,+281",$-%(-5(%",6.+("%3(-5(,*+(8.-8+.,$+!(-5(1$&*,/(-.(,*+(praxis(-5(,*+(3-0,.$%+(
-5(B+5."0,$-%!/("1!-(8+.,"$%!(,-(,*+!+(,)-(5$.!,(8".,!>(
(

C%(,*+(0"6!+!(-5(@#8-,*+!+!(
(

What exactly is the third part of the Astronomical Task? 
(
( A*+(,*$.3(8".,/(,*+(D*#!$0"1/($!(0-22-%1#(*+13(,-(4+(6%%+0+!!".#(5-.(,*+(E!,.-%-2+./(
+<+%(,*-6&*($,($!(2-!,(+!!+%,$"1($%(-.3+.(,-(.+"0*(,*+("$2(-5(,*$!(8".,(-5(D*$1-!-8*#/("%3(
0"%%-,(4+(.+!-1<+3(4#("%#-%+(46,(,*+(E!,.-%-2+.>(F-.(E!,.-%-2+.!(!*-613(%-,(4+(&$<+%(86.+(
1$0+%0+(,-(2"G+()*",+<+.(!8+061",$-%(,*+#(1$G+()$,*-6,(.+"!-%H($%3++3/(#-6(!*-613(4+("41+(,-(
.+%3+.(8.-4"41+("1!-(,*+(0"6!+!(-5(#-6.(@#8-,*+!+!/()*$0*(#-6(8.+!+%,("!(,*+(,.6+(0"6!+!(-5(
,*+(E88+"."%0+!/("%3(,*6!(+!,"41$!*(,*+(8.$%0$81+!(-5(#-6.(E!,.-%-2#($%(,*+(*$&*+.(!0$+%0+/(
%"2+1#(D*#!$0!(-.(I+,"8*#!$0!H()$,*-6,(4+$%&(!*6,(-6,(5.-2(,*-!+(;+-2+,.$0"1(".&62+%,!/(
D*#!$0"1(-.(I+,"8*#!$0"1/(,*",(".+(8.-<$3+3(5-.(#-6(4#(,*+(3+,"$1+3(+J8-!$,$-%K(-5(,*+(
3$!0$81$%+(8.-8+.("1-%+/(0-%0+.%$%&(,*$%&!(8+.,"$%$%&(,-(,*+(*$&*+.(3$!0$81$%+!/("!(1-%&("!(#-6(
"<-$3(2+331$%&()$,*("%#("88+"1(,-(,*+(L+&$%%$%&M>(A*.-6&*(,*$!(8"0,(,*+(E!,.-%-2+.(92"3+(
,*+(2"!,+.(-5(*$!("24$,$-%($%!-5".("!(*+(0.+",+3(*#8-,*+!+!(0-%0+.%$%&(,*+(0"6!+!(-5(
2-<+2+%,!/(0"6!+!(,*",()+.+($%("&.++2+%,()$,*(.+"!-%("%3(5$,(,-(2"G+(+<+.#,*$%&(,*",($!(
5-6%3($%(,*+(*$!,-.#(-5(C4!+.<",$-%!(*"88+%:(",(1"!,(4.$%&!(,-&+,*+.($%(-%+(8.+!+%,",$-%(
+<+.#,*$%&(,*",(*+(8.+<$-6!1#(*"3(N-%1#O(!,",+3(!+8".",+1#>(@+(,*+%(8.+,+%3!(,*",(,*+("$2(!,",+3(
!-(5".(9,*",($!/(,*+(3+2-%!,.",$-%(-5(8*+%-2+%"/("%3(,*+(4+%+5$,!(5-.(,*+(0-22-%(&--3(
.+!61,$%&(5.-2(!60*(3+2-%!,.",$-%!:($!(%-(1-%&+.(",(!,"G+/("%3(!,.$<+!()$,*(8."$!+(5.-2(,*+(
8*$1-!-8*+.!(,-(.+"0*("(*$&*+.("$2/("%3(,-(,*$!("$2(*+(%-)(,6.%!("11(*$!(81+"!6."41+(",,+%,$-%/(
+281-#$%&("11(*$!(".&62+%,!/(4+(,*+#(;+-2+,.$0"1(-.(4+(,*+#(D*#!$0"1'($%(-.3+./(-5(0-6.!+/(,-(
81"0+(4+5-.+(,*+(+#+!(,*+(&+%6$%+(5-.2("%3(3$!8-!$,$-%/(-.(-.%"2+%,",$-%(-5(,*+(+%,$.+(7-.13'(
"%3(,*$!($!(8.+0$!+1#(,*",(<+.#(L--G(-5(?",6.+/($%()*$0*(;--3(,*+(0.+",-.($%(8".,(2"3+(G%-)%(
"%3(3+8$0,+3(@$!(+!!+%0+("%3(@$!()$11(,-)".3!(2"%/($%("(G$%3(-5()-.31+!!(1"%&6"&+>(
(
(
(
(
(
(
((
(((((((((((((((((((((((((((((((((((((((((((((((((
P(A."%!1",+3(4#(D+.(D$88$%(E!8""!/(Q%$<+.!$,#(R$4.".#(-5(A.-2!S(98+.>8$88$%>"!8""!T6$,>%-:>(A*+(,."%!1",$-%(
5-11-)!(I"J(U"!8".V!(+3$,$-%($%(Gesammelte Werke/(<-1>(WXX/(PYZK>(A*+([-*"%%+!=D1"%06!(+3$,$-%(-5(P\P](90-8#(
3$&$,$!+3(4#(Q%$<+.!$,+$,(;+%,/(.+,.$+<+3(5.-2(;--&1+(L--G!(PM(E6&6!,(^__Y:(*"!("1!-(4++%(0-%!61,+3>(A*+(
-.$&$%"1V!(6!+(-5($,"1$0!(*"!(4++%(.+,"$%+3/("!(*"!(,*+()$3+!8.+"3(6!+(-5($%$,$"1(0"8$,"1(1+,,+.>(E(5+)(;.++G("%3(
R",$%(,+.2!(*"<+(4++%(.+,"$%+3($%(,."%!1",$-%>(A*+!+(".+($,"1$0$!+3("!()+11>(
^(L-,*(,*+([-*"%%+!=D1"%06!(+3$,$-%(-5(P\P]("%3(Gesammelte Werke(*"!(cum sint quidam quasi sermo 
Geometrarum/()*$0*($!(!-2+)*",("24$&6-6!>(X(!++(,*.++(8-!!$41+(!-16,$-%!'(P>(`!$%0+(,*+.+(".+(0+.,"$%(%624+.!((
,*",(".+/(!-(,-(!8+"G/(,*+(1"%&6"&+(-5(,*+(;+-2+,.$0$"%!a(9quidam(Nb0+.,"$%VO(0"%(-%1#(.+5+.(,-(Numeris(
Nb%624+.!VO/(,*+(-%1#()-.3($%(2"!061$%+(816."1($%(,*+(8.+0++3$%&(8".,(-5(,*+(!+%,+%0+:>(^>(`"1,*-6&*(,*+.+(".+(
0+.,"$%(%624+.!(,*",(".+/(!-(,-(!8+"G/(,*+(1"%&6"&+(-5(,*+(;+-2+,.$0$"%!a(9cum(6!+3($%(,*+(0-%0+!!$<+(!+%!+(
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
"#$%&'()*'+!,-.&/$0!(1!#.,-2/+345!65!quidam 7#2/8&$,-+4!,.!$!9,.:8,-&!1(8!quidem!7#,-0//0+4;!,-!<',2'!2$./!&'/!
:'8$./!.'()%0!=/!&8$-.%$&/0>!?.,-2/!&'/./!"@,A5;!-)9=/8.!,-!*/-/8$%3!$8/!,-0//0!.(!&(!.:/$B!&'/!%$-*)$*/!(1!&'/!
C/(9/&8,2,$-.D5!
6!?&'$&!$8/!:8(@,0/0!1(8!E()!=E!&'/ 0/&$,%/0!/F:(.,&,(-!7diexodo4!(1!&'/!0,.2,:%,-/!:8(:/8!$%(-/D5!Diexodus!'$.!
./@/8$%!9/$-,-*.!,-!2%$..,2$%!C8//B;!<'/8/!,&!,.!$&&/.&/0!,-!=(&'!$!%,&/8$%!7#()&%/&;!:$..$*/+!/&254!$-0!1,*)8$&,@/!
./-./!7#0/&$,%/0!-$88$&,@/!(8!0/.28,:&,(-+!/&254G!215!H/-8E!C/(8*/!I,00/%!J!K(=/8&!L2(&&;!Greek-English Lexicon;!
M&'!/0-;!NF1(80!OMMP;!.5@5! 5!Q'/!R)/.&,(-!,.!'(<!,&!<$.!)./0!,-!&'/!%/$8-/0!I$&,-!(1!S/:%/8+.!$*/5!T!
:$8$%%/%%!9,*'&!=/!&'/!&'/(%(*,2$%!<(8B!(1!U('$--!V(8.&/8;!Diexodus exodi Daß ist / Gründliche…Erklerung oder 
Außlegung vber das Ander Bvch Mose;!W,&&/-=/8*!OPOX!7#Y,/F(0).!(1!&'/!ZF(0).;!(8>!Q'(8()*'!ZF:%$-$&,(-!(8!
ZF:(.,&,(-!(1!&'/!L/2(-0![((B!(1!\(./.+4G!215!\$8&,-![,82'/8;!Deutsche Drucke des Barock 1600-1720 in der 
Herzog August Bibliothek Wolfenbüttel;!@(%5!];!\)-,2'!OM^^;!:5!OX65!T%.(!&'/!:',%(.(:'/8_9$&'/9$&,2,$-!
U($2',9!U)-*,).!7O`a^bOP`^4!0/.28,=/0!0/&$,%/0;!2(:,().!&8/$&,./.!$-0!2(99/-&$8,/.!$.!diexodiG!215!c%/9/-.!
\d%%/8bC%$)./8+.!,-&8(0)2&,(-!&(!',.!28,&,2$%!/0,&,(-!(1!U($2',9!U)-*,).;!Disputationes Hamburgenses;!Ce&&,-*/-!
OMaa;!:5!FF,,5!
X!?$::/$%!&(!&'/![/*,--,-*D!7Principij petitionem4!,.!$9=,*)().5!Principium!9$E!=/!)./0!,-!&'/!./-./!
#:8,-2,:%/+;!=)&!]!.)**/.&!&'$&!S/:%/8!'/8/!$%%)0/.!&(!&'/![,=%,2$%!./-./;!$.!,-!&'/!(:/-,-*!<(80.!(1!U('-+.!C(.:/%>!
In principio erat verbum ...!Q',.!<()%0!,9:%E!&'$&!S/:%/8!0,.&,-*),.'/.!&'/!$.&8(-(9/8+.!&$.B!18(9!&'$&!(1!&'/!
&'/(%(*,$-5!
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