A Two-Component Generalization of the Integrable rdDym Equation

Oleg I. MOROZOV

Institute of Mathematics and Statistics, University of Tromsø, Tromsø 90-37, Norway
E-mail: Oleg.Morozov@uit.no

Received May 26, 2012, in final form August 09, 2012; Published online August 11, 2012
http://dx.doi.org/10.3842/SIGMA.2012.051

Abstract. We find a two-component generalization of the integrable case of rdDym equation. The reductions of this system include the general rdDym equation, the Boyer–Finley equation, and the deformed Boyer–Finley equation. Also we find a Bäcklund transformation between our generalization and Bodganov’s two-component generalization of the universal hierarchy equation.

Key words: coverings of differential equations; Bäcklund transformations

2010 Mathematics Subject Classification: 35A30; 58H05; 58J70

1 Introduction

Recent papers [3, 8, 16] provide two-component generalizations for the hyper-CR Einstein–Weil structure equation [6, 22]

\[s_{yy} = s_{tx} + s_{y} s_{xx} - s_{x} s_{xy}, \]

Plebański’s second heavenly equation [25]

\[s_{xz} = s_{ty} + s_{xx} s_{yy} - s_{xy}^2 \]

and the universal hierarchy equation [18, 19, 22]

\[s_{xx} = s_{x} s_{ty} - s_{t} s_{xy}. \]

Namely, equations (1.1)–(1.3) appear from systems

\[s_{yy} = s_{tx} + (s_{y} + r) s_{xx} - s_{x} s_{xy}, \]
\[r_{yy} = r_{tx} + (s_{y} + r) r_{xx} - s_{x} r_{xy} + r_{x}^2; \]
\[s_{xz} = s_{ty} + s_{xx} s_{yy} - s_{xy}^2 + r, \]
\[r_{xz} = t_{ty} + s_{yy} t_{xx} + s_{xx} r_{yy} - 2 s_{xy} r_{xy}, \]

and

\[s_{xx} = e^{r} (s_{x} s_{ty} - s_{t} s_{xy}), \]
\[(e^{-r})_{xx} = s_{x} t_{ty} - s_{t} r_{xy}, \]

respectively, by substituting for \(r = 0 \). Other reductions for (1.4) are found in [7, 16]: when \(u = 0 \), system (1.4) gives the Khokhlov–Zabolotskaya (or dispersionless Kadomtsev–Petviashvili) equation

\[v_{yy} = v_{tx} + vv_{xx} + v_{x}^2, \]

*This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html
while substituting for \(v = u_x \) in (1.4) produces the normal form
\[
 u_{yy} = u_{tx} + (u_x + u_y)u_{xx} - u_x u_{xy},
\]
for the family of equations studied in [7]. Also, we note the reduction \(v = u_y \) for system (1.4). This reduction yields equation
\[
 u_{yy} = u_{tx} - u_x u_{xy}
\]
studied in [9, 14, 17, 21].

As it was shown in [3], the reduction \(s = x \) for system (1.6) gives the Boyer–Finley equation
\[
 r_{ty} = (e^{-r})_{xx}.
\]

(1.7)

The purpose of the present paper is to introduce the two-component generalization for equation
\[
 u_{ty} = u_x u_{xy} - u_y u_{xx},
\]
which is integrable in the following sense: it has the differential covering [2, 11, 12, 13]
\[
 p_t = (u_x - \lambda)p_x, \quad p_y = \lambda^{-1}u_y p_x
\]
containing the non-removable parameter \(\lambda \neq 0 \) [20]. We show that reductions of the generalization include the general \(r \)-th dispersionless Dym equation [1]
\[
 u_{ty} = u_x u_{xy} + \kappa u_y u_{xx},
\]
the Boyer–Finley equation (1.7), and the deformed Boyer–Finley equation. Also we find a Bäcklund transformation between our generalization and Bodganov’s two-component generalization (1.6) of the universal hierarchy equation (1.3).

2 The two-component generalization

Along with the covering (1.9) equation (1.8) has the covering
\[
 q_t = (u_x - q)q_x, \quad q_y = u_y q^{-1} q_x,
\]
which can be obtained by the method of [20]. While the coverings (1.9) and (2.1) are not equivalent w.r.t. the pseudo-group of contact transformations, (2.1) can be derived from (1.9) by the following procedure, see, e.g., [24]. We consider the function \(p = p(t, x, y) \) from (1.9) to be defined implicitly by the equation \(q(t, x, y, p(t, x, y)) = \lambda \) with \(q_p \neq 0 \). Then for \((x^1, x^2, x^3) = (t, x, y) \) we have \(q_{x^i} + q_p p_{x^i} = 0 \), so \(p_{x^i} = -q_{x^i}/q_p \). Substituting these into (1.9) yields (2.1).

Our main observation in this paper is that the covering (2.1) allows the generalization
\[
 q_t = (u_x - q + v)q_x + v_x q, \quad q_y = u_y q^{-1} q_x + v_y.
\]

(2.2)

This system is compatible whenever the two-component system
\[
 u_{ty} = (u_x + v)u_{xy} - u_y u_{xx},
\]
\[
 v_{ty} = (u_x + v)v_{xy} - u_y v_{xx} + v_x v_y
\]
holds. In other words, (2.2) is a covering for system (2.3), (2.4).
3 Reductions

By the construction, we have the following reduction for system (2.2):

Reduction A. Substituting for \(v = 0 \) in equations (2.3), (2.2) gives equations (1.8) and (2.1), while (2.4) becomes an identity.

Also, we have three other reductions.

Reduction B. If we put \(v = -\kappa^{-1} + 1 \) in equation (2.3), (2.2) gives equations (1.8) and (2.1), while (2.4) becomes an identity. The transformation \(u \mapsto -\kappa u \) maps (3.1) to (1.10). The corresponding reduction of (2.2) produces the covering of (1.10) studied in [20, 23].

Reduction C. Taking \(v = -u_x \) in (2.3), (2.4), we obtain

\[
 u_{ty} = -u_y u_{xx},
\]

and its differential consequence. Then we divide this equation by \(u_y \), differentiate w.r.t. \(y \) and put \(u_y = -e^w \). This gives the Boyer–Finley equation [4]

\[
 w_{ty} = (e^w)_{xx}
\]

This equation is equation (1.7) in a different notation. Substituting for \(q = e^p \) in the corresponding reduction of (2.2), we have the covering [10, 15, 26] for equation (3.2):

\[
 p_t = w_t - e^p p_x, \quad p_y = e^{u-p}(w_x - p_x).
\]

Reduction D. Finally, when we put \(v = u_y - u_x \) into (2.3) and (2.4), we get the equation

\[
 u_{ty} = u_y (u_{xy} - u_{xx})
\]

and its differential consequence. Then for \(u_y = e^w \) we have the deformed Boyer–Finley equation [5]

\[
 w_{ty} = (e^w)_{xy} - (e^w)_{xx},
\]

and the corresponding reduction of equations (2.2) with \(q = e^s \) gives the covering

\[
 s_t = (e^s - e^w)s_x - w_t, \quad s_y = e^w(s_x - w_x + w_y).
\]

for (3.3). This covering in other notations was found in [5, 20].

4 Bäcklund transformations

The substitution

\[
 u_x = -v + \frac{s_t}{s_x}, \quad u_y = -\frac{e^{-r}}{s_x}, \quad v_x = \frac{r x s_t}{s_x} - r_t, \quad v_y = -\frac{e^{-r} r_x}{s_x}
\]

maps system (2.2) to system

\[
 q_t = \left(\frac{s_t}{s_x} - q \right) q_x + \left(\frac{s_t r_x}{s_x} - r_t \right) q, \quad q_y = \frac{e^{-r}}{qs_x} (q_x + r_x q)
\]

found in [3]. This system is the two-component generalization of the covering

\[
 q_t = \left(\frac{s_t}{s_x} - q \right) q_x, \quad q_y = -\frac{q_x}{qs_x}.
\]
of equation (1.3). The compatibility conditions for (4.2) coincide with (1.6). Solving (4.1) for \(s_t, s_x, r_t, r_x \) yields

\[
\begin{align*}
 s_t &= -(u_x + v) \frac{e^{-r}}{u_y}, \quad s_x = - \frac{e^{-r}}{u_y}, \quad r_t = \frac{v_y}{u_y}, \quad r_x = \frac{(u_x + v)v_y}{u_y} - v_x. \\
\end{align*}
\]

This system is compatible whenever equations (2.3), (2.4) are satisfied. Thus equations (4.1) define a Bäcklund transformation from (2.3), (2.4) to (1.6) with the inverse transformation (4.3).

In particular, when \(v = 0 \) and \(r = 0 \), we have a Bäcklund transformation

\[
\begin{align*}
 u_x &= \frac{s_t}{s_x}, \quad u_y = - \frac{1}{s_x},
\end{align*}
\]

between (1.1) and (1.3) with the inverse transformation

\[
\begin{align*}
 s_t &= - \frac{u_x}{u_y}, \quad s_x = - \frac{1}{u_y}.
\end{align*}
\]

Acknowledgments

I am very grateful to M.V. Pavlov and A.G. Sergyeyev for the valuable discussions. Also I’d like to thank M. Marvan and A.G. Sergyeyev for the warm hospitality in Mathematical Institute, Silezian University at Opava, Czech Republic, where this work was initiated and partially supported by the ESF project CZ.1.07/2.3.00/20.0002.

References

