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ABSTRACT 

A wide range of decision makers is interested in forecasts of house prices. The main objective 

of this thesis is to forecast residential house prices in Norway from April 2013 to March 2014. 

Three univariate (one variable) time series models are employed in an attempt to find an 

appropriate fit. The three are an AR-, an ARIMA- and an exponential smoothing state space 

(ETS) model. The forecast from the three models are also combined, in an effort to improve 

upon the accuracy of the single “best” forecast. This study implements a weighting scheme 

based on inverse out-of-sample mean square errors (MSEs). Weights of 0.29, 0.21 and 0.50 

are assigned to the AR-, ARIMA- and ETS-models, respectively. 

 

The analysis identifies the forecast from the ETS-model as the most accurate, among the 

individual models, based on both out-of-sample root mean square error (RMSE) and mean 

absolute scaled error (MASE). The weighted forecast has a higher RMSE (less accurate), but 

a lower (more accurate) MASE compared to the ETS. Thus, we cannot reject the idea that a 

combination of forecast can in fact improve upon the accuracy of the single best forecast, 

since the two measures give conflicting results. 

 

Residual diagnostics discover some suboptimal attributes of the AR- and ETS-models. Formal 

tests show that they have significant autocorrelation and heteroscedasticity in their residuals. 

By examining the autocorrelation function (ACF) and partial autocorrelation function (PACF) 

plots we find that the residuals appear to be reasonably well behaved. Hence, it does not 

appear that we need to be too worried about spurious results.   

 

 

 

 

Keywords: ARIMA, AR process, exponential smoothing, forecasting, forecast combination, 

house prices 
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1 Introduction  
The forecasting of macroeconomic measures is of great interest to numerous agents in an 

economy, such as banks, business owners and policymakers. With what seems like daily 

media coverage, house prices is one such measure that appears to be of particular interest. 

This interest may stem from the fact that house prices affect such a wide range of decision 

makers. Movement in house prices affect not only central and commercial banks and their 

interest rate policies, but also nearly every household.  

 

In recent years, house prices in Norway have increased quite steadily. Figure 1.1 shows 

nationwide nominal square meter (m2) prices for all types of housing in the period January 

2002 to March 2013. Overall prices has increased by 113% in the period. The steady increase 

is only interrupted by the turmoil in the period from late 2007 to 2009 often referred to as the 

financial crisis.  

 

The objective of this thesis to guide the reader through a robust analysis of univarate time 

series forecasting. In the context of statistics, a robust procedure is one that is not heavily 

dependent on whatever assumptions it makes (Larsen & Marx, 2012). The analysis will 

culminate in the development of a model constructed to forecast house prices.  

 

 

Figure 1.1: Monthly m2 prices (in NOK 1000) in Norway from 2002:1 to 2013:3. 
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The focus of the analysis is forecasting with univariate (one variable) time series models. 

Especially the exponential smoothing state space models applied here are not widely used in 

forecasting of house prices. In that sense, this thesis may shed some light on the applicability 

of exponential smoothing models on house price data.  

 

1.1  Problem formulation 

The main goal of this thesis is to forecast residential house prices in Norway for the 12 

months from April 2013 to March 2014. Several models are considered in an attempt to find 

an appropriate fit. I will also examine whether a combination of several forecasts can improve 

upon the accuracy of the single “best” forecast. 

 

The forecasts are purely based upon univariate time series analysis, i.e. there is no attempt at 

identifying underlying factors affecting house prices. 

 

1.2  Thesis structure 

The thesis is structured as follows. Chapter 2 contains a literature review of relevant subjects, 

mostly focusing on economic time series forecasting. Here all relevant theory is presented. 

Chapter 3 presents the methodology framework used in the analysis. The framework includes 

procedures on how the models are selected and estimated, as well as how they are combined. 

Chapter 4 presents the data and its properties. Chapter 5 presents the results of all the models’ 

forecasts, in addition to a thorough evaluation. Chapter 6 contains a brief discussion of the 

limitations of the thesis and some concluding remarks. Lastly, the reader can find the 

bibliography and an Appendix containing the R script file and the data set. 
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2 Theoretical framework   
This chapter contains a review of literature relevant to this thesis. Most of the thesis’ 

theoretical framework is presented here. The first part concerns theory on time series 

forecasting in general. The second part is a review of literature specifically concerning house 

prices. 

 

2.1  Time series forecasting  

A time series is sequence of successive data points typically taken at equally spaced time 

intervals. When modelling time series data, the main objective is to develop models that is as 

close as possible to the true, but unknown data generating process.  

 

An important part of the literature on time series forecasting is the issue of model selection 

versus combining forecasts. With a plethora of available statistical models (sometimes 

referred to as experts) to choose from, researchers have the difficult choice of selecting a 

single expert or combining several that is to make up the final forecast. Model selection is 

discussed in section 2.1.4 and forecast combination in section 2.1.5.   

 

Another important part of the literature revolves around the decomposition of the time series. 

The decomposition can be viewed as having the following four components. A trend (T) 

component that captures the change in the mean of the series, a seasonal (S) component that 

captures the repetition of a pattern in the series after some fixed time interval, a cycle (C) 

component that captures a repeating pattern, but with unknown and/or changing periodicity 

and an error (E) component. The cyclical element is not discussed further in this thesis. Any 

cyclical component in the data is assumed to be captured in the trend and/or seasonal 

components, as is consistent with the analysis in Hyndman et al. (2008). Several methods 

exist to decompose a time series e.g. Holt’s method, Holt-Winters’ method and other 

exponential smoothing methods. See section 4.2 for an analysis of the decomposed series of 

house prices. 

 

After the models are selected they can be used to compute forecasts. Forecasters commonly 

apply experts such as neural networks, ARCH-, ARIMA- and exponential smoothing models. 

The focus of this thesis is forecasting using univariate time series models. Next, some of these 
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univariate models are discussed, as well as model selection, combination and evaluation 

theory. 

 

2.1.1 AR and ARIMA models 

One of the more popular experts among forecasters is the autoregressive integrated moving 

average (ARIMA) model (e.g. Crawford & Fratantoni, 2003; Dhrymes & Peristiani, 1988; 

Hein & Spudeck, 1988). An ARIMA model consists of three parts. An autoregressive 

component (AR) indicating the number of lags of the dependent variable that is to be 

included, a component indicating order of integration (I) and a moving average (MA) 

component that captures the effect of  lagged values of the error term. It was the early work of 

among others Yule (1927) that lay the foundation for the development of AR and MA models. 

Box and Jenkins (1970) integrated the earlier work in this field and developed a three-stage 

approach for identifying, estimating and verifying ARIMA models. The Box-Jenkins method, 

as it has come to be known, is still widely used today.  

 

The AR process is by itself a widely used model among forecasters (Bjørnland et al., 2012; 

Marcellino et al., 2006; Sklarz et al., 1987). It is most common that the pure AR process is 

included in the literature in a benchmark capacity. That is, if a simple AR model best 

forecasts a series then there is no point in investing resources in more complex models. The 

first order autoregressive process, AR(1), is simply the linear relationship between a 

dependent variable and its own lag. The AR(1) can be expressed as 

 1 1t t ty y       (2.1) 

where ty  is an observed time series and t  are error terms which we assume to be 

independent and identically distributed with expectation zero and variance 
2 . We can then 

write 
2~ IID(0, )t  . In (2.1) a constant term    is included, though this is not always the 

case. The model parameters, i  for (0,1)i  , need to be estimated. There are several 

estimation procedures to choose from such as method of moments, ordinary least square 

(OLS) and maximum likelihood estimation (MLE).  

More generally, a pth order autoregressive process AR(p) is given by 

 1 1 2 2 · · ·t t t p t p ty y y y              (2.2) 
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where p  is the lag order and (1,2,..., )t n . Similarly, a first order moving average process, 

MA(1), can be expressed as 

 1 1t t ty         (2.3) 

where t  are the error terms. And more generally, a qth order moving average process, 

MA(q) is  

 1 1 2 2t t t t q t qy                 (2.4) 

where q  is the lag order of the error term. By combining the AR(p) and MA(q) models one 

can express an ARMA(p,q) model as 

 1 1 1 1· · ·t t p t t t q t qpy y y                 . (2.5) 

 

By following the notation in Hyndman et al. (2008), another way of expressing the ARMA 

model is 

 ( )y ( )t tL L       (2.6) 

where L  is the backshift/lag operator,   is the intercept and ( )z  and ( )z  are polynomials 

of order p  and q  respectively. To clarify, the lag operator means 1t tLy y  . Before moving 

from the ARMA to the ARIMA model, we need to introduce an important concept in any 

time series analysis, namely stationarity.  

 

It is common to distinguish between two types of stationarity in time series analysis. First, a 

series is said to be difference (or weakly) stationary if it has a constant mean and variance, 

and the covariance between two values in the series depends only on the time separating 

them, and not on the time they are observed. Normally when we talk about stationarity, we 

mean difference stationary. Second, a series is said to be trend stationary if it becomes 

stationary after subtracting the deterministic (constant and trend) components (Hill et al., 

2008). The label deterministic is used so to distinguish between a constant (deterministic) 

trend and stochastic trends. An alternative to de-trending the series, is keeping both the 

constant and trend in the model. Using the AR(1) to illustrate, we can express the process 

with a constant and a deterministic trend as 

 1 1t t ty t y         (2.7) 

where t  is time and   the coefficient of the trend term. Simply by looking at the house prices 

in Figure 1.1, it is easy to see that the series does not have a constant mean. This indicates that 

the house prices is a non-stationary series. We then sometimes say that the series has a unit 
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root. To formally test for stationarity we can use tests such as the augmented Dickey-Fuller 

test (Dickey & Fuller, 1981) or the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test 

(Kwiatkowski et al., 1992). 

 

If a series is found to be non-stationary, we can difference the series to make it stationary. If, 

after take the first difference, the series becomes stationary it is said to be integrated of order 

one, often denoted as I(1). In general, the order of integration d is the number of differences 

needed to make the series stationary. In practice, the order of integration is usually either one 

or two.  

 

This means that an ARIMA(p,d,q) model fitted to a stationary series is simply an ARMA(p,q) 

model as defined by (2.5) and (2.6). Continuing in the notation of Hyndman et al. (2008), a 

non-seasonal ARIMA(p,d,q) can be expressed as 

 ( )(1 ) y ( )d

t tL L L       . (2.8) 

Note that 1 1(1 )t t t t tLy y L y y y      . A seasonal ARIMA model can be denoted by 

ARIMA(p,d,q)(P,D,Q)[m] and is expressed as 

 (L ) ( )(1 ) (1 ) y (L ) ( )m m D d m

t tL L L L          (2.9) 

where (z) is the seasonal autoregressive polynomial of order P and (z)  is the seasonal 

moving average polynomial of order Q, D is the number of seasonal differences and m is the 

length of seasonality (number of months in a year etc.). To formally test for seasonal 

integration we can use a Canova-Hansen test (Canova & Hansen, 1995) or a Osborn-Chui-

Smith-Birchenhall (OCSB) test (Osborn et al., 1988). 

 

2.1.2 Exponential smoothing and state space models 

Another common class of forecasting models are exponential smoothing methods. They have 

been among the workhorses of forecasters for quite some time (e.g. Koehler et al., 2001; 

Kolassa, 2011; Makridakis & Hibon, 1991). These methods have their origin in works such as 

R. G. Brown (1963), Holt (1957, reprinted 2004) and Winters (1960). The broad idea of 

forecasting using exponential smoothing is to assign exponentially decreasing weights to 

observations as they go back in time. 
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Pegels (1969) was the first to classify exponential smoothing methods and provided a 

taxonomy of the trend and seasonal component based on whether they are additive or 

multiplicative. Pegels’ taxonomy was then extended by Gardner (1985), who expanded the 

classification to include damped trends. This extension was later modified by Hyndman et al. 

(2002), before Taylor (2003) made a final extension by introducing damped multiplicative 

trends. This gives the fifteen exponential smoothing methods seen in Table 2.1. 

 

Table 2.1: Exponential smoothing methods. 

 Trend component Seasonal component 

  N 

(None) 

A 

(Additive) 

M 

(Multiplicative) 

N (None) N,N N,A N,M 

A (Additive) A,N A,A A,M 

Ad (Additive damped) Ad,N Ad,A Ad,M 

M (Multiplicative) M,N M,A M,M 

Md (Multiplicative damped) Md,N Md,A Md,M 

Source: Hyndman and Khandakar (2008) 

 

Some of the methods go under other names e.g. (N,N) is the simple exponential smoothing 

(SES) method, (A,N) is Holt’s linear method while (A,A) and (A,M) are the additive and 

multiplicative Holt-Winters’ methods, respectively (Hyndman & Khandakar, 2008).  

 

To illustrate for an observed time series given by ty , following the notation in Hyndman et al. 

(2008), the additive Holt-Winters method (A,A) can be expressed by the following system 

 

Level: 
1 1( ) (1 )( )t t t m t tl y s l b                             (2.10) 

Growth:  1 1*( ) (1 *)bt t t tb l l                            (2.11) 

Seasonal: 
1 1( ) (1 )t t t t t ms y l b s                               (2.12) 

Point forecast:   |
ˆ

m
t h t t t t m h

y l bh s   
                                          (2.13) 
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where m  is the length of seasonality, tl  is the level, tb  is growth, ts  denotes the seasonal 

component, |
ˆ

t h ty   is the point forecast for h  periods ahead and  (h 1)modm 1mh    . The 

smoothing parameters,  ,  * and  , indicates how fast the level, trend and seasonality, 

respectively, adapt to new information. Recursive formulae for all fifteen exponential 

smoothing methods can be found in Hyndman et al. (2008) pp. 18. 

 

Building on the exponential smoothing literature, Snyder (1985) showed that the SES had an 

underlying state space model. State space representation provides a framework in which any 

linear time series model can be presented (De Gooijer & Hyndman, 2006). 

 

Hyndman et al. (2002), Ord et al. (1997) and Taylor (2003) extended this and showed that 

there are two underlying innovation state space model, one with additive errors and one with 

multiplicative errors, for each of the fifteen models in Table 2.1. Thus, the present 

classification include 30 potential models. The underlying innovation state space model, e.g. 

with additive errors, corresponding to the additive Holt-Winters method is  

 

 
1 1t t t tl l b                                            (2.14) 

      1bt t tb                                               (2.15)                         

            t t m ts s                                                 (2.16)                                         

                      1 1t t t t m ty l b s                            (2.17) 

 

where we assume 2~ IID(0, )t   and *  .    

The model (2.14)-(2.17) with an additive error, trend and seasonality can be indicated by 

ETS(A,A,A). The acronym ETS refers to the error (E), trend (T) and seasonality (S) 

component. Equations for all 30 innovation state space models is found in Hyndman et al. 

(2008, pp. 21-22) 

 

Since the distinction between additive and multiplicative errors makes no difference to point 

forecasts, it has largely been ignored historically. However, when producing prediction 

intervals the nature of the error component matters (Hyndman & Khandakar, 2008). This 

distinction does play a role in this thesis, as prediction intervals are reported for all models. 

The intervals are included as they are an intuitive way of indicating model uncertainty.  
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Detailed derivations for the prediction intervals of all 30 state space models can be found in 

Hyndman et al. (2005).  

 

2.1.3 Other models 

A plentitude of other time series models exists. In addition to the univariate models discussed 

so far, the ARCH model (Engle, 1982) and all of its extensions is often applied in forecasting 

of financial time series, as it accounts for the heteroscedastic (time varying variance) nature of 

financial data.  

 

As for multivariate models, the vector autoregressive (VAR) model and its cointegrated 

counterpart the error correction model (ECM) are also common (e.g. Artis and Zhang (1990) 

and Simkins (1995)). Forecasters also use non-linear models such as regime switching models 

(Crawford & Fratantoni, 2003) and neural networks (Zhang et al., 1998). For a 

comprehensive review of time series forecasting literature see e.g. De Gooijer and Hyndman 

(2006). 

 

2.1.4 Model selection 

After the forecaster has chosen which models to use, they need to specify them. For the for 

the AR and ARIMA models this entails choosing appropriate values for the model orders p, d, 

q, P, D and Q. For the exponential smoothing class of models this means choosing among the 

30 model specifications in the classification. 

 

One common approach to model selection is based on information criteria (IC). Akaike 

(1973, 1974, 1981) was at the forefront of this research. The Akaike Information Criterion 

(AIC) is given by 

 2ln( ) 2AIC L k     (2.18) 

where L is the numeric value of the maximum likelihood for the candidate model and k  is 

the number of estimated parameters (normally the model coefficients plus the sample 

variance).  

Akaike (1974) (see e.g. Burnham and Anderson (2002) for a less complex treatment) showed 

that the AIC can be viewed as the expected Kullback-Leibler (KL) distance (Kullback & 

Leibler, 1951). The KL information can be interpreted as the distance between a proposed 

model and the unknown “true” data generating process (DGP) (Kolassa, 2011).  
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When we are modelling time series, we would naturally like to find models that is as close to 

the unknown DGP as possible. As such, when the AIC is used for model selection, we choose 

the model that minimizes the AIC and by extension, the expected distance from the unknown 

DGP.  

 

There are many variations of the AIC. One of these is the corrected AIC (Hurvich & Tsai, 

1989), 

 
2 2 (k 1)

2ln( )
1 1

C

kn k
AIC L AIC

n k n k


    

   
  (2.19) 

where n is the number of observations in the series. As we see the CAIC  includes a penalty 

for small sizes. Burnham and Anderson (2002) suggest using the CAIC  when / k 40n  .  

  

A similar measure to the AIC is the Bayesian Information Criterion (BIC) (Schwarz, 1978) 

and is given by 

 2ln( ) ln( )BIC L k n     (2.20) 

where n  is the number of observations in the series.  

 

For AR and ARIMA models, a more informal (albeit integral part of the Box-Jenkins) model 

selection procedure is to examine the autocorrelation function (ACF) and partial 

autocorrelation (PACF) plots. These plots is often hard to interpret, and can lead to substantial 

selection bias if used on their own. However, ACF and PACF plots still provide helpful 

insight, especially in a complimentary role to more formal selection methods. 

 

Other model selection approaches include F-tests and likelihood ratio tests. These tests are 

losing ground to the IC approach to model selection, as they have been found less robust and 

generally inferior (Kletting & Glatting, 2009; Lin & Dayton, 1997; Ludden et al., 1994; 

Posada & Buckley, 2004). 

 

2.1.5 Combining forecasts 

The main idea behind this part of the forecasting literature is to examine whether combining 

forecasts can improve the forecast accuracy. This approach can be seen as a complimentary 

approach to selecting the best model based on criteria discussed in section 2.1.4.  
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Evidence has been found that a combination of forecasts indeed outperforms the single “best” 

forecast (e.g. Bjørnland et al., 2012; Clemen, 1989; Stock & Watson, 1998, 2003, 2004). Part 

of the reason for this may be that the generating process behind an observed time series will 

never be simple with a known functional form, since seasonality may change and trends come 

and go (Box & Draper, 1987). 

 

With their seminal paper, Bates and Granger (1969) paved the way for further developments 

in the literature on the combination of forecasts. They suggested deriving weights from 

inverse out-of-sample mean square errors (MSEs) 

 

1

1

1

i
i

n

j j

MSE
w

MSE


 
  
 



 . (2.21) 

where iMSE  defined below by equation (2.24). For an application of this weighting scheme 

see e.g. Bjørnland et al. (2012). 

 

Other more naïve combination methods include simply weighting forecasts by taking their 

mean or median. Equal weight forecast combinations have in some instances been found to 

outperform more intricate schemes (Stock & Watson, 2003).  

 

A more recent development in the forecast combination literature is weighting schemes based 

on information criteria (see e.g. Kapetanios et al., 2008a; Kapetanios et al., 2008b; Kolassa, 

2011). Burnham and Anderson (2002) was among the first to generalize the IC approach to 

forecast combination.  

 

Using the AIC as an example, the weights can be calculated as follows. First, we find the 

differences in AIC between each model and the AIC-minimizing model. Considering a finite 

set of models . The AIC of a model M is denoted by AIC(M).  The “delta”-AIC for 

model M is then given by  

 (M) AIC(M) minAIC(N)AIC
N

    . (2.22) 

As a result, the AIC minimizing model will have a delta-AIC of zero. We do this 

transformation to ensure we are only dealing with positive values and as only the AIC values 

relative to each other matter, not their values isolated; it does not change their interpretation. 



 12 

Furthermore, we calculate 
1

exp ( )
2

AIC M
 
  
 

 for each model in . This transformation is a 

result from Akaike (1981) and can be interpreted as the relative likelihood between each 

model and the AIC-minimizing model, conditional on the data (Kolassa, 2011). The Akaike 

weights is just the relative likelihoods normalized and can be defined as 

 

1
exp ( )

2
( )

1
exp (N)

2

AIC

AIC

AIC

N

M

w M



 
  
 
 
  
 


  (2.23) 

where ( )AICw M  is the Akaike weight for model M . An identical derivation of weights can 

be done using other ICs. For extensive surveys on forecast combination see Clemen (1989) 

and Timmermann (2006).  

 

2.1.6 Forecast evaluation 

After we have chosen a model and specified it, we can use it to compute forecasts. Accuracy 

measures can then be used to evaluate the models’ forecast performances. Some of the more 

common ones include the MSE, mean absolute error (MAE), root mean square error (RMSE), 

mean absolute percentage error (MAPE)  and mean absolute scaled error (MASE) to name a 

few. The forecast error is simply defined as ˆ
t t te y y  , where ty  is the observation at time t   

in a series and ˆ
ty  is the forecast of ty . The MSE, MAE and RMSE is scale dependent 

measures and consequently, should not be used when comparing models estimated from 

different data sets. They are defined as 

 

2

1

N

t

t

e

MSE
N



   (2.24) 

 1

N

t

t

e

MAE
N




  (2.25) 

 

 RMSE MSE   (2.26) 

where N  is the number of observations in the sample. 

We can also define a percentage forecast error as 100 /t t tp e y  . The MAPE is a measure 

based on percentage error and is given by 
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 1

N

t

t

p

MAPE
N




  (2.27) 

where ip is the absolute value of the percentage error.   

Measures based on percentage error have the advantage of being scale independent, but are 

not reliable for series that are changing signs, as they are undefined/infinite for 0ty  .  

 

A third error type, the scaled error, can be defined as  

 

1

2

1

1

t
t N

i i

i

e
q

y y
N





 
 
 
   


  (2.28) 

where the denominator is the in-sample MAE of a naïve forecast method, i.e. a method where 

the forecast for the observation time t  is simply the observation at 1t  . The distinction 

between in-sample and out-of-sample accuracy measures is discussed in section 3.4. 

Measures based on scaled errors have the advantage of being neither scale dependent nor 

implicated by series floating around zero. The MASE is one such measure and is given by 

 1

N

t

t

q

MASE
N




  (2.29) 

In addition to being very flexible, the MASE also has a simple interpretation. If the value is 

less than one it means the forecast is more accurate than the naïve forecast. The MASE was 

proposed by Hyndman and Koehler (2006). They also provide a useful guide through the 

jungle of forecast accuracy measures.  

 

2.2  Forecasting house prices 

Before Most forecasting studies employs several model classes in an attempt to find the best 

fit. The literature on forecasting house prices is no different, although the majority of studies 

seem to focus on multivariate forecasting methods. Researchers have long tried to identify the 

underlying factors and use them to model house prices. Some common factors include 

inflation, income, housing starts and demographic forces. Hedonic regressions is likely the 

most frequently used approach to modelling house prices (e.g. Clapp & Giaccotto, 2002; 

Meese & Wallace, 1997). Others implement frameworks specifically designed to include 

cointegrated variables. E.g. Zhou (1997) finds that sales volume and prices are cointegrated 
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and applies an ECM to forecast both. Gupta and Miller (2012) also use VAR models and 

ECMs to forecast prices in Southern California. Although research have been limited, 

artificial neural networks are also starting to make their way into the field of house prices 

prediction showing great potential (Limsombunchai, 2004; Wilson et al., 2002). 

 

Regardless, to assess the predictability of house prices, it is pivotal that we first establish the 

efficient nature of the housing market. Case and Shiller (1989) found that there is inertia in 

house prices over short-to-intermediate periods. This implies housing market is weak-form 

inefficient as defined by Fama (1970). Others support this view of weak-form inefficient 

house prices, such as Gu (2002) and Kuo (1996) both of whom find that house prices in fact 

can be predicted over short timeframes. Case and Shiller (1990) tested the semi-strong form 

of the efficient market hypothesis. They found that house prices did not impound public 

information quickly (e.g. expected income and inflation). Thus, the consensus in the literature 

seem to be that house prices indeed is weak-form inefficient and that they are “forecastable” 

at least over shorter timeframes.  

 

Univariate time series models have been found to forecast very well over shorter periods 

(Crawford & Fratantoni, 2003). Especially ARIMA models have received a lot of attention 

from forecasters of house prices. Chin and Fan (2005) compare three different ARIMA 

models in an application on residential prices in Singapore. They find that an ARIMA with 

dummy variables perform better than an ARIMA with ARCH errors, but only marginally 

better than the original model. Hepsen and Vatansever (2010) use a standard Box-Jenkins 

ARIMA approach to forecasting house price trends in Dubai. Tse (1997) examines 

forecasting of real estate prices in Hong Kong in a similar framework. He finds that the 

ARIMA model indeed is able to indicate short-term market direction. ARIMA models also do 

well when compared to other model classes. Crawford and Fratantoni (2003) compares simple 

ARIMA models to GARCH and regime-switching models. They find that simple ARIMA 

models generally perform better when comparing out-of-sample forecast accuracy, while the 

regime-switching model perform better in-sample. Nevertheless, not everyone is as 

enthusiastic about the forecasting ability of ARIMA models. Stevenson (2007) warns that 

although ARIMA models are useful in predicting broad market trends, they differ substantial 

in their forecasts obtained from different model specifications. That is, they are sensitive to 

model selection biases.  
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Furthermore, Sklarz et al. (1987) showed that a long lagged AR process produce lower 

forecast error variance than an ARIMA model in an application to U.S. housing starts data. 

Although not forecasting house prices explicitly, they point out that the long lagged AR 

model is well equipped to forecast the housing market in general, which features strong 

seasonality and slowly changing trends. 

 

Unlike ARIMA models, exponential smoothing methods have received little attention from 

forecasters of house prices. Nonetheless, Birch and Sunderman (2003) introduce a two-way 

exponential smoothing system for estimating true movements in residential property prices. 

Their method appear to still be in its infancy and seem somewhat experimental. They point 

out that their system seems to overcome some of the problems attached to the more rigid 

nature of regression modelling. However, they do not offer any conclusive evidence that their 

model is superior to more common hedonic price models.  

 

Another recent addition to the literature on forecasting house price is the introduction of 

models that allow for time varying parameters. J. P. Brown et al. (1997) mention that it is 

limiting to assume the underlying DGP is stable and applying constant parameter methods 

suffer in terms of parameter instabilities. Guirguis et al. (2005) support this view and find that 

allowing coefficients to vary over time improve the precision of house price forecasts. 
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3 Methodology 
Based on the literature review, three models are selected. The three are one AR model, one 

ARIMA model and one exponential smoothing state space model. As is quite common in the 

forecasting literature, the AR model is include in a benchmark capacity. That is, it is not 

expected to perform better than the other two, as it is a lot less flexible. However, the AR 

process work well as a benchmark to assess if it is worth the added effort of using models that 

are more complex and tedious in their application. 

 

At first glance, it may seem restrictive to limit the analysis to three models. However, 

considering all the different specifications, the actual number of models considered is quite 

large. There are 30 exponential smoothing state space models and a similar number of AR 

models considered. The number of ARIMA models to choose from can be anywhere from a 

few hundred to several thousand, depending on the range in which we allow the model orders 

to vary.  

 

It is the developments in computing power and improved automatic modelling algorithms that 

has allowed us more freedom in the model selection process. In my analysis, all three of the 

main models are estimated using the forecast package (Hyndman, 2009) developed for the R 

programming language. The package contains fully automated forecasting algorithms for both 

ARIMA and exponential smoothing state space models. The algorithms are outlined in 

Hyndman and Khandakar (2008). 

 

Next, the estimation procedure for each model is outlined, as well as some diagnostics tools 

for the residuals. Lastly, the procedures for calculating accuracy measures is presented.  

 

3.1 Model estimation 

Before estimating any models or computing forecasts, we should do some data exploration 

(see chapter 0). This is to identify any anomalies in the series, which may affect the 

forecasting procedure further down the line. After ensuring the data is appropriate, we can 

specify the models.  

 

In the AR model, both constant and deterministic trend terms are included. The lag order p  is 

selected by searching through lags starting with 1p  . The p  that minimizes the AICc , 
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defined by equation (2.19), is chosen. To ensure a consistent analysis, the AICc is used for 

model selection for all three models. This particular IC was picked as we are working with a 

relatively small sample. The rule of thumb mentioned in section 2.1.4 said that we should use 

the AICc over the AIC when / k 40n  . Here the / kn -ratio is less than 40 for all three 

models by a wide margin. As the AICc converges to the AIC for large samples, there really is 

no reason not use the AICc other than the slightly more tedious computation.  

 

For the ARIMA model, the selection procedure is a bit more intricate. We denoted the 

seasonal model as ARIMA(p,d,q)(P,D,Q)[m]. First, we specify the seasonal frequency m  and 

the seasonal differencing (D=1 or D=0) with a OCSB test. After the seasonal dummy D is 

chosen, we find the order of integration d  with successive the KPSS test. This is a unit root 

test with null hypothesis of no unit root. After establishing the values of d  and D, we can 

specify the remaining model orders , ,p q P  and Q . We do this again by minimizing the AICc. 

This ARIMA procedure is fully automated in the forecast package. The algorithm is described 

in Hyndman and Khandakar (2008). 

 

To apply the exponential smoothing state space models we need the values for the initial 

states ( 0l , 0b , 0 1 1, ,..., ms s s   )   and the smoothing parameters ( , , , )    , both of which are 

estimated from the data. The procedure for forecasting with these models is as follows. First, 

apply all the models to the series using the optimized parameters (read: both the initial states 

and the smoothing parameters) obtained via maximum likelihood estimation (MLE). Then we 

select the model that minimizes the AICC. 

 

The parameters for all three models are estimated using MLE. The general idea behind MLE 

is to find estimates of the parameters that maximizes the “likelihood” of the sample (Larsen & 

Marx, 2012). The likelihood is define by a likelihood function ( )L . To illustrate, for a 

random sample 1 2, ,..., yny y  of n  observations, the likelihood function is 

 

1

( ) ( ; )
n

i

i

L p y 


   (2.30) 

where   is an unknown parameter and ( ; )ip y  is the discrete probability density function 

(pdf). That is, the likelihood function is the product of the pdfs evaluated at all the in y ’s. If 

e  is the value of the parameter such that ( ) ( )eL L   for all values of  , then we call e  
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the maximum likelihood estimate of the unknown parameter. MLE can be quite complicated 

in its application and especially intricate for ARIMA models. I consider detailed derivations 

of the MLE procedures for the models to be beyond the scope of this thesis.  

 

Prediction intervals for models with normal forecast distributions, i.e. models with neither 

multiplicative error, trend nor seasonality, can be calculated as 

 /2h a hy z    (2.31) 

where hy  is the point forecast h  periods ahead, qz  is the qth quantile of the standard normal 

distribution,   is the level of significance and h  is the forecast variance of the model.  Even 

for models with non-normal forecast distributions is the prediction intervals generated by 

(2.31)  be reasonably accurate (Hyndman et al., 2005).  

 

3.2 Forecast combination 

In an effort to improve the final forecast’s performance, the three models are combined. Since 

the individual models are specified by the AICC, it would make sense to continue the 

information theoretic approach by also using a weighting scheme base on ICs. However, the 

conditional likelihoods from the ARIMA- and ETS-models are not comparable as their 

initializations are different. That is, the likelihoods from the ARIMA-models are conditional 

on the first few values of the time series, while the likelihoods of the ETS-models are 

conditional on the initial states.  

 

Instead, the Bates and Granger weighting scheme based on inverse out-of-sample MSEs is 

implemented. The application of the scheme is straightforward. First, we compute point 

forecasts from each of the three models. Then these are combined with the weights defined by 

equation (2.21). The formula for the MSE is given by equation (2.24). In section 3.4, the 

computation of the out-of-sample MSEs is detailed.   

 

3.3 Diagnostics 

In section 2.1.1 and 2.1.2, it was mentioned that we assume the errors in the models to be 

independent and identically distributed (iid). When using the models for forecasting purposes 

we sometimes call the error terms residuals. In time series forecasting the residuals are simply

ˆ
t t te y y   where ˆ

ty is the one step forecast of ty . It is important to inspect the residuals to 
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diagnose if they indeed are iid. The most important aspect of residual diagnostics is to ensure 

that they are uncorrelated and have a mean of zero. If the residuals are correlated, it means 

there is still information left that the current model is not able to sufficiently capture. A non-

zero mean implies that there is a bias in the forecast. To detect residual correlation we can 

study the ACF and PACF plots. If there are significant correlations, we may want to consider 

other potentially more appropriate models. Correlation between residuals also affect the 

weighting scheme outlined above. Bjørnland and Thorsrud (2012) points out that these type of 

weights will minimize a quadratic loss function, but only if the residuals from the individual 

models are uncorrelated. The Ljung and Box (1978) test can check for autocorrelation in the 

residuals and is given by 

 

2

1

( 2)
m

k

k

r
Q N N

N k

 


   (2.32) 

where N  is sample size and kr  is sample autocorrelation at lag k . 0 1 2: r , r ,..., r 0mH   and 

1 1 2: r , r ,..., r 0hH  . We reject if 2

1 ,m pQ     where 2

1 ,m p   is the critical value from the chi-

square distribution with significance level   and m p  degrees of freedom, m  is the lag 

order and p  is the number of estimated model parameters. To capture sufficiently the 

autocorrelation effect of seasonal data it is common to include lags up to two time the 

seasonal frequency. Here this means setting 24m  .  

 

We can also investigate whether the residuals are homoscedastic, i.e. if they have constant 

variance, and if they are normally distributed. These properties do not necessarily have to be 

fulfilled for the models to generate reliable forecasts, but they are useful as they make the 

calculation of the prediction intervals easier (Hyndman & Athanasopoulos, 2013). To check 

for homoscedasticity we can use the Ljung-Box test on squared residuals. The normality can 

be checked with a Jarque and Bera (1980) test is given by  

 
2

2 ( 3)

6 4

N K
JB S

 
  

 
  (2.33) 

where N  is sample size, S  is sample skewness and K  is sample kurtosis. 0 : tH e are normal 

and 1 : tH e  are non-normal, where te  are residuals. We reject if 2

1 ,2JB   . This test simply 

checks jointly if the residuals have the same skewness and kurtosis as the normal distribution. 

Results of all the tests described in this section is detailed in section 5.2. 
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3.4 Accuracy 

After diagnosing the residuals, we can finally use the models to compute forecasts. their 

forecast precision. Different accuracy measures can yield completely opposite conclusions. 

For that reason, only two measures are employed to assess the performance of the forecasts, 

namely RMSE and MASE as defined by equation (2.26) and (2.29) respectively. 

 

There are two ways of calculating the forecast measures, in-sample and out-of-sample. The 

former method assesses the fitted values generated by the model with the actual values over 

the whole sample. The out-of-sample method entails comparing the forecasts from a model 

with a holdout sample, which I will call the test set.  

 

There are several ways of obtaining the out-of-sample forecast errors. Here a technique called 

cross validation is applied. The procedure, as outlined by Hyndman and Athanasopoulos 

(2013), goes as follows: First, use the observations at time 1k h i    for the test set, where 

k  is some subjectively chosen point in the data set, h  is the forecast horizon and i  can be 

interpreted as the iteration variable. Then we use the observations at times 1,2,..., 1k i   to 

generate forecasts. Based on the obtained forecast errors, we can calculate accuracy measures. 

Then we repeat this for 1,2,..., 1i N k h     where N  is the total number of observations. 

After the iterative process is done, we calculate the average of the forecast accuracy measures 

based on the errors collected at each iteration. Thus, the average of the measures is what I call 

the out-of-sample accuracy. 

 

The intuition behind this procedure is that the goodness-of-fit measures will indicate how well 

the models were able to forecast the next h  periods, when comparing with the actual values 

in the test sets. The length s of the test set is subjective. A rule of thumb says that the holdout 

period should be approximately 20% of the original sample. Here, I have decided on holding 

out the last 24s   months (2011:4-2013:3) in the original sample of 135N   observations 

(2002:1-2013:3). Leaving 111N s   observations (2002:1-2011:3) that is used as a training 

set to fit the models. The forecasts are then generated for 12h   months rolling forward in 

the test set from 2011:4 to 2013:3. The 12-month forecast horizon and the 24-month test set 

means the procedure consists of 12 iterative steps from which we calculate forecast errors and 

accuracy measures. 
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A model can have a good in-sample fit, but it does not mean it will forecast well out-of-

sample. Therefore, the convention has been to use out-of-sample measures, when assessing 

forecast ability of models, although  some have a contrary view (Inoue & Kilian, 2005). 

Consequently, both in-sample and out-of-sample RMSE and MASE are reported in the results 

for all three models, as well as for the combined forecasts. Although both are reported, the 

out-of-sample RMSE and MASE are used as the main forecast evaluation measures. The out-

of-sample MSEs obtained from the cross validation procedure is also used in the weighting 

scheme. 

 

  



 22 

4 Data 
Here a presentation of the data and its properties is given. The first part describes the raw data 

and the data gathering process. The second part is an exploration of the statistical properties 

of the house price series. 

 

4.1  The data set 

The data set used in this thesis is based on price statistics for residential housing in Norway. 

Pöyry Management Consulting (Norway) (from now on referred to as Pöyry) develops the 

statistics on behalf of Eiendomsmeglerforetakenes Forening (Eff) and Norges 

Eiendomsmeglerforbund (NEF). It is updated monthly and can be found at NEF’s website 

(under NEF in references). Pöyry reports prices in NOK1000 per square meter (m2). 

 

The numbers are based on properties sold through the online market place Finn.no. Thus, it is 

not a complete statistic of house prices in Norway, but it is the consensus source for reliable 

house price data in Norway. Statistics Norway (SSB) uses the same raw data as Pöyry. 

However, SSB’s house price index deviates some from the statistics reported by Pöyry in 

their transformation and weighting schemes (Christensen, 2003).  

 

The statistics identifies three types of residential housing: Apartments (Norwegian: 

leiligheter), shared houses (delte boliger) and standalone houses (eneboliger). Pöyry gathers 

prices for each type regionally. To calculate the national average for each type, they weight 

the prices by the share of houses sold in the candidate region in the previous three years. 

Furthermore, to calculate the national average for all types of housing, Pöyry weight the 

prices for each type with their share of total sales the last three years. 

 

Likely, in an attempt to prevent outliers from influencing the statistics, Pöyry has excluded 

some special cases from the data. These are any type of house exceeding 500 m2, standalone 

and shared houses smaller than 50 m2, apartments smaller than 20 m2, and any type of house 

either costing less than NOK2000 pr. m2 or exceeding NOK100 000 pr. m2. 

 

The price statistic reaches all the way back to 1985. However, before 2002 prices were only 

reported quarterly while prices are reported monthly from 2002 onward. In addition, Pöyry 

changed their data gathering methods in 2002. This resulted in a large increase in the reported 
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number of sold properties after 2002. These changes may result in significant inference 

problems if we were to use data both before and after 2002. For that reason, only data from 

January 2002 and onward is included in the data set, which is updated to include prices up to 

March 2013.  

 

The properties, transformations and weighting schemes described here is detailed in a report 

published monthly at Eff’s website (listed under Pöyry in references). The final data set 

contains a time series of 135 observations (months) of house prices for all types of residential 

houses from 2002:1 to 2013:3. 

 

4.2 Data exploration 

Before estimating the models, it is of interest to explore the data. This is to prevent any 

unforeseen outliers from affecting the analysis and for identifying the statistical properties of 

the data. Table 4.1 gives some descriptive statistics for the house prices series. 

Table 4.1: Descriptive statistics for nominal house prices 2002:1-2013:3. 

 N Mean Median St.dev. Variance 1stQu. 3rdQu. Min. Max 

Prices (P) 135 22.057 22.852 4.9217 24.223 17.43 25.43 14.373 31.454 

 

It was mentioned in section 2.1.1 that a visual inspection of the plotted data in Figure 1.1 

indicates that the house prices are non-stationary. An augmented Dickey-Fuller (ADF) test 

can test for this formally. The general ADF test equation is  

 1

1

m

t t s t s t

s

y t y y v    



         (3.1) 

with 0 1: 0 and : 0H H   . The lag order m  was set to five. The DF test statistic 

ˆ

ˆ( )se





 . If C   we do not reject the null hypothesis. Some critical C  values can be 

found in Hill et al. (2008, p. 486). The ADF test statistic, tau (=-2.4648), and the p-value 

(=0.3831) support our suspicion, as we cannot reject the null hypothesis of non-stationarity. 

The first differenced series is plotted in Figure 4.1. 
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Figure 4.1: First differenced house prices 2002:1-2013:3. 

 

Admittedly, just by “eyeballing” the first difference plot, it is somewhat unclear whether the 

series is stationary. However, a second ADF test on the first differences indicates the series is 

in fact integrated of order one (tau = -4.5455, p-value = 0.01). There is a sharp drop around 

mid-to-late 2008. To prevent any outliers (that does not belong) from affecting the analysis, 

we should do some data exploration. Upon examining the data further, one finds that there 

was a drop in prices from September to October 2008 of about -4.5%. This was the largest 

month-to-month price change in the sample period. Although it may be considered an outlier, 

nothing indicates it should not be there. The timing of the sharp drop is to be expected as this 

was during the volatile financial crisis.  

 

Moreover, it was mentioned in section 2.1 that an integral part of time series analysis is the 

decomposition of the series. Before we estimate the models, it might be interesting to explore 

the different components of the data a little further. Figure 4.2 exhibits a graphical 

representation of the decomposed series of house prices. The top panel (data) is simply the 

plotted series equivalent to Figure 1.1. The second panel (seasonal) gives us an indication of 

the seasonality of house prices. There seem to be a repeating pattern every 12 months. This 

tells us that house prices indeed inherit some seasonal component. More specifically, the 

decomposition indicate that house prices are at its highest during the early months of the year, 

while the prices flatten by fall before they start rising again late in the year.  The third panel 

(trend) exhibits the trend of the series. It is equal to the original series, but with the 

seasonality extracted. As we see, there is a distinct upward sloping trend, only interrupted by 

the financial turmoil of 2008 and 2009. If the models are appropriate for the house price, they 

should be able to capture the seasonality and trend of the series. The last panel (remainder) is 
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the residuals from the seasonal and trend fits. The large negative spike in the residuals lines 

up with the timing of the sharp price change drop discussed above.  

Figure 4.2: Decomposition of the house price series. 

 

Lastly, it should be mentioned that it is quite common to perform some kind of data 

transformation before forecasting. Some popular transformations include taking logarithms 

and power transformation, such as squaring the series or Box and Cox (1964) transformation. 

The reason for transforming data is often stabilize variance and to make it more normal to 

avoid violating a multitude of assumptions when using parametric statistics. In this context, 

the three models applied here are quite flexible. ARIMA models do assume homoscedasticity 

(constant variance), but does not require the data to be stationary before estimation. The AR 

model is just a special case of the ARIMA so it is understood that the same assumptions are 

made for both. Exponential smoothing state space models are very flexible in that they can be 

both linear and nonlinear, are non-stationary and robust to heteroscedasticity. In addition, all 

the model parameters are estimated with MLE, a more robust (although more complex) 

estimation procedure compared to e.g. OLS. Based on this, I have not found it necessary to 

perform any transformations of the data. Hence, the forecasts are computed for nominal house 

prices in levels.  
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5 Results 
In this chapter, all results are presented. The majority of calculations are conducted in the R 

studio (version 0.97.311) programming environment. Some data manipulations are performed 

in Microsoft Excel 2013. All three models are estimated using the forecast package 

(Hyndman, 2009) developed for the R programming language (version 4.0). To ensure the 

replicability of the results, the R code in its entirety is included in appendix D. 

 

Based on the methodology outlined in chapter 3, the following three models are selected: an 

AR(14) with constant and trend, an ARIMA(2,0,1)(0,1,1)[12] with drift and an ETS(A,A,A). 

From now on, they are referred to by their acronyms AR, ARIMA and ETS. A few interesting 

notes about the selected models: The AR-model has a long lag, especially compared to the 

sample size (135 observations). However, the high model order was necessary to capture the 

seasonality in the house prices. AR-models with lags shorter than 13 showed significant 

positive autocorrelation in their residuals every 12th lag, clearly indicating they were not able 

to capture the seasonal component in the data.  

 

Furthermore, during the data exploration we ran ADF tests that indicated the series was 

integrated of order one, yet in the ARIMA- model d  is selected to be zero. The reason can be 

inferred from the methodology. There we said that the seasonal order of integration D  was 

specified first, then we used KPSS tests to select d . Since 1D   and 0d   we can derive 

that after seasonally differencing, the series becomes difference stationary as well. Thus, we 

cannot reject the null hypothesis of the KPSS tests of no unit roots.  

 

The ETS with both additive error, trend and seasonality is selected. This means that out of all 

the 30 model specifications a purely linear model is the one that minimizes the IC. In turn, 

this may indicate the linear and less flexible AR-model actually fits the series well.  

 

The complete estimated models is found in appendix A. Point forecast and numeric values for 

prediction intervals is given in appendix B. The main objective of this thesis is to forecast 

house prices in Norway for the 12 months in the period from April 2013 to March 2014. Next, 

the results of these forecasts are presented. Then the results of several residual diagnostics test 

are given, before a brief discussion rounds out the chapter.  
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5.1 Forecasts 

Perhaps the most interesting aspect of the forecasts is to examine how the models handle the 

trend and seasonality components. Figure 5.1, 5.2 and 5.3 show the forecasts from the AR-, 

ARIMA and ETS-models respectively. The thin blue line indicates the in-sample fitted 

values, while the forecasts are shown as the thicker blue line. The prediction intervals are 

illustrated by the light (95%) and dark (80%) grey bands. 

 

By just looking at the plots, it seems that the three models all capture the seasonality in the 

house prices. The price forecasts appear to flatten from around August until the end of the 

year. This is consistent with the decomposition discussed above in section 4.2. The AR-model 

in Figure 5.1 looks to forecast diminishing growth the next 12 months.   

 

 

Figure 5.1: Forecast for h=12 months ahead with an AR(14) model. 

 

Similarly, the plotted forecast from the ARIMA-model in Figure 5.2 appear to flatten 

compared to the seemingly linear trend in the house prices in later years. The ARIMA-model 

appears to differ slightly from the AR-model in that the forecasts at the beginning of 2014 is 

going upwards compared to the sideways moving forecast of the AR-model. 
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Figure 5.2: Forecast for h=12 months ahead with an ARIMA(2,0,1)[0,1,1][12] model. 

 

Interestingly, the ETS-model has the lowest mean square error in the model set by a wide 

margin. The ETS has an out-of-sample MSE of 0.11 compared to 0.19 and 0.26 for the AR- 

and ARIMA-models respectively. Thus, the highest weight (0.50) is assigned to the ETS-

model. Weightes of 0.29 and 0.21 is assigned to the AR- and ARIMA-model, respectively. 

 

Figure 5.3: Forecast for h=12 months ahead with an ETS(A,A,A) model. 

 

Figure 5.4 exhibits the weights, the weighted forecast, as well as 80% and 95% prediction 

intervals. By diving into the numbers, we can draw a more detailed picture of the models. 
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Figure 5.4: Weighted forecast (blue line), 80% (grey) and 95% (red) prediction intervals. 

Table 5.1 compares the point forecast with the actual house prices in the corresponding 

months the previous year. The numbers show that the AR- and ARIMA-models both are 

forecasting a steady decrease in price growth the next year. Both models start with a 

forecasted growth from April 2012 to 2013 of about 6 %. By the end of the forecast period, 

their forecasted growth has dropped to 1.7 % and 2.0 % for the AR and ARIMA, respectively. 

In contrast, the ETS-model forecasts a steady yearly growth fluctuating around 6 % 

throughout most of the forecast period.  

 

Table 5.1: Forecasted yearly %-price change, month-by-month. 

  AR ARIMA ETS Weighted forecast 

Month 

Forecast 

2013:4-

2014:3 

Prices  

2012:4-

2013:3 

yearly 

%-

change 

Forecast 

2013:4-

2014:3 

Prices  

2012:4-

2013:3 

yearly 

%-

change 

Forecast 

2013:4-

2014:3 

Prices  

2012:4-

2013:3 

yearly 

%-

change 

Forecast 

2013:4-

2014:3 

Prices  

2012:4-

2013:3 

yearly 

%-

change 

Apr. 31.690 29.830 6.24 % 31.578 29.830 5.86 % 31.631 29.830 6.04 % 31.637 29.830 6.06 % 

May 31.583 29.881 5.70 % 31.593 29.881 5.73 % 31.730 29.881 6.19 % 31.659 29.881 5.95 % 

Jun. 31.547 29.821 5.79 % 31.435 29.821 5.41 % 31.715 29.821 6.35 % 31.609 29.821 6.00 % 

Jul. 31.389 29.675 5.78 % 31.087 29.675 4.76 % 31.507 29.675 6.17 % 31.387 29.675 5.77 % 

Aug. 31.939 30.497 4.73 % 31.692 30.497 3.92 % 32.195 30.497 5.57 % 32.019 30.497 4.99 % 

Sept. 31.761 30.382 4.54 % 31.550 30.382 3.84 % 32.199 30.382 5.98 % 31.941 30.382 5.13 % 

Oct. 31.545 30.275 4.19 % 31.290 30.275 3.35 % 32.087 30.275 5.99 % 31.768 30.275 4.93 % 

Nov. 31.330 30.186 3.79 % 31.153 30.186 3.20 % 32.061 30.186 6.21 % 31.665 30.186 4.90 % 

Dec. 31.196 30.149 3.47 % 30.868 30.149 2.38 % 31.908 30.149 5.83 % 31.491 30.149 4.45 % 

Jan. 32.101 31.311 2.52 % 31.764 31.311 1.45 % 32.805 31.311 4.77 % 32.390 31.311 3.45 % 

Feb. 32.010 31.428 1.85 % 31.945 31.428 1.65 % 33.099 31.428 5.32 % 32.550 31.428 3.57 % 

Mar. 31.974 31.453 1.66 % 32.088 31.453 2.02 % 33.315 31.453 5.92 % 32.679 31.453 3.90 % 

Note: Prices in NOK1000. 

 Weights( iw ) 

AR 0.29 

ARIMA 0.21 

ETS 0.50 
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Consequentially, the weighted model lands somewhere in between forecasting 3.9 % growth 

in the 12-month forecast period. This is consistent with what we observed during the visual 

inspection of the plotted forecasts. The accuracy measures for the three models and the 

weighted forecast are shown in Table 5.2. The ARIMA-, ETS- and weighted models all have 

similar in-sample fits, while the AR-model is slightly worse.  

 

Table 5.2: Forecast accuracy for all models. 

  AR ARIMA                        ETS Weighted 

In-sample RMSE 0.213 

 

0.177 

 

0.182 

 

0. 175 

 

 MASE 0.583 

 

0.477 

 

0.511 

 

0.487 

 

Out-of-sample RMSE 0.502 

 

0.554 

 

0.319 

 

0.348 

 

 MASE 0.241 

 

0.262 

 

0.157 

 

0.124 

 
Note: Green indicates “best” accuracy. 

Out-of-sample the AR surprisingly performs better than the ARIMA, when comparing both 

the RMSE and MASE. However, the ETS-model is the “best” individual model by a wide 

margin based on out-of-sample RMSE and MASE. It is interesting to note that the 

exponential smoothing model outperforms the ARIMA model, which is far more frequently 

used in the house price forecasting literature. When including the weighted model, it is less 

clear which model is the best. The ETS-model still performs best based on the RMSE, while 

the weighted model is able to improve upon the MASE of the ETS. Based on these results we 

cannot reject the notion that a weighting scheme with inverse out-of-sample MSEs, can 

improve upon the forecast accuracy of the individual best forecast.  

 

5.2 Diagnostics 

In the methodology (3.3), the desired properties of the model residuals are detailed. 

Optimally, we would like the residuals to be white noise, 2(0, )WN  . Residual, ACF and 

PACF plots for the three individual models are shown below. The general interpretation of the 

ACF and PACF plots is that the autocorrelation is statistically significant if it breaks either the 

upper or the lower confidence limits (the dotted blue lines). When examining these plots we 
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should be aware of the fact that on occasion autocorrelations can be significant by pure 

chance. Particularly this may be true if the autocorrelation is isolated and not at seasonal lags 

(e.g. the 12th and 24th lag). Repeating autocorrelations at seasonal lags indicate that the models 

have not been able to capture the seasonality component of the data sufficiently.  

 

Figure 5.5 shows residual plots for the AR-model. There are two significant autocorrelations 

one at lag 7 and one at lag 12. Although not ideal, the negative autocorrelation at the seasonal 

12th lag is not a big concern, as it does not seem to be a repeating pattern. In fact, the 

autocorrelation at the 24th lag is positive. 

 
Figure 5.5: Residual diagnostics for AR(14). 

 

The residuals of the ARIMA-model in Figure 5.6 seem very white noisy. Still there is a 

slightly significant autocorrelation at lag 7. Similarly, the residuals from the ETS-model in 

Figure 5.7 looks relatively well behaved. However, there is a significant autocorrelation at lag 

two.   

 

Formal tests for residual autocorrelation, normality and homoscedasticity is presented in 

Table 5.3. The null hypothesis for all three test are that the residuals are well behaved, 

meaning there are no autocorrelation, they are normally distributed and homoscedastic 

(constant variance). 
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Figure 5.6: Residual diagnostics for ARIMA(2,0,1)(0,1,1)[12]. 

 

Figure 5.7: Residual diagnostics for ETS(A,A,A) 

 

Both the AR- and ETS-model have significant autocorrelation in their residuals. This is not 

ideal as it means there are still information left in the data, which these models are not able to 

capture in its entirety. In addition, tests indicate that these two models have normally 
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distributed, but heteroscedastic residuals. On the other hand, test for the residuals of the 

ARIMA model show the complete opposite, namely that the model has uncorrelated, non-

normal and homoscedastic residuals.  

 

 

Table 5.3: Residual diagnostics tests 

 
AR ARIMA ETS 

Residual autocorrelation test: 

Ljung-Box test* (p-values) 

34.303 

(0.000) 

20.665 

(0.297) 

33.294 

(0.000) 

Residual normality test: 

Jarque-Bera test** (p-values) 

2.925 

(0.232) 

 

32.556 

(0.000) 

2.898 

(0.235) 

Homoscedasticity test: 

Squared residual  

Ljung-Box test*** (p-values) 

18.782 

(0.009) 

 

15.474 

(0.629) 

20.003 

(0.010) 

Note: Red indicates rejection of null hypothesis at 5% and 10 % level. 
*
     0 :H  residuals are uncorrelated,    1 :H  residuals are correlated 

**  0 :H  residuals are normal,              1 :H  residuals are non-normal 

*** 0 :H  residuals are homoscedastic,  1 :H residuals are heteroscedastic 

 

The lack of well-behaved residuals for the AR- and ETS-models based on the Ljung-Box tests 

are not overly concerning. Particularly for ETS-model, the test result seem less relevant as the 

ACF/PACF plots showed that the autocorrelation was isolated at a non-seasonal lag. In 

addition, the ETS-model is as mentioned robust to heteroscedsticity. 

 

5.3 Discussion 

Before concluding the thesis, we should take a moment to reflect on the different aspects of 

the analysis and some alternative approaches that could have been employed. As the residual 

diagnostics reveal, the models applied here are not a perfect fit. One concern is the large 

number of estimated parameters in the AR- and ETS-models relative to the sample size. The 

two models have 17 and 16 estimated parameters (coefficients plus estimate of variance), 

respectively. The ARIMA-model is by far the most parsimonious in the set with only six 

estimated parameters. This comes in addition to being the model with the most well behaved 

residuals. At the same time, the ARIMA model performs the worst out-of-sample. We could 
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speculate that the other two models include too many parameters, considering the sample size. 

However, overfitted models normally have a good in-sample fit, but perform worse out-of-

sample. The opposite is actually the case here. The AR and ETS have the worst in-sample fit, 

while they outperform the ARIMA out-of-sample.  

 

Another potential point of critique is the choice of model selection and forecast combination 

criteria. Here, the AICC, a in-sample measure, is used for model selection, while the out-of-

sample MSE is applied in the weighting scheme.  Hansen (2009) warns against using different 

criteria for selection and combination, as this may lead to conflicting results.  

 

It is also argued in section 4.2, that no transformations of the data is needed. This an unusual 

approach, as most forecasters in fact transforms the data before forecasting. Some argue that 

forecasting non-stationary series could lead to spurious results. Unit roots do not affect the 

ETS- and ARIMA-models, due to their flexibility. However, for the AR-model the non-

stationarity of the series can induce inference problems.  

 

Lastly, the focus of this thesis was forecasting with univariate time series models. Still, it 

would have been interesting to include multivariate models, such as VAR models, in the 

model set. Then we would be able to draw a more comprehensive conclusion about which 

models best forecast house prices in Norway.  
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6 Concluding remarks 
The main objective of this thesis is to forecast residential house prices in Norway from April 

2013 to March 2014. Three univariate time series models are employed in an attempt to find 

an appropriate fit. The three are an AR-, an ARIMA- and an exponential smoothing state 

space (ETS) model. The forecast from the three models are also combined in an effort to 

improve upon the accuracy of the single “best” forecast. This study implements a weighting 

scheme based on inverse out-of-sample mean square errors (MSEs). Weights of 0.29, 0.21 

and 0.50 are assigned to the AR-, ARIMA- and ETS-model, respectively. 

 

All three models looks to capture the seasonality in the house prices satisfactory. The analysis 

identifies the forecast from the ETS-model as the most accurate among the individual models 

based on both out-of-sample root mean square error (RMSE) and mean absolute scaled error 

(MASE). The weighted forecast has a higher RMSE (less accurate), but a lower (more 

accurate) MASE compared to the ETS. Thus, we cannot conclude either way, whether a 

combination of forecast can in fact improve upon the accuracy of the individually most 

accurate forecast, since the two measures give conflicting results. However, we can note that 

although ETS-models are not widely applied in forecasting of house prices, the results here 

indicate that they should be. 

 

Residual diagnostics discover some suboptimal attributes of the AR- and ETS-models. Formal 

tests show that they have significant autocorrelation and heteroscedasticity in their residuals. 

By examining the ACF and PACF plots we find that the residuals appear to be reasonably 

well behaved. Hence, it does not appear that we have to be too concerned about spurious 

results.   
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A. Appendix - The estimated models 
Table A.1: The AR(14) with constant and trend. 

Lag Coefficient Std.error Lag Coefficient Std.error 

Constant (c) 13.8041 0.4202 AR(7) 0.1096 0.0944 

Trend (t) 0.1219 0.0054 AR(8) -0.0773 0.1005 

AR(1) 1.2137 0.0849 AR(9) 0.0296 0.0969 

AR(2) -0.2579 0.1080 AR(10) -0.1181 0.0945 

AR(3) 0.0803 0.0927 AR(11) 0.1653 0.0947 

AR(4) -0.1453 0.0915 AR(12) 0.6662 0.0950 

AR(5) 0.2355 0.0928 AR(13) -0.9341 0.1092 

AR(6) -0.2727 0.0936 AR(14) 0.2132 0.0880 

MLE sigma^2 0.04542     

AICC 20.09     

Next best models based on AICC    

AR(15) w/ c and t 21.27     

AR(13) w/ c and t 23.14     

 

Table A.2: The ARIMA(2,0,1)(0,1,1)[12] with drift 

Lag Coefficient Std.error 

Drift 0.1225 0.0102 

AR(1) 1.8601 0.0733 

AR(2) -0.8772 0.0718 

MA(1) -0.6111 0.1344 

Seasonal MA(1) -0.7867 0.0995 

MLE sigma^2 0.03449  

AICC -36.71  

Next best models based on AICC 

ARIMA(2,0,1)(0,1,2)[12] with drift        -34.54  

ARIMA(3,0,1)(0,1,1)[12] with drift       -34.46  

 

Table A.3: The ETS(A,A,A) 

 Smoothing 

parameters 

 Initial states     

Alpha 1.2052 Level(l) 14.5911     

Beta 0.1092 Growth(b) 0.0529     

Gamma 0.0000 Season(s) s0= -0.6738 s-3=0.0905 s-6=0.0790 s-9=0.2597 

   s-1=-0.3630 s-4=0.2439 s-7=0.2518 s-10=0.2014 

   s-2=-0.1793 s-5=-0.2865 s-8=0.3112 s-11=0.0650 

MLE sigma^2 0.03302       

AICC 238.42       

Next best models based on AICC      

ETS(M,A,M) 239.38       

ETS(A,Ad,A) 240.02       
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B. Appendix - Point forecasts and prediction 

intervals 
 

Table B.1: Point forecast and prediction intervals for 2013:4-2014:3, individual models. 

 

 

 

 

 

 Month Point forecast  Lower 

95% 

Lower 

80% 

Upper 

80% 

Upper 

95% 

AR(14) Apr 2013 

May 2013 

Jun 2013 

Jul 2013 

Aug 2013 

Sep 2013 

Oct 2013 

Nov 2013 

Dec 2013 

Jan 2014 

Feb 2014 

Mar 2014 
 

31.690 

31.583 

31.547 

31.389 

31.939 

31.761 

31.545 

31.330 

31.196 

32.101 

32.010 

31.974 
 

31.272 

30.926 

30.717 

30.410 

30.849 

30.557 

30.252 

29.966 

29.781 

30.652 

30.544 

30.498 
 

31.417 

31.153 

31.005 

30.749 

31.227 

30.973 

30.699 

30.438 

30.271 

31.153 

31.051 

31.009 
 

31.963 

32.012 

32.090 

32.029 

32.652 

32.548 

32.391 

32.221 

32.122 

33.049 

32.969 

32.939 
 

32.108 

32.239 

32.378 

32.368 

33.029 

32.965 

32.839 

32.693 

32.612 

33.551 

33.477 

33.449 
 

ARIMA(2,0,1) 

(0,1,1)[12] 

Apr 2013 

May 2013 

Jun 2013 

Jul 2013 

Aug 2013 

Sep 2013 

Oct 2013 

Nov 2013 

Dec 2013 

Jan 2014 

Feb 2014 

Mar 2014 
 

31.578 

31.593 

31.435 

31.087 

31.692 

31.550 

31.290 

31.153 

30.868 

31.764 

31.945 

32.088 
 

31.214 

31.010 

30.650 

30.110 

30.535 

30.229 

29.817 

29.545 

29.141 

29.933 

30.025 

30.094 
 

31.340 

31.212 

30.922 

30.448 

30.936 

30.686 

30.327 

30.101 

29.739 

30.567 

30.689 

30.784 
 

31.816 

31.974 

31.949 

31.726 

32.448 

32.415 

32.253 

32.204 

31.997 

32.961 

33.200 

33.392 
 

31.943 

32.176 

32.221 

32.064 

32.848 

32.872 

32.762 

32.760 

32.595 

33.595 

33.864 

34.082 
 

ETS(A,A,A) Apr 2013 

May 2013 

Jun 2013 

Jul 2013 

Aug 2013 

Sep 2013 

Oct 2013 

Nov 2013 

Dec 2013 

Jan 2014 

Feb 2014 

Mar 2014 
 

31.631 

31.730 

31.715 

31.507 

32.195 

32.199 

32.087 

32.061 

31.908 

32.805 

33.099 

33.315 
 

31.275 

31.110 

30.889 

30.495 

31.006 

30.838 

30.556 

30.360 

30.037 

30.763 

30.884 

30.926 
 

31.398 

31.324 

31.175 

30.845 

31.418 

31.309 

31.086 

30.949 

30.685 

31.470 

31.651 

31.753 
 

31.864 

32.135 

32.255 

32.169 

32.972 

33.089 

33.089 

33.174 

33.132 

34.140 

34.547 

34.878 
 

31.987 

32.349 

32.541 

32.519 

33.384 

33.561 

33.619 

33.762 

33.779 

34.847 

35.314 

35.705 
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Table B.2: Point forecast and prediction intervals for 2013:4-2014:3, weighted model. 

 

  

 Month Point forecast Lower 

95% 

Lower 

80% 

Upper 

80% 

Upper 

95% 

Weighted 

forecast 

Apr 2013 

May 2013 

Jun 2013 

Jul 2013 

Aug 2013 

Sep 2013 

Oct 2013 

Nov 2013 

Dec 2013 

Jan 2014 

Feb 2014 

Mar 2014 
 

31.637 

31.659 

31.609 

31.387 

32.019 

31.941 

31.768 

31.665 

31.491 

32.390 

32.550 

32.679 
 

31.262 

31.037 

30.791 

30.392 

30.865 

30.633 

30.318 

30.080 

29.781 

30.561 

30.611 

30.633 
 

31.392 

31.252 

31.074 

30.736 

31.264 

31.085 

30.820 

30.629 

30.373 

31.194 

31.282 

31.341 
 

31.883 

32.067 

32.145 

32.038 

32.773 

32.796 

32.717 

32.702 

32.610 

33.586 

33.818 

34.016 
 

32.013 

32.282 

32.428 

32.382 

33.172 

33.249 

33.219 

33.250 

33.202 

34.219 

34.489 

34.725 
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C. Appendix - The data set 
 

Table C.1: Monthly nominal m2 house prices (in NOK1000) in Norway 2002:1-2013:3. 

 2002-2003 2004-2005 2006-2007 2008-2009 2010-2011 2012-2013 

Jan 14.747 16.464 19.844 23.480 24.746 28.855 

Feb 14.971 16.764 20.192 23.641 24.866 29.047 

Mar 15.127 17.001 20.513 23.723 25.079 29.407 

Apr 15.285 16.831 20.846 23.780 25.385 29.830 

May 15.297 16.902 21.123 23.539 25.527 29.881 

Jun 14.980 16.830 21.259 23.364 25.467 29.821 

Jul 14.542 16.715 21.270 22.852 25.058 29.675 

Aug 15.309 17.331 22.272 23.173 25.775 30.497 

Sep 15.017 17.344 22.376 22.744 25.842 30.382 

Oct 14.731 17.457 22.520 21.723 25.746 30.275 

Nov 14.488 17.574 22.539 21.180 25.837 30.186 

Des 14.373 17.405 22.584 20.947 25.546 30.149 

Jan 15.007 18.142 23.666 21.918 26.634 31.311 

Feb 15.001 18.371 23.904 22.486 27.103 31.428 

Mar 14.993 18.328 24.063 22.683 27.519 31.453 

Apr 15.058 18.501 24.227 23.109 27.506  

May 14.832 18.509 24.136 23.366 27.931  

Jun 14.751 18.534 24.202 23.519 27.732  

Jul 14.676 18.302 23.749 23.514 27.422  

Aug 15.260 18.609 24.273 24.247 28.254  

Sep 15.546 18.860 23.974 24.224 28.315  

Oct 15.567 19.003 23.637 24.240 28.103  

Nov 15.710 19.096 23.381 24.276 28.145  

Des 15.774 19.027 22.999 23.951 27.741  
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D. Appendix - The R code 
OBS! Running the code in its entirety may take a while. 

library(forecast) 

library(graphics) 

library(tseries) 
library(pastecs) 

 

# DATA SET ############################################# 
# House pirces Jan. 02 - March 13 

data <- structure(c(14.747368, 14.971517, 15.127844, 15.285704, 15.297407, 14.980323, 14.542878, 15.309535, 15.017721, 14.731572, 

14.488528, 14.373321, 15.007667, 15.00134, 14.993977, 15.058588, 14.832451, 14.751847, 14.67612, 15.260274, 15.546455, 15.567483, 
15.710143,15.774186, 16.464181, 16.764038, 17.001064, 16.831662, 16.902986, 16.830444, 16.715932, 17.331179, 17.344735, 

17.45788,17.574839, 17.405844, 18.14261, 18.371732, 18.328169, 18.501254, 18.509556, 18.534803, 18.302446, 18.609222, 18.860566, 

19.00363, 19.096919, 19.027872, 19.844294, 20.192769, 20.512996, 20.846508, 21.123915, 21.259848, 21.270676, 22.272309, 22.375843, 
22.520273, 22.539099, 22.58466, 23.666829, 23.904162, 24.063079, 24.227331, 24.136405, 24.202093, 23.749147, 24.273819, 

23.97446,23.637499, 23.381023, 22.999301, 23.480893, 23.64173, 23.723986, 23.780698, 23.539532, 23.364047, 22.852094, 23.173906, 

22.744607, 21.723483, 21.18022, 20.94743, 21.918237, 22.48661, 22.683303, 23.1099, 23.36695, 23.519433, 23.513999, 24.247008, 
24.224611, 24.240652, 24.276591, 23.951361, 24.746266, 24.866524, 25.079439, 25.385703, 25.526986, 25.46707, 25.058808, 25.775007, 

25.842061, 25.746739, 25.83712, 25.546944, 26.634963, 27.103609, 27.519261, 27.506359, 27.931635, 27.7328, 27.422783, 28.254738, 

28.315666, 28.10369, 28.14566, 27.741635, 28.855819, 29.047454, 29.407865, 29.830691, 29.8818, 29.821657, 29.675817, 30.497315, 
30.382523, 30.275193, 30.186988, 30.149414, 31.311087, 31.428756, 31.453484), .Tsp = c(2002, 2013.16666666667, 12), class = "ts")             

   
diff <- diff(data) 

 

# Data exploration, misc. 
plot(data, main = "House prices in Norway 2002:1-2013:3", xlab = "Year", ylab = "m2 prices (in NOK1000)", 

   xlim=c(2002,2013+3/12), ylim=c(14,35)) 

plot(stl(data, s.window=c("periodic")))                                  #decomposition 
stl(data, s.window=c("periodic"))               

stat.desc(data)                                                                         #descriptive statistics 

plot(diff, lwd="1",ylab="1st diff", xlab="") 
 

# Unit root tests 

adf.test(data, alternative = "s")                                        #augmented Dickey Fuller test 
kpss.test(data)                                                                  #KPSS test 

 

 

# MODEL ESTIMATIONS - MAIN ########################################################### 

# ETS  

ets <- ets(data, ic=c("aicc"), bounds="admissible") 
fets <- forecast(ets, h=12) 

plot(fets, lwd="1.5",main="ETS(A,Ad,A)", xlab = "Year", ylab = "m2 prices (in NOK1000)",  

   xlim=c(round(2011),round(2014+4/12, digits = 1)), ylim=c(25,37)) 
lines(ets$fitted, col="blue") 

 

# ARIMA  
ima <- auto.arima(data, ic=c("aicc"), approximation=F, stepwise=F, parallel=T) 

fima <- forecast(ima, h=12) 

plot(fima, lwd="2",main="ARIMA(2,0,1)(0,1,1)[12] with drift", xlab = "Year", ylab = "m2 prices (in NOK1000)",  
   xlim=c(2011,2014+4/12), ylim=c(25,37)) 

lines(fima$fitted, col="blue") 

 
# AR  

arm <- Arima(data, order=c(14,0,0), method=c("ML"), include.mean=T, include.drift=T)   

farm <- forecast(arm, h=12) 
plot(farm, lwd="2", main="AR(14) with intercept and drift", xlab = "Year", ylab = "m2 prices (in NOK1000)", 

   xlim=c(2011,2014+4/12), ylim=c(25,37)) 

lines(farm$fitted, col="blue") 
 

 

# RESIDUAL DIAGNOSTICS ###################################################     
mean(ets$residuals) 

mean(ima$residuals) 

mean(arm$residuals) 
 

tsdisplay(ets$residuals, main="Residuals ETS-model")                            #Residual, ACF and PACF plots 

tsdisplay(ima$residuals, main="Residuals ARIMA-model") 
tsdisplay(arm$residuals, main="Residuals AR-model") 

   

jarque.bera.test(ets$residuals)                                                                    #Jarque-Bera test - residual normality  
jarque.bera.test(ima$residuals)      

jarque.bera.test(arm$residuals)   
 

logLik(ets)                                                                                                      #Degrees of freedom determination 
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logLik(ima) 

logLik(arm) 

 

Box.test(ets$residuals, lag = 24, type = c("Ljung-Box"), fitdf = 16)              #Ljung-Box test - residual autocorrelation 
Box.test(ima$residuals, lag = 24, type = c("Ljung-Box"), fitdf = 6) 

Box.test(arm$residuals, lag = 24, type = c("Ljung-Box"), fitdf = 17) 

 
Box.test(ets$residuals^2, lag = 24, type = c("Ljung-Box"), fitdf = 16)          #Ljung-Box test - homoscedasticity 

Box.test(ima$residuals^2, lag = 24, type = c("Ljung-Box"), fitdf = 6) 

Box.test(arm$residuals^2, lag = 24, type = c("Ljung-Box"), fitdf = 17) 
 

# Histograms 

bins=seq(-2,2,by=0.1) 
 

hist(ets$residuals,breaks=bins, prob=T) 

lines(density(ets$residuals))      
 

hist(ima$residuals,breaks=bins) 

lines(density(ima$residuals))      
 

hist(arm$residuals,breaks=bins, prob=T) 

lines(density(arm$residuals))                              
 

hist(diff,breaks=bins, prob=T) 

lines(density(diff))                              
 

 

# ACCURACY ################################################## 
#In-sample 

accets <- accuracy(ets) 

accima <- accuracy(ima) 
accarm <- accuracy(arm) 

 

#Out-of-sample - Cross validation  
#ETS   

newets1 <- ets(window(data, start=2002+0/12, end=2011+2/12), ic=c("aicc"), bounds="usual")              

newets2 <- ets(window(data, start=2002+1/12, end=2011+3/12), ic=c("aicc"),bounds="usual")   
newets3 <- ets(window(data, start=2002+2/12, end=2011+4/12), ic=c("aicc"),bounds="usual")   

newets4 <- ets(window(data, start=2002+3/12, end=2011+5/12), ic=c("aicc"),bounds="usual")   

newets5 <- ets(window(data, start=2002+4/12, end=2011+6/12), ic=c("aicc"), bounds="usual")   
newets6 <- ets(window(data, start=2002+5/12, end=2011+7/12), ic=c("aicc"),bounds="usual")   

newets7 <- ets(window(data, start=2002+6/12, end=2011+8/12), ic=c("aicc"),bounds="usual")   

newets8 <- ets(window(data, start=2002+7/12, end=2011+9/12), ic=c("aicc"),bounds="usual")   
newets9 <- ets(window(data, start=2002+8/12, end=2011+10/12), ic=c("aicc"),bounds="usual")   

newets10 <- ets(window(data, start=2002+9/12, end=2011+11/12), ic=c("aicc"),bounds="usual")   

newets11 <- ets(window(data, start=2002+10/12, end=2011+12/12), ic=c("aicc"),bounds="usual")   
newets12 <- ets(window(data, start=2002+11/12, end=2012+1/12), ic=c("aicc"),bounds="usual")   

 

acets1 <- accuracy(forecast(newets1,h=12), window(data, start=2011+3/12)) 
acets2 <- accuracy(forecast(newets2,h=12), window(data, start=2011+4/12)) 

acets3 <- accuracy(forecast(newets3,h=12), window(data, start=2011+5/12)) 

acets4 <- accuracy(forecast(newets4,h=12), window(data, start=2011+6/12)) 
acets5 <- accuracy(forecast(newets5,h=12), window(data, start=2011+7/12)) 

acets6 <- accuracy(forecast(newets6,h=12), window(data, start=2011+8/12)) 
acets7 <- accuracy(forecast(newets7,h=12), window(data, start=2011+9/12)) 

acets8 <- accuracy(forecast(newets8,h=12), window(data, start=2011+10/12)) 

acets9 <- accuracy(forecast(newets9,h=12), window(data, start=2011+11/12)) 
acets10 <- accuracy(forecast(newets10,h=12), window(data, start=2011+12/12)) 

acets11 <- accuracy(forecast(newets11,h=12), window(data, start=2012+1/12)) 

acets12 <- accuracy(forecast(newets12,h=12), window(data, start=2012+2/12)) 
 

MSEets <- (acets1[1]^2+acets2[1]^2+acets3[1]^2+acets4[1]^2+acets5[1]^2+acets6[1]^2+             #average MSE 

  acets7[1]^2+acets8[1]^2+acets9[1]^2+acets10[1]^2+acets11[1]^2+acets12[1]^2)/12 
RMSEets <-(acets1[2]+acets2[2]+acets3[2]+acets4[2]+acets5[2]+acets6[2]+                                  #average RMSE 

 acets7[2]+acets8[2]+acets9[2]+acets10[2]+acets11[2]+acets12[2])/12 

MASEets <-(acets1[6]+acets2[6]+acets3[6]+acets4[6]+acets5[6]+acets6[6]+                                  #average MASE 
 acets7[6]+acets8[6]+acets9[6]+acets10[6]+acets11[6]+acets12[6])/12 

 

# ARIMA  
newima1 <- auto.arima(window(data, start=2002+0/12, end=2011+2/12), approximation=F, stepwise=F, parallel=T)                    

newima2 <- auto.arima(window(data, start=2002+1/12, end=2011+3/12), approximation=F, stepwise=F, parallel=T)   

newima3 <- auto.arima(window(data, start=2002+2/12, end=2011+4/12), approximation=F, stepwise=F, parallel=T)   
newima4 <- auto.arima(window(data, start=2002+3/12, end=2011+5/12), approximation=F, stepwise=F, parallel=T)   

newima5 <- auto.arima(window(data, start=2002+4/12, end=2011+6/12), approximation=F, stepwise=F, parallel=T)   

newima6 <- auto.arima(window(data, start=2002+5/12, end=2011+7/12), approximation=F, stepwise=F, parallel=T)   
newima7 <- auto.arima(window(data, start=2002+6/12, end=2011+8/12), approximation=F, stepwise=F, parallel=T)  
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newima8 <- auto.arima(window(data, start=2002+7/12, end=2011+9/12), approximation=F, stepwise=F, parallel=T)  

newima9 <- auto.arima(window(data, start=2002+8/12, end=2011+10/12), approximation=F, stepwise=F, parallel=T)   

newima10 <- auto.arima(window(data, start=2002+9/12, end=2011+11/12), approximation=F, stepwise=F, parallel=T)   

newima11 <- auto.arima(window(data, start=2002+10/12, end=2011+12/12), approximation=F, stepwise=F, parallel=T)   
newima12 <- auto.arima(window(data, start=2002+11/12, end=2012+1/12), approximation=F, stepwise=F, parallel=T)  

 

acima1 <- accuracy(forecast(newima1,h=12), window(data, start=2011+3/12)) 
acima2 <- accuracy(forecast(newima2,h=12), window(data, start=2011+4/12)) 

acima3 <- accuracy(forecast(newima3,h=12), window(data, start=2011+5/12)) 

acima4 <- accuracy(forecast(newima4,h=12), window(data, start=2011+6/12)) 
acima5 <- accuracy(forecast(newima5,h=12), window(data, start=2011+7/12)) 

acima6 <- accuracy(forecast(newima6,h=12), window(data, start=2011+8/12)) 

acima7 <- accuracy(forecast(newima7,h=12), window(data, start=2011+9/12)) 
acima8 <- accuracy(forecast(newima8,h=12), window(data, start=2011+10/12)) 

acima9 <- accuracy(forecast(newima9,h=12), window(data, start=2011+11/12)) 

acima10 <- accuracy(forecast(newima10,h=12), window(data, start=2011+12/12)) 
acima11 <- accuracy(forecast(newima11,h=12), window(data, start=2012+1/12)) 

acima12 <- accuracy(forecast(newima12,h=12), window(data, start=2012+2/12)) 

 
MSEima <- (acima1[1]^2+acima2[1]^2+acets3[1]^2+acima4[1]^2+acima5[1]^2+acima6[1]^2+         #average MSE  

 acima7[1]^2+acima8[1]^2+acima9[1]^2+acima10[1]^2+acima11[1]^2+acima12[1]^2)/12 

RMSEima <- (acima1[2]+acima2[2]+acima3[2]+acima4[2]+acima5[2]+acima6[2]+                                #average RMSE 
 acima7[2]+acima8[2]+acima9[2]+acima10[2]+acima11[2]+acima12[2])/12 

MASEima <- (acima1[6]+acima2[6]+acima3[6]+acima4[6]+acima5[6]+acima6[6]+                                #average MASE 

 acima7[6]+acima8[6]+acima9[6]+acima10[6]+acima11[6]+acima12[6])/12 
 

# AR   

newarm1 <- Arima(window(data, start=2002+0/12, end=2011+2/12), order=c(14,0,0), method=c("ML"), include.mean=T, include.drift=T)       
newarm2 <- Arima(window(data, start=2002+1/12, end=2011+3/12), order=c(14,0,0), method=c("ML"), include.mean=T, include.drift=T) 

newarm3 <- Arima(window(data, start=2002+2/12, end=2011+4/12), order=c(14,0,0), method=c("ML"), include.mean=T, include.drift=T) 

newarm4 <- Arima(window(data, start=2002+3/12, end=2011+5/12), order=c(14,0,0), method=c("ML"), include.mean=T, include.drift=T) 
newarm5 <- Arima(window(data, start=2002+4/12, end=2011+6/12), order=c(14,0,0), method=c("ML"), include.mean=T, include.drift=T) 

newarm6 <- Arima(window(data, start=2002+5/12, end=2011+7/12), order=c(14,0,0), method=c("ML"), include.mean=T, include.drift=T) 

newarm7 <- Arima(window(data, start=2002+6/12, end=2011+8/12), order=c(14,0,0), method=c("ML"), include.mean=T, include.drift=T) 
newarm8 <- Arima(window(data, start=2002+7/12, end=2011+9/12), order=c(14,0,0), method=c("ML"), include.mean=T, include.drift=T) 

newarm9 <- Arima(window(data, start=2002+8/12, end=2011+10/12), order=c(14,0,0), method=c("ML"), include.mean=T, include.drift=T) 

newarm10 <- Arima(window(data, start=2002+9/12, end=2011+11/12), order=c(14,0,0), method=c("ML"), include.mean=T, 
include.drift=T) 

newarm11 <- Arima(window(data, start=2002+10/12, end=2011+12/12), order=c(14,0,0), method=c("ML"), include.mean=T, 

include.drift=T) 
newarm12 <- Arima(window(data, start=2002+11/12, end=2012+1/12), order=c(14,0,0), method=c("ML"), include.mean=T, 

include.drift=T)  

acarm1 <- accuracy(forecast(newarm1,h=12), window(data, start=2011+3/12)) 
acarm2 <- accuracy(forecast(newarm2,h=12), window(data, start=2011+4/12)) 

acarm3 <- accuracy(forecast(newarm3,h=12), window(data, start=2011+5/12)) 

acarm4 <- accuracy(forecast(newarm4,h=12), window(data, start=2011+6/12)) 
acarm5 <- accuracy(forecast(newarm5,h=12), window(data, start=2011+7/12)) 

acarm6 <- accuracy(forecast(newarm6,h=12), window(data, start=2011+8/12)) 

acarm7 <- accuracy(forecast(newarm7,h=12), window(data, start=2011+9/12)) 
acarm8 <- accuracy(forecast(newarm8,h=12), window(data, start=2011+10/12)) 

acarm9 <- accuracy(forecast(newarm9,h=12), window(data, start=2011+11/12)) 

acarm10 <- accuracy(forecast(newarm10,h=12), window(data, start=2011+12/12)) 
acarm11 <- accuracy(forecast(newarm11,h=12), window(data, start=2012+1/12)) 

acarm12 <- accuracy(forecast(newarm12,h=12), window(data, start=2012+2/12)) 
 

MSEarm <- (acarm1[1]^2+acarm2[1]^2+acarm3[1]^2+acarm4[1]^2+acarm5[1]^2+acarm6[1]^2+            #average MSE 

 acarm7[1]^2+acarm8[1]^2+acarm9[1]^2+acarm10[1]^2+acarm11[1]^2+acarm12[1]^2)/12 
RMSEarm <- (acarm1[2]+acarm2[2]+acarm3[2]+acarm4[2]+acarm5[2]+acarm6[2]+                                  #average RMSE 

  acarm7[2]+acarm8[2]+acarm9[2]+acarm10[2]+acarm11[2]+acarm12[2])/12 

MASEarm <-(acarm1[6]+acarm2[6]+acarm3[6]+acarm4[6]+acarm5[6]+acarm6[6]+                                   #average MASE 
 acarm7[6]+acarm8[6]+acarm9[6]+acarm10[6]+acarm11[6]+acarm12[6])/12 

 

 
# FORECAST COMBINATION ############################################ 

#Inverse MSE 

invets <- 1/MSEets 
invima <- 1/MSEima 

invarm <- 1/MSEarm 

invsum = invets+invima+invarm 
 

#The weights 

wets <- invets/invsum 
wima <- invima/invsum 

warm <- invarm/invsum 

 
# Individual point forecasts 
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fitets <- fets$mean 

fitima <- fima$mean 

fitarm <- farm$mean 

 
#The combined point forecast 

fcast <- wets*fitets+wima*fitima+warm*fitarm                                  #weighted forecasts 

fcast 
 

fitcombo <- wets*fets$fitted+wima*fima$fitted+warm*farm$fitted       #weighted fitted values 

fitcombo 
 

#Constructing 80% prediction interval 

etslo80<-fets$lower[,1]                                                                           #lower limit 80% 
imalo80<-fima$lower[,1] 

armlo80<-farm$lower[,1] 

lo80<- wets*etslo80+wima*imalo80+warm*armlo80 
low80<-ts(lo80, start=2013+3/12, frequency=12)                                                

 

etshi80<-fets$upper[,1]                                                                           #upper limit 95% 
imahi80<-fima$upper[,1] 

armhi80<-farm$upper[,1] 

hi80<- wets*etshi80+wima*imahi80+warm*armhi80 
high80<-ts(hi80,start=2013+3/12, frequency=12) 

 

##Constructing 95% prediction interval 
etslo95<-fets$lower[,2]                                                                             #lower limit 95% 

imalo95<-fima$lower[,2] 

armlo95<-farm$lower[,2] 
lo95<- wets*etslo95+wima*imalo95+warm*armlo95 

low95<-ts(lo95, start=2013+3/12, frequency=12)     

 
etshi95<-fets$upper[,2]                                                                           #upper limit 95% 

imahi95<-fima$upper[,2] 

armhi95<-farm$upper[,2] 
hi95<- wets*etshi95+wima*imahi95+warm*armhi95 

high95<-ts(hi95,start=2013+3/12, frequency=12) 

 
#Plot of combined forecast with 80% and 95% prediction intervals 

plot(data, lwd="2",xlab="", ylab="m2 prices (in NOK1000)", main="Combined forecast", 

   xlim=c(2011,2014+4/12), ylim=c(25,37)) 
lines(fcast, col="blue", lwd="2") 

lines(fitcombo, col="blue", lwd="1") 

lines(low80, col="grey", lwd="1") 
lines(high80, col="grey", lwd="1") 

lines(low95, col="red", lwd="1") 

lines(high95, col="red", lwd="1") 
 

 

#In-sample accuracy, weighted forecast 
fitcombo <- wets*fets$fitted+wima*fima$fitted+warm*farm$fitted 

comboerror <- fitcombo-data 

 
inRMSEcombo <- mean(comboerror^2)^0.5                                                                                       #In-sample RMSE, weighted forecast 

inMASEcombo <- sum(abs(comboerror))/((135/134)*sum(abs(data-lag(data))))                              #In-sample MASE, weighted forecast 
 

#Out-of-sample accuracy, weighted forecast 

etscast1 <- forecast(newets1,h=12) 
etscast2 <- forecast(newets2,h=12) 

etscast3 <- forecast(newets3,h=12) 

etscast4 <- forecast(newets4,h=12) 
etscast5 <- forecast(newets5,h=12) 

etscast6 <- forecast(newets6,h=12) 

etscast7 <- forecast(newets7,h=12) 
etscast8 <- forecast(newets8,h=12) 

etscast9 <- forecast(newets9,h=12) 

etscast10 <- forecast(newets10,h=12) 
etscast11 <- forecast(newets11,h=12) 

etscast12 <- forecast(newets12,h=12) 

 
imacast1 <- forecast(newima1,h=12) 

imacast2 <- forecast(newima2,h=12) 

imacast3 <- forecast(newima3,h=12) 
imacast4 <- forecast(newima4,h=12) 

imacast5 <- forecast(newima5,h=12) 

imacast6 <- forecast(newima6,h=12) 
imacast7 <- forecast(newima7,h=12) 
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imacast8 <- forecast(newima8,h=12) 

imacast9 <- forecast(newima9,h=12) 

imacast10 <- forecast(newima10,h=12) 

imacast11 <- forecast(newima11,h=12) 
imacast12 <- forecast(newima12,h=12) 

 

armcast1 <- forecast(newarm1,h=12) 
armcast2 <- forecast(newarm2,h=12) 

armcast3 <- forecast(newarm3,h=12) 

armcast4 <- forecast(newarm4,h=12) 
armcast5 <- forecast(newarm5,h=12) 

armcast6 <- forecast(newarm6,h=12) 

armcast7 <- forecast(newarm7,h=12) 
armcast8 <- forecast(newarm8,h=12) 

armcast9 <- forecast(newarm9,h=12) 

armcast10 <- forecast(newarm10,h=12) 
armcast11 <- forecast(newarm11,h=12) 

armcast12 <- forecast(newarm12,h=12) 

 
fit1 <- wets*etscast1$mean+wima*imacast1$mean+warm*armcast1$mean                                        #Weighted forecasts in the test set 

fit2 <- wets*etscast2$mean+wima*imacast2$mean+warm*armcast2$mean 

fit3 <- wets*etscast3$mean+wima*imacast3$mean+warm*armcast3$mean 
fit4 <- wets*etscast4$mean+wima*imacast4$mean+warm*armcast4$mean 

fit5 <- wets*etscast5$mean+wima*imacast5$mean+warm*armcast5$mean 

fit6 <- wets*etscast6$mean+wima*imacast6$mean+warm*armcast6$mean 
fit7 <- wets*etscast7$mean+wima*imacast7$mean+warm*armcast7$mean 

fit8 <- wets*etscast8$mean+wima*imacast8$mean+warm*armcast8$mean 

fit9 <- wets*etscast9$mean+wima*imacast9$mean+warm*armcast9$mean 
fit10 <- wets*etscast10$mean+wima*imacast10$mean+warm*armcast10$mean 

fit11 <- wets*etscast11$mean+wima*imacast11$mean+warm*armcast11$mean 

fit12 <- wets*etscast12$mean+wima*imacast12$mean+warm*armcast12$mean 
 

err1 <- sum((fit1-window(data, start=2011+3/12,end=2012+2/12))^2)/12                                             #RMSE calculation, weighted forecast 

err2 <- sum((fit2-window(data, start=2011+4/12,end=2012+3/12))^2)/12 
err3 <- sum((fit3-window(data, start=2011+5/12,end=2012+4/12))^2)/12 

err4 <- sum((fit4-window(data, start=2011+6/12,end=2012+5/12))^2)/12 

err5 <- sum((fit5-window(data, start=2011+7/12,end=2012+6/12))^2)/12 
err6 <- sum((fit6-window(data, start=2011+8/12,end=2012+7/12))^2)/12 

err7 <- sum((fit7-window(data, start=2011+9/12,end=2012+8/12))^2)/12 

err8 <- sum((fit8-window(data, start=2011+10/12,end=2012+9/12))^2)/12 
err9 <- sum((fit9-window(data, start=2011+11/12,end=2012+10/12))^2)/12 

err10 <- sum((fit10-window(data, start=2011+12/12,end=2012+11/12))^2)/12 

err11 <- sum((fit11-window(data, start=2012+1/12,end=2012+12/12))^2)/12 
err12 <- sum((fit12-window(data, start=2012+2/12,end=2013+1/12))^2)/12 

 

RMSEcombo <- (err1^0.5+err2^0.5+err3^0.5+err4^0.5+err5^0.5+err6^0.5+ 
          err7^0.5+err8^0.5+err9^2+err10^0.5+err11^0.5+err12^0.5)/12  

 

abserr1 <- sum(abs(fit1-window(data, start=2011+3/12,end=2012+2/12)))                                        #MASE calculation, weighted forecast 
abserr2 <- sum(abs(fit2-window(data, start=2011+4/12,end=2012+3/12))) 

abserr3 <- sum(abs(fit3-window(data, start=2011+5/12,end=2012+4/12))) 

abserr4 <- sum(abs(fit4-window(data, start=2011+6/12,end=2012+5/12))) 
abserr5 <- sum(abs(fit5-window(data, start=2011+7/12,end=2012+6/12))) 

abserr6 <- sum(abs(fit6-window(data, start=2011+8/12,end=2012+7/12))) 
abserr7 <- sum(abs(fit7-window(data, start=2011+9/12,end=2012+8/12))) 

abserr8 <- sum(abs(fit8-window(data, start=2011+10/12,end=2012+9/12))) 

abserr9 <- sum(abs(fit9-window(data, start=2011+11/12,end=2012+10/12))) 
abserr10 <- sum(abs(fit10-window(data, start=2011+12/12,end=2012+11/12))) 

abserr11 <- sum(abs(fit11-window(data, start=2012+1/12,end=2012+12/12))) 

abserr12 <- sum(abs(fit12-window(data, start=2012+2/12,end=2013+1/12))) 
 

MAS1 <- abserr1/((111/(111-1))*sum(abs(diff(window(data, start=2002+0/12, end=2011+2/12))))) 

MAS2 <- abserr2/((111/(111-1))*sum(abs(diff(window(data, start=2002+1/12, end=2011+3/12))))) 
MAS3 <- abserr3/((111/(111-1))*sum(abs(diff(window(data, start=2002+2/12, end=2011+4/12))))) 

MAS4 <- abserr4/((111/(111-1))*sum(abs(diff(window(data, start=2002+3/12, end=2011+5/12))))) 

MAS5 <- abserr5/((111/(111-1))*sum(abs(diff(window(data, start=2002+4/12, end=2011+6/12))))) 
MAS6 <- abserr6/((111/(111-1))*sum(abs(diff(window(data, start=2002+5/12, end=2011+7/12))))) 

MAS7 <- abserr7/((111/(111-1))*sum(abs(diff(window(data, start=2002+6/12, end=2011+8/12))))) 

MAS8 <- abserr8/((111/(111-1))*sum(abs(diff(window(data, start=2002+7/12, end=2011+9/12))))) 
MAS9 <- abserr9/((111/(111-1))*sum(abs(diff(window(data, start=2002+8/12, end=2011+10/12))))) 

MAS10 <- abserr10/((111/(111-1))*sum(abs(diff(window(data, start=2002+9/12, end=2011+11/12))))) 

MAS11 <- abserr11/((111/(111-1))*sum(abs(diff(window(data, start=2002+10/12, end=2011+12/12))))) 
MAS12 <- abserr12/((111/(111-1))*sum(abs(diff(window(data, start=2002+11/12, end=2012+1/12))))) 

 

MASEcombo <- (MAS1+MAS2+MAS3+MAS4+MAS5+MAS6+MAS7+MAS8+MAS9+MAS10+MAS11+MAS12)/12 


