The Holocene

Sub sea surface temperatures in the Polar North Atlantic during the Holocene: Planktic foraminiferal Mg/Ca temperature reconstructions

Journal:	The Holocene
Manuscript ID:	HOL-13-0053.R1
Manuscript Type:	Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Aagaard-Sørensen, Steffen; University of Tromsø, Department of Geology Husum, Katrine; University of Tromsø, Department of Geology Hald, Morten; University of Tromsø, Department of Geology Marchitto, Thomas; University of Colorado, Department of Geological Sciences and Institute of Arctic and Alpine Research Godtliebsen, Fred; University of Tromsø, Department of Mathematics and Statistics
Keywords:	Paleoceanography, Polar North Atlantic, Fram Strait, Atlantic water, Trace elements, sub SST reconstruction
Abstract:	Holocene sea surface temperatures in the eastern Fram Strait are reconstructed based on Mg/Ca ratios measured on the planktic foraminifer <i>Neogloboquadrina pachyderma</i> (sin). The reconstructed sub sea surface temperatures (sSST _{Mg/Ca}) fluctuate markedly during the earliest Holocene at ~11.7–10.5 ka BP. This probably is in response to the varying presence of sea ice and deglacial melt water. Between ~10.5–7.9 ka BP the sSST _{Ma/Ca} values are relatively high (~4°C) and more stable reflecting high insolation and intensified poleward advection of Atlantic water. After 7.9 ka BP the sSST _{Ma/Ca} decline to an average of ~3°C throughout the mid-Holocene. These changes can be attributed to a combined effect of reduced poleward oceanic heat advection and a decline in insolation as well as a gradually increase and vary between 2.1–5.8°C from ~2.7 ka BP to the present. This warming is in contrast to declining late Holocene insolation and may instead be explained by factors including increased advection of oceanic heat to the Arctic region possibly insulated beneath a widening freshwater layer in the northern North Atlantic in conjunction with a shift in calcification season and/or depth habitat of <i>N. pachyderma</i> (sin).

SCHOLARONE[™] Manuscripts

Page 1 of 34

1		1
2 3	1	Sub sea surface temperatures in the Polar North Atlantic during the Holocene:
4 5	C	Displation for a miniformal Ma/Contamportation reasonativations
6	2	Flanktic foralimiteral Mg/Ca temperature reconstructions
8	3	
9 10 11	4	S. Aagaard-Sørensen ^{1*} , K. Husum ¹ , M. Hald ¹ , T. Marchitto ² and F. Godtliebsen ³
12 13	5	
14 15	6	¹ Department of Geology, University of Tromsø, 9037 Tromsø, Norway
16 17	7	
18 19 20	8	² Department of Geological Sciences and Institute of Arctic and Alpine Research, University
20 21	9	of Colorado, Campus Box 450, Boulder, Colorado 80309, USA
22	10	
24 25 26	11	³ Department of Mathematics and Statistics, University of Tromsø, 9037 Tromsø, Norway
27 28	12	
29 30 31	13	
32	14	
34 35	15	*Author for correspondence: (e-mail: <u>Steffen.Sorensen@uit.no</u>)
36 37	16	
38 39	17	Key words: Paleoceanography, Polar North Atlantic, Fram Strait, Atlantic water, Trace
40 41 42	18	elements, sub SST reconstruction
43 44	19	
45 46	20	
47 48	21	
49 50	22	
51 52 53	23	
54 55	24	
56 57 58 59 60	25	

3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
20
21
28
29
30
31
32
22
33
34
35
36
37
38
30
10
4U 44
41
42
43
44
45
46
<u>1</u> 7
-+1 10
48
49
50
51
52
53
54
55
00
56
57
58
59
60

1 2

26 Abstract

27 Holocene sea surface temperatures in the eastern Fram Strait are reconstructed based on 28 Mg/Ca ratios measured on the planktic foraminifer *Neogloboquadrina pachyderma* (sin). The 29 reconstructed sub sea surface temperatures (sSST_{Mg/Ca}) fluctuate markedly during the earliest 30 Holocene at $\sim 11.7 - 10.5$ ka BP. This probably is in response to the varying presence of sea 31 ice and deglacial melt water. Between ~10.5–7.9 ka BP the $sSST_{Mg/Ca}$ values are relatively 32 high (~4°C) and more stable reflecting high insolation and intensified poleward advection of 33 Atlantic water. After 7.9 ka BP the sSST_{Mg/Ca} decline to an average of ~3°C throughout the 34 mid-Holocene. These changes can be attributed to a combined effect of reduced poleward 35 oceanic heat advection and a decline in insolation as well as a gradually increased influence 36 of eastward migrating Arctic Water. The sSST_{Mg/Ca} increase and vary between 2.1–5.8°C 37 from ~ 2.7 ka BP to the present. This warming is in contrast to declining late Holocene 38 insolation and may instead be explained by factors including increased advection of oceanic 39 heat to the Arctic region possibly insulated beneath a widening freshwater layer in the 40 northern North Atlantic in conjunction with a shift in calcification season and/or depth habitat 41 of *N. pachyderma* (sin).

42 Introduction

43 In order to elucidate climate changes observed in Arctic environments today, it is necessary 44 to improve the knowledge of long term natural climatic and oceanographic variations in the 45 region (IPCC, 2007). At present, northward advection of Atlantic Water into the Nordic Seas 46 and on to the Arctic is the main oceanic source of heat and salt for the Arctic Ocean (Schauer 47 et al., 2004). During the Holocene other forcing mechanisms such as long-term orbital 48 changes associated with insolation variability (Berger and Loutre, 1991), changes in 49 atmospheric pressure systems resulting in displacement of primary wind patterns (North 50 Atlantic Oscillation index) and alteration of Atlantic Water flux into the Nordic Seas (Hurrell,

HOLOCENE

51	1995; Nesje et al., 2001) have been suggested to have a large impact on climatic and
52	oceanographic development in the Nordic Seas and the Arctic. Paleoceanographic variability,
53	including temporal and spatial variation of Atlantic Water flux, temperature and salinity has
54	previously been studied using a range of different proxies based on planktic foraminifera in
55	the Nordic Seas during the Holocene. These include stable oxygen and carbon isotopes in
56	foraminiferal tests (e.g. Bauch et al., 2001; Rasmussen et al., 2007) and distribution patterns
57	of planktic foraminifera and transfer functions (e.g. Hald et al., 2007). Reconstructions of
58	SST using transfer functions in the Arctic may be hampered by the databases representing
59	modern conditions. The databases have a limited geographical coverage in the Arctic
60	meaning that not all environmental gradients of the region are represented (e.g. Husum and
61	Hald, 2012; Kucera et al., 2005). Moreover, stable oxygen isotopes recorded within
62	for a miniferal calcite inherently reflect both the temperature and the $\delta^{18}O$ signal of ambient
63	seawater (e.g. Shackleton, 1974). Therefore, additional proxies for paleo-SST are needed to
64	elucidate cold-end temperature variability. Recent studies have utilized Mg/Ca ratios in
65	planktic for aminifera to reconstruct sub sea surface temperatures (s SST $_{Mg/Ca}$) in the Fram
66	Strait during the Late Glacial/Holocene transition and the late Holocene (Aagaard-Sørensen
67	et al., submitted; Spielhagen et al., 2011). Here, we present the first record of $sSST_{Mg/Ca}$ from
68	the entire Holocene in the high Arctic based on trace elements. A sediment core located under
69	the present day inflow of Atlantic Water, carried within the West Spitsbergen Current
70	(WSC), has been investigated (Figure 1A). Trace element analyses have been conducted on
71	the planktic foraminifer Neogloboquadrina pachyderma (sin). Mg/Ca ratios were used to
72	reconstruct sub surface water temperatures ($sSST_{Mg/Ca}$) representing the primary habitat depth
73	and season of calcification for N. pachyderma (sin).
74	In addition, %CaCO ₃ and %TOC variations in the sediment were used to assess potential
75	preservation changes of foraminiferal calcite in the record.

4		

76 Oceanographic setting

77	Atlantic Water is advected northward in the North Atlantic Current (NAC; T>2°C, S>35)
78	(Hopkins, 1991) and is transported into the Nordic Seas across the Iceland-Faroes-Scotland
79	ridge systems at ~62°N (Hansen and Østerhus, 2000) (Figure 1A). At ca. 70°N the water
80	mass bifurcates with one branch entering the SW Barents Sea while the other branch
81	continues north along the west Barents Sea and Spitsbergen slopes as the West Spitsbergen
82	Current (WSC) (Schauer et al., 2004) (Figure 1A). Atlantic Water (T: 3 to 7°C; S: 34.9 to
83	35.2) is carried by the WSC into the Arctic Ocean in the eastern part of the Fram Strait where
84	it occupies the upper ~700 meters of the water column (Schauer et al., 2004; Walczowski et
85	al., 2005) (Figure 1A). In the Fram Strait the Atlantic Water submerges at ~78°N and partly
86	turns back to the south (Bourke et al., 1988) underneath the southward flowing East
87	Greenland Current (Rudels et al. 2005) (Figure 1A). The remaining Atlantic Water disperses
88	into several sub currents in the Arctic Ocean (Manley, 1995).
89	In the eastern Fram Strait modern temperatures of the surface mixed layer (0 to 25 m
90	water depth) reach 8.2°C and a salinity up to 34.95 (August 2006) (Figure 1B). Below, from
91	25 to 550 m water depth Atlantic Water (T~4°C; S=35 to 35.15) occupies the water column
92	and overlays Atlantic Intermediate Water (T>0°C; S~34.9). Deep Water is found from 900 m
93	water depth (T<0°C, S~34.9).
94	Material and methods
95	Kastenlot core MSM05/5-712-2 (78°54.94'N, 06°46.03'E; 1488 m water depth; 894 cm
96	length) was collected during a cruise with RV "Maria S. Merian" in August 2007 at the West
97	Spitsbergen slope, eastern Fram Strait (Figure 1A).
98	<u>Age model</u>
99	The age model of MSM05/5-712-2 was constructed on the basis of 10 AMS 14 C dates and
100	mean of the 2σ age ranges were used as tie points in the linear interpolation (Table 1, Figure

101	2). The AMS ¹⁴ C dates were carried out on planktic foraminiferal tests (<i>N. pachyderma</i> (sin))
102	from the upper 441 cm of the sediment core (Giraudeau (in prep); Werner et al., 2013).
103	Radiocarbon dates were calibrated with Calib version 6.0 (Reimer et al., 2005; Stuiver et al.,
104	2005) using the marine calibration curve Marine09 (Hughen et al., 2004; Reimer et al., 2009).
105	The standard marine reservoir correction of 400 years (R) was used in all calibrations. The
106	local reservoir age ($\Delta R=151\pm51$) from Magdalenefjorden, Svalbard was used in the
107	calibration (Mangerud et al., 2006; Mangerud and Gulliksen, 1975) (Table 1). All calibrated
108	ages are an expression of years before present (1950). The Younger Dryas/Holocene
109	boundary (11.75 ka BP) used on figures follows Walker et al. (2009).
110	Trace element analysis and contaminants
111	The sediment core was sub sampled in 1 cm thick slices, and then freeze dried and wet sieved
112	trough 1 mm, 100 μ m and 63 μ m mesh sizes. Trace element analysis was performed on the
113	planktic foraminifer Neogloboquadrina pachyderma (sinistral coiling) (ca. 50 tests/sample)
114	and the trace element ratios Mg/Ca, Mn/Ca, Fe/Ca, and Al/Ca were measured (Figure 3 and
115	4). Tests were picked at 2 cm and 3 cm resolution in the upper part (0 to 210 cm) and lower
116	part (210 to 441 cm) of the sediment core, respectively, resulting in a temporal resolution of
117	~36 to 120 yr/sample. Given that partial dissolution and contamination of tests can bias the
118	trace element analysis, dirty and sediment filled tests or tests visibly influenced by dissolution
119	(i.e. broken tests or tests with missing chambers) were avoided. Furthermore, tests were
120	picked within a relatively narrow size range, with minimum and maximum length of the tests
121	ranging from ca. 225 to 290 μ m, to reduce size dependent bias on the Mg/Ca measurements
122	(Elderfield et al., 2002). Prior to analysis the foraminiferal tests were crushed and reductively
123	(anhydrous hydrazine) and oxidatively (H_2O_2) cleaned (Boyle and Keigwin, 1985; Boyle and
124	Rosenthal, 1996). Subsequently the samples were analyzed by magnetic-sector single
125	collector ICP-MS, on a Thermo-Finnigan Element2 at the Litmann laboratory, University of

2
2
3
4
5
6
7
1
8
9
10
11
40
12
13
14
15
16
10
17
18
19
20
24
21
22
23
24
25
20
26
27
28
20
20
30
31
32
33
24
34
35
36
37
20
30
39
40
41
42
40
43
44
45
46
17
41
48
49
50
51
50
ບZ
53
54
55
56
50
5/
58
59
60
~~

126	Colorado operating with a long-term 1σ precisions of 0.54% for Mg/Ca measurements
127	(Marchitto, 2006). Replicate analysis was carried out for approximately every 30 samples.
128	The average reproducibility of sample splits was $\pm 0.039 \text{ mmol/mol}$ (n=4) in regards to
129	Mg/Ca which on average is below <5% difference between duplicate measurements (Figure
130	4C). Fe, Al and Mn are tracers of contaminating phases that might bias the Mg/Ca ratios
131	measured in foraminiferal calcite (Barker et al., 2003). Fe and Al are tracers of detrital
132	material contamination (silicate minerals) and Mn is tracer of secondary diagenetic Mn-rich
133	carbonate coating (Boyle, 1983). Weak correlation between Mg and Fe ($R^2 \sim 0.26$) and Mn
134	$(R^2 \sim 0.21)$ is observed whereas Al shows no significant correlation to Mg $(R^2 \sim 0.03)$ (Figure
135	3A, B, C). Samples with >100 µmol/mol of Fe, Al and Mn (Barker et al., 2003) in addition to
136	samples with <5 µg CaCO ₃ recovery (Marchitto, 2006) were omitted (Figure 4C).
137	Water temperature reconstructions
138	Temperature of the ambient sea water is considered to be the primary controlling factor on
139	Mg/Ca ratios recorded in foraminiferal calcite (Elderfield and Ganssen, 2000; Lea et al.,
140	1999; Nürnberg et al., 1996). The thermodynamic control on the Mg uptake into
141	foraminiferal calcite shows positive exponential relation between temperature and Mg uptake
142	which approximates a linear relationship at narrow temperature ranges (Elderfield and
143	Ganssen, 2000; Kozdon et al., 2009; Kristjánsdóttir et al., 2007).
144	Sub sea surface temperatures ($sSST_{Mg/Ca}$) were calculated using Mg/Ca ratios and the species
145	specific (<i>N. pachyderma</i> (sin)) linear equation of Kozdon et al. (2009) (Figure 4, 5, 6):
146	Mg/Ca (mmol mol ⁻¹) = 0.13 (± 0.037) * T + 0.35 (± 0.17) (Eq. 1)
147	This equation is based on cross calibrated Mg/Ca and $\delta^{44/40}$ Ca proxy signals of <i>N</i> .
148	pachyderma (sin) from Nordic Sea core top samples and produces reliable $sSST_{Mg/Ca}$
149	estimates at temperatures above ~3°C (Kozdon et al., 2009). It must be cautioned that the

HOLOCENE

	7
150	equation is based on samples that have not undergone the reductive cleaning step (Kozdon et
151	al., 2009).
152	<u>SiZer analysis</u>
153	SiZer (Significance of Zero Crossings of the Derivative) analysis described by Chaudhuri and
154	Marron (1999) was performed on the $sSST_{Mg/Ca}$ data to reveal significant features in the
155	proxy record (Figure 6C). The analysis has previously been applied to Arctic paleo proxy
156	records to reveal significant features at particular levels of resolution and eliminating
157	insignificant natural variability (e.g. Hald et al., 2004; Wilson et al., 2011). The method
158	assumes that individual values are independent random variables. The analyses smooth the
159	data from minimum to maximum resolution and generate a SiZer map which examines the
160	data across a range of resolutions (bandwidth, h) and uses color codes to classify the
161	derivatives of the smoothed data as significantly decreasing, increasing or exhibiting no
162	significant change (Figure 6C).
163	Results
164	The record of Mg/Ca ratios measured on N. pachyderma (sin) has an average value of 0.809
165	mmol/mol (n = 152; 1σ = 0.11) corresponding to an average temperature of 3.5°C (Figure
166	4C, D). Measurements of Mg/Ca ratios showing possible sample contamination have been
167	removed from the record (Figure 4C, D).
168	During the earliest Holocene the $sSST_{Mg/Ca}$ values are relatively high and fluctuating between
169	1.9 and 5.2°C (Figure 4D). Between ~10.5–7.9 ka BP the $sSST_{Mg/Ca}$ are relatively high
170	values with an average of ~4°C (Figure 4D). After ~7.9 ka BP the $sSST_{Mg/Ca}$ decline rapidly
171	to <3°C. The mid Holocene is characterized by two cold periods, ~7.9–6 ka BP and 5.2–2.7
172	ka BP, with an average $sSST_{Mg/Ca}$ of $\sim 3^{\circ}C$ bracket an interval with slightly elevated
173	$sSST_{Mg/Ca}$ (~3.5°C). During the Late Holocene the $sSST_{Mg/Ca}$ values gradually increase

	8
174	towards the present. The highest values averaging \sim 5°C are recorded after \sim 1 ka BP (Figure
175	4D).
176	The SiZer analysis identifies a multi-millennial $sSST_{Mg/Ca}$ decline from ~11.7–6 ka BP with
177	a significant sub-millennial decrease around 7.9 ka BP (Figure 6C). From ~6–3 ka BP no
178	significant change is observed. A significant warming on multi decadal to multi millennial
179	time scale is initiates at ~3 ka BP (Figure 6C).
180	Discussion
181	Assessment of reconstructed sSST _{Mg/Ca} and calcium carbonate preservation state
182	During analysis the foraminiferal calcite undergoes reductive and oxidative cleaning (see
183	material and methods for details). The reductive cleaning decreases the Mg/Ca ratio by up to
184	10-15 % potentially lowering the reconstructed $sSST_{Mg/Ca}$ (Barker et al., 2003).
185	Comparison of reconstructed $sSST_{Mg/Ca}$ with summer $sSST_{SIMMAX}$ based on foraminiferal
186	distribution patterns in the same core (Werner et al., 2013) shows similar temperature ranges
187	of 1.9 to 5.8°C and 0.9 to 6.1°C, respectively (Figure 5C). It should be noted that below the
188	lower limit of sensitivity for Eq. 1 (< 3°C) (Kozdon et al., 2009) the Mg/Ca method does not
189	reproduce comparable low temperature estimates as the sSST _{SIMMAX} (Werner et al., 2013)
190	(Figure 5C). In order to estimate the potential impact of Mg loss during reductive cleaning
191	(Barker et al., 2003) we artificially increased the Mg/Ca ratio by 15% in figure 5C. The
192	resulting $sSST_{Mg/Ca+15\%}$ calculated using Eq. 1 (Kozdon et al., 2009) shows increases of 0.7 to
193	1.3° C generally producing higher estimates than sSST _{SIMMAX} (Figure 5C). Therefore the
194	potential Mg loss during the reductive cleaning (i.e. lower reconstructed temperature) in our
195	record is considered of minor importance.
196	Further, Mg/Ca ratios were measured in core-top <i>N. pachyderma</i> (sin) (Core MSM5/5-712-1)
197	obtained from same core location as MSM5/5-712-2 (Speilhagen et al., 2011) (Figure 1). The
198	material underwent the same cleaning procedure as applied in the present study (Spielhagen

199	et al., 2011). The core-top $sSST_{Mg/Ca}$ is ~5.1°C when calculated using the temperature
200	equation of Elderfield & Ganssen (2000) (Speilhagen et al., 2011) (Figure 5B) and ~3.7°C
201	when recalculated using Eq.1 (Figure 5B) (Kozdon et al., 2009). Both values are within or
202	close to the modern temperature range (August 2009) observed at the main N. pachyderma
203	(sin) habitat depth of 50-200 m water depth (Figure 1B, 5C). These findings further show that
204	any potential Mg loss during cleaning procedures is of minor importance for the
205	reconstructed temperatures.
206	Studies have shown that dissolution of calcium carbonate is a prominent feature in paleo-
207	records from the Fram Strait especially after ~8 ka BP (Bauch et al., 2001; Rasmussen et al.,
208	2007; Zamelczyk et al., 2012). Post mortem dissolution of foraminiferal calcite may
209	preferentially remove Mg rich parts from foraminiferal tests and consequently bias Mg/Ca
210	ratio based temperature reconstructions towards lower, colder values (Brown and Elderfield,
211	1996; Johnstone et al., 2011; Rosenthal et al., 2000). In order to minimize the risk of
212	measuring on material influenced by dissolution only the most pristine test were picked for
213	trace element analysis (see material and methods section for more details). Further, %CaCO ₃
214	and %TOC variations in the sediment can be used to tentatively assess potential preservation
215	changes of foraminiferal calcite in the record (Figure 4A, B). The sediment holds low content
216	of CaCO ₃ (\leq 5 wt.%) and high content of total organic carbon (%TOC) prior to ~10 ka BP
217	(Aagaard et al., submitted) (Figure 4A, B) which may suggest potential post-depositional
218	dissolution due to respiratory release of CO ₂ and decrease of pore water pH during organic
219	material degradation within the sediment (e.g. Archer et al., 1989; Emerson and Bender,
220	1981; Huber et al., 2000). After ~10 ka BP to the present high %CaCO3 and low %TOC
221	generally indicates good preservation potential, apart from the mid-Holocene (~6-3 ka BP)
222	where relatively low %CaCO ₃ and moderate %TOC content has been recorded (Müller at al.,
223	2012). This could indicate preservation problems although to a lesser extent than during the

1		
2 3 4	224	earliest Holocene (4 A,B). To what extent preservation/dissolution has influenced the Mg/Ca
4 5 6	225	ratios recorded by N. pachyderma (sin) is not possible to quantify from the present set of
7 8	226	proxies. However, it cannot be excluded that the preservation changes of foraminiferal tests
9 10	227	during the Holocene may have influenced the reconstructed $sSST_{Mg/Ca}$ values.
11 12	228	
13 14 15	229	Holocene sSST variability
15 16 17	230	Based on the $sSST_{Mg/Ca}$ record and significant changes identified by the SiZer analysis the
18 19	231	paleorecord of core MSM5/5-712-2 can be divided into three intervals: The relatively warm
20 21	232	early (11.7–7.9 ka BP), cold mid (7.9–2.7 ka BP) and warm late (2.7–0.3 ka BP) Holocene
22 23	233	(Figure 4, 6).
24 25 26	234	Early Holocene (11.7–7.9 ka BP)
20 27 28	235	Previous studies from the Fram Strait have shown that the early Holocene was characterized
29 30	236	by a strong influence of sea ice, icebergs and glacial melt water prior to ~ 10.5 ka BP
31 32	237	(Aagaard-Sørensen et al., submitted; Ebbesen et al., 2007; Rasmussen et al., 2007;
33 34	238	Ślubowska-Woldengen et al., 2005). The low sSST _{Mg/Ca} recorded at ~11–11.3 ka BP
35 36 37	239	(represented by 3 data points) (Figure 6D) possibly reflects a cooling associated with the brief
38 39	240	but distinct climatic event, the Preboreal Oscillation (PBO). The PBO has been documented
40 41	241	in both marine and terrestrial records in and around the Nordic Seas (e.g. Björck et al., 1997;
42 43	242	Hald and Hagen, 1998; Husum and Hald, 2002; Rasmussen, SO et al., 2007). The PBO has
44 45	243	been attributed to increased deglacial melt water fluxes into the Nordic and Arctic Seas
40 47 48	244	resulting in hampered heat transport via the North Atlantic conveyor and enhanced sea ice
49 50	245	export into the Fram Strait (Fisher et al., 2002; Hald and Hagen 1998).
51 52	246	In the present record the highest early Holocene $sSST_{Mg/Ca}$ (average ~4°C) is found between
53 54	247	~10.5 to 7.9 ka BP (Figure 6D). A marked summer $sSST_{Mg/Ca}$ increase initiated at ~11 ka BP
55 56 57 58 59	248	and subsequent peak values between $\sim 10.5 - 8.7$ ka BP has been recorded along the Barents
00		

Page 11 of 34

l	1		

249	Sea and West Spitsbergen slopes via planktic for aminiferal transfer functions ($sSST_{Transfer}$)
250	(Ebbesen et al., 2007; Hald et al., 2007; Husum and Hald, 2012; Sarnthein et al., 2003)
251	(Figure 6F, G). The summer sSST increase along the West Spitsbergen slope is part of a
252	south to north time-transgressive development in the Nordic Seas, where the remnant cold
253	water and sea ice gradually was displaced by Atlantic Water (Hald et al., 2007).
254	Risebrobakken et al. (2011) argue that strong melt water discharge resulted in weak
255	ventilation of the Nordic Seas until 11 ka BP. A buildup of an Atlantic subsurface reservoir
256	of heat and salt eventually resulted in rejuvenation of strong and deep overturning circulation
257	and intensified early Holocene northward heat advection into the Nordic Seas peaking at 10
258	ka BP (Risebrobakken et al., 2011). Predominantly positive North Atlantic Oscillation (NAO)
259	index values reconstructed by Nesje et al. (2001) also support stronger northward advection
260	of Atlantic Water during the early Holocene (Hurrell, 1995). The NAO index is defined as
261	the atmospheric pressure difference between Iceland and the Azores with positive index
262	values indicating a larger pressure difference, resulting in stronger westerlies which increase
263	wind driven Atlantic Water influx to the Nordic Seas (Hurrell, 1995).
264	Within the significant multi-millennial $\mathrm{sSST}_{Mg/Ca}$ decline observed throughout the early part
265	of the record a faster multi-centennial decline is observed following the relatively high early
266	Holocene $sSST_{Mg/Ca}$ from ~10.5 to 7.9 ka BP (Figure 6C, D). An early to middle Holocene
267	cooling has been recorded in different proxy records in the Nordic Sea including distribution
268	patterns of diatoms (Birks and Koç, 2002; Koç et al., 1993) and benthic and planktic
269	foraminifera (Hald and Aspeli, 1997; Hald et al., 2004; Ebbesen et al., 2007; Knudsen et al.,
270	2004; Rasmussen et al., 2007; Werner et al., 2013). The observed pattern could be a
271	reflection of the high and declining summer insolation (Berger and Loutre, 1991) (Figure
272	6A). However, studies suggest that insolation changes primarily influence the uppermost part
273	(summer mixed layer down to \sim 20-40 m water depth) of the water column (e.g. Andersson et

274	al., 2009; Risebrobakken et al., 2011). Since our data are derived from the subsurface
275	dwelling <i>N. pachyderma</i> (sin) (Kozdon et al., 2009; Simstich et al., 2003; Volkmann, 2000)
276	the observed $sSST_{Mg/Ca}$ decline (Figure 6C, D) probably only partly reflects the declining
277	insolation forcing (Berger and Loutre, 1991) (Figure 6A), but also indicates a gradual
278	reduction in northbound Atlantic Water transport as suggested by Risebrobakken et al.
279	(2011).
280	<u>Mid Holocene (7.9–2.7 ka BP)</u>
281	This period is characterized by the lowest $sSST_{Mg/Ca}$ recorded by <i>N. pachyderma</i> (sin). The
282	SiZer analysis identifies no significant changes apart from the overall multi-millennial early
283	Holocene decline ending at ~6 ka BP and initial increase identified at ~3 ka BP (Figure 6C,
284	D). This cold interval may be partly driven by continued decrease in insolation (Berger and
285	Loutre, 1991) (Figure 6A) and/or weakened poleward advection of Atlantic Water as
286	indicated by the frequently negative phase of the NAO during the mid-Holocene (Hurrell,
287	1995; Nesje et al., 2001). Hald et al. (2007) suggest that increased influence of Arctic Water,
288	in response to lowered insolation and reduced oceanic heat advection may have caused the
289	mid Holocene cooling and low $sSST_{Transfer}$ along the Barents Sea - and west Spitsbergen
290	slopes (Ebbesen et al., 2007; Husum and Hald, 2012; Sarnthein et al., 2003) (Figure 6F, G).
291	During the early part of the mid-Holocene, before ~7 ka BP, relatively high phytoplankton-
292	derived biomarker content points to high surface water productivity in the eastern Fram Strait
293	(Müller et al., 2012). This suggests continued influence of the still relatively high insolation
294	on the surface water mass (Müller et al., 2012). However, within the sub-surface water
295	masses the reduced $\mathrm{sSST}_{Mg/Ca}$ values suggest an increased influence of Arctic water almost
296	900 years earlier from ~7.9 ka BP (Figure 6D). After ~7 ka BP, continued low $sSST_{Mg/Ca}$
297	recorded by N. pachyderma (sin) (Figure 6D) are in agreement with weakened poleward
298	advection of Atlantic Water (Hald et al., 2007; Risebrobakken et al., 2011) and cooling of the

HOLOCENE

surface water mass resulting in lowered productivity and extension of (winter/spring) sea ice (Müller et al., 2012). Faunal distributions in core MSM5/5-712-2 indicate relatively strong Atlantic Water advection until \sim 5.2 ka following a slight weakening after \sim 8 ka BP (Werner et al., 2013). Fluctuating $sSST_{SIMMAX}$ values during this period, including cooling events at 6.9 and 6.1 ka BP, are also tied to repeated advances and retreats of the sea-ice margin connected to south east movement of the Arctic Front separating Atlantic and Arctic waters masses (Werner et al., 2013) (Figure 6E). Prevailing cold conditions seen in the sSST_{Mg/Ca} and sSST_{SIMMAX} reconstructions and supported by predominantly heavy δ^{18} O values measured on *N. pachyderma* (sin) occur from 5.2 to 2.7 ka BP (Werner et al., 2013) (Figure 5A, 6D, E). In combination with increased IP₂₅ concentrations (sea ice biomarker) the data indicate more severe sea ice conditions and stronger influence from Arctic water during this period (Müller et al., 2012; Werner et al., 2013) (Figure 6B). The overall similar trend seen in the $sSST_{Mg/Ca}$ and $sSST_{SIMMAX}$ suggests that both reconstructions reflect summer conditions (Figure 6D, E). The lower amplitude observed in the sSST_{Mg/Ca} may be related to calcification depth of *N. pachyderma* (sin) as the sSST_{SIMMAX} reconstructs temperatures for 50 m water depth whereas sSST_{Mg/Ca} probably reflects a somewhat deeper water depth. The modern main habitat depth of N. pachyderma (sin) is 50 to 200 m water depth in Fram Strait (Volkmann, 2000). At the ice margin and in areas affected by warm Atlantic water masses the main habitat center at ~ 100 m water depth (Volkmann, 2000). In ice covered and cold Polar Water masses the average habitat depth lies between 50-100 m (Volkmann, 2000).

Late Holocene (2.7–0.3 ka BP)

321 The late Holocene is characterized by significantly increasing $sSST_{Mg/Ca}$ toward the present 322 (Figure 6C, D). The highly fluctuating $sSST_{Mg/Ca}$ signal has values intermittently higher than

323 those recorded during the early Holocene (Figure 6D). During this time, more severe and

3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
33
24
34
35
36
37
38
39
40
41
+ 1 ∕\?
42
43
44
45
46
47
48
49
50
51
51
ວ∠ ≂ົ
53
54
55
56
57
58
59
60
111

1 2

> 324 gradually increasing ice coverage in the eastern Fram Strait has been inferred from elevated 325 sediment IP₂₅ and IRD contents (Müller et al., 2012) (Figure 6B). In addition, in-phase 326 fluctuations of IP₂₅ and phytoplankton marker contents have been linked to periods of a 327 rapidly advancing and retreating sea ice margin (Müller et al., 2012). The late Holocene 328 expansion of sea ice and general cooling of the surface water masses have also been observed 329 in other sea surface proxy records from the Nordic Seas (e.g. Andersen et al., 2004; Koç et 330 al., 1993; Koç Karpuz and Jansen, 1992) and is in line with the low and declining Northern 331 hemispheric insolation (Berger and Loutre, 1991) (Figure 6A). However, the present sSST_{Mg/Ca} reconstruction and other subsurface proxy records derived from cores situated 332 333 under the axis of northward Atlantic Water flow in the Nordic Seas register a late Holocene 334 temperature increase that is in contrast to the reduced insolation forcing (Andersson et al., 335 2009; Dolven et al., 2002; Ebbensen et al., 2007; Risebrobakken et al., 2003; Sarnthein et al., 336 2003; Werner et al., 2013) (Figure 6E-H). Increased poleward Atlantic Water advection as 337 indicated by the predominantly positive phase of the NAO after ~ 2 ka BP (Nesje et al., 2001; 338 Olsen et al., 2012) may partially explain the observed late Holocene subsurface warming 339 (Figure 6D). Furthermore, freshening and cooling of the surface waters due to melting of sea 340 ice and/or icebergs could have resulted in migration of *N. pachyderma* (sin) to a deeper and 341 possibly warmer part of the water column where conditions were more favorable (Kozdon et 342 al., 2009; Simstich et al., 2003). A gradual migration N. pachyderma (sin) to deeper, less 343 ventilated water masses is inferred by Werner et al. (2013) on the basis of gradually decreasing δ^{13} C values after ~3.5 ka BP. Werner et al. (2013) speculate that the light δ^{13} C 344 345 values observed in MSM5/5-712-2 and other records in the northern North Atlantic indicate a 346 wider distribution of a sea-ice derived freshwater layer in the Nordic Seas during the late 347 Holocene. We further speculate that northbound Atlantic water masses, as a consequence of a 348 widespread and possibly expanding melt water layer, could have submerged further south

15

HOLOCENE

2
3
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
21
22
22
∠3 24
24
25
26
27
28
29
30
31
22
3Z 22
33
34
35
36
37
38
39
40
41
12
-12 /2
40
44
45
46
47
48
49
50
51
52
52
55
Э4
55
56
57
58
59

349	thus becoming gradually more insulated during the late Holocene. This could partially
350	explain the increasingly warmer $sSST_{Mg/Ca}$ observed in the present record (Figure 6D) and
351	trend towards less ventilated lighter $\delta^{13}C$ observed by Werner et al. (2013). Additionally, the
352	low insolation (Berger and Loutre, 1991) (Figure 6A) and the increasingly severe sea ice
353	conditions in the eastern Fram Strait (Müller et al., 2012) (Figure 6B) may have facilitated a
354	shift in the growing season for phytoplankton and foraminifera towards a gradually warmer
355	part of the season (e.g. Farmer et al., 2008). In the Arctic Ocean the highest production and
356	thus main calcification season of <i>N. pachyderma</i> (sin) is observed in August and is likely
357	linked to phytoplankton blooms (Kohfeld et al., 1996; Volkmann, 2000).
358	Conclusions
359	Mg/Ca element ratios measured on N. pachyderma (sin) have been used to reconstruct
360	Holocene sub sea surface temperatures ($sSST_{Mg/Ca}$) on the West Spitsbergen Slope, eastern
361	Fram Strait.
362	A tentative assessment of foraminiferal calcite preservation based on %CaCO ₃ and %TOC
363	contents in the sediment may suggest preservation problems prior to ~10 ka BP and possibly
364	also from ~6–3 ka BP.
365	The fluctuating $sSST_{Mg/Ca}$ observed during the earliest part of the early Holocene can
366	probably be associated with variable paleoceanographic conditions in response to lingering
367	sea ice, ice berg and melt water presence. During the early Holocene from ~10.5–7.9 ka BP

- 368 sSST_{Mg/Ca} reach an average value of ~4°C. These relatively high values probably reflect a
- 369 strong northward oceanic heat advection in combination with high insolation forcing.
- 370 A significant long-term (multi-millennial) decrease in $sSST_{Mg/Ca}$ was identified throughout
- 371 the early Holocene with steeper (sub-millennial) decline recorded at ~9–7 ka BP. The coldest
- 372 sSST_{Mg/Ca} values observed in the current record, with values averaging ~3°C, were recorded
- 373 in two periods from \sim 7.7–6 and \sim 5.2–2.7 ka BP. This cooling during the mid-Holocene may

be attributed to an increased influence of eastward migrating Arctic Water in response to
hampered northward oceanic heat advection into the Fram Strait and decreasing insolation
forcing.

377 During the late Holocene, after ~2.7 ka BP, $sSST_{Mg/Ca}$ significantly increased as shown by the 378 SiZer analysis. The $sSST_{Mg/Ca}$ reached an average value of ~5°C during the last 1000 year. 379 This $sSST_{Mg/Ca}$ increase can possibly be linked to a stronger advection of Atlantic Water as 380 supported by positive NAO index values combined with an insulating effect of a widespread 381 melt water layer in the northern North Atlantic. The high $sSST_{Mg/Ca}$ values during the late 382 Holocene potentially also could be partly explained by a shift in calcification season and/or 383 change of depth habitat for *N. pachyderma* (sin).

384 Acknowledgements

This work has been carried out within the framework of the International Polar Year project "Arctic Natural Climate and Environmental Changes and Human Adaption: From Science to Public Awareness" (SciencePub) funded by the Research Council of Norway and the Trainee School in Arctic Marine Geology & Geophysics, University of Tromsø and the Norwegian Research Council. The core was collected onboard the R/V "Maria S. Merian" during the MSM05/5b expedition led by Dr. Gereon Budeus, Alfred Wegener Institute. Patrick Cappa assisted the laboratory work at INSTAAR, University of Colorado. Jan Petter Holm prepared the area map. Two anonymous reviewers, R. Kozdon and K. Zamelczyk gave valuable comments and suggestions. To these institutions and persons we offer our sincere thanks.

17	
----	--

400	References
401	Aagaard-Sørensen, S, Husum K, Werner K, et al. (Submitted) A Late glacial-early Holocene
402	multiproxy record, Fram Strait, Polar North Atlantic. Marine Geology
403	Andersen C, Koc N and Moros M (2004) A highly unstable Holocene climate in the subpolar North
404	Atlantic: evidence from diatoms. Quaternary Science Reviews 23: 2155-2166.
405	Andersson C, Pausata FSR, Jansen E et al. (2009) Holocene trends in the foraminifer record from the
406	Norwegian Sea and the North Atlantic Ocean. Climate of the Past Discussions 5: 2081–211.
407	Archer D, Emerson S, and Reimers C (1989) Dissolution of calcite in deep-sea sediments:pH and O ₂
408	microelectrode results. Geochimica et Cosmochimica Acta 531: 2831-2845.
409	Barker S, Greaves M, and Elderfield H (2003) A study of cleaning procedures used for foraminiferal
410	Mg/Ca paleothermometry. Geochemistry, Geophysics, Geosystems 4: DOI:
411	10.1029/2003gc000559.
412	Bauch HA, Erlenkeuser H, Spielhagen RF et al. (2001) A multiproxy reconstruction of the evolution
413	of deep and surface waters in the subarctic Nordic seas over the last 30,000 yr. Quaternary
414	Science Reviews 20: 659–678.
415	Berger A and Loutre MF (1991) Insolation values for the climate of the last 10 million years.
416	Quaternary Science Reviews 10: 297–317.
417	Birks CJA and Koç N (2002) A high-resolution diatom record of late-Quaternary sea-surface
418	temperatures and oceanographic conditions from the eastern Norwegian Sea. Boreas 31: 32:
419	344.
420	Björck S, Rundgren M, Ingólfsson Ó and Funder S (1997) The Preboreal oscillation around the
421	Nordic Seas: terrestrial and lacustrine responses. Journal of Quaternary Science 12: 455-46:
422	Bourke RH, Weigel AM and Paquette RG (1988) The Westward Turning Branch of the West
423	Spitsbergen Current. Journal of Geophysical Research 93: 14065-14077.
424	Boyle EA (1983) Manganese carbonate overgrowths on foraminifera tests. Geochimica et
425	Cosmochimica Acta 47: 1815–1819.

1		
2 3	426	Boyle EA and Keigwin LD (1985) Comparison of Atlantic and Pacific paleochemical records for the
5	427	last 215,000 years: changes in deep ocean circulation and chemical inventories. Earth and
7	428	Planetary Science Letters 76: 135-150.
8 9 10	429	Boyle EA and Rosenthal Y (1996) Chemical hydrography of the South Atlantic during the Last
10 11 12	430	Glacial Maximum: Cd and δ^{13} C. In: G. Wefer et al. (eds) <i>The South Atlantic: Present and</i>
13 14	431	Past Circulation. New York: Springer-Verlag, pp.423-443.
15 16	432	Brown SJ and Elderfield H (1996) Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera
17 18	433	caused by postdepositional dissolution: Evidence of shallow Mg-dependent dissolution.
19 20	434	Paleoceanography 11(5): 543-551.
21 22	435	Chaudhuri P and Marron S (1999) SiZer for exploration of sturctures in curves. Journal of the
23 24	436	Amerikan Statistical Association 94: 807-823.
25 26	437	Dolven JK, Cortese G and Bjørklund KR (2002) A high-resolution radiolarian-derived
27 28	438	paleotemperature record for the Late Pleistocene-Holocene in the Norwegian Sea.
29 30	439	Paleoceanography 17(4), 1072. DOI:10.1029/2002pa000780.
31 32	440	Ebbesen H, Hald M and Eplet TH (2007) Late glacial and early Holocene climatic oscillations on the
33 34	441	western Svalbard margin, European Arctic. Quarternary Science Reviews 26: 1999-2011.
35 36	442	Elderfield H and Ganssen GM (2000) Past temperature and δ^{18} O of surface ocean waters inferred
37 38	443	from foraminiferal Mg/Ca ratios. <i>Nature</i> 405: 442–445.
39 40	444	Elderfield H, Vautravers M and Cooper M (2002) The relationship between shell size and Mg/Ca,
41 42	445	Sr/Ca, δ^{18} O, and δ^{13} C of species of planktonic foraminifera. <i>Geochemistry, Geophysics,</i>
43 44	446	Geosystems 3(8), DOI:10.1029/2001gc000194.
45 46	447	Emerson S and Bender M (1981) Carbon fluxes at the sediment-water interface of the deep-sea:
47 48	448	calcium carbonate preservation. Journal of Marine Research 39: 139-162.
49 50	449	Farmer EJ, Chapman MR and Andrews JE (2008) Centennial-scale Holocene North Atlantic surface
51 52	450	temperatures from Mg/Ca ratios in Globigerina bulloides. Geochemistry, Geophysics,
53 54	451	Geosystems 9, DOI:10.1029/2008GC002199.
56 57	452	Fisher TG, Smith DG and Andrews JT (2002) Preboreal oscillation caused by a glacial Lake Agassiz
58 59 60	453	flood. Quaternary Science Reviews 21: 873–878.

1		19
2 3	454	Giraudeau J (in prep) EPOC (University Bordeaux 1/CNRS) within the framework of an ongoing
4 5	455	IFM-GEOMAR / EPOC collaboration.
6 7	456	Hald M and Aspeli R (1997) Rapid climatic shifts of the nothern Norwegian Sea during the last
8 9	457	deglaciation and the Holocene. Boreas 26: 15-28.
10	458	Hald M and Hagen S (1998) Early preboreal cooling in the Nordic Sea region triggered by meltwater.
12	459	<i>Geology</i> 26: 615-618
14 15 16	460	Hald M, Ebbesen H, Forwick M et al. (2004) Holocene paleoceanography and glacial history of the
17 18	461	West Spitsbergen area, Euro-Arctic margin. Quaternary Science Reviews 23: 2075-2088.
19 20	462	Hald M, Andersson C, Ebbesen H et al. (2007) Variations in temperature and extent of Atlantic Water
21 22	463	in the northern North Atlantic during the Holocene. Quaternary Science Reviews 26: 3423-
23 24	464	3440.
25 26	465	Hansen B and Østerhus S (2000) North Atlantic-Nordic Seas exchanges. Progress In Oceanography
27 28	466	45: 109-208.
29 30	467	Hopkins TS (1991) The GIN SeaA synthesis of its physical oceanography and literature review
31 32	468	1972-1985. Earth-Science Reviews 30(3-4): 175-318.
33 34	469	Huber R, Meggers H, Baumann KH and Henrich R (2000) Recent and Pleistocene carbonate
35 36	470	dissolution in sediments of the Norwegian–Greenland Sea. Marine Geology 165(1–4): 123-
37 38	471	136.
39 40	472	Hughen KA, Baillie MGL, Bard E et al. (2004) Marine04 marine radiocarbon age calibration, 0-26 cal
41 42	473	kyr BP. <i>Radiocarbon</i> 46: 1059-1086.
43 44	474	Hurrell JW (1995) Decadal Trends in the North Atlantic Oscillation Regional Temperatures and
45 46	475	Precipitation. Science 269: 676-679.
47 48 40	476	Husum K and M Hald (2002) Early Holocene cooling events in Malangenfjord and the adjoining
49 50	477	shelf, north-east Norwegian Sea. Polar Research 21(2): 267-274.
52 52	478	Husum K and M Hald (2012) Arctic planktic foraminiferal assemblages: Implications for subsurface
53 54 55	479	temperature reconstructions. Marine Micropaleontology 96–97(0): 38-47.
56 57		
58 59		
60		

480	Intergovernmental Panel on Climate Change (2007) Climate Change 2007: The Physical Science
481	Basis. Contribution of Working Group I to the Fourth Assessment Report of the
482	Intergovernmental Panel on Climate Change. Cambridge University Press.
483	Johnstone HJH, Yu J, Elderfield H and Schulz M (2011) Improving temperature estimates derived
484	from Mg/Ca of planktonic foraminifera using X-ray computed tomography-based dissolution
485	index, XDX. Paleoceanography 26(1): PA1215, DOI: 10.1029/2009pa001902.
486	Knudsen KL, Jiang H, Jansen E et al. (2004) Environmental changes off North Iceland during the
487	deglaciation and the Holocene: foraminifera, diatoms and stable isotopes. Marine
488	Micropaleontology 50: 273-305.
489	Koç Karpuz N and Jansen E (1992) A high-resolution diatom record of the last deglaciation from the
490	SE Norwegian Sea: Documentation of rapid climatic changes. Paleoceanography 7: 499–
491	520.
492	Koç N, Jansen E and Haflidason H (1993) Paleoceanographic reconstructions of surface ocean
493	conditions in the Greenland, Iceland and Norwegian seas through the last 14 ka based on
494	diatoms. Quaternary Science Reviews 12: 115-140.
495	Kohfeld KE, Fairbanks RG, Smith SL et al. (1996) Neogloboquadrina pachyderma (sinistral coiling)
496	as paleoceanographic tracers in polar oceans: evidence from Northeast Water Polynya
497	plankton tows, sediments traps, and surface sediments. Paleoceanography 11: 679–699.
498	Kozdon R, Eisenhauer A, Weinelt M et al. (2009) Reassessing Mg/Ca temperature calibrations of
499	<i>Neogloboquadrina pachyderma</i> (sinistral) using paired $\delta^{44/40}$ Ca and Mg/Ca measurements.
500	Geochemistry Geophysics Geosystems 10: Q03005, DOI: 10.1029/2008GC002169
501	Kristjánsdóttir GB, Lea DW, Jennings AE et al. (2007) New spatial Mg/Ca-temperature calibrations
502	for three Arctic, benthic foraminifera and reconstruction of north Iceland shelf temperature
503	for the past 4000 years. Geochemistry Geophysics Geosystems 8: Q03P21, DOI:
504	10.1029/2006GC001425
505	Kucera M, Weinelt M, Kiefer T et al. (2005) Reconstruction of sea-surface temperatures from
506	assemblages of planktonic foraminifera: multi-technique approach based on geographically

HOLOCENE

1		
3	507	constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans.
5	508	Quaternary Science Reviews 24: 951-998.
7 8	509	Lea DW, Mashiotta TA and Spero HJ (1999) Controls on magnesium and strontium uptake in
9 10	510	planktonic foraminifera determined by live culturing. Geochimica et Cosmochimica Acta 63:
11	511	2369-2379.
12 13 14	512	Mangerud J and Gulliksen S. (1975) Apparent radiocarbon ages of Recent marine shells from
14 15 16	513	Norway, Spitsbergen, and Arctic Canada. Quaternary Research 5: 263-273.
17 18	514	Mangerud J, Bondevik S, Gulliksen S et al. (2006) Marine ¹⁴ C reservoir ages for 19th century whales
19 20	515	and molluscs from the North Atlantic. Quaternary Science Reviews 25: 3228-3245.
21 22	516	Manley TO (1995) Branching of Atlantic Water within the Greenland-Spitsbergen passage: An
23 24	517	estimate of recirculation. Journal of Geophysical Research 100: 20627-20634.
25 26	518	Marchitto TM (2006) Precise multielemental ratios in small foraminiferal samples determined by
27 28	519	sector field ICP-MS. Geochemistry Geophysics Geosystems 7: Q05P13,
29 30	520	DOI:10.1029/2005GC001018.
31 32	521	Marnela M, Rudels B, Olsson KA et al. (2008) Transports of Nordic Seas water masses and excess
33 34	522	SF6 through Fram Strait to the Arctic Ocean. Progress In Oceanography 78(1): 1-11.
35 36	523	Müller J, Werner K, Stein R et al. (2012) Holocene cooling culminates in sea ice oscillations in Fram
37 38	524	Strait. Quaternary Science Reviews 47: 1-14.
39 40	525	Nesje A, Matthews JA, Dahl SO et al. (2001) Holocene glacier fluctuations of Flatebreen and winter-
41 42	526	precipitation changes in the Jostedalsbreen region, western Norvay, based on glaciolacustrine
43 44	527	sediment records. The Holocene 11: 267-280. DOI:10.1191/095968301669980885
45 46	528	Nürnberg D, Bijma J and Hemleben C (1996) Assessing the reliability of magnesium in foraminiferal
47 48	529	calcite as a proxy for water mass temperatures. Geochimica et Cosmochimica Acta 60(5):
49 50	530	803-814.
51 52	531	Olsen J, Anderson NJ and Knudsen MF (2012) Variability of the North Atlantic Oscillation over the
53 54	532	past 5,200 years. Nature Geoscience 5: 808-812, DOI:10.1038/ngeo1589
55 56		
57 58		
59 60		

1		22					
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	533	Rasmussen SO, Vinther BM, Clausen HB and Andersen KK (2007) Early Holocene climate					
	534	oscillations recorded in three Greenland ice cores. Quaternary Science Reviews 26: 1907-					
	535	1914.					
	536	Rasmussen TL, Thomsen E, Ślubowska MA et al. (2007) Paleoceanographic evolution of the SW					
	537	Svalbard margin (76 [°] N) since 20,000 ¹⁴ C yr BP. <i>Quaternary Research</i> 67: 100-114.					
	538	Reimer P, Baillie M, Bard E et al. (2005) IntCal04 Terrestrial Radiocarbon Age Calibration, 0-26 Cal					
	539	Kyr BP. Radiocarbon 46: 1029-1058.					
	540	Reimer P, Baillie M, Bard E et al. (2009) IntCal09 and Marine09 Radiocarbon Age Calibration					
	541	Curves, 0–50,000 Years cal BP. <i>Radiocarbon</i> 51: 1111–1150.					
	542	Risebrobakken B, Jansen E, Andersson C et al. (2003) A high-resolution study of Holocene					
23 24	543	paleoclimatic and paleoceanographic changes in the Nordic Seas. Paleoceanography 18:					
25 26	544	1017-1034.					
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	545	Risebrobakken B, Dokken T, Smedsrud LH et al. (2011) Early Holocene temperature variability in the					
	546	Nordic Seas: The role of oceanic heat advection versus changes in orbital forcing.					
	547	Paleoceanography 26(4): PA4206, DOI:10.1029/2011pa002117.					
	548	Rosenthal Y, Lohmann GP, Lohmann KC and Sherrell RM (2000) Incorporation and preservation of					
	549	Mg in <i>Globigerinoides sacculifer</i> : implications for reconstructing the temperature and ¹⁸ O/ ¹⁶ O					
	550	of seawater. Paleoceanography 15(1): 135-145.					
	551	Rudels B, Björk G, Nilsson J et al. (2005) The interaction between waters from the Arctic Ocean and					
	552	the Nordic Seas north of Fram Strait and along the East Greenland Current: results from the					
43 44	553	Arctic Ocean-02 Oden expedition. Journal of Marine Systems 55(1-2): 1-30.					
45 46	554	Sarnthein M, Van Kreveld S, Erlenkeuser H et al. (2003) Centennial-to-millennial-scale periodicities					
47 48	555	of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas 32:					
49 50	556	447-461.					
51 52	557	Schauer U, Fahrbach E, Osterhus S and Rohardt G (2004) Arctic warming through the Fram Strait:					
53 54	558	Oceanic heat transport from 3 years of measurements. Journal of Geophysical Research 109:					
56 57	559	C06026, DOI:10.1029/2003JC001823.					
58 59							

60

23

1		
2 3 4	560	Shackleton NJ (1974) Attainment ofisotopic equilibrium between ocean water and the benthonic
5	561	foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. Centre
0 7	562	National de la Recherche Scientifique Colleagues Internationeau, 219: 203-209.
9 10	563	Simstich J, Sarnthein M and Erlenkeuser H (2003) Paired delta O-18 signals of Neogloboquadrina
10 11 12	564	pachyderma (s) and Turborotalita quinqueloba show thermal stratification structure in Nordic
12	565	Seas. Marine Micropaleontology 48(1-2): 107-125.
14 15 16	566	Ślubowska M, Koç N, Rasmussen TL and Klitgaard-Kristensen D (2005) Changes in the flow of
10 17 19	567	Atlantic water into the Arctic Ocean since the last deglaciation: Evidence from the northern
19 20	568	Svalbard continental margin, 80°N. Paleoceanography 20: PA001141,
20 21 22	569	DOI:10.1029/2005PA001141
22 23 24	570	Spielhagen RF, Werner K, Sørensen SA et al. (2011) Enhanced Modern Heat Transfer to the Arctic
25 26	571	by Warm Atlantic Water. Science 331: 450-453.
27 28	572	Stuiver M, Reimer PJ and Reimer RW (2005) CALIB 6.0. [WWW program and documentation].
29 30	573	Volkmann R (2000) Planktic foraminifers in the outer Laptev Sea and the Fram Strait - Modern
31 32	574	distribution and ecology: Journal of Foraminiferal Research 30: 157-176.
33 34	575	Walczowski W, Piechura J, Osinski R and Wieczorek P (2005) The West Spitsbergen Current volume
35 36	576	and heat transport from synoptic observations in summer. Deep Sea Research Part I:
37 38	577	Oceanographic Research Papers 52: 1374-1391.
39 40	578	Walker M, Johnsen S, Rasmussen SO et al. (2009) Formal definition and dating of the GSSP (Global
41 42	579	Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice
43 44	580	core, and selected auxiliary records. Journal of Quaternary Science 24: 3-17.
45 46	581	Werner K, Spielhagen RF, Bauch D, et al. (2013) Atlantic Water advection versus sea-ice advances in
47 48	582	the eastern Fram Strait during the last $9 \Box ka - multiproxy$ evidence for a two-phase Holocene.
49 50	583	Paleoceanography, 28(2), 283-295.
51 52	584	Wilson LJ, Hald M and Godtliebsen F (2011) Foraminiferal faunal evidence of twentieth-century
53 54	585	Barents Sea warming. The Holocene 21(4): 527-537.
55 56		
57 58		
59		

1		24
2 3	586	Zamelczyk K, Rasmussen TL, Husum K et al. (2012) Paleoceanographic changes and calcium
4 5	587	carbonate dissolution in the central Fram Strait during the last 20 ka yr. Quaternary Research
6 7	588	78: 405-416.
8 9 10	589	
10 11 12	590	
13 14	591	
15 16	592	
17 18	593	
19 20 21	594	
22 23	595	
24 25	596	
26 27	597	
28 29 20	598	
30 31 32	599	
33 34	600	
35 36	601	
37 38	602	
39 40	603	
41 42 43	604	
44 45	605	
46 47	606	
48 49	607	
50 51	608	
52 53 54	609	
55 56	610	
57 58 50	611	
59 60		

Page 25 of 34

1

HOLOCENE

2
3
4
4
5
6
7
Q.
0
9
10
11
12
12
13
14
15
16
17
10
10
19
20
21
22
22
23
24
25
26
20
27
28
29
30
30
31
32
33
34
25
35
36
37
38
30
39
40
41
42
43
40
44
45
46
47
10
40
49
50
51
52
52
53
54
55
56
50
5/
58
59
60
00

25	

612	Figure captions
613	Table 1. Radiocarbon dates and calibrations from core MSM5/5-712. The radiocarbon dates
614	were performed by the Leibniz-Laboratory for Radiometric Dating and Isotope Research,
615	Kiel, Germany (KIA) and at Poznań Radiocarbon Laboratory, Poland (Poz). A reservoir age
616	correction of 400 years with an additional reservoir correction (ΔR) of 151±51 was used.
617	Figure 1. (A) Map of the north-eastern North Atlantic Ocean and adjoining seas showing the
618	major currents systems and average position of the Polar and Arctic fronts modified from
619	Marnela et al. (2008). Open circles indicate core location of Kastenlot core MSM05/5-712-2,
620	giant box corer MSM05/5-712-1 and other cores mentioned in the text. Abbreviations: NAC:
621	North Atlantic Current; IRM: Irminger Current; NwASC: Norwegian Atlantic Slope Current;
622	NwAC: Norwegian Atlantic Current; WSC: West Spitsbergen Current; NCaC: North Cape
623	Current; RAW: Re-circulating Atlantic Water; SB: Svalbard Branch; YSC: Yermark Slope
624	Current; ESC: East Spitsbergen Current; EGC: East Greenland Current. (B) Conductivity,
625	temperature, and depth (CTD). Eastern Fram Strait, August 2007.
626	Figure 2. Age model and sedimentation rate (cm/kyr) for Kastenlot core MSM05/5-712-2.
627	Error bars show the 2σ standard deviation of the calibrated ages.
628	Figure 3. Correlation and regressions between Holocene Mg/Ca and other trace element
629	rations in MSM05/5-712-2. Mg/Ca vs. (A) Al/Ca, (B) Mn/Ca and (C) Fe/Ca (contamination
630	indicators).
631	Figure 4. Mg/Ca concentration and sediment TOC and CaCO ₃ contents plotted against
632	calibrated age and depth in core MSM05/5-712-2. (A, B) Sediment TOC and CaCO3 contents
633	(weight %) in core MSM05/5-712-2 (Grey: (Müller et al., 2012); Black: (Aagaard-Sørensen
634	et al., submitted)). (C) Mg/Ca concentration (mmol/mol). Thin line = raw data. Thick line =
635	5-point running mean. Crosses mark omitted data points. Filled circle shows the average
636	reproducibility of sample splits (± 0.039 mmol/mol). (D) Reconstructed sSST _{Mg/Ca} . Present

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
21
28
29
30
งเ วา
32 22
აა 24
34 35
36
37
38
30 30
40
40 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 2

day water temperatures at 50 and 200 m water depth are shown in grey fonts on Y-axis.

- 638 Diamonds on X-axis indicate radiocarbon dated levels.
- 639 **Figure 5.** Reconstruction of sSST_{Mg/Ca} compared to other marine proxies from core MSM5/5-
- 640 712-2 and MSM5/5-712-1. (A) Ice-volume corrected *N. pachyderma* (sin) δ^{18} O record (grey
- 641 line) with 3-point running mean (black line) from core MSM5/5-712-2 (Werner et al., 2013).
- 642 (B) Reconstructed $sSST_{Mg/Ca}$ (black) (present study) shown with $sSST_{Mg/Ca}$ reconstruction
- 643 from core MSM5/5-712-1 calculated using exponential temperature equation of Elderfield
- 644 and Ganssen (2000) (Spielhagen et al., 2011) (purple) and linear temperature equation of
 - 645 Kozdon et al. (2009) (blue). Purple and blue dashed lines indicate calculated core-top
 - 646 $sSST_{Mg/Ca}$ (C) Reconstructed $sSST_{Mg/Ca}$ (black line) and $sSST_{Mg/Ca}$ based on Mg/Ca values
 - 647 that have been artificially increased 15 % (grey line). Summer sub sea surface temperatures
 - 648 (at 50 m water depth) calculated using the SIMMAX modern analogue technique from
- 649 Spielhagen et al. (2011) (core MSM5/5-712-1) (purple) and Werner et al. (2013) (MSM5/5-
- 650 712-2) (red) are also shown. Present day water temperatures at 50 and 200 m water depth are
 651 indicated on the y-axis to the right.

652 Figure 6. The reconstructed sSST_{Mg/Ca} for the eastern Fram Strait compared with other proxy 653 records and (sub)SST reconstructions in a south-north transect. (A) June insolation at 80°N 654 (Berger and Loutre, 1991). (B) Sediment IP₂₅ concentrations (Müller et al., 2012). (C) SiZer 655 analysis of reconstructed sSST_{Mg/Ca} from core MSM5/5-712-2. The SiZer map, a function of 656 scale (y-axis: $\log_{10}(h)$) and location (x-axis: calendar age BP), shows at what given time the 657 proxy record has significant increase (red), decrease (blue), no change (purple) or has insufficient observations for correct inference (grey). (D) Reconstructed sSST_{Mg/Ca}. Thin line 658 659 = raw data. Thick line = 5-point running mean. (E) Transfer function summer sSST 660 reconstructions at 50 m water depth (SIMMAX modern analogue technique) in core

661 MSM5/5-712-2 (Werner et al., 2013). (F) Transfer function summer sSST reconstructions

- 100 m water depth (Weighted average partical least squares model) in core MD99-2304
- 663 (Ebbensen et al., 2007; Husum and Hald, 2012). (G) Transfer function based summer SST
- reconstructions at 10 m water depth (Maximum Likelihood model) in Core 23258-2 (Hald et
 - al., 2007; Sarnthein et al., 2003). (H) Transfer function based summer SST reconstructions at
 - 666 10 m water depth (Maximum Likelihood model) in Cores MD95-2011 and JM97-948/2A
 - 667 (Hald et al., 2007; Risebrobakken et al., 2003).

Table 1

Table 1								
Core id	Lab. code	Depth range (cm)	Material	¹⁴ C age	Calibrated age $\pm 2\sigma$	2σ max cal. age (cal. age intercepts) 2σ min cal. age	Reservoir age $(R=400 + \Delta R)$	References
MSM5/5-712-2	KIA 45217	10-12	N. pachyderma	815±25	317±131	186(317)447	551±51	Werner et al., 2013
MSM5/5-712-2	KIA 41024	20-22	N. pachyderma	1570±25	972±141	831(972)1113	551±51	Werner et al., 2013
MSM5/5-712-2	KIA 45218	27-29	N. pachyderma	1985±25	1393±118	1275(1393)1510	551±51	Werner et al., 2013
MSM5/5-712-2	KIA 45219	40-42	N. pachyderma	2565±25	2056±165	1891(2056)2220	551±51	Werner et al., 2013
MSM5/5-712-2	SacA 19113	60-61	N. pachyderma	3365±30	3029±175	2854(3029)3203	551±51	Giraudeau (in prep)
MSM5/5-712-2	SacA 19114	94-95	N. pachyderma	4915±30	5041±189	4852(5041)5230	551±51	Giraudeau (in prep)
MSM5/5-712-2	SacA 19115	138.5-139.5	N. pachyderma	6440±30	6756±151	6605(6756)6906	551±51	Giraudeau (in prep)
MSM5/5-712-2	KIA 38080	168.5-169.5	N. pachyderma	7305 ±35	7630±126	7504(7630) 7756	551±51	Werner et al., 2013
MSM5/5-712-2	KIA 41025	191.5-192.5	N. pachyderma	7815±45	8133±157	7976 (8133) 8290	551±51	Werner et al., 2013
MSM5/5-712-2	Poz-30723	214-215	N. pachyderma	8362±45	8749 ±209	8540 (8749) 8958	551±51	Present study
MSM5/5-712-2	KIA 37423	280-281	N. pachyderma	9220±50	9797±252	9551 (9797) 10042	551±51	Present study
MSM5/5-712-2	Poz-30725	322-323	N. pachyderma	9580±47	10310 ±158	10152 (10310) 10468	551±51	Present study
MSM5/5-712-2	Poz-30726	428-431	N. pachyderma	12358±63	13629±197	13432 (13629) 13826	551±51	Present study

280x476mm (96 x 96 DPI)

337x350mm (96 x 96 DPI)

