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Abstract: 

Holocene sea surface temperatures in the eastern Fram Strait are 
reconstructed based on Mg/Ca ratios measured on the planktic foraminifer 
Neogloboquadrina pachyderma (sin). The reconstructed sub sea surface 
temperatures (sSSTMg/Ca) fluctuate markedly during the earliest Holocene 

at ~11.7–10.5 ka BP. This probably is in response to the varying presence 
of sea ice and deglacial melt water. Between ~10.5–7.9 ka BP the 
sSSTMg/Ca values are relatively high (~4°C) and more stable reflecting high 
insolation and intensified poleward advection of Atlantic water. After 7.9 ka 
BP the sSSTMg/Ca decline to an average of ~3°C throughout the mid-
Holocene. These changes can be attributed to a combined effect of reduced 
poleward oceanic heat advection and a decline in insolation as well as a 
gradually increased influence of eastward migrating Arctic Water. The 
sSSTMg/Ca increase and vary between 2.1–5.8°C from ~2.7 ka BP to the 
present. This warming is in contrast to declining late Holocene insolation 
and may instead be explained by factors including increased advection of 
oceanic heat to the Arctic region possibly insulated beneath a widening 

freshwater layer in the northern North Atlantic in conjunction with a shift in 
calcification season and/or depth habitat of N. pachyderma (sin).  
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Abstract 26 

Holocene sea surface temperatures in the eastern Fram Strait are reconstructed based on 27 

Mg/Ca ratios measured on the planktic foraminifer Neogloboquadrina pachyderma (sin). The 28 

reconstructed sub sea surface temperatures (sSSTMg/Ca) fluctuate markedly during the earliest 29 

Holocene at ~11.7–10.5 ka BP. This probably is in response to the varying presence of sea 30 

ice and deglacial melt water. Between ~10.5–7.9 ka BP the sSSTMg/Ca values are relatively 31 

high (~4°C) and more stable reflecting high insolation and intensified poleward advection of 32 

Atlantic water. After 7.9 ka BP the sSSTMg/Ca decline to an average of ~3°C throughout the 33 

mid-Holocene. These changes can be attributed to a combined effect of reduced poleward 34 

oceanic heat advection and a decline in insolation as well as a gradually increased influence 35 

of eastward migrating Arctic Water. The sSSTMg/Ca increase and vary between 2.1–5.8°C 36 

from ~2.7 ka BP to the present. This warming is in contrast to declining late Holocene 37 

insolation and may instead be explained by factors including increased advection of oceanic 38 

heat to the Arctic region possibly insulated beneath a widening freshwater layer in the 39 

northern North Atlantic in conjunction with a shift in calcification season and/or depth habitat 40 

of N. pachyderma (sin).  41 

Introduction 42 

In order to elucidate climate changes observed in Arctic environments today, it is necessary 43 

to improve the knowledge of long term natural climatic and oceanographic variations in the 44 

region (IPCC, 2007). At present, northward advection of Atlantic Water into the Nordic Seas 45 

and on to the Arctic is the main oceanic source of heat and salt for the Arctic Ocean (Schauer 46 

et al., 2004). During the Holocene other forcing mechanisms such as long-term orbital 47 

changes associated with insolation variability (Berger and Loutre, 1991), changes in 48 

atmospheric pressure systems resulting in displacement of primary wind patterns (North 49 

Atlantic Oscillation index) and alteration of Atlantic Water flux into the Nordic Seas (Hurrell, 50 
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1995; Nesje et al., 2001) have been suggested to have a large impact on climatic and 51 

oceanographic development in the Nordic Seas and the Arctic. Paleoceanographic variability, 52 

including temporal and spatial variation of Atlantic Water flux, temperature and salinity has 53 

previously been studied using a range of different proxies based on planktic foraminifera in 54 

the Nordic Seas during the Holocene. These include stable oxygen and carbon isotopes in 55 

foraminiferal tests (e.g. Bauch et al., 2001; Rasmussen et al., 2007) and distribution patterns 56 

of planktic foraminifera and transfer functions (e.g. Hald et al., 2007). Reconstructions of 57 

SST using transfer functions in the Arctic may be hampered by the databases representing 58 

modern conditions. The databases have a limited geographical coverage in the Arctic 59 

meaning that not all environmental gradients of the region are represented (e.g. Husum and 60 

Hald, 2012; Kucera et al., 2005). Moreover, stable oxygen isotopes recorded within 61 

foraminiferal calcite inherently reflect both the temperature and the δ18O signal of ambient 62 

seawater (e.g. Shackleton, 1974). Therefore, additional proxies for paleo-SST are needed to 63 

elucidate cold-end temperature variability. Recent studies have utilized Mg/Ca ratios in 64 

planktic foraminifera to reconstruct sub sea surface temperatures (sSSTMg/Ca) in the Fram 65 

Strait during the Late Glacial/Holocene transition and the late Holocene (Aagaard-Sørensen 66 

et al., submitted; Spielhagen et al., 2011). Here, we present the first record of sSSTMg/Ca from 67 

the entire Holocene in the high Arctic based on trace elements. A sediment core located under 68 

the present day inflow of Atlantic Water, carried within the West Spitsbergen Current 69 

(WSC), has been investigated (Figure 1A). Trace element analyses have been conducted on 70 

the planktic foraminifer Neogloboquadrina pachyderma (sin). Mg/Ca ratios were used to 71 

reconstruct sub surface water temperatures (sSSTMg/Ca) representing the primary habitat depth 72 

and season of calcification for N. pachyderma (sin).  73 

In addition, %CaCO3 and %TOC variations in the sediment were used to assess potential 74 

preservation changes of foraminiferal calcite in the record. 75 

Page 3 of 34

http://mc.manuscriptcentral.com/holocene

HOLOCENE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4 
 

Oceanographic setting  76 

Atlantic Water is advected northward in the North Atlantic Current (NAC; T>2°C, S>35) 77 

(Hopkins, 1991) and is transported into the Nordic Seas across the Iceland-Faroes-Scotland 78 

ridge systems at ~62°N (Hansen and Østerhus, 2000) (Figure 1A). At ca. 70°N the water 79 

mass bifurcates with one branch entering the SW Barents Sea while the other branch 80 

continues north along the west Barents Sea and Spitsbergen slopes as the West Spitsbergen 81 

Current (WSC) (Schauer et al., 2004) (Figure 1A). Atlantic Water (T: 3 to 7°C; S: 34.9 to 82 

35.2) is carried by the WSC into the Arctic Ocean in the eastern part of the Fram Strait where 83 

it occupies the upper ~700 meters of the water column (Schauer et al., 2004; Walczowski et 84 

al., 2005) (Figure 1A). In the Fram Strait the Atlantic Water submerges at ~78°N and partly 85 

turns back to the south (Bourke et al., 1988) underneath the southward flowing East 86 

Greenland Current (Rudels et al. 2005) (Figure 1A). The remaining Atlantic Water disperses 87 

into several sub currents in the Arctic Ocean (Manley, 1995).  88 

In the eastern Fram Strait modern temperatures of the surface mixed layer (0 to 25 m 89 

water depth)  reach 8.2°C and a salinity up to 34.95 (August 2006) (Figure 1B). Below, from 90 

25 to 550 m water depth Atlantic Water (T~4°C; S=35 to 35.15) occupies the water column 91 

and overlays Atlantic Intermediate Water (T>0°C; S~34.9). Deep Water is found from 900 m 92 

water depth (T<0°C, S~34.9). 93 

Material and methods 94 

Kastenlot core MSM05/5-712-2 (78˚54.94’N, 06˚46.03’E; 1488 m water depth; 894 cm 95 

length) was collected during a cruise with RV “Maria S. Merian” in August 2007 at the West 96 

Spitsbergen slope, eastern Fram Strait (Figure 1A).  97 

Age model 98 

The age model of MSM05/5-712-2 was constructed on the basis of 10 AMS 14C dates and 99 

mean of the 2σ age ranges were used as tie points in the linear interpolation (Table 1, Figure 100 
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2). The AMS 14C dates were carried out on planktic foraminiferal tests (N. pachyderma (sin)) 101 

from the upper 441 cm of the sediment core (Giraudeau (in prep); Werner et al., 2013). 102 

Radiocarbon dates were calibrated with Calib version 6.0 (Reimer et al., 2005; Stuiver et al., 103 

2005) using the marine calibration curve Marine09 (Hughen et al., 2004; Reimer et al., 2009). 104 

The standard marine reservoir correction of 400 years (R) was used in all calibrations. The 105 

local reservoir age (∆R=151±51) from Magdalenefjorden, Svalbard was used in the 106 

calibration (Mangerud et al., 2006; Mangerud and Gulliksen, 1975) (Table 1). All calibrated 107 

ages are an expression of years before present (1950). The Younger Dryas/Holocene 108 

boundary (11.75 ka BP) used on figures follows Walker et al. (2009).   109 

Trace element analysis and contaminants 110 

The sediment core was sub sampled in 1 cm thick slices, and then freeze dried and wet sieved 111 

trough 1 mm, 100 µm and 63 µm mesh sizes. Trace element analysis was performed on the 112 

planktic foraminifer Neogloboquadrina pachyderma (sinistral coiling) (ca. 50 tests/sample) 113 

and the trace element ratios Mg/Ca, Mn/Ca, Fe/Ca, and Al/Ca were measured (Figure 3 and 114 

4). Tests were picked at 2 cm and 3 cm resolution in the upper part (0 to 210 cm) and lower 115 

part (210 to 441 cm) of the sediment core, respectively, resulting in a temporal resolution of 116 

~36 to 120 yr/sample. Given that partial dissolution and contamination of tests can bias the 117 

trace element analysis, dirty and sediment filled tests or tests visibly influenced by dissolution 118 

(i.e. broken tests or tests with missing chambers) were avoided. Furthermore, tests were 119 

picked within a relatively narrow size range, with minimum and maximum length of the tests 120 

ranging from ca. 225 to 290 µm, to reduce size dependent bias on the Mg/Ca measurements 121 

(Elderfield et al., 2002). Prior to analysis the foraminiferal tests were crushed and reductively 122 

(anhydrous hydrazine) and oxidatively (H2O2) cleaned (Boyle and Keigwin, 1985; Boyle and 123 

Rosenthal, 1996). Subsequently the samples were analyzed by magnetic-sector single 124 

collector ICP-MS, on a Thermo-Finnigan Element2 at the Litmann laboratory, University of 125 
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Colorado operating with a long-term 1σ precisions of 0.54% for Mg/Ca measurements 126 

(Marchitto, 2006). Replicate analysis was carried out for approximately every 30 samples. 127 

The average reproducibility of sample splits was ±0.039 mmol/mol (n=4) in regards to 128 

Mg/Ca which on average is below <5% difference between duplicate measurements (Figure 129 

4C). Fe, Al and Mn are tracers of contaminating phases that might bias the Mg/Ca ratios 130 

measured in foraminiferal calcite (Barker et al., 2003). Fe and Al are tracers of detrital 131 

material contamination (silicate minerals) and Mn is tracer of secondary diagenetic Mn-rich 132 

carbonate coating (Boyle, 1983). Weak correlation between Mg and Fe (R2~0.26) and Mn 133 

(R2~0.21) is observed whereas Al shows no significant correlation to Mg (R2~0.03) (Figure 134 

3A, B, C). Samples with >100 µmol/mol of Fe, Al and Mn (Barker et al., 2003) in addition to 135 

samples with <5 µg CaCO3 recovery (Marchitto, 2006) were omitted (Figure 4C). 136 

Water temperature reconstructions 137 

Temperature of the ambient sea water is considered to be the primary controlling factor on 138 

Mg/Ca ratios recorded in foraminiferal calcite (Elderfield and Ganssen, 2000; Lea et al., 139 

1999; Nürnberg et al., 1996). The thermodynamic control on the Mg uptake into 140 

foraminiferal calcite shows positive exponential relation between temperature and Mg uptake 141 

which approximates a linear relationship at narrow temperature ranges (Elderfield and 142 

Ganssen, 2000; Kozdon et al., 2009; Kristjánsdóttir et al., 2007).  143 

Sub sea surface temperatures (sSSTMg/Ca) were calculated using Mg/Ca ratios and the species 144 

specific (N. pachyderma (sin)) linear equation of Kozdon et al. (2009) (Figure 4, 5, 6):  145 

Mg/Ca (mmol mol-1) = 0.13 (±0.037) * T + 0.35 (±0.17) (Eq. 1)   146 

This equation is based on cross calibrated Mg/Ca and δ44/40 Ca proxy signals of N. 147 

pachyderma (sin) from Nordic Sea core top samples and produces reliable sSSTMg/Ca 148 

estimates at temperatures above ~3°C (Kozdon et al., 2009). It must be cautioned that the 149 
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equation is based on samples that have not undergone the reductive cleaning step (Kozdon et 150 

al., 2009). 151 

SiZer analysis 152 

SiZer (Significance of Zero Crossings of the Derivative) analysis described by Chaudhuri and 153 

Marron (1999) was performed on the sSSTMg/Ca data to reveal significant features in the 154 

proxy record (Figure 6C). The analysis has previously been applied to Arctic paleo proxy 155 

records to reveal significant features at particular levels of resolution and eliminating 156 

insignificant natural variability (e.g. Hald et al., 2004; Wilson et al., 2011). The method 157 

assumes that individual values are independent random variables. The analyses smooth the 158 

data from minimum to maximum resolution and generate a SiZer map which examines the 159 

data across a range of resolutions (bandwidth, h) and uses color codes to classify the 160 

derivatives of the smoothed data as significantly decreasing, increasing or exhibiting no 161 

significant change (Figure 6C). 162 

Results  163 

The record of Mg/Ca ratios measured on N. pachyderma (sin) has an average value of 0.809 164 

mmol/mol (n = 152; 1σ = 0.11) corresponding to an average temperature of 3.5°C (Figure 165 

4C, D). Measurements of Mg/Ca ratios showing possible sample contamination have been 166 

removed from the record (Figure 4C, D). 167 

During the earliest Holocene the sSSTMg/Ca values are relatively high and fluctuating between 168 

1.9 and 5.2°C (Figure 4D).  Between ~10.5–7.9 ka BP the sSSTMg/Ca are relatively high 169 

values with an average of ~4°C (Figure 4D). After ~7.9 ka BP the sSSTMg/Ca decline rapidly 170 

to <3°C. The mid Holocene is characterized by two cold periods, ~7.9–6 ka BP and 5.2–2.7 171 

ka BP, with an average sSSTMg/Ca of ~3°C bracket an interval with slightly elevated 172 

sSSTMg/Ca (~3.5°C). During the Late Holocene the sSSTMg/Ca values gradually increase 173 
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towards the present. The highest values averaging ~5°C are recorded after ~1 ka BP (Figure 174 

4D).  175 

The SiZer analysis identifies a multi-millennial sSSTMg/Ca decline from ~11.7– 6 ka BP with 176 

a significant sub-millennial decrease around 7.9 ka BP (Figure 6C). From ~6–3 ka BP no 177 

significant change is observed. A significant warming on multi decadal to multi millennial 178 

time scale is initiates at ~3 ka BP (Figure 6C). 179 

Discussion 180 

Assessment of reconstructed sSSTMg/Ca and calcium carbonate preservation state 181 

During analysis the foraminiferal calcite undergoes reductive and oxidative cleaning (see 182 

material and methods for details). The reductive cleaning decreases the Mg/Ca ratio by up to 183 

10-15 %  potentially lowering the reconstructed sSSTMg/Ca (Barker et al., 2003).  184 

Comparison of reconstructed sSSTMg/Ca with summer sSSTSIMMAX based on foraminiferal 185 

distribution patterns in the same core (Werner et al., 2013) shows similar temperature ranges 186 

of 1.9 to 5.8°C and 0.9 to 6.1°C, respectively (Figure 5C). It should be noted that below the 187 

lower limit of sensitivity for Eq. 1 (< 3°C) (Kozdon et al., 2009) the Mg/Ca method does not 188 

reproduce comparable low temperature estimates as the sSSTSIMMAX (Werner et al., 2013) 189 

(Figure 5C). In order to estimate the potential impact of Mg loss during reductive cleaning 190 

(Barker et al., 2003) we artificially increased the Mg/Ca ratio by 15% in figure 5C. The 191 

resulting sSSTMg/Ca+15% calculated using Eq. 1 (Kozdon et al., 2009) shows increases of 0.7 to 192 

1.3°C generally producing higher estimates than sSSTSIMMAX (Figure 5C). Therefore the 193 

potential Mg loss during the reductive cleaning (i.e. lower reconstructed temperature) in our 194 

record is considered of minor importance.  195 

Further, Mg/Ca ratios were measured in core-top N. pachyderma (sin) (Core MSM5/5-712-1) 196 

obtained from same core location as MSM5/5-712-2 (Speilhagen et al., 2011) (Figure 1). The 197 

material underwent the same cleaning procedure as applied in the present study (Spielhagen 198 
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et al., 2011). The core-top sSSTMg/Ca is ~5.1°C when calculated using the temperature 199 

equation of Elderfield & Ganssen (2000) (Speilhagen et al., 2011) (Figure 5B) and ~3.7°C 200 

when recalculated using Eq.1 (Figure 5B) (Kozdon et al., 2009). Both values are within or 201 

close to the modern temperature range (August 2009) observed at the main N. pachyderma 202 

(sin) habitat depth of 50-200 m water depth (Figure 1B, 5C). These findings further show that 203 

any potential Mg loss during cleaning procedures is of minor importance for the 204 

reconstructed temperatures. 205 

Studies have shown that dissolution of calcium carbonate is a prominent feature in paleo-206 

records from the Fram Strait especially after ~8 ka BP (Bauch et al., 2001; Rasmussen et al., 207 

2007; Zamelczyk et al., 2012). Post mortem dissolution of foraminiferal calcite may 208 

preferentially remove Mg rich parts from foraminiferal tests and consequently bias Mg/Ca 209 

ratio based temperature reconstructions towards lower, colder values (Brown and Elderfield, 210 

1996; Johnstone et al., 2011; Rosenthal et al., 2000). In order to minimize the risk of 211 

measuring on material influenced by dissolution only the most pristine test were picked for 212 

trace element analysis (see material and methods section for more details). Further, %CaCO3 213 

and %TOC variations in the sediment can be used to tentatively assess potential preservation 214 

changes of foraminiferal calcite in the record (Figure 4A, B). The sediment holds low content 215 

of CaCO3 (≤5 wt.%) and high content of total organic carbon (%TOC) prior to ~10 ka BP 216 

(Aagaard et al., submitted) (Figure 4A, B) which may suggest potential post-depositional 217 

dissolution due to respiratory release of CO2 and decrease of pore water pH during organic 218 

material degradation within the sediment (e.g. Archer et al., 1989; Emerson and Bender, 219 

1981; Huber et al., 2000). After ~10 ka BP to the present high %CaCO3 and low %TOC 220 

generally indicates good preservation potential, apart from the mid-Holocene (~6–3 ka BP) 221 

where relatively low %CaCO3 and moderate %TOC content has been recorded (Müller at al., 222 

2012). This could indicate preservation problems although to a lesser extent than during the 223 
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earliest Holocene (4 A,B). To what extent preservation/dissolution has influenced the Mg/Ca 224 

ratios recorded by N. pachyderma (sin) is not possible to quantify from the present set of 225 

proxies. However, it cannot be excluded that the preservation changes of foraminiferal tests 226 

during the Holocene may have influenced the reconstructed sSSTMg/Ca values. 227 

 228 

Holocene sSST variability 229 

Based on the sSSTMg/Ca record and significant changes identified by the SiZer analysis the 230 

paleorecord of core MSM5/5-712-2 can be divided into three intervals: The relatively warm 231 

early (11.7–7.9 ka BP), cold mid (7.9–2.7 ka BP) and warm late (2.7–0.3 ka BP) Holocene 232 

(Figure 4, 6). 233 

Early Holocene (11.7–7.9 ka BP) 234 

Previous studies from the Fram Strait have shown that the early Holocene was characterized 235 

by a strong influence of sea ice, icebergs and glacial melt water prior to ~10.5 ka BP 236 

(Aagaard-Sørensen et al., submitted; Ebbesen et al., 2007; Rasmussen et al., 2007; 237 

Ślubowska-Woldengen et al., 2005). The low sSSTMg/Ca recorded at ~11–11.3 ka BP 238 

(represented by 3 data points) (Figure 6D) possibly reflects a cooling associated with the brief 239 

but distinct climatic event, the Preboreal Oscillation (PBO). The PBO has been documented 240 

in both marine and terrestrial records in and around the Nordic Seas (e.g. Björck et al., 1997; 241 

Hald and Hagen, 1998; Husum and Hald, 2002; Rasmussen, SO et al., 2007). The PBO has 242 

been attributed to increased deglacial melt water fluxes into the Nordic and Arctic Seas 243 

resulting in hampered heat transport via the North Atlantic conveyor and enhanced sea ice 244 

export into the Fram Strait (Fisher et al., 2002; Hald and Hagen 1998). 245 

In the present record the highest early Holocene sSSTMg/Ca (average ~4°C) is found between 246 

~10.5 to 7.9 ka BP (Figure 6D). A marked summer sSSTMg/Ca increase initiated at ~11 ka BP 247 

and subsequent peak values between ~10.5–8.7 ka BP has been recorded  along the Barents 248 

Page 10 of 34

http://mc.manuscriptcentral.com/holocene

HOLOCENE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

11 
 

Sea and West Spitsbergen slopes via planktic foraminiferal transfer functions (sSSTTransfer) 249 

(Ebbesen et al., 2007; Hald et al., 2007; Husum and Hald, 2012; Sarnthein et al., 2003) 250 

(Figure 6F, G). The summer sSST increase along the West Spitsbergen slope is part of a 251 

south to north time-transgressive development in the Nordic Seas, where the remnant cold 252 

water and sea ice gradually was displaced by Atlantic Water (Hald et al., 2007). 253 

Risebrobakken et al. (2011) argue that strong melt water discharge resulted in weak 254 

ventilation of the Nordic Seas until 11 ka BP. A buildup of an Atlantic subsurface reservoir 255 

of heat and salt eventually resulted in rejuvenation of strong and deep overturning circulation 256 

and intensified early Holocene northward heat advection into the Nordic Seas peaking at 10 257 

ka BP (Risebrobakken et al., 2011). Predominantly positive North Atlantic Oscillation (NAO) 258 

index values reconstructed by Nesje et al. (2001) also support stronger northward advection 259 

of Atlantic Water during the early Holocene (Hurrell, 1995). The NAO index is defined as 260 

the atmospheric pressure difference between Iceland and the Azores with positive index 261 

values indicating a larger pressure difference, resulting in stronger westerlies which increase 262 

wind driven Atlantic Water influx to the Nordic Seas (Hurrell, 1995). 263 

Within the significant multi-millennial sSSTMg/Ca decline observed throughout the early part 264 

of the record a faster multi-centennial decline is observed following the relatively high early 265 

Holocene sSSTMg/Ca from ~10.5 to 7.9 ka BP (Figure 6C, D). An early to middle Holocene 266 

cooling has been recorded in different proxy records in the Nordic Sea including distribution 267 

patterns of diatoms (Birks and Koç, 2002; Koç et al., 1993) and benthic and planktic 268 

foraminifera (Hald and Aspeli, 1997; Hald et al., 2004; Ebbesen et al., 2007; Knudsen et al., 269 

2004; Rasmussen et al., 2007; Werner et al., 2013). The observed pattern could be a 270 

reflection of the high and declining summer insolation (Berger and Loutre, 1991) (Figure 271 

6A). However, studies suggest that insolation changes primarily influence the uppermost part 272 

(summer mixed layer down to ~20-40 m water depth) of the water column (e.g. Andersson et 273 
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al., 2009; Risebrobakken et al., 2011). Since our data are derived from the subsurface 274 

dwelling N. pachyderma (sin) (Kozdon et al., 2009; Simstich et al., 2003; Volkmann, 2000) 275 

the observed sSSTMg/Ca decline (Figure 6C, D) probably only partly reflects the declining 276 

insolation forcing (Berger and Loutre, 1991) (Figure 6A), but also indicates a gradual 277 

reduction in northbound Atlantic Water transport as suggested by Risebrobakken et al. 278 

(2011).  279 

Mid Holocene (7.9–2.7 ka BP) 280 

This period is characterized by the lowest sSSTMg/Ca recorded by N. pachyderma (sin). The 281 

SiZer analysis identifies no significant changes apart from the overall multi-millennial early 282 

Holocene decline ending at ~6 ka BP and initial increase identified at ~3 ka BP (Figure 6C, 283 

D). This cold interval may be partly driven by continued decrease in insolation (Berger and 284 

Loutre, 1991) (Figure 6A) and/or weakened poleward advection of Atlantic Water as 285 

indicated by the frequently negative phase of the NAO during the mid-Holocene (Hurrell, 286 

1995; Nesje et al., 2001). Hald et al. (2007) suggest that increased influence of Arctic Water, 287 

in response to lowered insolation and reduced oceanic heat advection may have caused the 288 

mid Holocene cooling and low sSSTTransfer along the Barents Sea - and west Spitsbergen 289 

slopes (Ebbesen et al., 2007; Husum and Hald, 2012; Sarnthein et al., 2003) (Figure 6F, G). 290 

During the early part of the mid-Holocene, before ~7 ka BP, relatively high phytoplankton-291 

derived biomarker content points to high surface water productivity in the eastern Fram Strait 292 

(Müller et al., 2012). This suggests continued influence of the still relatively high insolation 293 

on the surface water mass (Müller et al., 2012). However, within the sub-surface water 294 

masses the reduced sSSTMg/Ca values suggest an increased influence of Arctic water almost 295 

900 years earlier from ~7.9 ka BP (Figure 6D). After ~7 ka BP, continued low sSSTMg/Ca 296 

recorded by N. pachyderma (sin) (Figure 6D) are in agreement with weakened poleward 297 

advection of Atlantic Water (Hald et al., 2007; Risebrobakken et al., 2011) and cooling of the 298 
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surface water mass resulting in lowered productivity and extension of (winter/spring) sea ice 299 

(Müller et al., 2012). Faunal distributions in core MSM5/5-712-2 indicate relatively strong 300 

Atlantic Water advection until ~5.2 ka following a slight weakening after ~8 ka BP (Werner 301 

et al., 2013). Fluctuating sSSTSIMMAX values during this period, including cooling events at 302 

6.9 and 6.1 ka BP, are also tied to repeated advances and retreats of the sea-ice margin 303 

connected to south east movement of the Arctic Front separating Atlantic and Arctic waters 304 

masses (Werner et al., 2013) (Figure 6E).  305 

Prevailing cold conditions seen in the sSSTMg/Ca and sSSTSIMMAX reconstructions and 306 

supported by predominantly heavy δ18O values measured on N. pachyderma (sin) occur from 307 

5.2 to 2.7 ka BP (Werner et al., 2013) (Figure 5A, 6D, E). In combination with increased IP25 308 

concentrations (sea ice biomarker) the data indicate more severe sea ice conditions and 309 

stronger influence from Arctic water during this period (Müller et al., 2012; Werner et al., 310 

2013) (Figure 6B). The overall similar trend seen in the sSSTMg/Ca and sSSTSIMMAX suggests 311 

that both reconstructions reflect summer conditions (Figure 6D, E). The lower amplitude 312 

observed in the sSSTMg/Ca may be related to calcification depth of N. pachyderma (sin) as the 313 

sSSTSIMMAX reconstructs temperatures for 50 m water depth whereas sSSTMg/Ca probably 314 

reflects a somewhat deeper water depth. The modern main habitat depth of N. pachyderma 315 

(sin) is 50 to 200 m water depth in Fram Strait (Volkmann, 2000). At the ice margin and in 316 

areas affected by warm Atlantic water masses the main habitat center at ~100 m water depth 317 

(Volkmann, 2000). In ice covered and cold Polar Water masses the average habitat depth lies 318 

between 50–100 m (Volkmann, 2000).  319 

Late Holocene (2.7–0.3 ka BP) 320 

The late Holocene is characterized by significantly increasing sSSTMg/Ca toward the present 321 

(Figure 6C, D). The highly fluctuating sSSTMg/Ca signal has values intermittently higher than 322 

those recorded during the early Holocene (Figure 6D). During this time, more severe and 323 
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gradually increasing ice coverage in the eastern Fram Strait has been inferred from elevated 324 

sediment IP25 and IRD contents (Müller et al., 2012) (Figure 6B). In addition, in-phase 325 

fluctuations of IP25 and phytoplankton marker contents have been linked to periods of a 326 

rapidly advancing and retreating sea ice margin (Müller et al., 2012). The late Holocene 327 

expansion of sea ice and general cooling of the surface water masses have also been observed 328 

in other sea surface proxy records from the Nordic Seas (e.g. Andersen et al., 2004; Koç et 329 

al., 1993; Koç Karpuz and Jansen, 1992) and is in line with the low and declining Northern 330 

hemispheric insolation (Berger and Loutre, 1991) (Figure 6A). However, the present 331 

sSSTMg/Ca reconstruction and other subsurface proxy records derived from cores situated 332 

under the axis of northward Atlantic Water flow in the Nordic Seas register a late Holocene 333 

temperature increase that is in contrast to the reduced insolation forcing (Andersson et al., 334 

2009; Dolven et al., 2002; Ebbensen et al., 2007; Risebrobakken et al., 2003; Sarnthein et al., 335 

2003; Werner et al., 2013) (Figure 6E-H). Increased poleward Atlantic Water advection as 336 

indicated by the predominantly positive phase of the NAO after ~2 ka BP (Nesje et al., 2001; 337 

Olsen et al., 2012) may partially explain the observed late Holocene subsurface warming 338 

(Figure 6D). Furthermore, freshening and cooling of the surface waters due to melting of sea 339 

ice and/or icebergs could have resulted in migration of N. pachyderma (sin) to a deeper and 340 

possibly warmer part of the water column where conditions were more favorable (Kozdon et 341 

al., 2009; Simstich et al., 2003). A gradual migration N. pachyderma (sin) to deeper, less 342 

ventilated water masses is inferred by Werner et al. (2013) on the basis of gradually 343 

decreasing δ13C values after ~3.5 ka BP. Werner et al. (2013) speculate that the light δ13C 344 

values observed in MSM5/5-712-2 and other records in the northern North Atlantic indicate a 345 

wider distribution of a sea-ice derived freshwater layer in the Nordic Seas during the late 346 

Holocene. We further speculate that northbound Atlantic water masses, as a consequence of a 347 

widespread and possibly expanding melt water layer, could have submerged further south 348 
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thus becoming gradually more insulated during the late Holocene. This could partially 349 

explain the increasingly warmer sSSTMg/Ca observed in the present record (Figure 6D) and 350 

trend towards less ventilated lighter δ13C observed by Werner et al. (2013). Additionally, the 351 

low insolation (Berger and Loutre, 1991) (Figure 6A) and the increasingly severe sea ice 352 

conditions in the eastern Fram Strait (Müller et al., 2012) (Figure 6B) may have facilitated a 353 

shift in the growing season for phytoplankton and foraminifera towards a gradually warmer 354 

part of the season (e.g. Farmer et al., 2008). In the Arctic Ocean the highest production and 355 

thus main calcification season of N. pachyderma (sin) is observed in August and is likely 356 

linked to phytoplankton blooms (Kohfeld et al., 1996; Volkmann, 2000). 357 

Conclusions 358 

Mg/Ca element ratios measured on N. pachyderma (sin) have been used to reconstruct 359 

Holocene sub sea surface temperatures (sSSTMg/Ca) on the West Spitsbergen Slope, eastern 360 

Fram Strait.  361 

A tentative assessment of foraminiferal calcite preservation based on %CaCO3 and %TOC 362 

contents in the sediment may suggest preservation problems prior to ~10 ka BP and possibly 363 

also from ~6–3 ka BP.  364 

The fluctuating sSSTMg/Ca observed during the earliest part of the early Holocene can 365 

probably be associated with variable paleoceanographic conditions in response to lingering 366 

sea ice, ice berg and melt water presence. During the early Holocene from ~10.5–7.9 ka BP 367 

sSSTMg/Ca reach an average value of ~4°C. These relatively high values probably reflect a 368 

strong northward oceanic heat advection in combination with high insolation forcing.  369 

A significant long-term (multi-millennial) decrease in sSSTMg/Ca was identified throughout 370 

the early Holocene with steeper (sub-millennial) decline recorded at ~9–7 ka BP.  The coldest 371 

sSSTMg/Ca values observed in the current record, with values averaging ~3°C, were recorded 372 

in two periods from ~7.7–6 and ~5.2–2.7 ka BP. This cooling during the mid-Holocene may 373 
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be attributed to an increased influence of eastward migrating Arctic Water in response to 374 

hampered northward oceanic heat advection into the Fram Strait and decreasing insolation 375 

forcing. 376 

During the late Holocene, after ~2.7 ka BP, sSSTMg/Ca significantly increased as shown by the 377 

SiZer analysis. The sSSTMg/Ca reached an average value of ~5°C during the last 1000 year. 378 

This sSSTMg/Ca increase can possibly be linked to a stronger advection of Atlantic Water as 379 

supported by positive NAO index values combined with an insulating effect of a widespread 380 

melt water layer in the northern North Atlantic. The high sSSTMg/Ca values during the late 381 

Holocene potentially also could be partly explained by a shift in calcification season and/or 382 

change of depth habitat for N. pachyderma (sin). 383 
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Figure captions 612 

Table 1. Radiocarbon dates and calibrations from core MSM5/5-712. The radiocarbon dates 613 

were performed by the Leibniz-Laboratory for Radiometric Dating and Isotope Research, 614 

Kiel, Germany (KIA) and at Poznań Radiocarbon Laboratory, Poland (Poz). A reservoir age 615 

correction of 400 years with an additional reservoir correction (ΔR) of 151±51 was used. 616 

Figure 1. (A) Map of the north-eastern North Atlantic Ocean and adjoining seas showing the 617 

major currents systems and average position of the Polar and Arctic fronts modified from 618 

Marnela et al. (2008). Open circles indicate core location of Kastenlot core MSM05/5-712-2, 619 

giant box corer MSM05/5-712-1 and other cores mentioned in the text. Abbreviations: NAC: 620 

North Atlantic Current; IRM: Irminger Current; NwASC: Norwegian Atlantic Slope Current; 621 

NwAC: Norwegian Atlantic Current; WSC: West Spitsbergen Current; NCaC: North Cape 622 

Current; RAW: Re-circulating Atlantic Water; SB: Svalbard Branch; YSC: Yermark Slope 623 

Current; ESC: East Spitsbergen Current; EGC: East Greenland Current. (B) Conductivity, 624 

temperature, and depth (CTD). Eastern Fram Strait, August 2007.  625 

Figure 2. Age model and sedimentation rate (cm/kyr) for Kastenlot core MSM05/5-712-2. 626 

Error bars show the 2σ standard deviation of the calibrated ages. 627 

Figure 3. Correlation and regressions between Holocene Mg/Ca and other trace element 628 

rations in MSM05/5-712-2. Mg/Ca vs. (A) Al/Ca, (B) Mn/Ca and (C) Fe/Ca (contamination 629 

indicators). 630 

Figure 4. Mg/Ca concentration and sediment TOC and CaCO3 contents plotted against 631 

calibrated age and depth in core MSM05/5-712-2. (A, B) Sediment TOC and CaCO3 contents 632 

(weight %) in core MSM05/5-712-2 (Grey: (Müller et al., 2012); Black: (Aagaard-Sørensen 633 

et al., submitted)). (C) Mg/Ca concentration (mmol/mol). Thin line = raw data. Thick line = 634 

5-point running mean. Crosses mark omitted data points. Filled circle shows the average 635 

reproducibility of sample splits (±0.039 mmol/mol). (D) Reconstructed sSSTMg/Ca. Present 636 
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day water temperatures at 50 and 200 m water depth are shown in grey fonts on Y-axis. 637 

Diamonds on X-axis indicate radiocarbon dated levels.  638 

Figure 5. Reconstruction of sSSTMg/Ca compared to other marine proxies from core MSM5/5-639 

712-2 and MSM5/5-712-1. (A) Ice-volume corrected N. pachyderma (sin) δ18O record (grey 640 

line) with 3-point running mean (black line) from core MSM5/5-712-2 (Werner et al., 2013). 641 

(B) Reconstructed sSSTMg/Ca (black) (present study) shown with sSSTMg/Ca reconstruction 642 

from core MSM5/5-712-1 calculated using exponential temperature equation of Elderfield  643 

and Ganssen (2000) (Spielhagen et al., 2011) (purple) and linear temperature equation of 644 

Kozdon et al. (2009) (blue). Purple and blue dashed lines indicate calculated core-top 645 

sSSTMg/Ca (C) Reconstructed sSSTMg/Ca (black line) and sSSTMg/Ca based on Mg/Ca values 646 

that have been artificially increased 15 % (grey line). Summer sub sea surface temperatures 647 

(at 50 m water depth) calculated using the SIMMAX modern analogue technique from 648 

Spielhagen et al. (2011) (core MSM5/5-712-1) (purple) and Werner et al. (2013) (MSM5/5-649 

712-2) (red) are also shown. Present day water temperatures at 50 and 200 m water depth are 650 

indicated on the y-axis to the right. 651 

Figure 6. The reconstructed sSSTMg/Ca for the eastern Fram Strait compared with other proxy 652 

records and (sub)SST reconstructions in a south-north transect. (A) June insolation at 80°N 653 

(Berger and Loutre, 1991). (B) Sediment IP25 concentrations (Müller et al., 2012). (C) SiZer 654 

analysis of reconstructed sSSTMg/Ca from core MSM5/5-712-2. The SiZer map, a function of 655 

scale (y-axis: log10(h)) and location (x-axis: calendar age BP), shows at what given time the 656 

proxy record has significant increase (red), decrease (blue), no change (purple) or has 657 

insufficient observations for correct inference (grey). (D) Reconstructed sSSTMg/Ca. Thin line 658 

= raw data. Thick line = 5-point running mean. (E) Transfer function summer sSST 659 

reconstructions at 50 m water depth (SIMMAX modern analogue technique) in core 660 

MSM5/5-712-2 (Werner et al., 2013). (F) Transfer function summer sSST reconstructions 661 
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100 m water depth (Weighted average partical least squares model) in core MD99-2304 662 

(Ebbensen et al., 2007; Husum and Hald, 2012). (G) Transfer function based summer SST 663 

reconstructions at 10 m water depth (Maximum Likelihood model) in Core 23258-2 (Hald et 664 

al., 2007; Sarnthein et al., 2003). (H) Transfer function based summer SST reconstructions at 665 

10 m water depth (Maximum Likelihood model) in Cores MD95-2011 and JM97-948/2A 666 

(Hald et al., 2007; Risebrobakken et al., 2003). 667 

 668 
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Table 1 

 
 

 

Core id 

 

 

Lab. code 

 

 

 

Depth range (cm) 

 

 

Material 

 

 

14C age 

 

 

Calibrated 

age ± 2σ 

 

2 σ max cal. age 

(cal. age intercepts) 

2 σ min cal. age 

 

 

Reservoir age 

(R=400 + ∆R) 

 

   

References 

MSM5/5-712-2 KIA 45217 10-12 N. pachyderma 815±25 317±131 186(317)447 551±51 Werner et al., 2013  

MSM5/5-712-2 KIA 41024 20-22 N. pachyderma 1570±25 972±141 831(972)1113 551±51 Werner et al., 2013 

MSM5/5-712-2 KIA 45218 27-29 N. pachyderma 1985±25 1393±118 1275(1393)1510 551±51 Werner et al., 2013 

 

MSM5/5-712-2 KIA 45219 40-42 N. pachyderma 2565±25 2056±165 1891(2056)2220 551±51 Werner et al., 2013 

MSM5/5-712-2 SacA 19113 60-61 N. pachyderma 3365±30 3029±175 2854(3029)3203 551±51 Giraudeau  

(in prep) 

MSM5/5-712-2 SacA 19114 94-95 N. pachyderma 4915±30 5041±189 4852(5041)5230 551±51 Giraudeau  

(in prep) 

MSM5/5-712-2 SacA 19115 138.5-139.5 N. pachyderma 6440±30 6756±151 6605(6756)6906 551±51 Giraudeau  

(in prep) 

MSM5/5-712-2 KIA 38080 168.5-169.5  N. pachyderma 7305 ±35  7630±126 7504(7630) 7756 551±51 Werner et al., 2013 

 

MSM5/5-712-2 KIA 41025 191.5-192.5 N. pachyderma 7815±45 8133±157 7976 (8133) 8290 551±51 Werner et al., 2013 

MSM5/5-712-2 Poz-30723 214-215 N. pachyderma 8362±45 8749 ±209 8540 (8749) 8958 551±51 Present  

study 

MSM5/5-712-2 KIA 37423 280-281 N. pachyderma 9220±50 9797±252 9551 (9797) 10042 551±51 Present  

study 

MSM5/5-712-2 Poz-30725 322-323 N. pachyderma 9580±47 10310 ±158 10152 (10310) 10468 551±51 Present  

study 

MSM5/5-712-2 Poz-30726 428-431 N. pachyderma 12358±63 13629±197 13432 (13629) 13826 551±51 Present  

study 
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