Sub sea surface temperatures in the Polar North Atlantic during the Holocene: Planktic foraminiferal Mg/Ca temperature reconstructions

<table>
<thead>
<tr>
<th>Journal:</th>
<th>The Holocene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>HOL-13-0053.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Aagaard-Sørensen, Steffen; University of Tromsø, Department of Geology Husum, Katrine; University of Tromsø, Department of Geology Hald, Morten; University of Tromsø, Department of Geology Marchitto, Thomas; University of Colorado, Department of Geological Sciences and Institute of Arctic and Alpine Research Godtliebsen, Fred; University of Tromsø, Department of Mathematics and Statistics</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Paleoceanography, Polar North Atlantic, Fram Strait, Atlantic water, Trace elements, sub SST reconstruction</td>
</tr>
</tbody>
</table>

Abstract: Holocene sea surface temperatures in the eastern Fram Strait are reconstructed based on Mg/Ca ratios measured on the planktic foraminifer *Neogloboquadrina pachyderma* (sin). The reconstructed sub sea surface temperatures (sSST$_{Mg/Ca}$) fluctuate markedly during the earliest Holocene at ~11.7–10.5 ka BP. This probably is in response to the varying presence of sea ice and deglacial melt water. Between ~10.5–7.9 ka BP the sSST$_{Mg/Ca}$ values are relatively high (~4°C) and more stable reflecting high insolation and intensified poleward advection of Atlantic water. After 7.9 ka BP the sSST$_{Mg/Ca}$ decline to an average of ~3°C throughout the mid-Holocene. These changes can be attributed to a combined effect of reduced poleward oceanic heat advection and a decline in insolation as well as a gradually increased influence of eastward migrating Arctic Water. The sSST$_{Mg/Ca}$ increase and vary between 2.1–5.8°C from ~2.7 ka BP to the present. This warming is in contrast to declining late Holocene insolation and may instead be explained by factors including increased advection of oceanic heat to the Arctic region possibly insulated beneath a widening freshwater layer in the northern North Atlantic in conjunction with a shift in calcification season and/or depth habitat of *N. pachyderma* (sin).
Sub sea surface temperatures in the Polar North Atlantic during the Holocene:

Planktic foraminiferal Mg/Ca temperature reconstructions

S. Aagaard-Sørensen¹, K. Husum¹, M. Hald¹, T. Marchitto² and F. Godtliebsen³

¹ Department of Geology, University of Tromsø, 9037 Tromsø, Norway

² Department of Geological Sciences and Institute of Arctic and Alpine Research, University of Colorado, Campus Box 450, Boulder, Colorado 80309, USA

³ Department of Mathematics and Statistics, University of Tromsø, 9037 Tromsø, Norway

*Author for correspondence: (e-mail: Steffen.Sorensen@uit.no)

Key words: Paleoceanography, Polar North Atlantic, Fram Strait, Atlantic water, Trace elements, sub SST reconstruction
Abstract

Holocene sea surface temperatures in the eastern Fram Strait are reconstructed based on Mg/Ca ratios measured on the planktic foraminifer *Neogloboquadrina pachyderma* (sin). The reconstructed sub sea surface temperatures (sSST_{Mg/Ca}) fluctuate markedly during the earliest Holocene at ~11.7–10.5 ka BP. This probably is in response to the varying presence of sea ice and deglacial melt water. Between ~10.5–7.9 ka BP the sSST_{Mg/Ca} values are relatively high (~4°C) and more stable reflecting high insolation and intensified poleward advection of Atlantic water. After 7.9 ka BP the sSST_{Mg/Ca} decline to an average of ~3°C throughout the mid-Holocene. These changes can be attributed to a combined effect of reduced poleward oceanic heat advection and a decline in insolation as well as a gradually increased influence of eastward migrating Arctic Water. The sSST_{Mg/Ca} increase and vary between 2.1–5.8°C from ~2.7 ka BP to the present. This warming is in contrast to declining late Holocene insolation and may instead be explained by factors including increased advection of oceanic heat to the Arctic region possibly insulated beneath a widening freshwater layer in the northern North Atlantic in conjunction with a shift in calcification season and/or depth habitat of *N. pachyderma* (sin).

Introduction

In order to elucidate climate changes observed in Arctic environments today, it is necessary to improve the knowledge of long term natural climatic and oceanographic variations in the region (IPCC, 2007). At present, northward advection of Atlantic Water into the Nordic Seas and on to the Arctic is the main oceanic source of heat and salt for the Arctic Ocean (Schauer et al., 2004). During the Holocene other forcing mechanisms such as long-term orbital changes associated with insolation variability (Berger and Loutre, 1991), changes in atmospheric pressure systems resulting in displacement of primary wind patterns (North Atlantic Oscillation index) and alteration of Atlantic Water flux into the Nordic Seas (Hurrell,
1995; Nesje et al., 2001) have been suggested to have a large impact on climatic and oceanographic development in the Nordic Seas and the Arctic. Paleoceanographic variability, including temporal and spatial variation of Atlantic Water flux, temperature and salinity has previously been studied using a range of different proxies based on planktic foraminifera in the Nordic Seas during the Holocene. These include stable oxygen and carbon isotopes in foraminiferal tests (e.g. Bauch et al., 2001; Rasmussen et al., 2007) and distribution patterns of planktic foraminifera and transfer functions (e.g. Hald et al., 2007). Reconstructions of SST using transfer functions in the Arctic may be hampered by the databases representing modern conditions. The databases have a limited geographical coverage in the Arctic meaning that not all environmental gradients of the region are represented (e.g. Husum and Hald, 2012; Kucera et al., 2005). Moreover, stable oxygen isotopes recorded within foraminiferal calcite inherently reflect both the temperature and the δ^{18}O signal of ambient seawater (e.g. Shackleton, 1974). Therefore, additional proxies for paleo-SST are needed to elucidate cold-end temperature variability. Recent studies have utilized Mg/Ca ratios in planktic foraminifera to reconstruct sub sea surface temperatures (sSST_{Mg/Ca}) in the Fram Strait during the Late Glacial/Holocene transition and the late Holocene (Aagaard-Sørensen et al., submitted; Spielhagen et al., 2011). Here, we present the first record of sSST_{Mg/Ca} from the entire Holocene in the high Arctic based on trace elements. A sediment core located under the present day inflow of Atlantic Water, carried within the West Spitsbergen Current (WSC), has been investigated (Figure 1A). Trace element analyses have been conducted on the planktic foraminifer Neogloboquadrina pachyderma (sin). Mg/Ca ratios were used to reconstruct sub surface water temperatures (sSST_{Mg/Ca}) representing the primary habitat depth and season of calcification for N. pachyderma (sin). In addition, %CaCO_3 and %TOC variations in the sediment were used to assess potential preservation changes of foraminiferal calcite in the record.
Oceanographic setting

Atlantic Water is advected northward in the North Atlantic Current (NAC; T>2°C, S>35) (Hopkins, 1991) and is transported into the Nordic Seas across the Iceland-Faroes-Scotland ridge systems at ~62°N (Hansen and Østerhus, 2000) (Figure 1A). At ca. 70°N the water mass bifurcates with one branch entering the SW Barents Sea while the other branch continues north along the west Barents Sea and Spitsbergen slopes as the West Spitsbergen Current (WSC) (Schauer et al., 2004) (Figure 1A). Atlantic Water (T: 3 to 7°C; S: 34.9 to 35.2) is carried by the WSC into the Arctic Ocean in the eastern part of the Fram Strait where it occupies the upper ~700 meters of the water column (Schauer et al., 2004; Walczowski et al., 2005) (Figure 1A). In the Fram Strait the Atlantic Water submerges at ~78°N and partly turns back to the south (Bourke et al., 1988) underneath the southward flowing East Greenland Current (Rudels et al. 2005) (Figure 1A). The remaining Atlantic Water disperses into several sub currents in the Arctic Ocean (Manley, 1995).

In the eastern Fram Strait modern temperatures of the surface mixed layer (0 to 25 m water depth) reach 8.2°C and a salinity up to 34.95 (August 2006) (Figure 1B). Below, from 25 to 550 m water depth Atlantic Water (T~4°C; S=35 to 35.15) occupies the water column and overlays Atlantic Intermediate Water (T>0°C; S~34.9). Deep Water is found from 900 m water depth (T<0°C, S~34.9).

Material and methods

Kastenlot core MSM05/5-712-2 (78°54.94′N, 06°46.03′E; 1488 m water depth; 894 cm length) was collected during a cruise with RV “Maria S. Merian” in August 2007 at the West Spitsbergen slope, eastern Fram Strait (Figure 1A).

Age model

The age model of MSM05/5-712-2 was constructed on the basis of 10 AMS 14C dates and mean of the 2σ age ranges were used as tie points in the linear interpolation (Table 1, Figure
The AMS ^{14}C dates were carried out on planktic foraminiferal tests ($N. pachyderma$ (sin)) from the upper 441 cm of the sediment core (Giraudeau (in prep); Werner et al., 2013). Radiocarbon dates were calibrated with Calib version 6.0 (Reimer et al., 2005; Stuiver et al., 2005) using the marine calibration curve Marine09 (Hughen et al., 2004; Reimer et al., 2009). The standard marine reservoir correction of 400 years (R) was used in all calibrations. The local reservoir age ($\Delta R=151\pm51$) from Magdalenefjorden, Svalbard was used in the calibration (Mangerud et al., 2006; Mangerud and Gulliksen, 1975) (Table 1). All calibrated ages are an expression of years before present (1950). The Younger Dryas/Holocene boundary (11.75 ka BP) used on figures follows Walker et al. (2009).

Trace element analysis and contaminants

The sediment core was sub sampled in 1 cm thick slices, and then freeze dried and wet sieved trough 1 mm, 100 µm and 63 µm mesh sizes. Trace element analysis was performed on the planktic foraminifer $Neogloboquadrina pachyderma$ (sinistral coiling) (ca. 50 tests/sample) and the trace element ratios Mg/Ca, Mn/Ca, Fe/Ca, and Al/Ca were measured (Figure 3 and 4). Tests were picked at 2 cm and 3 cm resolution in the upper part (0 to 210 cm) and lower part (210 to 441 cm) of the sediment core, respectively, resulting in a temporal resolution of ~36 to 120 yr/sample. Given that partial dissolution and contamination of tests can bias the trace element analysis, dirty and sediment filled tests or tests visibly influenced by dissolution (i.e. broken tests or tests with missing chambers) were avoided. Furthermore, tests were picked within a relatively narrow size range, with minimum and maximum length of the tests ranging from ca. 225 to 290 µm, to reduce size dependent bias on the Mg/Ca measurements (Elderfield et al., 2002). Prior to analysis the foraminiferal tests were crushed and reductively (anhydrous hydrazine) and oxidatively (H_2O_2) cleaned (Boyle and Keigwin, 1985; Boyle and Rosenthal, 1996). Subsequently the samples were analyzed by magnetic-sector single collector ICP-MS, on a Thermo-Finnigan Element2 at the Litmann laboratory, University of
Colorado operating with a long-term 1σ precisions of 0.54% for Mg/Ca measurements (Marchitto, 2006). Replicate analysis was carried out for approximately every 30 samples. The average reproducibility of sample splits was ±0.039 mmol/mol (n=4) in regards to Mg/Ca which on average is below <5% difference between duplicate measurements (Figure 4C). Fe, Al and Mn are tracers of contaminating phases that might bias the Mg/Ca ratios measured in foraminiferal calcite (Barker et al., 2003). Fe and Al are tracers of detrital material contamination (silicate minerals) and Mn is tracer of secondary diagenetic Mn-rich carbonate coating (Boyle, 1983). Weak correlation between Mg and Fe ($R^2 \sim 0.26$) and Mn ($R^2 \sim 0.21$) is observed whereas Al shows no significant correlation to Mg ($R^2 \sim 0.03$) (Figure 3A, B, C). Samples with >100 µmol/mol of Fe, Al and Mn (Barker et al., 2003) in addition to samples with <5 µg CaCO$_3$ recovery (Marchitto, 2006) were omitted (Figure 4C).

Water temperature reconstructions

Temperature of the ambient sea water is considered to be the primary controlling factor on Mg/Ca ratios recorded in foraminiferal calcite (Elderfield and Ganssen, 2000; Lea et al., 1999; Nürnberg et al., 1996). The thermodynamic control on the Mg uptake into foraminiferal calcite shows positive exponential relation between temperature and Mg uptake which approximates a linear relationship at narrow temperature ranges (Elderfield and Ganssen, 2000; Kozdon et al., 2009; Kristjánsson et al., 2007).

Sub sea surface temperatures (sSST$_{\text{Mg/Ca}}$) were calculated using Mg/Ca ratios and the species specific (N. pachyderma (sin)) linear equation of Kozdon et al. (2009) (Figure 4, 5, 6):

$$\text{Mg/Ca (mmol mol}^{-1} \text{)} = 0.13 (\pm 0.037) \times T + 0.35 (\pm 0.17) \quad \text{(Eq. 1)}$$

This equation is based on cross calibrated Mg/Ca and $\delta^{44/40}$Ca proxy signals of N. pachyderma (sin) from Nordic Sea core top samples and produces reliable sSST$_{\text{Mg/Ca}}$ estimates at temperatures above ~3°C (Kozdon et al., 2009). It must be cautioned that the
equation is based on samples that have not undergone the reductive cleaning step (Kozdon et al., 2009).

SiZer analysis

SiZer (Significance of Zero Crossings of the Derivative) analysis described by Chaudhuri and Marron (1999) was performed on the sSST$_{Mg/Ca}$ data to reveal significant features in the proxy record (Figure 6C). The analysis has previously been applied to Arctic paleo proxy records to reveal significant features at particular levels of resolution and eliminating insignificant natural variability (e.g. Hald et al., 2004; Wilson et al., 2011). The method assumes that individual values are independent random variables. The analyses smooth the data from minimum to maximum resolution and generate a SiZer map which examines the data across a range of resolutions (bandwidth, h) and uses color codes to classify the derivatives of the smoothed data as significantly decreasing, increasing or exhibiting no significant change (Figure 6C).

Results

The record of Mg/Ca ratios measured on *N. pachyderma* (sin) has an average value of 0.809 mmol/mol ($n = 152; 1\sigma = 0.11$) corresponding to an average temperature of 3.5°C (Figure 4C, D). Measurements of Mg/Ca ratios showing possible sample contamination have been removed from the record (Figure 4C, D).

During the earliest Holocene the sSST$_{Mg/Ca}$ values are relatively high and fluctuating between 1.9 and 5.2°C (Figure 4D). Between ~10.5–7.9 ka BP the sSST$_{Mg/Ca}$ are relatively high values with an average of ~4°C (Figure 4D). After ~7.9 ka BP the sSST$_{Mg/Ca}$ decline rapidly to <3°C. The mid Holocene is characterized by two cold periods, ~7.9–6 ka BP and 5.2–2.7 ka BP, with an average sSST$_{Mg/Ca}$ of ~3°C bracket an interval with slightly elevated sSST$_{Mg/Ca}$ (~3.5°C). During the Late Holocene the sSST$_{Mg/Ca}$ values gradually increase.
towards the present. The highest values averaging ~5°C are recorded after ~1 ka BP (Figure 4D).

The SiZer analysis identifies a multi-millennial sSST\textsubscript{Mg/Ca} decline from ~11.7– 6 ka BP with a significant sub-millennial decrease around 7.9 ka BP (Figure 6C). From ~6–3 ka BP no significant change is observed. A significant warming on multi decadal to multi millennial time scale is initiates at ~3 ka BP (Figure 6C).

Discussion

Assessment of reconstructed sSST\textsubscript{Mg/Ca} and calcium carbonate preservation state

During analysis the foraminiferal calcite undergoes reductive and oxidative cleaning (see material and methods for details). The reductive cleaning decreases the Mg/Ca ratio by up to 10-15% potentially lowering the reconstructed sSST\textsubscript{Mg/Ca} (Barker et al., 2003).

Comparison of reconstructed sSST\textsubscript{Mg/Ca} with summer sSST\textsubscript{SIMMAX} based on foraminiferal distribution patterns in the same core (Werner et al., 2013) shows similar temperature ranges of 1.9 to 5.8°C and 0.9 to 6.1°C, respectively (Figure 5C). It should be noted that below the lower limit of sensitivity for Eq. 1 (< 3°C) (Kozdon et al., 2009) the Mg/Ca method does not reproduce comparable low temperature estimates as the sSST\textsubscript{SIMMAX} (Werner et al., 2013) (Figure 5C). In order to estimate the potential impact of Mg loss during reductive cleaning (Barker et al., 2003) we artificially increased the Mg/Ca ratio by 15% in figure 5C. The resulting sSST\textsubscript{Mg/Ca+15%} calculated using Eq. 1 (Kozdon et al., 2009) shows increases of 0.7 to 1.3°C generally producing higher estimates than sSST\textsubscript{SIMMAX} (Figure 5C). Therefore the potential Mg loss during the reductive cleaning (i.e. lower reconstructed temperature) in our record is considered of minor importance.

Further, Mg/Ca ratios were measured in core-top \textit{N. pachyderma} (sin) (Core MSM5/5-712-1) obtained from same core location as MSM5/5-712-2 (Speilhagen et al., 2011) (Figure 1). The material underwent the same cleaning procedure as applied in the present study (Spielhagen

http://mc.manuscriptcentral.com/holocene
et al., 2011). The core-top sSST$_{\text{Mg/Ca}}$ is \sim5.1°C when calculated using the temperature equation of Elderfield & Ganssen (2000) (Speilhagen et al., 2011) (Figure 5B) and \sim3.7°C when recalculated using Eq.1 (Figure 5B) (Kozdon et al., 2009). Both values are within or close to the modern temperature range (August 2009) observed at the main $N. \text{pachyderma}$ (sin) habitat depth of 50-200 m water depth (Figure 1B, 5C). These findings further show that any potential Mg loss during cleaning procedures is of minor importance for the reconstructed temperatures.

Studies have shown that dissolution of calcium carbonate is a prominent feature in paleo-records from the Fram Strait especially after \sim8 ka BP (Bauch et al., 2001; Rasmussen et al., 2007; Zamelczyk et al., 2012). Post mortem dissolution of foraminiferal calcite may preferentially remove Mg rich parts from foraminiferal tests and consequently bias Mg/Ca ratio based temperature reconstructions towards lower, colder values (Brown and Elderfield, 1996; Johnstone et al., 2011; Rosenthal et al., 2000). In order to minimize the risk of measuring on material influenced by dissolution only the most pristine test were picked for trace element analysis (see material and methods section for more details). Further, %CaCO$_3$ and %TOC variations in the sediment can be used to tentatively assess potential preservation changes of foraminiferal calcite in the record (Figure 4A, B). The sediment holds low content of CaCO$_3$ (\leq5 wt.%) and high content of total organic carbon (%TOC) prior to \sim10 ka BP (Aagaard et al., submitted) (Figure 4A, B) which may suggest potential post-depositional dissolution due to respiratory release of CO$_2$ and decrease of pore water pH during organic material degradation within the sediment (e.g. Archer et al., 1989; Emerson and Bender, 1981; Huber et al., 2000). After \sim10 ka BP to the present high %CaCO$_3$ and low %TOC generally indicates good preservation potential, apart from the mid-Holocene (\sim6–3 ka BP) where relatively low %CaCO$_3$ and moderate %TOC content has been recorded (Müller et al., 2012). This could indicate preservation problems although to a lesser extent than during the
earliest Holocene (4 A,B). To what extent preservation/dissolution has influenced the Mg/Ca ratios recorded by *N. pachyderma* (sin) is not possible to quantify from the present set of proxies. However, it cannot be excluded that the preservation changes of foraminiferal tests during the Holocene may have influenced the reconstructed sSSTMg/Ca values.

Holocene sSST variability

Based on the sSSTMg/Ca record and significant changes identified by the SiZer analysis the paleorecord of core MSM5/5-712-2 can be divided into three intervals: The relatively warm early (11.7–7.9 ka BP), cold mid (7.9–2.7 ka BP) and warm late (2.7–0.3 ka BP) Holocene (Figure 4, 6).

Early Holocene (11.7–7.9 ka BP)

Previous studies from the Fram Strait have shown that the early Holocene was characterized by a strong influence of sea ice, icebergs and glacial melt water prior to ~10.5 ka BP (Aagaard-Sørensen et al., submitted; Ebbesen et al., 2007; Rasmussen et al., 2007; Ślubowska-Woldengen et al., 2005). The low sSSTMg/Ca recorded at ~11–11.3 ka BP (represented by 3 data points) (Figure 6D) possibly reflects a cooling associated with the brief but distinct climatic event, the Preboreal Oscillation (PBO). The PBO has been documented in both marine and terrestrial records in and around the Nordic Seas (e.g. Björck et al., 1997; Hald and Hagen, 1998; Husum and Hald, 2002; Rasmussen, SO et al., 2007). The PBO has been attributed to increased deglacial melt water fluxes into the Nordic and Arctic Seas resulting in hampered heat transport via the North Atlantic conveyor and enhanced sea ice export into the Fram Strait (Fisher et al., 2002; Hald and Hagen 1998).

In the present record the highest early Holocene sSSTMg/Ca (average ~4°C) is found between ~10.5 to 7.9 ka BP (Figure 6D). A marked summer sSSTMg/Ca increase initiated at ~11 ka BP and subsequent peak values between ~10.5–8.7 ka BP has been recorded along the Barents...
Sea and West Spitsbergen slopes via planktic foraminiferal transfer functions (sSST\textsubscript{Transfer}) (Ebbesen et al., 2007; Hald et al., 2007; Husum and Hald, 2012; Sarnthein et al., 2003) (Figure 6F, G). The summer sSST increase along the West Spitsbergen slope is part of a south to north time-transgressive development in the Nordic Seas, where the remnant cold water and sea ice gradually was displaced by Atlantic Water (Hald et al., 2007).

Risebrobakken et al. (2011) argue that strong melt water discharge resulted in weak ventilation of the Nordic Seas until 11 ka BP. A buildup of an Atlantic subsurface reservoir of heat and salt eventually resulted in rejuvenation of strong and deep overturning circulation and intensified early Holocene northward heat advection into the Nordic Seas peaking at 10 ka BP (Risebrobakken et al., 2011). Predominantly positive North Atlantic Oscillation (NAO) index values reconstructed by Nesje et al. (2001) also support stronger northward advection of Atlantic Water during the early Holocene (Hurrell, 1995). The NAO index is defined as the atmospheric pressure difference between Iceland and the Azores with positive index values indicating a larger pressure difference, resulting in stronger westerlies which increase wind driven Atlantic Water influx to the Nordic Seas (Hurrell, 1995).

Within the significant multi-millennial sSST\textsubscript{Mg/Ca} decline observed throughout the early part of the record a faster multi-centennial decline is observed following the relatively high early Holocene sSST\textsubscript{Mg/Ca} from ~10.5 to 7.9 ka BP (Figure 6C, D). An early to middle Holocene cooling has been recorded in different proxy records in the Nordic Sea including distribution patterns of diatoms (Birks and Koç, 2002; Koç et al., 1993) and benthic and planktic foraminifera (Hald and Aspeli, 1997; Hald et al., 2004; Ebbesen et al., 2007; Knudsen et al., 2004; Rasmussen et al., 2007; Werner et al., 2013). The observed pattern could be a reflection of the high and declining summer insolation (Berger and Loutre, 1991) (Figure 6A). However, studies suggest that insolation changes primarily influence the uppermost part (summer mixed layer down to ~20-40 m water depth) of the water column (e.g. Andersson et
al., 2009; Risebrobakken et al., 2011). Since our data are derived from the subsurface dwelling *N. pachyderma* (sin) (Kozdon et al., 2009; Simstich et al., 2003; Volkmann, 2000) the observed sSST\textsubscript{Mg/Ca} decline (Figure 6C, D) probably only partly reflects the declining insolation forcing (Berger and Loutre, 1991) (Figure 6A), but also indicates a gradual reduction in northbound Atlantic Water transport as suggested by Risebrobakken et al. (2011).

Mid Holocene (7.9–2.7 ka BP)

This period is characterized by the lowest sSST\textsubscript{Mg/Ca} recorded by *N. pachyderma* (sin). The SiZer analysis identifies no significant changes apart from the overall multi-millennial early Holocene decline ending at ~6 ka BP and initial increase identified at ~3 ka BP (Figure 6C, D). This cold interval may be partly driven by continued decrease in insolation (Berger and Loutre, 1991) (Figure 6A) and/or weakened poleward advection of Atlantic Water as indicated by the frequently negative phase of the NAO during the mid-Holocene (Hurrell, 1995; Nesje et al., 2001). Hald et al. (2007) suggest that increased influence of Arctic Water, in response to lowered insolation and reduced oceanic heat advection may have caused the mid Holocene cooling and low sSST\textsubscript{Transfer} along the Barents Sea - and west Spitsbergen slopes (Ebbesen et al., 2007; Husum and Hald, 2012; Sarnthein et al., 2003) (Figure 6F, G). During the early part of the mid-Holocene, before ~7 ka BP, relatively high phytoplankton-derived biomarker content points to high surface water productivity in the eastern Fram Strait (Müller et al., 2012). This suggests continued influence of the still relatively high insolation on the surface water mass (Müller et al., 2012). However, within the sub-surface water masses the reduced sSST\textsubscript{Mg/Ca} values suggest an increased influence of Arctic water almost 900 years earlier from ~7.9 ka BP (Figure 6D). After ~7 ka BP, continued low sSST\textsubscript{Mg/Ca} recorded by *N. pachyderma* (sin) (Figure 6D) are in agreement with weakened poleward advection of Atlantic Water (Hald et al., 2007; Risebrobakken et al., 2011) and cooling of the
surface water mass resulting in lowered productivity and extension of (winter/spring) sea ice (Müller et al., 2012). Faunal distributions in core MSM/5-712-2 indicate relatively strong Atlantic Water advection until ~5.2 ka following a slight weakening after ~8 ka BP (Werner et al., 2013). Fluctuating sSST$_{\text{SIMMAX}}$ values during this period, including cooling events at 6.9 and 6.1 ka BP, are also tied to repeated advances and retreats of the sea-ice margin connected to south east movement of the Arctic Front separating Atlantic and Arctic waters masses (Werner et al., 2013) (Figure 6E).

Prevailing cold conditions seen in the sSST$_{\text{Mg/Ca}}$ and sSST$_{\text{SIMMAX}}$ reconstructions and supported by predominantly heavy δ^{18}O values measured on N. pachyderma (sin) occur from 5.2 to 2.7 ka BP (Werner et al., 2013) (Figure 5A, 6D, E). In combination with increased IP$_{25}$ concentrations (sea ice biomarker) the data indicate more severe sea ice conditions and stronger influence from Arctic water during this period (Müller et al., 2012; Werner et al., 2013) (Figure 6B). The overall similar trend seen in the sSST$_{\text{Mg/Ca}}$ and sSST$_{\text{SIMMAX}}$ suggests that both reconstructions reflect summer conditions (Figure 6D, E). The lower amplitude observed in the sSST$_{\text{Mg/Ca}}$ may be related to calcification depth of N. pachyderma (sin) as the sSST$_{\text{SIMMAX}}$ reconstructs temperatures for 50 m water depth whereas sSST$_{\text{Mg/Ca}}$ probably reflects a somewhat deeper water depth. The modern main habitat depth of N. pachyderma (sin) is 50 to 200 m water depth in Fram Strait (Volkmann, 2000). At the ice margin and in areas affected by warm Atlantic water masses the main habitat center at ~100 m water depth (Volkmann, 2000). In ice covered and cold Polar Water masses the average habitat depth lies between 50–100 m (Volkmann, 2000).

Late Holocene (2.7–0.3 ka BP)

The late Holocene is characterized by significantly increasing sSST$_{\text{Mg/Ca}}$ toward the present (Figure 6C, D). The highly fluctuating sSST$_{\text{Mg/Ca}}$ signal has values intermittently higher than those recorded during the early Holocene (Figure 6D). During this time, more severe and
For Peer Review

gradually increasing ice coverage in the eastern Fram Strait has been inferred from elevated
sediment IP$_{25}$ and IRD contents (Müller et al., 2012) (Figure 6B). In addition, in-phase
fluctuations of IP$_{25}$ and phytoplankton marker contents have been linked to periods of a
rapidly advancing and retreating sea ice margin (Müller et al., 2012). The late Holocene
expansion of sea ice and general cooling of the surface water masses have also been observed
in other sea surface proxy records from the Nordic Seas (e.g. Andersen et al., 2004; Koç et
al., 1993; Koç Karpuz and Jansen, 1992) and is in line with the low and declining Northern
hemispheric insolation (Berger and Loutre, 1991) (Figure 6A). However, the present
sSST$_{Mg/Ca}$ reconstruction and other subsurface proxy records derived from cores situated
under the axis of northward Atlantic Water flow in the Nordic Seas register a late Holocene
temperature increase that is in contrast to the reduced insolation forcing (Andersson et al.,
2009; Dolven et al., 2002; Ebbensen et al., 2007; Risebrobakken et al., 2003; Sarnthein et al.,
2003; Werner et al., 2013) (Figure 6E-H). Increased poleward Atlantic Water advection as
indicated by the predominantly positive phase of the NAO after ~2 ka BP (Nesje et al., 2001;
Olsen et al., 2012) may partially explain the observed late Holocene subsurface warming
(Figure 6D). Furthermore, freshening and cooling of the surface waters due to melting of sea
ice and/or icebergs could have resulted in migration of *N. pachyderma* (sin) to a deeper and
possibly warmer part of the water column where conditions were more favorable (Kozdon et
al., 2009; Simstich et al., 2003). A gradual migration *N. pachyderma* (sin) to deeper, less
ventilated water masses is inferred by Werner et al. (2013) on the basis of gradually
decreasing δ13C values after ~3.5 ka BP. Werner et al. (2013) speculate that the light δ13C
values observed in MSM5/5-712-2 and other records in the northern North Atlantic indicate a
wider distribution of a sea-ice derived freshwater layer in the Nordic Seas during the late
Holocene. We further speculate that northbound Atlantic water masses, as a consequence of a
widespread and possibly expanding melt water layer, could have submerged further south
thus becoming gradually more insulated during the late Holocene. This could partially explain the increasingly warmer $sSST_{\text{Mg}/\text{Ca}}$ observed in the present record (Figure 6D) and trend towards less ventilated lighter $\delta^{13}\text{C}$ observed by Werner et al. (2013). Additionally, the low insolation (Berger and Loutre, 1991) (Figure 6A) and the increasingly severe sea ice conditions in the eastern Fram Strait (Müller et al., 2012) (Figure 6B) may have facilitated a shift in the growing season for phytoplankton and foraminifera towards a gradually warmer part of the season (e.g. Farmer et al., 2008). In the Arctic Ocean the highest production and thus main calcification season of $N. \text{pachyderma} \ (\text{sin})$ is observed in August and is likely linked to phytoplankton blooms (Kohfeld et al., 1996; Volkmann, 2000).

Conclusions

Mg/Ca element ratios measured on $N. \text{pachyderma} \ (\text{sin})$ have been used to reconstruct Holocene sub sea surface temperatures ($sSST_{\text{Mg}/\text{Ca}}$) on the West Spitsbergen Slope, eastern Fram Strait.

A tentative assessment of foraminiferal calcite preservation based on $\%\text{CaCO}_3$ and $\%\text{TOC}$ contents in the sediment may suggest preservation problems prior to $\sim10 \text{ ka BP}$ and possibly also from $\sim6–3 \text{ ka BP}$. The fluctuating $sSST_{\text{Mg}/\text{Ca}}$ observed during the earliest part of the early Holocene can probably be associated with variable paleoceanographic conditions in response to lingering sea ice, ice berg and melt water presence. During the early Holocene from $\sim10.5–7.9 \text{ ka BP}$ $sSST_{\text{Mg}/\text{Ca}}$ reach an average value of $\sim4{^\circ}\text{C}$. These relatively high values probably reflect a strong northward oceanic heat advection in combination with high insolation forcing.

A significant long-term (multi-millennial) decrease in $sSST_{\text{Mg}/\text{Ca}}$ was identified throughout the early Holocene with steeper (sub-millennial) decline recorded at $\sim9–7 \text{ ka BP}$. The coldest $sSST_{\text{Mg}/\text{Ca}}$ values observed in the current record, with values averaging $\sim3{^\circ}\text{C}$, were recorded in two periods from $\sim7.7–6$ and $\sim5.2–2.7 \text{ ka BP}$. This cooling during the mid-Holocene may
be attributed to an increased influence of eastward migrating Arctic Water in response to hampered northward oceanic heat advection into the Fram Strait and decreasing insolation forcing.

During the late Holocene, after ~2.7 ka BP, sSST$_{Mg/Ca}$ significantly increased as shown by the SiZer analysis. The sSST$_{Mg/Ca}$ reached an average value of ~5°C during the last 1000 year. This sSST$_{Mg/Ca}$ increase can possibly be linked to a stronger advection of Atlantic Water as supported by positive NAO index values combined with an insulating effect of a widespread melt water layer in the northern North Atlantic. The high sSST$_{Mg/Ca}$ values during the late Holocene potentially also could be partly explained by a shift in calcification season and/or change of depth habitat for *N. pachyderma* (sin).

Acknowledgements

This work has been carried out within the framework of the International Polar Year project “Arctic Natural Climate and Environmental Changes and Human Adaption: From Science to Public Awareness” (SciencePub) funded by the Research Council of Norway and the Trainee School in Arctic Marine Geology & Geophysics, University of Tromsø and the Norwegian Research Council. The core was collected onboard the R/V “Maria S. Merian” during the MSM05/5b expedition led by Dr. Gereon Budeus, Alfred Wegener Institute. Patrick Cappa assisted the laboratory work at INSTAAR, University of Colorado. Jan Petter Holm prepared the area map. Two anonymous reviewers, R. Kozdon and K. Zamelczyk gave valuable comments and suggestions. To these institutions and persons we offer our sincere thanks.
References

Aagaard-Sørensen, S, Husum K, Werner K, et al. (Submitted) A Late glacial-early Holocene multiproxy record, Fram Strait, Polar North Atlantic. *Marine Geology*

Bauch HA, Erlenkeuser H, Spielhagen RF et al. (2001) A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 yr. *Quaternary Science Reviews* 20: 659–678.

Giraudeau J (in prep) EPOC (University Bordeaux 1/CNRS) within the framework of an ongoing
IFM-GEOMAR / EPOC collaboration.

Hald M and Aspeli R (1997) Rapid climatic shifts of the northern Norwegian Sea during the last

Geology 26: 615-618.

Hald M, Ebbesen H, Forwick M et al. (2004) Holocene paleoceanography and glacial history of the
West Spitsbergen area, Euro-Arctic margin. Quaternary Science Reviews 23: 2075-2088.

Hald M, Andersson C, Ebbesen H et al. (2007) Variations in temperature and extent of Atlantic Water
in the northern North Atlantic during the Holocene. Quaternary Science Reviews 26: 3423-
3440.

Hopkins TS (1991) The GIN Sea--A synthesis of its physical oceanography and literature review

dissolution in sediments of the Norwegian–Greenland Sea. Marine Geology 165(1–4): 123-
136.

Hughen KA, Baillie MGL, Bard E et al. (2004) Marine04 marine radiocarbon age calibration, 0-26 cal

Husum K and M Hald (2002) Early Holocene cooling events in Malangenfjord and the adjoining

Husum K and M Hald (2012) Arctic planktic foraminiferal assemblages: Implications for subsurface

Kristjánsdóttir GB, Lea DW, Jennings AE et al. (2007) New spatial Mg/Ca-temperature calibrations for three Arctic, benthic foraminifera and reconstruction of north Iceland shelf temperature for the past 4000 years. *Geochemistry Geophysics Geosystems* 8: Q03P21, DOI: 10.1029/2006GC001425

Kucera M, Weinelt M, Kiefer T et al. (2005) Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically
constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans.

Quaternary Science Reviews 24: 951-998.

Rasmussen TL, Thomsen E, Ślubowska MA et al. (2007) Paleoceanographic evolution of the SW Svalbard margin (76ºN) since 20,000 ¹⁴C yr BP. *Quaternary Research* 67: 100-114.

Stuiver M, Reimer PJ and Reimer RW (2005) CALIB 6.0. [WWW program and documentation].

Walker M, Johnsen S, Rasmussen SO et al. (2009) Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. *Journal of Quaternary Science* 24: 3-17.

Zamelczyk K, Rasmussen TL, Husum K et al. (2012) Paleoceanographic changes and calcium carbonate dissolution in the central Fram Strait during the last 20 ka yr. *Quaternary Research* 78: 405-416.
Figure captions

Table 1. Radiocarbon dates and calibrations from core MSM5/5-712. The radiocarbon dates were performed by the Leibniz-Laboratory for Radiometric Dating and Isotope Research, Kiel, Germany (KIA) and at Poznań Radiocarbon Laboratory, Poland (Poz). A reservoir age correction of 400 years with an additional reservoir correction (ΔR) of 151±51 was used.

Figure 1. (A) Map of the north-eastern North Atlantic Ocean and adjoining seas showing the major currents systems and average position of the Polar and Arctic fronts modified from Marnela et al. (2008). Open circles indicate core location of Kastenlot core MSM05/5-712-2, giant box corer MSM05/5-712-1 and other cores mentioned in the text. Abbreviations: NAC: North Atlantic Current; IRM: Irminger Current; NwASC: Norwegian Atlantic Slope Current; NwAC: Norwegian Atlantic Current; WSC: West Spitsbergen Current; NCaC: North Cape Current; RAW: Re-circulating Atlantic Water; SB: Svalbard Branch; YSC: Yermark Slope Current; ESC: East Spitsbergen Current; EGC: East Greenland Current. (B) Conductivity, temperature, and depth (CTD). Eastern Fram Strait, August 2007.

Figure 2. Age model and sedimentation rate (cm/kyr) for Kastenlot core MSM05/5-712-2. Error bars show the 2σ standard deviation of the calibrated ages.

Figure 3. Correlation and regressions between Holocene Mg/Ca and other trace element rations in MSM05/5-712-2. Mg/Ca vs. (A) Al/Ca, (B) Mn/Ca and (C) Fe/Ca (contamination indicators).

Figure 4. Mg/Ca concentration and sediment TOC and CaCO₃ contents plotted against calibrated age and depth in core MSM05/5-712-2. (A, B) Sediment TOC and CaCO₃ contents (weight %) in core MSM05/5-712-2 (Grey: (Müller et al., 2012); Black: (Aagaard-Sørensen et al., submitted)). (C) Mg/Ca concentration (mmol/mol). Thin line = raw data. Thick line = 5-point running mean. Crosses mark omitted data points. Filled circle shows the average reproducibility of sample splits (±0.039 mmol/mol). (D) Reconstructed sSST_{Mg/Ca}. Present
day water temperatures at 50 and 200 m water depth are shown in grey fonts on Y-axis.

Diamonds on X-axis indicate radiocarbon dated levels.

Figure 5. Reconstruction of $sSST_{Mg/Ca}$ compared to other marine proxies from core MSM5/5-712-2 and MSM5/5-712-1. (A) Ice-volume corrected $N. pachyderma$ (sin) $\delta^{18}O$ record (grey line) with 3-point running mean (black line) from core MSM5/5-712-2 (Werner et al., 2013).

(B) Reconstructed $sSST_{Mg/Ca}$ (black) (present study) shown with $sSST_{Mg/Ca}$ reconstruction from core MSM5/5-712-1 calculated using exponential temperature equation of Elderfield and Ganssen (2000) (Spielhagen et al., 2011) (purple) and linear temperature equation of Kozdon et al. (2009) (blue). Purple and blue dashed lines indicate calculated core-top $sSST_{Mg/Ca}$ (C) Reconstructed $sSST_{Mg/Ca}$ (black line) and $sSST_{Mg/Ca}$ based on Mg/Ca values that have been artificially increased 15% (grey line). Summer sub sea surface temperatures (at 50 m water depth) calculated using the SIMMAX modern analogue technique from Spielhagen et al. (2011) (core MSM5/5-712-1) (purple) and Werner et al. (2013) (MSM5/5-712-2) (red) are also shown. Present day water temperatures at 50 and 200 m water depth are indicated on the y-axis to the right.

Figure 6. The reconstructed $sSST_{Mg/Ca}$ for the eastern Fram Strait compared with other proxy records and (sub)SST reconstructions in a south-north transect. (A) June insolation at 80°N (Berger and Loutre, 1991). (B) Sediment IP$_{25}$ concentrations (Müller et al., 2012). (C) SiZer analysis of reconstructed $sSST_{Mg/Ca}$ from core MSM5/5-712-2. The SiZer map, a function of scale (y-axis: $\log_{10}(h)$) and location (x-axis: calendar age BP), shows at what given time the proxy record has significant increase (red), decrease (blue), no change (purple) or has insufficient observations for correct inference (grey). (D) Reconstructed $sSST_{Mg/Ca}$. Thin line = raw data. Thick line = 5-point running mean. (E) Transfer function summer sSST reconstructions at 50 m water depth (SIMMAX modern analogue technique) in core MSM5/5-712-2 (Werner et al., 2013). (F) Transfer function summer sSST reconstructions
100 m water depth (Weighted average partial least squares model) in core MD99-2304 (Ebbensen et al., 2007; Husum and Hald, 2012). (G) Transfer function based summer SST reconstructions at 10 m water depth (Maximum Likelihood model) in Core 23258-2 (Hald et al., 2007; Sarnthein et al., 2003). (H) Transfer function based summer SST reconstructions at 10 m water depth (Maximum Likelihood model) in Cores MD95-2011 and JM97-948/2A (Hald et al., 2007; Risebrobakken et al., 2003).
<table>
<thead>
<tr>
<th>Core id</th>
<th>Lab. code</th>
<th>Depth range (cm)</th>
<th>Material</th>
<th>14C age</th>
<th>Calibrated age ± 2σ</th>
<th>2 σ max cal. age (cal. age intercepts)</th>
<th>2 σ min cal. age</th>
<th>Reservoir age (R=400 + ∆R)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSM5/5-712-2</td>
<td>KIA 45217</td>
<td>10-12</td>
<td>N. pachyderma</td>
<td>815±25</td>
<td>317±131</td>
<td>186(317)447</td>
<td>551±51</td>
<td>Werner et al., 2013</td>
<td></td>
</tr>
<tr>
<td>MSM5/5-712-2</td>
<td>KIA 41024</td>
<td>20-22</td>
<td>N. pachyderma</td>
<td>1570±25</td>
<td>972±141</td>
<td>831(972)1113</td>
<td>551±51</td>
<td>Werner et al., 2013</td>
<td></td>
</tr>
<tr>
<td>MSM5/5-712-2</td>
<td>KIA 45218</td>
<td>27-29</td>
<td>N. pachyderma</td>
<td>1985±25</td>
<td>1393±118</td>
<td>1275(1393)1510</td>
<td>551±51</td>
<td>Werner et al., 2013</td>
<td></td>
</tr>
<tr>
<td>MSM5/5-712-2</td>
<td>KIA 45219</td>
<td>40-42</td>
<td>N. pachyderma</td>
<td>2565±25</td>
<td>2056±165</td>
<td>1891(2056)2220</td>
<td>551±51</td>
<td>Werner et al., 2013</td>
<td></td>
</tr>
<tr>
<td>MSM5/5-712-2</td>
<td>SacA 19113</td>
<td>60-61</td>
<td>N. pachyderma</td>
<td>3365±30</td>
<td>3029±175</td>
<td>2854(3029)3203</td>
<td>551±51</td>
<td>Giraud (in prep)</td>
<td></td>
</tr>
<tr>
<td>MSM5/5-712-2</td>
<td>SacA 19114</td>
<td>94-95</td>
<td>N. pachyderma</td>
<td>4915±30</td>
<td>5041±189</td>
<td>4852(5041)5230</td>
<td>551±51</td>
<td>Giraud (in prep)</td>
<td></td>
</tr>
<tr>
<td>MSM5/5-712-2</td>
<td>SacA 19115</td>
<td>138.5-139.5</td>
<td>N. pachyderma</td>
<td>6440±30</td>
<td>6756±151</td>
<td>6605(6756)6906</td>
<td>551±51</td>
<td>Giraud (in prep)</td>
<td></td>
</tr>
<tr>
<td>MSM5/5-712-2</td>
<td>KIA 38080</td>
<td>168.5-169.5</td>
<td>N. pachyderma</td>
<td>7305±35</td>
<td>7630±126</td>
<td>7504(7630)7756</td>
<td>551±51</td>
<td>Werner et al., 2013</td>
<td></td>
</tr>
<tr>
<td>MSM5/5-712-2</td>
<td>KIA 41025</td>
<td>191.5-192.5</td>
<td>N. pachyderma</td>
<td>7815±45</td>
<td>8133±157</td>
<td>7976(8133)8290</td>
<td>551±51</td>
<td>Werner et al., 2013</td>
<td></td>
</tr>
<tr>
<td>MSM5/5-712-2</td>
<td>Poz-30723</td>
<td>214-215</td>
<td>N. pachyderma</td>
<td>8362±45</td>
<td>8749±209</td>
<td>8540(8749)8958</td>
<td>551±51</td>
<td>Present study</td>
<td></td>
</tr>
<tr>
<td>MSM5/5-712-2</td>
<td>KIA 37423</td>
<td>280-281</td>
<td>N. pachyderma</td>
<td>9220±50</td>
<td>9797±252</td>
<td>9551(9797)10042</td>
<td>551±51</td>
<td>Present study</td>
<td></td>
</tr>
<tr>
<td>MSM5/5-712-2</td>
<td>Poz-30725</td>
<td>322-323</td>
<td>N. pachyderma</td>
<td>9580±47</td>
<td>10310±158</td>
<td>10152(10310)10468</td>
<td>551±51</td>
<td>Present study</td>
<td></td>
</tr>
<tr>
<td>MSM5/5-712-2</td>
<td>Poz-30726</td>
<td>428-431</td>
<td>N. pachyderma</td>
<td>12358±63</td>
<td>13629±197</td>
<td>13432(13629)13826</td>
<td>551±51</td>
<td>Present study</td>
<td></td>
</tr>
</tbody>
</table>

http://mc.manuscriptcentral.com/holocene