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Abstract

Piscine orthoreovirus (PRV) is associated with heart- and skeletal muscle inflammation (HSMI) of farmed Atlantic salmon
(Salmo salar). We have performed detailed sequence analysis of the PRV genome with focus on putative encoded proteins,
compared with prototype strains from mammalian (MRV T3D)- and avian orthoreoviruses (ARV-138), and aquareovirus
(GCRV-873). Amino acid identities were low for most gene segments but detailed sequence analysis showed that many
protein motifs or key amino acid residues known to be central to protein function are conserved for most PRV proteins. For
M-class proteins this included a proline residue in m2 which, for MRV, has been shown to play a key role in both the
formation and structural organization of virus inclusion bodies, and affect interferon-b signaling and induction of
myocarditis. Predicted structural similarities in the inner core-forming proteins l1 and s2 suggest a conserved core
structure. In contrast, low amino acid identities in the predicted PRV surface proteins m1, s1 and s3 suggested differences
regarding cellular interactions between the reovirus genera. However, for s1, amino acid residues central for MRV binding
to sialic acids, and cleavage- and myristoylation sites in m1 required for endosomal membrane penetration during infection
are partially or wholly conserved in the homologous PRV proteins. In PRV s3 the only conserved element found was a zinc
finger motif. We provide evidence that the S1 segment encoding s3 also encodes a 124 aa (p13) protein, which appears to
be localized to intracellular Golgi-like structures. The S2 and L2 gene segments are also potentially polycistronic, predicted
to encode a 71 aa- (p8) and a 98 aa (p11) protein, respectively. It is concluded that PRV has more properties in common with
orthoreoviruses than with aquareoviruses.
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Introduction

Piscine orthoreovirus (PRV) is associated with heart and skeletal

muscle inflammation (HSMI) of farmed Atlantic salmon (Salmo

salar) [1]. Infectious viral diseases are prevalent in farmed fish, and

HSMI is an example of an emerging disease in the intensive

farming of Atlantic salmon. HSMI is usually observed 5–9 months

after transfer of the fish from the freshwater stage to seawater grow

out areas [2] and is characterized by inflammation of the epi-,

endo- and myocard and of the red skeletal muscle. The majority of

the fish in an affected cage will show lesions in the heart and the

cumulative mortality may reach 20% [2]. The virus has not

successfully been cultivated continuously in cell cultures, although

PRV harvested from two week cultures in GF-1 cells have been

used for challenge experiments [3]. The PRV genome was

mapped by high-throughput pyrosequencing of material from

diseased fish and found to consist of 10 dsRNA segments [1]. By

the use of real time RT-PCR it has been shown that PRV is widely

distributed among both farmed and wild Atlantic salmon [1,4].

The sizes of the genomic segments are distributed in the classical

orthoreoviral groups L1–3, M1–3 and S1–4. The S1 and S2

segments are possibly bicistronic having accessory small putative

open reading frames.

The 39-terminal nucleotide sequence (UCAUC-39) in the PRV

gene segments is conserved and identical to both orthoreoviruses

and aquareoviruses [1,5,6]. On the other hand, the 59-terminal

nucleotide sequence (59-GAUAAA/U) of PRV is unique, as are

the analogue sequences for each of the individual species within

the Orthoreovirus genus (MRV, ARV, Nelson Bay, Baboon and

Reptilian orthoreoviruses) and of those species in the Aquareovirus

genus (Aquareovirus A and C) for which the 59-end sequences are

known [5,7].

Based upon phylogenetic analysis a common evolutionary

origin of the genera Aquareovirus and Orthoreovirus has been revealed

[5]. Phylogenetic analyses performed separately for each PRV
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segment has shown that this virus branches off the common root of

the Aquareovirus and Orthoreovirus genera which could indicate

that PRV may represent a genetic new lineage, divergent from

other reovirus genera [1]. To our knowledge, aquareoviruses and

orthoreoviruses, with an amino acid identity of 42% in the

dsRNA-dependent RNA polymerase (RdRp), are the only reovirus

genera with identity of more than 30% in the RdRp that are

placed in separate genera [5]. The prototype strain mammalian

reovirus type 3 Dearing (MRV T3D) was chosen for comparison

as this strain is the best studied within the genera. Low amino acid

homologies to the MRV proteins l1, l2, l3, m1, m2, m3, s2 and

sNS are found in PRV as well as in the aquareoviruses (AqRV)

[1]. AqRV have been isolated from a wide variety of aquatic

animals, including molluscs, finfish and crustaceans, while the

orthoreoviruses have been found in reptiles, birds and mammals.

There is low sequence homology of genes and proteins between

the species in genus Orthoreovirus indicating a long time divergence

[6]. AqRV have 11 genomic segments while both the orthor-

eoviruses and PRV have 10.

Viral particles of MRV and ARV consist of a double layered

protein capsid with inner and outer layers. Studies of MRV

indicate that the s1 protein attaches to cell surface receptors and

thus is important for the cell and tissue tropisms [8–10]. MRV

particles enter the cell through receptor-mediated endocytosis.

MAbs directed against the s1, the s3 and m1C outer capsid

proteins, and the core spike protein l2 can neutralize MRV [11].

Following endocytosis, the outer capsid undergoes proteolysis

within the acidic compartment of the endosomes, resulting in the

removal of s3 and cleavage of m1 to m1C and m1N [12,13]. The

resulting intermediate subviral particles (ISVPs) penetrate the

endosomal lipid bilayer, probably through the action of exposed

hydrophobic parts of the cleaved m1 protein [14–17]. This makes

endosomal membrane penetration possible and is followed by

cytoplasmic release of transcriptionally active viral cores [18,19].

Inside the cores, full-length capped but non-polyadenylated viral

mRNAs are made. Cap formation requires the sequential activity

of polynucleotide phosphohydrolase, guanylyltransferase and

methyltransferase [20]. The l1 protein functions as helicase and

triphosphatase, l2 as the guanylyltransferase and l3 is the RNA

polymerase [21–25]. S-adenosyl-L-methionine (SAM) is the

substrate (methyl donor) for the methylation of the type 1 cap

mediated by l2 [24,26–29]. The transcripts act as templates for

both translation and replication of viral genomic dsRNA [30].

The present study was performed to compare the properties of

the putative PRV proteins to analogues of the orthoreoviruses

MRV, ARV and the aquareovirus grass carp reovirus (GCRV).

Through in silico analysis, 10 deduced amino acid sequences of

PRV proteins were assigned. It was concluded that PRV is more

related to the genus Orthoreovirus than to the Aquareovirus.

Results

Genome Organization
The PRV genome consists of 10 segments containing at least 10,

but has possibly 13 ORFs or more. The genome has a length of

23320 nt and a GC content of 47%. For both orthoreoviruses and

aquareoviruses the ultimate nucleotides from each end are

inverted complements [5,31–34]. The length of the 59-UTRs

was shortest for the L segments, 7–18 nucleotides, while M3 and

S4 had the longest with 84 and 38 nucleotides, respectively

(Figure 1). The length of the 39-UTRs varied between 44–89

nucleotides, the longest were found in the M segments (Figure 1).

Segment comparison showed that PRV 59-UTRs were on average

significantly shorter than the 39-UTRs. In PRV, the three ultimate

nucleotides in 59- and 39-end of each segment are inverted

complements. RNA secondary structure predictions using mFold

version 2.3 [35] performed at 15uC of the 59- and 39- UTRs of

mRNA from each genomic segment was assayed using energy

minimization criteria. The predictions were panhandle structures,

but the last 39-end nucleotides were not a part of the stem

structures. For segment S2, however, the prediction was not a

panhandle structure (data not shown).

The PRV genome segments except for S1 and S4 were assigned

according to the assignment used for MRV (Table 1). Hence, for

example, the PRV segment that encodes the core protein l2 is

called L2, although it is slightly longer than the other L segments.

Based upon sequence homology to MRV and ARV in particular,

eight of the deduced translation products are assumed structural

proteins. For PRV, the S1, S2 and possibly L2 gene segments have

additional internal open reading frames (ORFs) in addition to the

s3, s2 and l2-encoding ORFs (Table 1, Figure 1).

L-class Gene Segments
PRV gene segment L1 is predicted to encode the l3

protein (Table 1, Figure 1). This is the virus’ RNA-dependent

RNA polymerase (RdRp) responsible for viral transcription and

replication. It displays the highest amino acid sequence similarity

to MRV, ARV and GCRV (Table 2). Multiple sequence

alignment of PRV l3 with the corresponding protein sequences

from MRV, ARV and GCRV revealed that important polymerase

motifs are also conserved in the PRV protein (Figure S1).

Comparing with detailed structure-function analysis made of

MRV T3D l3 [36], we found high conservation particularly in the

catalytic core (aa 350–900), and of specific amino acids predicted

to be responsible for interaction with the RNA template, NTP and

the 59-cap. The previously described catalytic motifs I, II, III and

F1–F3 could easily be identified [37–40], including the universal

RdRp GDD motif (within motif III) involved in transcriptional

initiation [41–43]. The N- and C-terminal domains of the

polymerase, predicted to be involved in interaction with the

capping protein l2 and RNA helicase l1 for MRV, are somewhat

less conserved. This is line with a lower sequence conservation of

the other PRV l proteins.

PRV gene segment L2 encodes the l2 protein (Table 1,

Figure 1). In MRV and ARV (lC) this is the capping enzyme,

the main contributor when generating the 59-terminal cap, on

virally encoded mRNAs [24,26–29]. The MRV- and ARV

proteins contain both the guanylyltransferase and methyltransfer-

ase activities necessary for the generation of this type 1 cap

structure [24,27,29,44,45]. For PRV, multiple sequence alignment

reveals relatively low amino acid identities to the corresponding

proteins in MRV, ARV and GCRV, although key amino acid

residues and important functional domains are highly conserved

(Table 2, Figure S2). These include residues K190 which is

essential for autoguanylation, H223 and H232 which are essential

for guanylyltransferase activity and the S-adenosyl-L-methionine

(SAM) binding pocket [44–47]. K171, a significant but not essential

contributor for autoguanylation [46], is not conserved in PRV at

this position although a KY motif sits just two positions

downstream. A region containing an ATP/GTP binding site in

the MRV protein [45] is also highly conserved in all four

homologues proteins. Also, a hypersensitive cleavage site has been

identified when using recombinant MRV l2 and ARV lC

[44,46]. In the PRV protein, the two amino acids on either side of

this cleavage site are identical to those in ARV. Secondary

structure predictions using PSIPRED v3.0 [48,49] suggests that

this site resides in a predicted random coil region shortly after a

predicted strand region, perhaps constituting an exposed region

Sequence Analysis of the Piscine Reovirus Genome
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highly susceptible to cleavage by cellular proteases (not shown).

Additionally, the L2 gene segment may be polycistronic (Table 1,
Figure 1).

PRV gene segment L3 is predicted to encode the l1

protein (Table 1, Figure 1). This is the core capsid shell

homologue of MRV l1, ARV lA and GCRV VP3 [50–52].

Multiple sequence alignment showed higher amino acid identities

between PRV and the three prototype strains than observed for l2

but lower than for l3 (Table 2, Figure S3). Key functional

residues or domains are conserved in PRV l1. A CCHH zinc-

finger motif in particular, conserved in the MRV, ARV and

GCRV proteins and shown to bind zinc in core crystal structure

analysis [51,53,54], is also conserved in PRV l1 (Figure S3). For

MRV, the ,500 residue N-terminal region has been shown to

exhibit triphosphate phosphohydrolase (NTPase), helicase, and

RNA triphosphatase activities while the ,200 residue N-terminal

parts, a region predominantly hydrophilic, is assumed to be

responsible for the dsRNA binding property of l1 [21,23,52,55–

58]. For PRV, as for the homologous proteins from the selected

reovirus prototypes, a predominantly N-terminal RNA/DNA

binding region was predicted using BindN [59] (data not shown).

M-class Gene Segments
PRV gene segment M1 encodes the m2 protein (Table 1,

Figure 1). Compared to the proteins encoded by the L-class

gene segments, PRV m2 has a lower amino acid sequence identity

with the homologous proteins in the MRV, ARV and GCRV

(Table 2, Figure S4). In MRV, m2 is a minor structural protein,

binds both ssRNA and dsRNA independent of sequence, and

possibly acts as a co-factor or subunit of the viral RNA polymerase

[30,60,61]. In addition, both MRV m2 and ARV mA display

NTPase- and RTPase activities [62–64]. In MRV m2, the two

lysines K415 and K419 in the region A411VLPKGSFKS420, have

been shown to be essential for NTPase activity [63]. Both these

lysines are conserved in all four homologous proteins (Figure S4).

A second putative nucleotide binding motif, D446EVG449 [65], is

only partially conserved. The P208 in MRV T3D has also recently

been shown to be a determinant of type I IFN antagonism and a

modulator of induction of myocarditis in neonatal mice [69]. P208

is conserved in all four proteins.

PRV gene segment M2 encodes the m1 protein (Table 1,

Figure 1). This is the homologue of the major outer capsid

protein of MRV [54,70,71]. In ARV and GCRV the homologous

proteins are called mB and VP4, respectively [5,50]. The highest

amino acid sequence identity was found towards the homologous

proteins in MRV and ARV, somewhat lower for GCRV

(Table 2). Multiple sequence alignment showed that the N-

terminal sequence parts of the four proteins display higher

conservation compared to the rest of the protein (Figure S5). A

post-translational autolytic cleavage site in the MRV protein

between N42 and P43, which produces a small N-terminal- (m1N)

and a larger C-terminal fragment (m1C), required for MRV

endosomal membrane penetration and infection, is conserved in

all four proteins [70,71]. The cleavage of MRV m1 during

infection is dependent upon N-myristoylation at G2, as well as

binding to the S1 gene product s3 (see below) [72]. Similarly,

ARV mB is also myristoylated at G2 and post-translationally

cleaved, with mB and its cleavage product mBC associating with sB

[68,73]. The G2-residue is conserved in all four proteins (Figure
S5). These two processes, myristoylation and cleavage, are

believed to be crucial for membrane penetration with m1N as

the principal mediator [17,74,75] (see Figure S5 legends for more

details).

PRV gene segment M3 encodes the non-structural mNS

protein (Table 1, Figure 1). This is the homologous counter-

part of MRV and ARV mNS [50,76,77]. The ARV mNS protein is

significantly shorter compared to the MRV protein, a difference

which has been attributed to deletions (Figure S6) [78]. In

GCRV, the homologous protein is NS80, the product of gene

segment 4 [5]. A very low amino acid sequence identity is observed

Figure 1. The PRV genome. Gene segments are assigned according to mammalian reoviruses. Open reading frames (ORFs) and putative encoded
proteins are indicated by regions in grey, with start and end positions indicated. Non-translated regions (UTR’s) at gene segment ends are shown in
black. Gene segments L2, S1 and S2 are possibly polycistronic.
doi:10.1371/journal.pone.0070075.g001
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between the PRV protein and the homologous proteins of the

three prototype strains (13–17%) (Table 2). Regions containing

some level of conservation can though be identified (see Figure S6

legends for more details). One such motif, L711IDFS715, towards

the C-terminal end and shown for MRV to be required for the

recruitment of clathrin to viral factories [79], is partially conserved

in the ARV- and PRV proteins. MRV mNS, ARV mNS and

GCRV NS80 have all been predicted to contain two a-helical

coiled coils regions in their C-terminal region, which have been

shown to be necessary for inclusion formation [86–90]. PRV mNS

also contains high a-helical content in the C-terminal region and

MultiCoil does predict coiled coil formation here although with

significant lower probability compared to the MRV-, ARV- and

GCRV proteins (not shown).

For both MRV and ARV M3, two products have been

reported, the mNS protein representing the full-length isoform. For

MRV, the second isoform mNSC (75 kDa) is most likely generated

from the second in-frame AUG (Met41) [88,91]. In ARV, post-

translational cleavage near the N-terminal region creates mNSN

[92]. PRV mNS does not contain a Met41, but it does contain a

Met57, which is also present in MRV (Figure S6). Neither the

MRV- nor PRV AUG codons encoding Met57 comply with the

Kozak rule, while the initiation codon for MRV Met41 complies

partially [93].

S-class Gene Segments
PRV gene segment S1 encodes the major outer capsid

protein s3 (Table 1, Figure 1). In MRV, ARV and GCRV

the major outer capsid proteins are encoded by gene segment S4

(s3), S3 (sB) and segment 10 (VP7), respectively [5,76,77,94,95].

PRV s3 was recently determined to be encoded by the second

smallest S-class gene segment [96]. Although amino acid identities

between the PRV protein and that of the reovirus prototype strains

used are very low and in the range of non-related proteins

(Table 2), a Zn-finger motif is evolutionary conserved in all four

proteins (Figure S7) [96,97]. Expression of s3 in mammalian

VERO cells at 37uC and salmonid CHSE cells at 20uC
demonstrated that the protein was primarily cytoplasmic. In

CHSE cells, green fluorescence was observed diffusely throughout

the cytoplasm while in VERO cells the protein seemed to form

large inclusions (Figures 2a, b).

PRV gene segment S2 encodes the core clamp protein s2

(Table 1, Figure 1). In MRV, ARV and GCRV the

homologues proteins are s2, sA and VP6, respectively

[5,54,76,77,98,99]. PRV S2 is the largest S-class gene segment,

and possibly bicistronic (Table 1, Figure 1). Multiple sequence

alignment of the four s2/sA/VP6 proteins show overall low

amino acid identities (Table 2, Figure S8). Still, between MRV

cores and ARV sA (sharing 29% amino acid identity), compar-

isons of crystal structure data have shown a highly similar overall

topology, including higher a-helical content in their C-terminal

regions [54,100–102]. For PRV s2, PSIPRED [48,49] also

predicts a high a-helical content in its C-terminal region

(Figure 3). In fact, comparing the predicted secondary structure

profiles between all four reovirus proteins reveals a remarkable

conservation of secondary structure (Figure 3), providing strong

support that this gene segment encodes s2. In further support for

the correct annotation of PRV s2, the predicted pI of the PRV

protein is close to that of the MRV- and ARV proteins [96].

PRV gene segment S3 encodes the non-structural sNS

protein (Table 1, Figure 1). In MRV and ARV, sNS is

encoded by gene segment S3 and S4 respectively, while in GCRV

the homologues protein, NS38, is encoded by segment 9

[5,50,103]. Similar to the three prototype strains, PRV S3 also

contains a single ORF, encoding a protein with size close to that of

sNS/NS38 (Table 1, Figure 1). Multiple sequence alignment

with these four protein sequences reveals overall very low amino

acid sequence identities, not only to the PRV protein but between

the three prototype strains as well (Table 2, Figure S9). In

addition, PSIPRED suggests some level of protein structure

conservation between PRV sNS and the proteins from the three

prototype strains (not shown). Furthermore, the predicted pI of the

putative PRV sNS protein shows generally more closeness to the

homologous proteins in MRV, ARV and GCRV compared to the

other three major PRV S-class proteins [96]. Taken together this

suggests that a correct assignment of PRV sNS has been made.

MRV sNS has been detected in both the nucleus and

cytoplasm of infected and transfected cells, with the former being

linked to its nucleic acid binding capability [85,103,104].

PSORTII does not predict the presence of nuclear localization

signals in the PRV protein (not shown). But, within regions of the

alignment displaying somewhat higher level of conservation,

NetNES 1.1 [105] does predict the presence of NESs in all four

proteins (Figure S9).

The major gene product of PRV gene segment S4 is the s1

cell-attachment protein (Table 1, Figure 1). In MRV and

ARV, the cell attachment proteins s1 and sC are the major gene

products from the bicistronic and tricistronic S1 gene segments,

respectively [10,106–109] (Table 1). The aquareovirus GCRV

does not seem to encode a homologue of the orthoreovirus cell

attachment proteins [99,110]. Rather, GCRV gene segment 7

encodes two non-structural proteins (Table 1) [5].

Multiple sequence alignment with PRV s1 and MRV s1/ARV

sC shows amino acid identities in the range of 14–21%,

Table 2. Percentage amino acid identity among all ungapped positions between pairs; predicted PRV proteins and the
homologues proteins from three reovirus prototype strains.

PRV PRV PRV PRV PRV PRV PRV PRV PRV PRV

l3 l2 l1 m2 m1 mNS s3 s2 sNS s1

MRV T3Da 43 23 32 20 28 17 13 20 20 21d

ARV-138b 44 22 31 21 27 17 15 20 18 14

GCRV-873c 38 25 31 21 24 13 15 17 13 f-

a,b,cRef. Table 1 for gene segment annotations and names of homologues proteins in MRV, ARV and GCRV. Identity values are from separate pairwise alignments of the
protein sequences.
dValue from a manually adjusted pairwise alignment of the two proteins.
fGCRV does not appear to have a cell attachment protein homologue to s1/sC.
doi:10.1371/journal.pone.0070075.t002
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depending on the degree of manual adjustment of the alignment

(Table 2, Figure 4; only PRV and MRV aligned). Annotation of

PRV s1, based on the high probability presence of predicted a-

helical coiled-coil structure(s) in the N-terminal region of the

protein, was recently determined to be similar to that of MRV s1

and ARV sC (Figure S10) [96,111–114]. Secondary structure

predictions using PSIPRED provides additional support for a PRV

s1 N-terminal region dominated by a-helixes (not shown). For the

GCRV NS31 protein, on the other hand, predicted secondary

structure profiles are very different from that of the three other

proteins (not shown), with no predicted coil structures (Figure
S10).

The MRV s1 protein can broadly be divided into three distinct

domains, the N-terminal tail which partially inserts into the virion,

the body which contains the region that binds to sialic acids, and

the C-terminal head domain, which binds the receptor junctional

adhesion-molecule-A (JAM-A) [115–119]. For the MRV T3D

strain, s1 binds to a-linked sialic acids [120,121]. Sequence- and

structure analyses of MRV variants have indicated that amino

acids in positions 198, 202–205 are involved in binding to sialic

acids [122–124]. The alignment in Figure 4 suggests that several

of these MRV s1 residues may be conserved in PRV, but not in

the ARV protein (not shown). In fact, these residues are less

conserved in the MRV T1L and T2J serotypes compared to PRV

s1 (not shown). Finally, the predicted isoelectric point (pI) for this

putative PRV protein lies in the acidic range, as do MRV s1 and

ARV sC [96]. All together, we provide additional support that

this protein, encoded by the smallest PRV S-class gene segment, is

the cell attachment protein homologous to those of other

orthoreoviruses.

Accessory ORFs
PRV gene segment S1 is bicistronic and has an internal ORF

encoding a 124 aa protein (p13) (Table 1, Figure 1). This

protein is expressed from the s3 ORF when transfected in VERO

and CHSE cells, as determined by immunofluorescent staining

using anti-p13 serum, where it colocalizes with the trans-Golgi

marker WGA (Figures 2a, b). Colocalization of p13 with this

marker was also seen following transfection with an expression

plasmid containing only the p13 ORF (Figures 2a, b). The p13

Figure 2. Expression and subcellular localization of the S1-encoded s3 and p13 proteins in mammalian VERO and salmonid CHSE
cells. Immunofluorescent staining of s3 or p13 (green colour), and staining with the trans-Golgi marker WGA (red colour). Transfected VERO cells (A)
and CHSE cells (B) expressing both s3 and p13 from the large S1 ORF (upper panels), and p13 expression from the S1 internal ORF (lower panels).
Nuclei are stained with DAPI (blue colour). Yellow colour indicates colocalization of p13 and WGA. Non-transfected cells stained with WGA and anti-
p13 serum was used as controls (CTRL).
doi:10.1371/journal.pone.0070075.g002
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protein was originally assumed to be a fusion-associated small

transmembrane (FAST) protein capable of inducing cell-cell fusion

and syncytium formation, but was recently determined to encode a

nonfusogenic integral membrane protein with cytotoxic properties

[1,96]. Scanning the PRV genome for potential accessory ORFs

revealed several potential candidates. Both S2 and L2 are putative

polycistronic gene segments, where the former has the potential to

encode a second 71 aa hypothetical protein (p8) and the latter

contains several smaller ORFs with AUG- or non-canonical

GUG/CUG start codons that could encode hypothetical proteins

of sizes ranging from 55 to 135 aa. The possibility of translation

initiation from non-canonical start codons should not be excluded,

as has been shown for the AtSRV p22 protein which is produced

from a noncanonical CUG translation start codon in segment 7

[125]. Besides the l2-encoding ORF, the largest L2 ORF

containing an AUG translation initiation codon could encode a

small protein of 98 aa (p11) (Table 1, Figure 1). None of these

putative gene products display any apparent sequence similarities

Figure 3. PSIPRED secondary structure predictions of PRV s2 (green) and the homologous proteins from the reovirus prototype
strains MRV T3D (s2, pink), ARV-138 (sA, blue) and GCRV-873 (VP6, brown).
doi:10.1371/journal.pone.0070075.g003
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towards the additional gene products from MRV S1 (s1s), ARV

S1 (p10, p17) or GCRV segment 7 (NS16) (not shown). ARV p10

and GCRV NS16 have been shown to be FAST proteins capable

of inducing cell-cell fusion and syncytium formation [126,127]. No

sequence similarities to other known reovirus FAST proteins, such

as Atlantic salmon reovirus (AtSRV p22), Turbot reovirus

(SMReV p22), Baboon reovirus (BRV p15), Reptilian reovirus

(RRV p14), Broome virus (BroV p13) and Nelson Bay reovirus

(NBV p10) was observed either (not shown) [7,125,127–130]. Low

or absence of sequence similarities at the primary amino acid

sequence level is though a common trait among reovirus FAST

proteins [131]. ProtScale hydrophobicity plots does indicate the

presence of structural motifs in both these hypothetical proteins

characteristic of FAST proteins (transmembrane domain (TMD),

hydrophobic patch (HP), basic region (PB)), with patterns similar

to ARV p10, and less similar to GCRV NS16 [127,131] (Figure
S11). The polybasic region is though shorter and less defined in

the PRV proteins. Still, both are predominantly hydrophobic and

have high predicted pI’s of 8,81 (p8) and 9,38 (p11) which is

similar to that of other known FAST proteins (8.80–9.84). Also,

the AUG translation initiation codon in the p8 gene complies with

Kozak [93]. In contrast, the p11 AUG translation initiation codon

deviates from Kozak in all positions. The present study may

provide an example of deviations from Kozak consensus, as the

AUG translation initiation codon in the PRV p13 ORF deviates

from Kozak consensus both at positions 23 and+4. All known

FAST proteins are also modified either by palmitoylation or

myristoylation [127]. No myristoylation- or S-palmitoylation sites

were predicted for the hypothetical p8 protein. In contrast, S-

palmitoylation sites were predicted for p11, at C13 and C14.

Assuming a Nexo/Ccyt surface membrane topology for p11, the

location of these sites differ from the S-palmitoylation sites in

ARV- and NBV p10, which are located between their transmem-

brane and polybasic regions (Figure S11) [127]. Also, reovirus

FAST proteins may contain N-glycosylation signals in their

sequence [129,130]. Two potential N-glycosylation sites were

predicted in p11, at position 8 and 66. None were predicted in p8.

A distinct polyproline motif, common in some reovirus FAST

proteins, was not present in p8 and p11. However, in the latter,

although not clustered together, there are three proline residues

towards the C-terminal end of which two flank the basic region.

Whether either of these two putative PRV proteins are

homologues to other known reovirus FAST proteins or not,

information which would enable a better classification of PRV,

will require further experimental investigations. It should though

be noted that syncytia are not common histopathological findings

in HSMI diseased fish [2], which would suggest that PRV is non-

fusogenic. Therefore, the possibility that the hypothetical accessory

PRV proteins display functional properties similar to the s1s and

p17 proteins encoded by the bicistronic genes in MRV and ARV,

respectively, should be considered.

Discussion

In the present study we have performed detailed comparative

sequence analysis of the non-translated (UTR) regions and the

putative proteins encoded by the PRV genome to prototype strains

from mammalian and avian orthoreoviruses, and one aquareo-

virus. The results suggest that the PRV genome encodes at least 10

proteins, but it may also contain up to 13 or more ORFs.

In general, amino acid identities between PRV and the three

prototype strains were low for most gene segments, highest for the

L-class gene segment encoding the RdRp. Functional constraints

often cause viral core proteins to remain more conserved than the

outer capsid proteins, as illustrated by the conserved structural

motifs predicted for PRV proteins l1 and s2. In the latter case, a

remarkable strong conservation of protein secondary structure

across genus lines of orthoreoviruses and aquareoviruses, was

predicted. This illustrates conservation of secondary structure over

primary sequence, reflecting the importance of structural features

for function(s), where even minor alterations would be deleterious.

Furthermore, residues important for the enzymatic actions of

reovirus proteins are to a larger extent more conserved than other

residues, as exemplified by the PRV l3 and l2 proteins. Examples

of conserved amino acid residues include the two lysines essential

for the NTPase activity of m2 [63] and the post-translational

autolytic cleavage- and myristoylation sites in m1 [68,70,71,73].

The latter strongly suggests that analogues mechanisms are

involved in membrane penetration by this PRV protein as in

orthoreo- and aquareoviruses. The amino acid identities between

PRV and the prototype strains for the mNS, s1 and s3 proteins

were very low or similar to that of non-related proteins (,20%)

[31]. Sequence analysis did, though, reveal protein motifs or key

amino acid residues linked to important protein functions are

conserved also in PRV, particularly to those of MRV and ARV.

Figure 4. Multiple sequence alignment of PRV s1 with MRV T3D s1. Black lines represent putative nuclear export signals (NEP) in MRV and
PRV, respectively, as predicted by NetNes 1.1. &= L149 in the MRV protein involved in a second predicted NES. m = residues in the MRV protein
involved in binding to sialic acid residues. The alignment has been manually adjusted.
doi:10.1371/journal.pone.0070075.g004
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For the mNS proteins (NS80 in GCRV), the limited sequence

similarities may be linked to its multifunctionality. Together with

sNS (NS38 in GCRV) they are central in recruitment of core

proteins and forming viral factories, sequence independent

binding of ssRNA, and vital in RNA packaging and replication

[66,67,68,80–87,103,132]. Virus proteins that make up the core

have evolved over time due to selection pressures and thus the

resulting rate of change in multifunctional proteins would be

higher by comparison, resulting in only rudimentary similarities

being left at the primary sequence level, although important

structural features may be more conserved. Whether the PRV

mNS gene also produces two gene products as the MRV protein

does, or whether post-translational cleavage is involved as in ARV

mNS, could not be determined from sequence information alone.

Several proteins encoded by reoviruses have been shown, or are

suggested, to exhibit type I IFN antagonistic properties, including

MRV m2, ARV sA and MRV s3 [133–137]. A previously

established reporter gene system [138] was used to investigate

whether expression of PRV m2, s2 and s3 could have an

antagonistic effect on the type I IFN response in a salmonid cell

line (not shown). The reporter constructs use a salmon minimal

type I IFN (IFNa1) promotor [139] and an interferon-stimulated

response element (ISRE)-reporter (Agilent technologies). Trans-

fection method and activation of type I IFN response was

performed as previously described [138,139]. No effect could be

detected by any of the three viral proteins, neither on IFNa1- or

ISRE induction.

The monocistronic S4 gene segment was determined to encode

the PRV cell attachment protein s1, the finding supported by

predicted pI’s but more importantly, by structural motifs common

to both MRV s1 and ARV sC, as was recently also described by

others [96]. Several amino acid residues in MRV s1 shown to

bind to sialic acids may also be conserved in the PRV protein,

which might suggest that PRV utilizes a receptor mediated uptake

mechanism involving similar but not identical sialic acid

structures.

PRV s3 expression in mammalian VERO cells at 37uC and in

salmonid CHSE cells at 20uC showed a predominantly cytoplas-

mic localization, although the staining pattern differed in the two

cell lines. The punctuated staining pattern observed in the VERO

cells may be linked to aberrant folding of the protein at the higher

temperature.

FAST proteins have been reported from the Orthoreovirus and

Aquareovirus genera [131]. In contrast to fusogenic reoviruses, for

which syncytia are commonly registered, syncytia are not common

histopathological findings in HSMI diseased fish [2]. Sequence

data alone was not sufficient to determine whether the putative p8,

p11 or p13 could be a FAST protein. All three proteins contained

predicted properties or motifs only partially consistent with FAST

proteins. Recently, using an avian cell line cultivated at 37uC, it

was shown that p13 is a cytotoxic protein binding to intracellular

membranes, and not a FAST protein [96]. Our findings supported

this, and we show that p13 was produced from the internal ORF

in the s3 coding sequence, in both VERO- and the CHSE cells,

where it colocalizes with a marker for the trans-Golgi network.

The colocalization of p13 and this marker was further supported

by the transfection assays using an expression plasmid construct

containing the p13 ORF only. Transfection studies with expres-

sion plasmid constructs containing the p13 ORF performed in

both VERO and CHSE cells have failed to induce cell-cell fusion

(data not shown). Transfection with expression plasmid constructs

containing the putative p8 and p11 ORFs were not performed.

The absence of observed fusogenic activity of PRV and lack of

induced syncytia after cellular expression of p13 may indicate that

PRV is not fusogenic, as also recently described for p13 [96]. It

should not be excluded though that efficient cell-cell fusion is

dependent upon a second coexpressed PRV protein, as seen for

the GCRV NS16 whose activity is enhanced following coexpres-

sion with NS26 [126]. Also, it should be considered whether p13 is

a functional equivalent to the MRV s1s or ARV p17 proteins.

Here, s1s has been shown to have a key role in hematogenous

dissemination of the virus [140,141], involved in reovirus-induced

apoptosis [142] and in G(2)/M cell cycle arrest [143]. ARV p17

has also been shown to be involved in G(2)/M cell cycle arrest and

shutoff of host protein translation [144] and also acts as a

nucleocytoplasmic shuttling protein [108,127,145]. Further studies

are warranted in order to elucidate the function of p13 and the

putative proteins encoded by the internal S2- and L2 ORFs

regarding their potential functional properties.

For members of the Reoviridae more than 30% amino acid

sequence identity of the RdRp is used as indicative of genus

affiliation. But there are exceptions to this, the Rotavirus B

polymerase is only 22% identical to other rotaviruses [5].

Sequence alignment of the PRV l3 protein showed several

conserved polymerase motifs, and the identities to the RdRps of

the orthoreoviruses MRV and ARV, and the aquareovirus

GCRV, were well above the 30% limit. However, the amino acid

sequence identities between the RdRps from the orthoreoviruses

MRV, ARV and the aquareovirus GCRV is above 40% (not

shown), which disqualifies the use of this quantitative taxonomic

criterion to distinguish between these genera. However, there are

differences between orthoreoviruses and aquareoviruses that justify

to keep them as separate genera, as listed by Attoui and co-workers

[5], like distinct econiches, 10 versus 11 segments, the GC-content

of orthoreoviruses is 44–48% while that of aquareoviruses is 52–

60%, many orthoreoviruses do not induce syncytia in contrast to

the majority of known aquareoviruses, and there is no antigenic

relationship between them. Of these criterions PRV has the

following in common with the orthoreoviruses: 10 dsRNA

segments, 47% GC-content, syncytia is not reported as a common

histopathological finding, nor in cell culture where virus isolation

has been attempted (personal observation). The only common

criterion with aquareoviruses is the econiche, if fish consisting of a

large number of heterogenous species from very different

environments should be regarded as a single econiche. The

antigenic relationships are unknown.

PRV is not the first reovirus with 10 genomic segments that has

been described from fish. A virus isolated in Thailand from the

striped snakehead fish (Ophicephalus striatus, also known as

Channa striata) with epizootic ulcerative syndrome, was also found

to contain 10 genomic segments [146]. However, no nucleotide

sequences are available for this virus. The lack of serological cross-

neutralization activity to other AqRV, and the difference in

number of gene segments made the authors conclude that the virus

was not a member of the Aquareovirus genus.

To conclude, although it probably is many million years since

the most recent common ancestor for PRV and orthoreo- and

aquareoviruses existed, we found conserved structural motifs and

somewhat less conserved sequence motifs for all 10 PRV genomic

segments. All together, the PRV has more properties in common

with the Orthoreovirus genus than with the Aquareovirus and should

hence be renamed Piscine orthoreovirus.

Materials and Methods

Computer Analyses
GenBank accession numbers for all PRV, MRV T3D, ARV-

138 and GCRV-873 sequences used in the present study is shown
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in Table S1. Multiple sequence alignments of protein sequences

were performed in AlignX (Vector NTI AdvanceTM 11 Package,

Invitrogen Dynal AS). RNA secondary structure predictions were

performed using mFold version 2.3 with the eighty ultimate 59-

and 39- nucleotides of the mRNAs from each segment as input

sequence (http://mfold.rna.albany.edu/?q = mfold/RNA-

Folding-Form2.3) [35]. Default parameters were used in the

predictions except for temperature, which was set to 15uC.

PSIPRED v3.0 was used for predictions of protein secondary

structures (http://bioinf.cs.ucl.ac.uk/psipred/). BindN was used to

predict putative RNA binding properties of the proteins (http://

bioinfo.ggc.org/bindn/) [59]. The NetNES 1.1 server was used to

predict putative leucine-rich nuclear export signals (NESs) in the

proteins (http://www.cbs.dtu.dk/services/NetNES/) [105]. Mul-

ticoil and COILS were used to predict the presence of putative

coiled coil regions in proteins (http://groups.csail.mit.edu/cb/

multicoil/cgi-bin/multicoil.cgi, http://embnet.vital-it.ch/

software/COILS_form.html) [147,148]. Default settings were

used in the predictions except for Multicoil were window size of

21 was used. Prediction of theoretical molecular weights and

isoelectric points (pI’s) for putative PRV proteins was performed

using the Compute pI/Mw tool available at http://web.expasy.

org/compute_pi/. The presence of putative nuclear localization

signals (NLS) in PRV proteins was investigated using PSORTII

available at http://psort.hgc.jp/form2.html. Prediction of N-

terminal myristoylation was performed using the tools available

at http://web.expasy.org/myristoylator/and http://mendel.imp.

ac.at/myristate/SUPLpredictor.htm. ProtScale, available at

http://web.expasy.org/protscale/with the algorithm by Kyte

and Doolittle [149], was used to generate hydrophobicity plots

for hypothetical PRV proteins encoded by accessory ORFs and

the FAST proteins from ARV-138 and GCRV-873. Prediction of

S-palmitoylation sites was performed using CSS-Palm 3.0 using

the highest threshold setting [150]. Putative N-glycosylation sites

in PRV proteins was predicted using the NetNglyc 1.1 server

available at http://www.cbs.dtu.dk/services/NetNGlyc/.

Cloning, Transfection and Immunofluorescence Staining
The samples were collected from fish originating from a natural

outbreak of heart and skeletal muscle inflammation (HSMI) in a

commercial Atlantic salmon fish farm (MH-050607). The fish were

dead, caused by HSMI, when samples were taken. Thus no

approval from Institutional Animal Care and Use Committee

(IACUC) or ethics committee was necessary. No experiments that

involved fish were performed. The PRV s3 ORF was amplified

by RT-PCR from heart/kidney tissue of HSMI-diseased fish,

cloned into the pET-100 plasmid vector and expressed in E. coli

according to the manufacturer’s instructions (Invitrogen). Proteins

were purified from SDS-PAGE gels and used to raise PRV s3

specific polyclonal anti-serum in rabbits. Antibody specificity was

confirmed in western blot. The anti-p13 was produced by

immunization of one rabbit with 0.5 mg Keyhole limpet

hemocyanin (KLH) peptide, p13 ORF aa104–113, per injection

(GenScript Corp, Piscataway, NJ). For both antigens the primary

immunization was administered with Freund’s complete adjuvant

and the following with Freund’s incomplete adjuvant. Antibody

specificity to the KLH peptide was confirmed in a dot blot. The

PRV s3 and the p13 ORFs were also cloned in the pcDNA3.1

vector for expression in eukaryotic cells. VERO cells

(ATCCHCCL-81TM) grown at 37uC were plated on 0.17 mm

cover slips in 24 well plates (16105 cells/well), and transfected the

following day in 500 ml Opti-MEM (Invitrogen) added a mixture

of 2 mg expression plasmid and 4 ml of Xtremegene transfection

reagent (Roche). Chinook salmon embryo (CHSE-214) cells

(Sigma-Aldrich) grown at 20uC were transfected using an Amaxa

Nucleofector I Device (Lonza). Three million cells were diluted in

100 ml Ingenio Electroporation Solution (Mirus), added 5 mg

expression plasmid and transfected using the Amaxa T-20

program, followed by plating on 0.17 mm cover slips in 24 well

plates. VERO cells were incubated for 24h and CHSE cells for

72h, after which cells were fixed in 4% formaldehyde and treated

with 5 mg/ml Wheat Germ Agglutinin (WGA) Alexa Fluor 555

conjugate (Molecular Probes). Cell were washed with Hank’s

balanced salt solution (HBSS) (Sigma-Aldrich) and permeabilized

with BD Cytofix/Cytoperm (BD Biosciences Pharmingen, CA,

USA). Primary antiserum anti-s3 (1:1000) or anti-p13 (1:1000)

was added, followed by secondary antibody Alexa Fluor 488-

conjugated anti-rabbit IgG (1:500) (Molecular Probes). Subsequent

wash steps were performed with BD Perm/Wash solution (BD

Biosciences Pharmingen). The cover slips were mounted using

ProLong Gold antifade mounting media containing DAPI for

nuclear staining (Molecular Probes), and cells were visualized on a

Zeiss LSM710 confocal microscope (Zeiss, Jena, Germany). The

fluorochromes DAPI, Alexa Fluor 488 and Alexa Fluor 555 were

excited by lasers at 405 nm, 488 nm and 561 nm, respectively.

Supporting Information

Figure S1 Multiple sequence alignment of PRV L1 ORF
(l3) with corresponding ORFs from the reovirus proto-
type strains MRV T3D, ARV-138 and GCRV-873. RNA-

dependent RNA polymerase (RdRp) domains are indicated with

the universally conserved GDD domain (in Motif III) boxed.

(TIF)

Figure S2 Multiple sequence alignment of PRV L2 ORF
(l2) with guanylyltransferases from the reovirus proto-
type strains MRV T3D, ARV-138 and GCRV-873. * = lysine

residues in MRV essential (K190) or significant contributor (K171)

for autoguanylation in the MRV, ARV and GCRV proteins, m =

conserved histidines essential for guanylyltransferase activity in the

MRV protein, &= ATP/GTP binding site motif A in ARV,

boxed = S-adenosyl-L-methionine (SAM) binding pocket,

N= ATP/GTP binding site motif A in MRV, and Q = hypersen-

sitive cleavage site in recombinant MRV l2 and ARV 1733 lC.

(TIF)

Figure S3 Multiple sequence alignment of PRV L3 ORF
(l1) with the helicase-NTPase/core capsid shell proteins
from the reovirus prototype strains MRV T3D, ARV-138
and GCRV-873. * = conserved CCHH zinc-finger motif.

(TIF)

Figure S4 Multiple sequence alignment of PRV M1 ORF
encoding the m2 protein with the homologues proteins
from the reovirus prototype strains MRV T3D, ARV-138
and GCRV-873. m = conserved proline residue suggested to

play a key role in the formation and structural organisation of

reovirus inclusion bodies, a determinant of type I IFN antagonism

and a modulator of myocarditis in neonatal mice. N= leucine vs.

phenylananine, a determinant of tissue tropism of MRV m2 in

MDCK cells. &= possible NLS in MRV. Red lines = nucleotide

binding/triphosphate phosphohydrolase regions, and * = con-

served lysine residues essential for ATPase activity in ARV mA.

A nuclear export signal (NES) has been predicted for MRV m2

(residues 328–335) [151]. NetNES 1.1 predicts a NES in ARV mA

in the same region, while in GCRV, L233, L238 and L607 are

predicted to participate in a NES, and in PRV L80 (numbering
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according to the GCRV and PRV sequences, respectively) (not

shown).

(TIF)

Figure S5 Multiple sequence alignment of PRV M2 ORF
encoding the m1/mB major outer capsid protein with the
homologues proteins from the reovirus prototype
strains MRV T3D, ARV-138 and GCRV-873. * = myristoy-

lation site in the MRV protein. Q = post-translational cleavage

site producing N- and C-terminal fragment m1N and m1C (MRV)

or mBN and mBC (ARV). The C-terminal end of the MRV protein

is extended by 33 amino acids compared to the homologous

proteins in ARV and GCRV. The PRV protein is also extended,

by 28 amino acids.

(TIF)

Figure S6 Multiple sequence alignment of PRV M3 ORF
encoding the putative mNS protein aligned with mNS/
NS80 proteins from the reovirus prototype strains MRV
T3D, ARV-138 and GCRV-873. Q = N-terminal end of second

translation product of MRV (mNSC). Met-57, conserved in MRV

and PRV is boxed red. * = conserved putative zinc-hook motif

crucial in the formation of inclusion-like structures in the MRV

protein [86,90,152]. Black lines indicate sequence regions with

higher level of conservation with the motif XGXDPX being

boxed. In ARV, the larger region forms part of a region that has

been shown to be involved in inclusion maturation [86]. Grey solid

and dotted lines = coil-coil(s) regions as predicted by MultiCoil

(window size: 21, probability cutoff: 0,5). The MRV L711IDFS715

motif shown to be required for the recruitment of clathrin to viral

factories is boxed red.

(TIF)

Figure S7 Multiple sequence alignment of PRV S1 ORF
encoding the major outer capsid s3 protein with the
homologues proteins from the reovirus prototype
strains MRV T3D, ARV-138 and GCRV-873. * = conserved

Zn-finger motif.

(TIF)

Figure S8 Multiple sequence alignment of PRV S2 ORF
encoding the inner capsid s2 protein with the homo-
logues proteins from the reovirus prototype strains
MRV T3D s2, ARV sA and GCRV-873 VP6. * = R273, one of

two arginines in ARV sA linked to dsRNA binding and nucleolar

localization, conserved in fusogenic orthoreoviruses.

(TIF)

Figure S9 Multiple sequence alignment of PRV S3 ORF
encoding the putative sNS protein aligned with sNS/
NS38 proteins from reovirus prototype strains MRV
T3D, ARV-138 and GCRV-873. Solid black lines represent

sequence regions of higher conservation containing putative

nuclear export signals.

(TIF)

Figure S10 COILS prediction of coiled coil regions in
PRV s1 compared to that of the reovirus prototype
strains MRV T3D, ARV-138 and GCRV-873. X-axis displays

amino acid positions and the y-axis probabilities.

(TIF)

Figure S11 Hydrophobic characters of the hypothetical
PRV proteins p11 and p8 as predicted by ProtScale
compared to the FAST proteins from ARV-138 and
GCRV-873. Predictions were performed using the algorithm by

Kyte and Doolittle [149] averaged over a window of nine residues.

Positive- and negative scores indicate hydrophobic- and hydro-

philic amino acids, respectively. TM = transmembrane domains,

PB = polybasic regions and HP = Hydrophobic patch.

(TIF)

Table S1 Genbank accession numbers for reovirus
nucleotide sequences used in the study.

(DOCX)
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