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[1] We apply a test for deterministic, low-dimensional, and nonlinear dynamics to the
Niño 3 time series for the El Niño Southern Oscillation (ENSO). The test is positive if
the time series includes the seasonal variation, but negative if it only represents the
anomaly, i.e., the deviation from the seasonal cycle. The results indicate that deterministic,
low-dimensional, and nonlinear dynamics in ENSO is associated with the seasonal cycle,
and that the dynamics determining the interannual timing and strength of El Niño/La Niña
episodes is high-dimensional/stochastic. Application of stochastic forcing to a time-delay
equation for equatorial-wave dynamics can reproduce stochastic dynamics and other
important aspects of ENSO. Without such stochastic forcing, this model yields
deterministic, low-dimensional dynamics. With stochastic forcing, our test still yields such
dynamics if the seasonal cycle is retained, but does not if the annual cycle is subtracted
before the test is applied. The model results illustrate that the seasonal variability can be
governed by low-dimensional nonlinear dynamics, while the interannual variability
associated with ENSO is dominated by the stochastic forcing.
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1. Introduction

[2] Prediction is the ultimate goal of meteorology and
climatology, and the issue of predictability is crucial. Predic-
tion in these disciplines is mostly probabilistic, but there
may be different rationales for a probabilistic description.
These rationales are intimately linked to the various mean-
ings of the concepts of determinism, deterministic chaos,
and stochasticity. The fundamental laws of classical physics
are deterministic, since the future and past of the state of
such a system is uniquely given by the state at a given time.
The majority of models of weather and climate are determin-
istic in this sense. Predictability in chaotic systems is limited
by the largest positive Lyapunov exponent. This may require
a probabilistic description, not only in systems with a large
number of degrees of freedom, but also in simple, low-
dimensional, nonlinear systems. When dealing with data in
climatology, either from observation or from large-scale
simulations, the climate dynamicist will have to ask the
question of whether prediction for the system/phenomenon
of interest is better served by a low-dimensional chaotic
model of climate variability, or by a high-dimensional
(stochastic) model. Hence, there is a demand for methods
by which it is possible to decide from the observation data
whether the system dynamics can be uniquely projected onto
an attractor in a low-dimensional phase space. If the system
is autonomous and the attractor of the trajectory has

dimension d, the Takens’ time-delay method [Takens,
1981] can be used to construct an m > 2d–dimensional
embedding space on which the attractor can be mapped
continuously and one to one. In practice this method works
only if the attractor dimension d is reasonably low. Dynamic
systems with a large number of independent or weakly
dependent degrees of freedom can only be described either
by large-scale numerical simulation or by stochastic meth-
ods. For such systems, the phase-space attractor is also high
dimensional and cannot be mapped one to one onto a low-
dimensional time-delay embedding space. The computation
of attractor dimension then typically fails to converge when
embedding dimension m is increased, but such convergence
can be difficult to detect if the time series is short. Kaplan
and Glass [1992, 1993] devised a direct test for the existence
of low-dimensional deterministic dynamics which is useful
for short time series. This is the kind of test that will be
employed in this paper to the instrumental time series for
the El Niño Southern Oscillation (ENSO).
[3] The problem of determinism versus stochasticity in

ENSO has been a subject of research for more than two
decades, and conflicting results have been reported. Bauer
and Brown [1992] analyzed Eastern tropical Pacific sea
surface temperature (SST) anomalies via the reconstruction
of the attractor by means of singular spectrum analysis and
found indications of low-dimensional dynamics. Elsner and
Tsonis [1993] found that the Southern Oscillation index
(SOI) exhibits signatures of nonlinear dynamics by employ-
ing a nonlinear prediction algorithm to the SOI time series
and to surrogate data exhibiting the same correlation struc-
ture but devoid of the nonlinearities. On the other hand,
Schreiber and Schmitz [2000], using a more accurate
scheme, came to the conclusion that the linear null hypothe-
sis cannot be rejected on the basis of the SOI time series. The
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same conclusion was drawn by Binder and Wilches [2002]
from the application of tests to the SOI which are similar
to those we employ in the present paper. The data analyzed
in all these papers are anomalies, i.e., the seasonal cycle is
eliminated by considering the departure from the mean value
for the season. There is a general consensus that ENSO is
strongly and nonlinearly coupled and phase synchronized
with the annual cycle [Stein et al., 2011], so this is not an
issue of controversy. The response of the tropical Pacific to
the seasonal forcing is nonlinear, and the seasonal timing
of ENSO episodes (its phase) is nonlinearly connected to the
seasonal forcing. But that does not imply that the trigging of
a Niño episode one year, and not another year, is a result of
low-dimensional, nonlinear dynamics alone. In this paper,
we explore the significance of this distinction by analyzing
the Niño 3 index, which is the average of the SST in the region
150�W–90�W and 5�N–5�S, both with the seasonal cycle
included and as an anomaly with the cycle subtracted. For
the former, we find low-dimensional determinism and nonlin-
earity, and for the latter, we do not.
[4] The remainder of the paper is structured as follows. In

section 2 we briefly describe a time-delay equation for
equatorial wave dynamics and ENSO, and in section 3 we
review the tests for low-dimensional determinism and nonlin-
earity. In section 4 these techniques are first applied to the SOI
and fail to reveal low-dimensional deterministic dynamics, in
agreement with Binder and Wilches [2002]. We then employ
them to the Niño 3 data and to numerical solutions of the
time-delay equation with and without seasonality subtracted
and with and without stochastic forcing. We also apply a
superposed-epoch analysis to these data to highlight the
characteristic waveforms of ENSO episodes as manifested in
the Niño 3 signal. The implications of our findings are
discussed in this section and summarized in section 5.

2. A Time-Delay Equation for ENSO

[5] A large body of literature is concerned with the dynam-
ical modeling of ENSO (a review can be found in Dijkstra
[2010]). An interesting class of models is described as delay-
differential equations, which are linear and autonomous
[Battisti and Hirst, 1989], nonlinear, autonomous [Suarez
and Schopf, 1988], or nonlinear, periodically forced equations
[Tziperman et al., 1994;Münnich et al., 1990]. The latter will
be our focus in this paper and can be formulated as a time-
delay equation for the thermocline depth h(t). The thermocline
depth is a distinct layer of ocean in which temperature changes
faster than it does in the layer above or below, thus separating
the upper mixed layer from the deep ocean. One version of this
equation has the form:

dh tð Þ
dt

¼ a tanh kh t � L

2cK

� �� �
(1)

�d tanh kh t � L

cK
þ L

2cR

� �� �� �
þ ccos Ω; tð Þ;

where k is an ocean-atmosphere coupling parameter, cK is
the velocity of the wind-forced Kelvin mode, L is the ocean
basin width, and cR is the velocity of the Rossby wave. Ω is
the frequency of the seasonal cycle, while a, d, and c are
constants. The cosine function in equation (1) accounts
for the annual periodicity in the SST data. This delay

differential equation has two time delays: t1 = L/cK + L/2cR,
and t2 = L/2cK. Here, t1 is the summation over a time it takes
a Rossby wave to travel from the middle of the ocean basin
to the western boundary and then be reflected as a
Kelvin wave, while t2 is the transit time for the Kelvin wave
which travels from the middle of the basin to reach the
Eastern Pacific.

3. Test for Determinism

[6] The test for determinism (or more precisely, for low-
dimensional deterministic dynamics) and for nonlinearity is
based on reconstruction of the phase space from a scalar time
series of length N by time-delay embedding (see, for instance,
Abarbanel [1996]) and is explained in depth in Kaplan and
Glass [1993]. The method was recently successfully applied
by us to explore the magnetospheric self-organization during
magnetic storms and substorms [�Zivković and Rypdal, 2011,
2012]. When a system is low-dimensional deterministic, the
direction of the trajectory (its tangent) is a function of the po-
sition in the reconstructed phase space. This means that trajec-
tories emanating from points in a small neighborhood in phase
space have almost parallel directions. On the other hand,
corresponding trajectories in a stochastic or high-dimensional
system have directions in a low-dimensional embedding space
which are not uniquely dependent on the position in this space,
and therefore, the tangent can have a different direction the
next time it recurs to the same neighborhood. Let b denote a
small time increment and envisage a portion of phase space
spanning the entire attractor divided into an enumerable set
of small “boxes" of size corresponding to the length of the
trajectory increment:

Δx b; tð Þ ¼ ½x t þ bð Þ � x tð Þ; x t þ tþ bð Þ � xðt þ t . . . ;

x t þ m� 1ð Þtþ bð Þ � x t þ m� 1ð Þtð Þ
Þ; (2)

The tangent for the kth pass of the trajectory through box j is
the unit vector uk,j = Δxk,j(b,t) / jΔxk,j(b,t)j. The estimated
average displacement vector in the box is

Vj ¼ 1

nj

Xnj
k¼1

uk;j; (3)

where nj is the number of passes of the trajectory through
box j. If the embedding dimension is sufficiently high and
in the limit of vanishingly small box size (determined by
the parameter b), the trajectory directions should be aligned
and the length Vj � jVjj = 1. A condition for the validity of
this assertion is that lb = 1, where l is the largest Lyapunov
exponent. In this case Vj will not depend very much on the
number of passes nj, and Vj will converge to 1 as nj!1.
In contrast, for the trajectory of a random process, where
the direction of the next step is completely independent
of the past, Vj will decrease with nj as Vj � n�1=2

j . If
the deterministic signal is contaminated by noise which
dominates on short time scales, the test for determinism may
yield a negative result if the box size is chosen too small.
Hence, if this is suspected. it is recommended to vary the box
size within the interesting range of time scales before drawing
firm conclusions [Kaplan and Glass, 1993]. The degree of
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determinism of the dynamics can be assessed by exploring the
dependence of Vj on nj. In practice, this can be done by compu-
tation of the average displacement vector length:

Ln � Vh ijnj¼n; (4)

where the average is done over all boxes with same number
n of trajectory passes.
[7] Let us recall that we are describing a test to distinguish

signals described by low-dimensional dynamical systems,
i.e., signals that in the continuous-time limit are solutions
to differential equations and therefore continuous, and signals
described as a stochastic process. The archetype of a random
and continuous stochastic process is the Wiener process
(Brownian motion), which in discrete time is a random walk.
The random walk has random increments, and hence the
displacement vectors Δx(t) in an m-dimensional embedding
space will have random directions. Hence, for a random walk
Ln!1= 0. For finite n, however, there will be a finite statisti-
cal spread of Vj, and as shown in Kaplan and Glass [1993],
the average displacement of n passes in m-dimensional phase
space is

Ln ¼ Rn � 1ffiffiffi
n

p 2

m

� �
1=2 Γ mþ 1ð Þ=2½ �

Γ m=2ð Þ ; (5)

where Γ is the gamma function. The deviation in hVji
between a given time series and a random walk can be char-
acterized by a single number given by the weighted average
over all boxes of the quantity,

Λ tð Þ � 1X
j
nj

X
j

nj
Vj

	 
2 tð Þ � R2
nj

1� R2
nj

; (6)

where we have explicitly highlighted that the average dis-
placement h Vj i(t) of the trajectory in the reconstructed
phase space depends on the time delay t. For a completely
deterministic signal we have Λ(t) = 1, and for a completely

random signal Λ(t) = 0; hence, this quantity can be consid-
ered as a measure of determinism.
[8] In Figure 1, we show Λ(t) averaged over 10 numerical

realizations of the Ornstein-Uhlenbeck (O-U) stochastic pro-
cess, for embedding dimension m = 8, and b = 1. The O-U
process is described by the stochastic equation:

dSt ¼ �lSt þ sdWt ; (7)

where W(t) is the Wiener process, l is a damping rate and s
is a diffusion coefficient. It is a more physically realistic
random process for many phenomena than the Wiener
process, since the damping term - lSt makes it bounded. In
Figure 1, we also show mean Λ(t) computed from the same
10 realizations, but after randomization of the phases of the
Fourier coefficients. These realizations with randomized
phases are called surrogate data. The phase randomization
leaves the power spectral density, and hence the auto-
correlation function, unchanged. Hence, Λ(t) should also be
unchanged for a random process, which Figure 1 demon-
strates. On the other hand, for a signal from a low-dimensional
chaotic system, which has to be nonlinear to be chaotic, the
randomization of phases will destroy the nonlinear coupling
between Fourier modes and make Λ(t) more similar to a
random signal, i.e., it will be reduced compared to Λ(t) for
the original signal. Examples of this were shown in Kaplan
and Glass [1992, 1993]. Tests involving surrogate data can
be thought of as a test of nonlinearity, but using Λ(t) for this
test will only reveal the nonlinearity if Λ(t) for the original
time series is large enough to reveal a low-dimensional,
deterministic component. Hence, it can only distinguish non-
linear from linear dynamics when the dynamics is known to
be deterministic and low-dimensional.

4. Results

[9] In this section, we analyze SOI and Niño 3 data. The
Southern Oscillation index (SOI) analyzed here is computed
using monthly mean sea level pressure anomalies at Tahiti
and Darwin downloaded from the Climate and Global
Dynamics Division of the National Center for Atmospheric
Research. A description is found in Trenberth and Hoar
[1996]. The Niño 3 data are the area-averaged SST from
5�S–5�N and 150�W–90�W, recorded with monthly
resolution between 1871 and 2008. It is retrieved from the
Working Group of Surface Pressure of the Global Climate
Observing System and has been derived from the sea ice
and SST data set (HadISST1) [Rayner et al., 2003].
[10] We compute Λ as a function of time-delay t, which is

also used in the phase-space reconstruction procedure. The
embedding dimension is m = 10, and b = 1, i.e., the box size
is equal to the average distance between two successive
points on the reconstructed phase-space trajectory. It has
been shown in Kaplan and Glass [1993] that increasing
embedding dimension can increase Λ in deterministic sys-
tems, while it should not influence Λ in stochastic systems.
In principle, higher m is better, but we also have to consider
the number of data points available for the test, and this
decreases with increasing m. In our analysis, m = 10 seems
a suitable choice of embedding dimension. Figure 2 shows
Λ(t) computed from the SOI (squares) and the ensemble
mean of Λ(t) computed from 50 surrogate time series
obtained from the randomization of phases of the Fourier

10 20 30 40 50
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Λ
 (τ

)

Figure 1. The Λ(t) averaged over results computed from
an ensemble of 10 realizations of the O-U process (squares)
and for the realizations with randomized phases (triangles).
Error bars denote standard errors of the mean Λ(t)
(which is 1=

ffiffiffiffiffi
10

p� �� the standard deviation of the distribu-
tion of the 10 samples).
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coefficients (triangles). The low values (Λ < 0.1) indicate a
very weak deterministic component, although it is not as
weak as for the O-U process shown in Figure 1. The reduc-
tion in Λ when SOI is replaced by its surrogates is about 30%
and is statistically significant. This somewhat ambiguous
result may shed some light on the conflicting results reported
in the literature, e.g., the opposite conclusion drawn by
Binder and Wilches (2002) and Elsner and Tsonis [1993].
In principle, this could be because the SOI represents a non-
linear measurement function of the climate state, and hence
not due to nonlinear dynamics, but this possibility was
rejected by Elsner and Tsonis [1993]. We have confirmed
their conclusion on this point by the application of a method
similar to theirs, invoking our test of determinism rather than
their nonlinear prediction algorithm. The idea is to start with
a realization of a Gaussian white noise process and shuffle
the data such that the amplitude at time t has the same rank
as the amplitude at time t has in the SOI time series. This
synthetic time series has the same overall appearance and
correlation structure as the SOI record, but with a Gaussian
amplitude distribution. We then compute the Λ(t) for this
time series and for an ensemble of surrogates obtained by
the randomization of the phases of Fourier coefficients.
The result for both the synthetic series and its surrogates
are indistinguishable from those for the SOI and its
surrogates. If the SOI series were the result of a nonlinear
measurement function applied to an underlying Gaussian
process, one would expect that the signature of nonlinearity
would have been lost in the synthetic Gaussian record. This
result is also consistent with the observation that the ampli-
tude distribution of the original SOI record appears to be
close to Gaussian, indicating the absence of distortion of
the distribution due to a nonlinear measurement function.
[11] Although the SOI is a difference between two pres-

sure anomalies, the way the anomalies are computed does
not completely eliminate seasonal variation in the SOI. In
Figure 3, the SOI climatology is plotted along with the Niño
3 climatology and with the sinusoidal climatology used in
equation (1). Here, the climatology is defined as the mean
overall data for every month of the year. One should expect

the SOI climatology to be zero for all months of the year, but
the figure reveals a deviation in January. This signifies that
the SOI signal has a certain annual periodicity, which might
be another reason why we observe some nonlinearity in the
analysis of the SOI record in Figure 2. In Figure 4, we plot Λ
for the SOI when its climatology is subtracted together with
the ensemble mean of Λ computed for 50 corresponding sur-
rogates. The test for determinism for this de-seasonalized
SOI record gives results very similar to those for the O-U
process in Figure 1, i.e., there is no sign of deterministic,
low-dimensional, and nonlinear dynamics in the de-
seasonalized SOI data.
[12] The Niño 3 record does exhibit the anomalous

January feature of the SOI, and the climatology is more
similar to the sinusoidal seasonal forcing used in equation
(1). The raw Niñõ 3 record is not an anomaly and contains
the full seasonal cycle. This influences the estimate of Λ(t)
in two distinct ways. In Figure 5, we observe that Λ(t)
exhibits spiky dips at those t where the autocorrelation func-
tion r(t) has an extremum. This is a spurious feature of the
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Figure 3. Climatology for Niño 3 (stars), SOI (diamonds),
and the sinusoidal climatology used in equation (1) (dots).
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Figure 2. The Λ(t) for the SOI time series (squares) and
Λ(t) averaged over 50 different phase-randomized versions
of this time series (triangles). The error bars of the latter
denote the standard deviation of Λ(t) over the distribution
of these 50 samples.
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Figure 4. The Λ(t) for the SOI time series with the climatol-
ogy subtracted (squares) and Λ(t) averaged over 50 different
phase-randomized versions of this time series (triangles).
The error bars of the latter denotes the standard deviation of
Λ(t) over the distribution of these 50 samples.
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technique when there is a cyclic component in the signal and
is explained in Kaplan and Glass [1993]. The other distinct
effect is that apart from the spurious dips, the determinism is
high (Λ > 0.6), and nonlinearity is strong, since Λ is reduced
by more than 50% when the surrogate data are analyzed.
Next, we subtract the climatology from the Niño 3 data
and compute Λ(t) again (Figure 6a). Λ(t) is strongly reduced
and the analysis of surrogates makes no discernible differ-
ence, confirming our findings from the de-seasonalized
SOI time series. In the remainder of the paper, we will focus
on the Niñõ 3 data since from a practical climatological
viewpoint, the important aspects of ENSO are directly asso-
ciated with the SST anomalies.
[13] Our results so far imply that the Niño 3 time series

with the seasonal cycle subtracted can be described as a
stochastic process similar to the O-U process for which results
were presented in Figure 1. It does not imply, however, that
the time-delay equation (1) has to be abandoned, since inclu-
sion of a stochastic forcing termmay give rise to such stochas-
tic dynamics and produce results compatible with the test for
determinism in Niño 3 data. In the following, we shall first
show that a time-delay equation with stochastic forcing is able
to produce time series with these properties. Next, we shall
demonstrate that in the absence of stochastic forcing, the
time-delay model tends to produce low-dimensional dynam-
ics, even when seasonality is removed.
[14] In order to investigate the effect of stochastic forcing,

we add a term sw(t), where w(t) is a Gaussian white noise
with unit variance, to equation (1) and solve the equation
numerically with the parameters a = 0, d = 1, k = 100, c = 1.3,
s = 0.7, and t1 = 0.2. Figure 6b shows Λ(t) ensemble

averaged over 10 realizations of the simulation after the
climatology has been subtracted. In the same plot, we show
Λ(t) averaged over the 10 corresponding phase-randomized rea-
lizations. The low values of Λ(t), and their nonresponsiveness
to phase randomization, indicate that for these parameters
the de-seasonalized solutions of the stochastically forced
equation (1) have the character of a stochastic process similar
to the de-seasonalized Niño 3 time series. A qualitative simi-
larity is also apparent from Figure 7, where we plot a realiza-
tion of this process along with the Niño 3 time series, both
with the climatology subtracted. Both time series have been
normalized to have unit variance. This similarity is also appar-
ent when Λ(t) is computed from the simulation without sub-
tracting the seasonal cycle, as shown by comparing Figure 8
with Figure 5. The model described above, but without
stochastic forcing (s = 0), was studied by Ghil et al. [2008],
who used the same choice of parameters a, c, and d as above,
but varied the parameters k and t1. They computed and plotted
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Figure 5. (a) The Λ(t) for the Niño 3 time series (squares)
and Λ(t) averaged over 10 different phase-randomized
versions of this time series (triangles). The error bars of the
latter denotes the standard deviation of Λ(t) over the distri-
bution of these 10 samples. (b) autocorrelation function
r(t) for the Niño 3 time series.
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Figure 6. (a) The Λ(t) for original Niño 3 time series with
climatology subtracted (blue squares) and Λ(t) averaged
over 10 realizations of phase-randomized versions of this
time series (red triangles). The error bars of the latter denotes
the standard deviation of Λ(t) over the distribution of these
10 samples. (b) Λ(t) averaged over 10 realizations of time
series generated by equation (1) with a white-noise stochas-
tic forcing (squares), and the same for 10 phase-randomized
versions (triangles). The climatology has been subtracted
before computing Λ(t). In (b), the error bars denote the
standard deviation of the mean Λ(t).
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the global maximum of the thermocline depth h(t) as a func-
tion of t1 and k, and observed discontinuities in this parameter
space separating regions of regular solutions strictly governed
by the seasonal forcing and more ENSO-like irregular solu-
tions, indicating a structural instability of the model. In Fig-
ure 9a, we have plotted such a regular solution obtained for
t1 = 0.4088, and in Figure 9b, an irregular one on the other
side of the parameter-space discontinuity: for t1 = 0.4198. In
both of these cases, a = 0, c = 1, k = 100, and d = 1. This irreg-
ular solution exhibits a seasonal cycle of variable strength
interrupted by stronger episodical oscillations with some
reminiscence of observed ENSO episodes. These episodes
are phase-locked to the seasonal cycle, in agreement with the
observations of Stein et al. [2011], but they appear at more
regular intervals (3–4 years) and have shorter duration than
real El Niño/La Niña events. Hence, the similarity to the Niño
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Figure 8. The Λ(t) averaged over results computed from
10 simulated time series like that shown in Figure 7a with
climatology included (blue squares) and after phase random-
ization (red triangles). The error bars denote the standard
deviation of the mean Λ(t).
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Figure 7. Time series analyzed in Figure 6. (a) Numerical
realization of time-delay equation with stochastic forcing
included and climatology subtracted. (b) Niño 3 index with
climatology subtracted.
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Figure 9. Simulation of time-delay equation with no sto-
chastic forcing. (a) t1 = 0.4088, (b) t1 = 0.4198, (c) the signal
in (b) de-seasonalized by wavelet filtering.
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Figure 10. (a) The Λ(t) averaged over results computed
from 10 simulated time series like that shown in Figure 9b
(blue squares) and after phase randomization (red triangles).
(b) Λ(t) averaged over results computed from 10 simulated
time series like that shown in Figure 9c (blue squares) and
after phase randomization (red triangles). Error bars denote
standard deviation of the ensemble mean.
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3 signal is not too convincing. However, as can be seen from
Figure 7, the solution with stochastic forcing added exhibits
more qualitative similarity to the Niño 3 signal than the signal
in Figure 9b. This qualitative discrepancy between the model
signal generated in the absence of stochastic forcing and the
Niño 3 signal is also reflected by the test of determinism.
Figure 10a shows Λ(t) for the signal in Figure 9b and for its
surrogate time series. The determinism is higher than the one
for the Niño 3 signal shown in Figure 5a, and it is less reduced
by phase randomization. The former is obviously due to the
higher degree of randomness apparent in the Niño 3 signal.
The lack of reduction of determinism after phase randomiza-
tion of the Figure 9b signal is due to the strong seasonal
oscillation in this signal. Since a major fraction of the power
resides in the annual Fourier component, the phase randomiza-
tion will change the phase of this component, but the signal
will still have a deterministic appearance after this change.
This is all quite trivial, so the crucial test is to compute deter-
minism after de-seasonalization. For the signal in Figure 9b,
subtraction of the climatology does not offer an effective
filtering of the seasonal component, since its amplitude varies
a lot. For the same reason, Fourier filtering is also ineffective.
However, we can remove the seasonal component by wavelet
filtering. In Figure 9c, we show the de-seasonalized signal

after the application of a Mexican-hat wavelet filter. This sig-
nal highlights the “true” ENSO episodes produced by the
time-delay model without stochastic forcing. The computed
determinism Λ(t) of this signal is shown in Figure 10b. The
determinism is very high and shows clearly that the ENSO
episodes in this model are the result of deterministic, low-
dimensional dynamics. The strong reduction of determinism
after phase randomization demonstrates that this dynamics is
low-dimensional and nonlinear. This is in strong contrast to
the results shown in Figure 6 for de-seasonalized Niño 3 and
signals generated by the time-delay model with stochastic forc-
ing, which show signals dominated by a stochastic component.
[15] In the following, we go back to the time-delay simu-

lation with stochastic forcing and demonstrate in two more
examples its similarity to the Niño 3 data. In Figures 11a
and 11b we plot a histogram for the simulation and for the
Niño 3 data after the climatology has been subtracted (the
signals in Figure 7). The ENSO events contribute to the tails
of these distributions, which are somewhat heavier on the
positive side due to the relative strength of El Niño com-
pared to La Niña. The average time evolution of ENSO
events in Niño 3 and simulations can be investigated by
means of a superposed-epoch analysis (conditional averag-
ing). This analysis works as follows: Consider a signal s(t).
We define the onsets of ENSO events as the times tn, n =
1,. . ., N, for which the signal ascends through two standard
deviations from the mean. Then we produce an ensemble
of conditional signals sn(dt) = s(tn + dt) and produce the con-

ditional average sn dtð Þh i � 1=Nð Þ
XN

n¼1
sn dtð Þ. Figure 11c

displays the average ENSO structure for Niño 3 (squares)
and simulation (triangles) with climatology subtracted and
shows that the simulation predicts fairly well the average
evolution of ENSO up to at least 15 months after the onset
of the episode.

5. Conclusion

[16] From a model for ENSO activity similar to the one
studied here, Tziperman et al. [1995] came to the conclusion
that depending on the strength of the coupling between the
ocean and the atmosphere, the dynamics could undergo
quasi-periodicity routes to chaos. The same authors suggested
that the ENSO might be described as a low-dimensional
chaotic dynamical system driven by the seasonal cycle, where
the appearance of the chaos is due to the nonlinear resonance
between the natural oscillator of the atmosphere-ocean
coupling and the seasonal cycle. The irregular jumps of the
state between different resonances was suggested to be the
manifestation of chaos. Unfortunately, SST time series in the
Eastern Pacific are too short for chaos to be proven by standard
methods, and hence, it is a challenge to devise proper tests for
these hypotheses. In recent years, there have been a large num-
ber of papers on dynamic, stochastic, and dynamic-stochastic
modeling of the irregularity of ENSO (see e.g., the reviews
of Dijkstra [2006] and Kleeman [2008]). The question of
which types of description are more justified from the observa-
tional data, however, still remains controversial.
[17] In this paper we have applied a simple test for deter-

minism to show that Niño 3 data, which is the proxy of
SST in the Eastern Pacific, is most adequately described as
a stochastic process after the seasonal cycle has been
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Figure 11. (a) Histogram of signal in Figure 7a. (b) Histogram
of signal in Figure 7b. (c) Conditionally averaged evolution of
ENSO signal after onset of ENSO episode. For simulation
with stochastic forcing shown in Figure 7a (red triangles).
For Niño 3 index shown in Figure 7b (blue squares).
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removed, implying that interannual ENSO variability is
dominated by stochastic, not low-dimensional chaotic,
dynamics. A similar conclusion was made by Binder and
Wilches [2002], where a test for determinism was applied
to the Southern Oscillation index (SOI) series. Despite the
stochastic nature of the Niño 3 signal, we have demonstrated
here that low-dimensional, deterministic dynamics may also
be involved. The equatorial-wave equation from Tziperman
et al. [1994] exhibits such dynamics without stochastic
forcing, but by adding stochastic forcing to this equation
and comparing determinism and average ENSO structure
with those of Niño 3 data, we conclude that this statistical-
dynamical model can reproduce important aspects of ENSO
dynamics. This conclusion is also in the agreement with
Franzke and Majda [2006], who demonstrated that the unre-
solved degrees of freedom in the system can be described by
both deterministic and stochastic terms in low-order models.
They conclude that the effective dynamics of the low-order
system is driven by low-order chaotic as well as stochastic
dynamics. Our work in this paper indicates that the
deterministic dynamics is primarily associated with seasonal
variability and, hence, that successful nonlinear prediction is
possible only on time scales of a few months. Given the
stochastic nature of the signals on interannual time scales,
prediction of El Niño events several years ahead seems
beyond reach.
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