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Boston, Massachusetts, United States of America, 165 Department of Public Health & Clinical Medicine, Umeå University,Umeå, Sweden, 166 Department of
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Abstract

Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects,
we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist
circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up
(additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR,5%), including
four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait
loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P,561028), but not in men.
Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we
found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest
due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the
sexually dimorphic genetic underpinning of complex traits.
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Introduction

Height, fat mass, and fat distribution differ substantially

between men and women, and these differences may, in part,

explain the sex-specific susceptibilities to certain diseases [1,2]. A

subtle sexual dimorphism in body composition is already apparent

during childhood, and emerges more prominently during adoles-

cence as boys start exceeding girls with regard to height and

muscle mass, while girls accumulate more fat mass [3–5]. These

considerable differences in anthropometry may reflect sex-specific

differences in steroid hormone regulation, adipogenesis, lipid

storage, muscle metabolism, composition, and contractile speed,

skeletal growth and maturation, or lipolysis, and suggest a genetic

underpinning [1,2,6–10].

While direct measures of height or weight are easily obtained,

measures of fat mass and fat distribution are more invasive and less

frequently assessed in large-scale epidemiological studies. Instead,

body mass index (BMI, computed as weight/height2) is used to

assess overall adiposity, whereas waist-to-hip ratio (WHR) is a

measure of fat distribution. Increased WHR is suggestive of more

preferential accumulation of fat around the waist versus the hip.

Obesity (defined as a BMI$30 kg/m2) is a well-established risk

factor for type 2 diabetes, cardiovascular disease, cancer and

mortality [11–18]. Also the independent effect of WHR – derived

by computing WHR adjusted for BMI - on morbidity and

mortality has been demonstrated [19,20]. Thus, anthropometric

measures depict not only body size, but also fat distribution and

consequently various facets of chronic disease risk.

Genome-wide association studies (GWAS) have successfully

identified many genetic loci robustly associated with height [21–

25], body mass index (BMI) [26–29], and waist-to-hip ratio

(WHR) [30,31]. So far, all GWAS for anthropometric traits have

been performed in men and women combined. However, in our

most recent GWAS of WHR within the Genetic Investigation of

ANthropometric Traits (GIANT) consortium, we found that seven

of the 14 novel loci displayed more pronounced effects in women

than in men, when we subsequently stratified analyses by sex [31].

In contrast, our GWAS for BMI or height genetic effects with

GIANT, no sex-differences in the newly identified loci were noted

[25,29]. However, these GWAS did not specifically aim to identify

genetic loci with sex-specific effects such that a systematic search

for such sexually dimorphic loci was warranted.

Thus, given the obvious difference in physical appearance

between men and women in body size and shape, together with

the strong evidence of sex-specific effects of the recently identified

WHR loci, we performed a systematic search for sex-specific loci

for anthropometric traits. GWAS conducted separately in men

and women not only improve power to identify sex-sensitive

associations, but also allow testing for sex differences. Within the

Genetic Investigation of ANthropometric Traits (GIANT) consor-

tium, we performed sex-specific GWAS for six anthropometric

traits involving a total of 270,775 subjects from 94 studies in order

to investigate the extent and nature of sex-specific genetic effects

on anthropometry.

Results

Discovery meta-analysis of sex-specific GWAS for
anthropometric traits

In the discovery stage, sex-specific GWA analyses were

conducted in 46 studies (Table S1), including up to 60,586 men

and 73,137 women, testing ,2.8 million autosomal SNPs for

association with six anthropometric traits that are well established

to represent body size and shape: i.e. height, weight, BMI, waist

circumference (WC), hip circumference (HIP), and WHR. In

order to capture body fat distribution independent of overall

adiposity, the latter three traits were also analyzed with adjustment

for BMI (WCadjBMI, HIPadjBMI, WHRadjBMI) yielding nine

phenotypes n total (Methods). Study-specific information has been

described previously [25,29,31] and details on study-specific

analyses are given in Methods. All study participants were of

European and European American descent. We performed an

inverse-variance weighted fixed-effects meta-analysis for each of

the 18 analyses (9 phenotypes, 2 sexes; Methods) yielding meta-

analyzed sex-specific P-values for association (P-men, P-women) and

corresponding sex-specific effect estimates. In order to account for

multiple testing across SNPs genome-wide as well as across

phenotypes, we applied a false-discovery-rate (FDR) approach

[32].

Generally, in order to establish a sexually dimorphic association,

we require both a significant SNP association with an anthropo-

metric trait at least in one sex (P-men or P-women at 5% FDR across

all SNPs and phenotypes tested) and a significant sex-difference of

a SNP (P-value testing for difference in sex-specific effect estimates,

P-diff, at 5% FDR). Sexually dimorphic SNPs could either show (i)

concordant effect direction (CED), if the association is present in

one sex (P-men or P-women at 5% FDR) and at least nominally

significant and directionally concordant in the other (P-women or P-

men,0.05, respectively), (ii) single sex effect (SSE), if the association

is present in one sex and not significant in the other, or (iii)

opposite effect direction (OED), if the association is present in one

sex and at least nominally significant in the opposite direction in

the other sex. We aimed to identify genetic loci with CED or SSE,

which are biologically most plausible. Nevertheless, in this

exploratory effort, we also searched for OED loci – which are

biologically unlikely, but current lack of knowledge of such signals

could be due to the fact that current GWAS of men and women

combined cannot detect such signals.

We evaluated the power of two genome-wide approaches to

screen for sex-sensitive genetic loci: (a) a scan for sex-specific

Author Summary

Men and women differ substantially regarding height,
weight, and body fat. Interestingly, previous work detect-
ing genetic effects for waist-to-hip ratio, to assess body fat
distribution, has found that many of these showed sex-
differences. However, systematic searches for sex-differ-
ences in genetic effects have not yet been conducted.
Therefore, we undertook a genome-wide search for
sexually dimorphic genetic effects for anthropometric
traits including 133,723 individuals in a large meta-analysis
and followed promising variants in further 137,052
individuals, including a total of 94 studies. We identified
seven loci with significant sex-difference including four
previously established (near GRB14/COBLL1, LYPLAL1/
SLC30A10, VEGFA, ADAMTS9) and three novel anthropo-
metric trait loci (near MAP3K1, HSD17B4, PPARG), all of
which were significant in women, but not in men. Of
interest is that sex-difference was only observed for waist
phenotypes, but not for height or body-mass-index. We
found no evidence for sex-differences with opposite effect
direction for men and women. The PPARG locus is of
specific interest due to its link to diabetes genetics and
therapy. Our findings demonstrate the importance of
investigating sex differences, which may lead to a better
understanding of disease mechanisms with a potential
relevance to treatment options.
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association P-values in men and women separately (P-men, P-

women, sex-specific scan) and (b) a scan for P-values testing for sex

difference between effects of men and women (P-diff, sex-difference

scan; details in Methods). Power calculations showed that the sex-

specific scan had a higher probability to select SNPs with true

underlying CED or SSE signal into follow-up, while the sex-

difference scan had a higher probability to select SNPs with true

underlying OED effect (details in Text S1). We thus conducted

both scans.

The sex-specific scan showed an excess of small P-values

(Figure 1a, b). Controlling for 5% FDR (across all SNPs, nine

phenotypes, two sexes; corresponding to a P-value of 261025),

this scan yielded 619 independent SNPs associated with at least

one of the phenotypes in at least one of the sexes. Including a

rough filter for sex-difference (nominal significant, P-diff,0.05),

we took 348 out of these 619 SNPs forward for follow-up (73

SNPs for height, 28 for weight, 32 for BMI, 31 for WC, 46 for

WCadjBMI, 33 for HIP, 38 for HIPadjBMI, 28 for WHR, and

39 for WHRadjBMI; Table S2). The sex-difference scan did not

identify any SNPs at 5% FDR, despite the fact that the QQ-plot

for all phenotypes combined as well as for phenotype-specific

traits indicated some deviation of the observed P-diff distribution

from the expected (under the null hypothesis of no sex-difference)

for the waist phenotypes (WHRadjBMI, WHR, WCadjBMI)

(Figure 2a,b). Indeed, even if we were to carry forward SNPs at

30% FDR, we would not have identified any significant OED

effects. As such, no SNPs were taken forward from this second

scan for follow-up.

Follow-up of 348 SNPs reveals seven sexually dimorphic
anthropometric trait loci

In the follow up, we examined the 348 SNPs for the phenotype

that the SNP was selected for in 18 studies with in-silico genotype

information (up to 20,340 men and 41,872 women) and in 30

studies with Metabochip data (up to 42,055 men and 32,785

women; which contained assays for 43% of selected SNPs

prioritized for follow-up). Study-specific information is given in

Tables S1, S3, S4A,S4B, S5 and Methods. Meta-analyses of the

follow-up studies as well as jointly with discovery studies were

conducted for each sex separately (P-women, P-men) and both

combined (P, Methods).

As all 348 SNPs were derived from the sex-specific discovery

scan, the follow-up was then used to establish unbiased estimates

of sex-difference in an independent data set (Methods). We

filtered SNPs with a main effect (P-value for association combined

in men and women ,0.01; Methods). This yielded 74 SNPs,

which were subsequently tested for sex-difference. Seven of these

74 SNPs reached a significant sex-difference at 5% FDR (six for

WHRadjBMI, one for WCadjBMI, Table 1). For these seven

SNPs, the P-diff jointly for the discovery and follow-up ranged

from 2.761024 to 6.2610216 and the joint discovery and follow-

up association P-value in the predominant sex – interestingly, all

in women – was genome-wide significant (P-women,561028).

Effect sizes were similar when we restricted our follow-up

analyses to population-based studies or control-only series in

order to eliminate a potential bias by patient groups (Figure S1).

The seven confirmed sex-difference loci include three
novel signals

We found that three of these seven identified loci describe novel

associations with WCadjBMI (near MAP3K1) or WHRadjBMI (near

HSD17B4 and PPARG) that were genome-wide significant in women

(joint P-women: 3.461029 to 4.2610214), but not in men (joint P-men:

0.41 to 0.76), whereas the remaining four had been established

previously (ref). These three novel loci would have been missed by sex-

combined scans at 5% FDR (equivalent to P.5.861025).

Of particular interest is the PPARG region, which we identified

for the first time as a locus for anthropometric traits

(WHRadjBMI) in the context of a genome-wide study and with

evidence for a women-specific association. PPARG is of consider-

able importance due to its function as a nuclear hormone receptor

with specific known interaction with sex hormones, for example

with estrogen receptors [33], and due to its role in type 2 diabetes

development and therapy.

The remaining four loci were near (,1 cM) previously

established sexually dimorphic loci for WHRadjBMI (GRB14/

COBLL1, LYPLAL1/SLC30A10, VEGFA, and ADAMTS9; see

Table 2) [31]. The further sexually dimorphic WHRadjBMI loci

previously reported in that work were included among the ten

additional SNPs at 30% FDR in our data (RSPO3, HOXC13,

ITPR2-SSPN, see Table S6), which illustrates the pay-off between

our power gain from this sex-specific approach and larger sample

size with the increased multiple testing burden of interrogating

nine phenotypes in comparison to one phenotype in our previous

work. An overview of the SNP selection and findings is given in

Figure 3 and the genes surrounding the seven signals are depicted

in the region plots (Figure S2).

Although identifying sex-differences was our primary goal, we note

that among the 348 SNPs chosen for follow-up, 46 SNPs exhibited

genome-wide significant association in either men or women in the

joint analysis of discovery and follow-up data (P-men or P-

women#561028, 27 SNPs for height, 12 for WHRadjBMI, three

for weight, three for BMI, one for WCadjBMI, zero for WC, HIP,

HIPadjBMI, or WHR). Detailed information regarding P-values and

effect estimates of these 46 SNPs are included in Table S2.

No opposite effect direction, but enrichment for genetic
effects in women

When examining the sex-specific effect estimates for the seven

SNPs (Figure 4), we found that effect sizes were consistent in

discovery and follow-up and that none of the seven loci showed

OED. Furthermore, the associations for six of the seven SNPs

were observed in women only (SEE), whereas for one SNP

(ADAMTS9) we observed CED in both sexes, but the effect was

more pronounced in women than in men. The absence of loci with

OED together with the observation that the sex-difference scan

did not detect any sex-difference, even at 30% FDR, our data does

not support the existence of genetic loci that have opposite effect in

men versus women.

When comparing the effect sizes of the 46 SNPs with genome-

wide significant sex-specific associations between women and

men, we found again significant enrichment for larger effects in

women for WHRadjBMI (Binomial test P = 1.161024, Methods),

but not for other phenotypes (P = 0.08, 0.08, 0.11, 0.16, for BMI,

weight, height, or WCadjBMI, respectively). This underscores

that our data does provide evidence for sexual dimorphism in the

genetics, and thus biology, underlying WHRadjBMI, but not for

height or BMI. This is consistent with the fact that the seven loci

with confirmed sex-difference were for waist phenotypes only.

Nevertheless, it should be noted that we identified suggestive

sexually dimorphic genetic signals for height and BMI when

applying a 30% FDR threshold (Table S6).

Age-stratified analyses and association with other traits
for the seven SNPs

Hormonal changes during menopause affect a woman’s body

shape and composition, generally resulting in a more android body

Sexual Dimorphism in Anthropometric Trait Loci
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type. Therefore, we examined whether any of the seven confirmed

sexually dimorphic loci showed evidence of age-specific effects

(Methods). More specifically, we performed association analyses

for the seven loci stratified by age with a cut-off at 50 years (i.e.

average age of onset of menopause) and by sex. None of the loci

showed evidence for age-specific effect among women (or men) (P

for difference between age groups .0.135, Table S7).

When extending the investigation of the seven SNPs from the

phenotype for which the SNP was selected (six for WHRadjBMI,

one for WCadjBMI) to the other anthropometric phenotypes (Tables

S8A–C), we found no nominally significant association with height

(joint discovery and follow-up P-women and P-men from 0.065 to

0.86), except for one SNP (rs2820443, P-women = 2.861026,

P-men = 6.061024). Four of the seven associations showed some

evidence of BMI association (P-women or P-men 3.261024 to

6.061023). More specifically, we found – in women only –

decreased HIPadjBMI (P-women from 2.7610227 to 0.015) and

increased WCadjBMI (P-women from 7.6610222 to 3.8261024) for

all WHRadjBMI increasing alleles, whereas no association with

HIPadjBMI (P-women = 0.32) was observed for the SNP selected for

WCadjBMI. This underscores that the seven sexually dimorphic

SNPs are primarily waist- and WHR-related.

Using data from other GWAS consortia [34–36], we evaluated

whether the seven SNPs showed associations with other metabolic

traits consistent with the observed association with WHRadjBMI

or WCadjBMI and whether the similar sex-specific pattern of

association was also observed (Methods). We did indeed find

directionally consistent enrichment (binomial P,0.05) for women-

Figure 1. Genome-wide scan for sex-specific genome-wide association highlights numerous loci. (a) Manhattan plot showing the men-
specific (upward, up to 60,586 men) and women-specific (downward, up to 73,137 women) association P-values from the discovery with the 619
selected loci colored by the phenotype for which the locus was selected; (b) QQ-plot showing the sex-specific association P-values as observed
against those expected under the null overall phenotypes (black) and for each phenotypes separately (colored).
doi:10.1371/journal.pgen.1003500.g001
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specific associations (P-women,0.05) with lipids, fasting insulin,

type 2 diabetes, and HOMA-B (binomial P from 1.261025 to

5.961023; Tables S8D–G). Remarkable was the consistent

women-specific association for the index SNP near the GRB14/

COBLL1 with HDL-cholesterol, triglycerides, insulin, and type 2

diabetes (here though for a different SNP, but correlated with our

index SNP, D9 = 1.0, r2 = 0.735) and for our SNP near MAP3K1

with triglycerides. Three of our novel SNP findings localize near

well-known loci for type 2 diabetes (ADAMTS9, VEGFA, PPARG),

although only our SNP near ADAMTS9 displayed a strong

correlation with the published type 2 diabetes index SNP

(rs4607103, r2 = 0.9, ,0.001 cM), while the other two SNPs were

uncorrelated with the reported type 2 diabetes SNPs (rs9472138,

VEGFA, r2 = 0.008, ,0.23 cM distant from our lead SNP;

rs17036101, PPARG, r2 = 0.024, ,0.15 cM). It should be noted

that many of the studies that participated in GIANT also

participated in the other consortia and given the correlation

between the phenotypes, the sex-specific consistency is likely

somewhat inflated. Taken together, our findings suggest common

genetic influences on body fat distribution, lipids, and type 2

diabetes, particularly for women.

Pathway analyses
In order to summarize the biological pathways that are

primarily depicted by our data on sex-difference, we examined

whether the genes harbored by the seven confirmed loci showed

enrichment for particular pathways or other units of the molecular

networks (processes, functions) using MAGENTA (Methods). We

found that PPARG Signaling, post-Golgi vesicle-mediated trans-

port and kinase- and annexin-related molecular functions showed

enrichment at 5% FDR (Table S9).

Potential functional or biological role of the seven loci
Regarding the biological role of the SNPs and genes in the

proximity of the seven sex-specific SNPs, we searched literature

and functional annotation data bases and catalogues (Methods).

The genes inflicted in the seven regions of interest generally

highlighted genes with a reported role in insulin sensitivity

(PPARG, VEGFA, ADAMTS9, GRB14) and lipid-related traits (fatty

liver: LYPLAL1; triglyceride concentrations: MAP3K1, HDL-C:

GRB14). Among the index SNPs or their proxies (pairwise

correlation, r2.0.8) in the immediate region (49 SNPs altogether),

we found one SNP (rs10478424; r2 = 1 with lead SNP at

Figure 2. Genome-wide sex-difference scan fails to pinpoint loci. (a) Manhattan plot showing sex-difference P-values, (b) QQ plot for sex-
difference P-values overall phenotypes (black) and for each phenotype separately (colored).
doi:10.1371/journal.pgen.1003500.g002
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HSD17B4) that was a predicted transcription factor binding site

(TFBS). Interestingly, one of the transcription factors predicted to

bind at this TFBS is PPARG, which itself is located near one of our

other association signals. None of the other 48 SNPs tagged any

known copy-number variant, was a non-synonymous coding

variant, or was present in any of the other predicted functional

classes. When extending this search to SNPs that were more

moderately correlated (r2.0.5) with the lead index SNPs (146

SNPs altogether), these included several proxies of rs2820443

(near LYPLAL1/SLC30A10) that annotated as TFBSs as well as

proxies of rs10478424 that disrupt predicted microRNA binding

sites. These findings may indicate potential involvement in the

regulation of gene transcription near those loci.

A specific description of potentially functionally elements in the

association regions as indicated by UCSC and Ensembl genome

browsers and more details from the literature and functional

annotation data base searches can be found in the Text S1.

Effect of the seven sexually dimorphic loci on expression
in relevant tissues

To localize the potentially causal gene at each locus, we

examined the evidence for sex specific cis expression quantitative

trait loci (eQTL) for genes near the seven identified SNPs in

different types of human subcutaneous adipose tissue, lympho-

cytes, and whole blood (Methods). Although there was evidence

for gene expression association of two (GRB14, ADAMTS9, Table

S10) of the seven SNPs (SNP highly correlated with the peak SNP

of the transcript, r2.0.8, the association of the peak SNP with the

transcript expression vanished when adjusted for our SNP), the

associations were not sex-specific (P-diff.0.05).

We also examined whether genes harbored by the seven sex-

specific loci showed sex-specific expression in various tissues of

mouse models using real-time PCR expression data (brown fat,

inguinal and gonadal fat, and liver) and Illumina expression data

(liver, inguinal and gonadal fat; Methods). We found significantly

(at a significance level of 0.05/19 = 0.003) lower expression of

GRB14 in brown fat of female mice (P-diff = 0.001); due to the role

of brown fat in triglyceride catabolism [37], this is in-line with the

previously described sexually dimorphic association of this SNP

with HDL-C and triglycerides. For female compared to male

mice, we found significantly lower expression of VEGFA (P-

diff = 161025) in inguinal fat, whereas in liver, we found higher

expression for three genes (LYPLAL1, PPARG, MKRN1; P-diff from

0.002 to 0.003) with the latter two genes being located in the

PPARG locus (Table S11).

Discussion

In our genome-wide search for sexually dimorphic associations

including over 270,000 individuals from 94 studies from the

GIANT consortium, we found evidence for seven loci with

significant sex-difference including three novel anthropometric

trait loci (near MAP3K1, HSD17B4, PPARG). Importantly, for all

seven loci, the associations were observed for waist phenotypes

with more prominent effects in women. These findings are

consistent with our previous reports for sex-differences in the

genetics of WHR [30,31].

The waist phenotypes used in this study are well established

proxy measures of body fat distribution. Women have more

subcutaneous body fat, which is part of the skin, that is

preferentially deposited at the hips and thighs whereas men have

more visceral fat, which is fat in and around the inner organs and

accumulates particularly around the waist [38–40]. It is well

known that hormonal levels are associated with differences in fat

distribution in men and women, distinctions that emerge early in

childhood and subsequently amplify during puberty [41,42].

Moreover, fat distribution in women changes as estrogen levels

drop during menopause, leading to a more android shape, with

greater visceral fat accumulation [43]. Subcutaneous and visceral

fat has distinct morphological and functional properties that

account in part for clinically relevant sex differences in a variety of

metabolic phenotypes [40,44].

Our findings of sex-specific genetic effects on waist-hip-ratio as a

measure of fat distribution are consistent with a study of families in

whom MC4R mutations segregate that demonstrated larger effects

on obesity in female compared to male mutation carriers [45]. In

Table 1. Seven SNPs show sex difference.

Discovery Follow-up Joint

MEN WOMEN
Sex-
Diff MEN WOMEN

Sex-
Diff MEN WOMEN

Sex-
Diff MEN WOMEN

SNP Traita Sexa Geneb P P P Pc Pc Pc P P P N N

rs6717858 WHRadjBMI W GRB14/COBLL1 0.309 2.78E-15 6.49E-07 0.965 3.64E-16 1.08E-11 0.613 1.99E-29 6.18E-16 76,594 98,321

rs2820443 WHRadjBMI W LYPLAL1/SLC30A10 0.191 3.69E-18 1.25E-07 0.532 9.15E-21 2.60E-10 0.374 4.62E-37 6.95E-16 76,625 98,352

rs1358980 WHRadjBMI W VEGFA 0.110 1.11E-13 3.02E-05 0.112 1.38E-19 4.53E-08 0.048 2.41E-31 2.46E-11 75,703 97,269

rs11743303 WCadjBMI W MAP3K1 0.974 2.27E-06 6.24E-04 0.172 7.15E-07 5.35E-05 0.570 2.69E-11 8.41E-07 85,136d 107,403d

rs2371767 WHRadjBMI W ADAMTS9 0.196 1.63E-08 1.85E-03 6.08E-03 8.55E-17 2.14E-04 8.34E-03 7.07E-23 1.91E-06 72,649 95,325

rs10478424 WHRadjBMI W HSD17B4 0.399 1.02E-05 9.84E-03 0.864 3.81E-05 1.67E-03 0.761 3.45E-09 2.66E-04 43,852e 73,066e

rs4684854 WHRadjBMI W PPARG 0.955 2.36E-08 6.46E-05 0.132 1.48E-07 4.22E-03 0.411 4.17E-14 4.04E-06 74,652 96,472

aTrait and sex for which the SNP was selected;
bGene labels state the nearest gene or the gene as published previously; details on all genes near the association signal can be found in the Figure S2;
cOne-sided P-Values.
dlarger sample size due to one additional study that did not have hip circumference, and therefore could not contribute to WHRadjBMI.
esmaller sample size as this SNP was not on Metabochip.
Shown are the seven SNPs with significant (at 5% false discovery rate) sex difference in the follow-up data. These seven SNPs exhibit genome-wide significant
association in women (joint discovery and follow-up P_women,561028) and only two of these show nominally significant association in men (joint P_men,0.05). The
three loci MAP3K1, HSD17B4, and PPARG are shown here for the first time for their anthropometric trait association as well as for sex-difference.
doi:10.1371/journal.pgen.1003500.t001
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animal models, microarray experiments have consistently demon-

strated that adipose tissue mass, function, and distribution is

regulated by networks of sexually dimorphic genes which are likely

regulated by sex hormones [46]. In addition, sex-differences in

mRNA and miRNA expression in abdominal and gluteal adipose

tissue have been noted in humans [47,48]. Lastly, animal studies

demonstrate that exposure to sex hormones early in development

is associated with long term, lifelong changes in adipose tissue

distribution and function [49,50]. Taken together, sex-differences

in body shape appear to be determined by a complex interplay of

genetic and hormonal factors.

Our data did not provide statistically significant evidence for

sex-differences in the genetics of BMI and height. This is in-line

with previous reports in a large twin heritability study [51], which

shows differential heritability between sexes for waist-hip-ratio, but

not for BMI or height. Interestingly, phenotypic differences in

BMI between men and women are consistently smaller than those

for waist-related traits and perhaps sex differences in BMI genetics

are more subtle. This was not very surprising as our expectations

for sex-differences were highest for waist-hip-ratio, given the

previous report on sex-differences in waist-hip-ratio genetics, the

strong link of the phenotype to body fat distribution, the change of

body fat distribution by hormones, and the sex-specificity of fat

distribution.

The lack of signals with opposite effect direction for men and

women in our data is particularly intriguing. Given that no

systematic search for sexually dimorphic associations with

anthropometric traits has been done before in a large enough

genome-wide effort, it was not really clear whether OED signals

would exist. While our systematic search scanning the P-values

testing for sex-difference between the sex-specific effect estimates

was specifically designed to detect OED associations, we did not

detect any. This is in-line with the prior believe that genetic

variants do not affect anthropometry in one direction in men and

in the opposite direction in women.

The seven loci shed new light on regions containing genes with

a reported role for type 2 diabetes (PPARG, ADAMTS9, VEGFA),

lipids (GRB14, MAP3K1) and hormone metabolism (HSD17B4).

Particularly intriguing due to its relevance for type 2 diabetes and

therapy is the PPARG, which showed association with WHR in

women, but not in men. This is in-line with small candidate gene-

by-environment interaction studies e.g. of saturated fat intake with

PPARG variants for obesity-related traits [52], including differen-

tial effects by sex [53]. Although the index SNP is independent of

the polymorphisms previously reported for type 2 diabetes [54–

56], PPARG is a particularly interesting candidate as its encoded

protein, PPARc, is a nuclear hormone receptor that serves as a

master regulator of adipocyte-specific genes contributing to

adipocyte differentiation, susceptibility to obesity, and insulin

sensitivity [33]. PPARg-agonists are used to treat type 2 diabetes

by redistributing adipose tissue from abdominal visceral to

subcutaneous compartment, which is thought to be preferable

and improve insulin sensitivity. Interestingly, sex-differences in

pioglitazone response have been described for nondiabetic

overweight persons [57].

Furthermore, growth factor receptor-bound protein 14

(GRB14) binds to insulin receptors and inhibits their catalytic

activity. GRB14 is a prerequisite for the development of insulin-

sensitizing molecules to pathological states as obesity and type 2

diabetes [58]. Our current and previously reported findings

[31,34] suggest that the rs6717858 near GRB14 has a female-

specific effect on insulin as well as on central obesity and lipids.

Additionally, we highlight a region including the mitogen-

activated protein kinase kinase kinase 1 (near MAP3K1), a locus
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known to be associated with triglyceride levels in sex-combined

analyses [59], whereas we found this locus to be associated with

WHR in women only. The MAP3K1 plays a pivotal role in a

network of phosphorylating enzymes integrating cellular responses

to a number of mitogenic and metabolic stimuli, including insulin

and many growth factors [60]. Interestingly, mutations in MAP3K1

have recently been demonstrated to result in a 46XY disorder of

sex development with varying manifestations of gonadal dysgenesis

[61]. Thus this gene is implicated in normal sex development,

which may be related to our observed sexually dimorphic genetic

effect. Finally, the locus near HSD17B4 is of particular interest,

because HSD17B4 is a multifunctional peroxisomal enzyme

involved in steroid metabolism and fatty acid oxidation [62,63].

It converts the more active hormone, estradiol, to the less active

estrone. Sex differences in HSD17B4 expression with estradiol

supplementation have been noted in zebra fish [64]. In addition,

the position of our lead marker at a predicted transcription factor

binding site located just upstream of a putative protein coding

splice variant of HSD17B4 indicates a potential function for the

association signal observed at this locus and may warrant

additional follow-up work. Interestingly, among the genes that

bind to this transcription factor binding site is PPARG.

A major strength of our study is that we were uniquely

positioned to perform the analyses described, taking advantage of

the highly efficient collaborative environment of the many study

partners within the GIANT consortium, which allowed us to

conduct the largest possible sex-difference GWAS for anthropo-

metric phenotypes ever reported. As a consequence, we were well-

powered (about 80% power) to detect sex-sensitive genetic effects

of the same magnitude as those observed previously for WHR or

to detect genetic effects as previously observed for height, but

assuming these to appear only in one sex [25,31]. Nevertheless,

our statistical power to detect subtle sex differences in genetic

effects was limited. Notably, we used a conservative approach to

avoid false positive claims: (i) we used ranks instead of the absolute

phenotypic values of anthropometric traits in order to avoid

artefacts due to outliers, (ii) we applied double genomic control

correction in order to avoid any artefact from possible population

stratification, and (iii) we established sex-difference using our

follow-up as opposed to the combined discovery+follow-up data

sets to avoid overestimated sex-differences through winner’s curse.

It is a further strength that we were able to show associations of

our sex-specific anthropometric trait signals also with other

metabolic traits such as lipids, glucose and type 2 diabetes;

Figure 3. Overview of design and findings. Among the 7 identified loci, we defined those close to (,1 cM) published hits [25,29,31] as near
published hits and novel otherwise. Novel loci with sex-combined discovery P-value,5.861025, which is the P-value cut-off corresponding to 5% FDR,
were declared as loci that could have been discovered also with sex-combined analysis, and otherwise that these would have been missed without the
sex-stratified analyses. FDR = false discovery rate.
doi:10.1371/journal.pgen.1003500.g003
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however, we need to note the limitation that these associations

were not adjusted for the anthropometric traits, so that some of the

observed metabolic trait associations were expected due to the

correlation of anthropometric traits with lipids, glucose and type 2

diabetes.

Overall, we found women-specific SNP effects for anthropo-

metric traits, particularly for waist-related phenotypes. Our study

findings lend support to distinct genetic effects on body shape by

sex and argue for the importance of further integrative studies of

sex differences of body shape. While the actual underlying genes

and their mechanisms of action remain elusive, we hypothesize

that such differences are hormonally regulated. Moreover, because

body fat has a prominent endocrinological function and body fat

distribution has a critical relevance for many metabolic pathways,

understanding these differences could help improve our under-

standing of metabolic disease processes. Particularly the estab-

lished sex-difference for the SNP near the therapy-relevant PPARG

could impact treatment options. In the era of personalized

medicine, which attempts to tailor treatment to fit the individual,

a better differentiation between men and women in research and

patient treatment could be an important start.

Summary and conclusion
While our data underscores a lack of genetic association in

opposing direction in men versus women, we have highlighted

female-specific effects in waist phenotypes. Our investigation

underscores the importance of considering sex-differences when

interrogating the genetic architecture of anthropometric traits. For

those traits with strong a priori evidence for sex differences, the

routine analysis of sex-specific genome-wide analyses may allow

for numerous options for meta-analysis including a sex-combined

scan optimally powered to detect the general association as well as

Figure 4. Consistently higher effect sizes for women for all seven loci. Shown are beta-estimates and 95% confidence intervals for the seven
identified SNPs (also stating the phenotype for which the SNP was selected for).
doi:10.1371/journal.pgen.1003500.g004
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sex-specific scans when searching for sexually dimorphic signals.

Although our study focused on sex-differences for anthropometric

traits, sex differences in genetic effects likely exist for other traits

and diseases and should be taken into consideration in future

genetic as well as translational studies.

Methods

Anthropometric phenotypes
The anthropometry of men and women differ in various

aspects: Average height, waist circumference, and WHR, is higher

for men than for women, whereas average BMI is similar.

Variability for all phenotypes is similar for men and women, which

can be seen on the example of the KORA study (Table S12) and

specifically for WHR adjusted for BMI for all studies (Figure S3).

The anthropometric traits examined are height (cm), weight

(kg), body mass index (BMI, kg/m2) computed as weight divided

by meter of height squared, waist circumference (WC, cm), hip

circumference (HIP, cm), and waist-hip-ratio (WHR). The last

three traits were analyzed without and with adjustment for BMI,

yielding nine phenotypes in total (height, weight, BMI, WC, HIP,

WHR, WCadjBMI, HIPadjBMI, WHRadjBMI). For the further

analyses, the traits were all transformed at the study-level by

calculating age-adjusted residuals (including age and age2 into the

regression model for trait creation) for men and women separately

and adding BMI into the adjustment as indicated above; then – for

all traits except height – the values were ranked and an inverse

normal transformation was applied, whereas a z-score transfor-

mation was performed for height.

Study-specific analyses for discovery and follow-up
For discovery stage, we included 46 studies (up to 60,586 men,

73,137 women) on height, weight and BMI, 34 studies (up to

36,231 men, 45,192 women) on WC, 33 studies (up to 34,942

men, 43,316 women) on HIP and 32 studies (up to 34,629 men,

42,969 women) on WHR. Each study was genotyped using either

Affymetrix or Illumina arrays. To enable meta-analyses across

different SNP panels, each group performed genotype imputation

using HapMap II CEU (build 21 or 22) via MACH [65],

IMPUTE [66] or BimBam [67]. Details are given in Tables S1,

S3, S4, S5 and Text S2.

For follow-up, we included (i) 30 studies (up to 42,055 men,

32,785 women) for height, weight and BMI and 27 studies (up to

36,671 men, 28,326 women) for WC, WCadjBMI, HIP,

HIPadjBMI, WHR and WHRadjBMI that were genotyped using

the custom iSELECT Metabochip array containing ,195K SNPs

designed to support large-scale follow-up of putative associations

with metabolic and cardiovascular traits, and (ii) 18 studies (20,340

men, 41,872 women) for height, weight, and BMI and 14 studies

(11,225 men, 32,610 women) for WC, WCadjBMI, HIP,

HIPadjBMI, WHR and WHRadjBMI genotyped using genome-

wide SNP chips with subsequent imputation for in silico follow up.

In each study, association was tested separately for men and

women. The additive genetic effect for each SNP on each

phenotype was estimated using a normal linear regression model

using MACH2QTL [68], SNPTEST [66], ProbABEL [69],

GenABEL [70], Merlin [71], or PLINK [72]. For studies with a

case-control design, cases and controls were analyzed separately.

Study-specific information was described previously [25,29,31] for

discovery studies and in Tables S1, S3, S4, S5 for follow-up

studies.

All involved studies were conducted according to the principles

expressed in the Declaration of Helsinki. The studies were

approved by the local Review Boards and all study participants

provided written informed consent for the collection of samples

and subsequent analysis.

Sex-specific discovery meta-analysis
All discovery study-specific files were processed in the meta-

analysis centers through a standardized cleaning script that

included checks of allele frequencies, compliance with Hapmap

alleles, file completeness, number of markers, and ranges of test-

statistics. We excluded monomorphic SNPs, SNPs with

MAF*N#3 (minor allele frequency multiplied by sample size)

and SNPs with poor imputation quality, i.e. r2_hat ,0.3 in

MACH; observed/expected dosage variance ,0.3 in BIMBAM;

proper_info ,0.4 in IMPUTE; information ,0.8 in PLINK

[65,66,72,73].

Sex-specific standard errors and P-values from each participat-

ing study were genomic-control (GC) corrected [74] using the

lambda factors as published [25,29,31], then beta-estimates were

meta-analyzed using the inverse-variance weighted fixed effect

model as implemented in METAL [75]. A sensitivity analysis

using the sample-size weighted Z-score meta-analysis approach

yielded the same results; only fixed effect model results are shown.

The 2,971,914 SNPs in each of 18 analyses (nine phenotypes in

two sexes) reduced to 2,846,694 SNPs with available chromosome

and position annotation in dbSNP. The genetic position (cM) was

extracted from HapMap release 22 (http://hapmap.ncbi.nlm.nih.

gov/downloads/recombination/2008-03_rel22_B36/rates/) or -

if unavailable - approximated by the inverse-distance weighted

average of the genetic positions of the nearest HapMap SNPs

(release 22) on each side.

SNP selection strategy
We conducted two types of genome-wide searches in the

discovery stage: (a) In the sex-specific scan, we computed sex-specific

association P-values for each SNP, concatenated these for all nine

phenotypes totaling 50,586,560 P-values (i.e. 2 sexes69 pheno-

types62.85 Million SNPs), and selected 20,215 SNPs at 5% FDR

[32]. Pruning this list to independent SNPs (starting with the

20,215 SNPs sorted by increasing P-value and deleting SNPs

within 0.2 cM of any of the SNPs above) yielded 619 independent

SNPs. For each SNP and for the phenotype that the SNP was

selected for, we also computed P-values (P-diff) testing for

difference between the meta-analyzed men-specific and women-

specific beta-estimates bmen, bwomen with corresponding standard

errors SEmen and SEwomen using the t statistic

t~
bmen{bwomenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SEmen
2zSEwomen

2{2r:SEmen
:SEwomen

p

The correlation r between bmen and bwomen, computed as the

Spearman rank correlation coefficient across all SNPs for each

phenotype, ranged from 0.04 to 0.18 across phenotypes. From

these 619 SNPs, we selected the 348 SNPs with nominally

significant sex-difference (P-diff,0.05) to ensure some level of sex-

difference in the discovery. Whether the sex-difference was

significant was then evaluated in the follow-up stage (see below).

(b) In the sex-difference scan, we computed P-diff for each of the

,2.85 Million SNPs and each of the nine phenotypes and

concatenated the totaling 25,293,280 P-values. We had planned to

select SNPs for follow-up at an FDR of 5% across all SNPs and

phenotypes, but there were none. Power considerations are

provided in the Text S1 and Figure S4A.
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Follow-up and joint meta-analysis, establishing sex-
difference

Study-specific follow-up data were quality-controlled in a

similar manner as discovery data with increased attention towards

strand-issues. We conducted sex-specific follow-up meta-analyses

using the same statistical models as for the discovery. We

combined (i) in silico studies and (ii) metabochip studies, and then

combined results of (i) and (ii) implying a double genomic control

correction (Text S1). Additionally, we conducted a joint meta-

analysis combining the sex-specific association results of discovery

and follow-up.

For SNPs selected for their small P-values of sex-specific

association, the sex-difference estimates and corresponding P-

values in the same data set would be inflated (see Figure S5) as the

two tests are not independent. We therefore derived sex-difference

estimates and corresponding P-values in the follow-up data alone.

As none of our selected SNPs stemmed from the scan targeted

for OED signals (i.e. the sex-difference scan) or showed any

evidence of OED in the discovery, we targeted our follow-up

analysis for CED or SSE signals. We filtered for a main effect (P

for both sexes combined ,0.01) prior to testing for sex-difference

(P-diff, as described above), since this increased the power to detect

SSE and CED signals (Figure S4B, Text S1), while this filter did

not introduce a bias such as a sex-stratified association filter would.

SNPs with a P-diff in the follow-up at 5% FDR were considered as

SNPs with significant sex difference.

Establishing genome-wide significance of
anthropometric trait association and enrichment for
female or male genetic effects

We considered a joint (discovery and follow-up combined)

association P-men or P-women,561028 as genome-wide significant. For

each phenotype, we tested whether there were more male-specific

or more female-specific associations among the associations with

established genome-wide significance in at least one sex compared

to the expected binomial distribution.

Age-stratified sex-specific meta-analysis and association
with metabolic traits

For the identified signals with sex-difference, study partners of

the discovery and the in silico follow-up re-analyzed their data

stratified by sex and age group ($50 years, ,50 years) using the

same models as described above. Age difference was tested within

each sex using the same t statistic as applied for the sex-difference

testing.

Sex-specific associations of the identified signals with metabolic

traits were derived requesting a sex-stratified re-analysis from the

Global Lipids Genetics Consortium (GLGC, Triglycerides, HDL-,

LDL-, and Total cholesterol) [34], the Meta-Analyses of Glucose

and Insulin-related traits Consortium (MAGIC, fasting insulin,

fasting glucose, HOMA-B, HOMA-IR) [35,76]; and, the DIA-

GRAM consortium (type 2 diabetes) [36]. We tested the overall

number of SNPs with consistent nominally significant association

for the sex that the SNP was selected for (P_women or P_men ,0.05)

compared to a binomial draw with an event rate of 0.05. It needs

to be noted that this test does not account for the correlation

between the traits nor for the fact that the consortia involve an

overlap of studies.

Pathway analyses
In order to explore whether certain pathways are enriched

among the genes depicted by loci with evidence for sex-

difference, we applied MAGENTA [77]. Briefly, MAGENTA

calculates gene-specific scores (for ,18,000 genes) by combining

the p-values (here: the sex-difference P-values from our

discovery stage for a specific anthropometric phenotype) of

SNPs in and around the genes (40 kb down-, 100 kb upstream).

The genetic score is corrected for potential confounders, such as

gene size, number of independent SNPs, LD pattern, length in

genetic distance, and number of recombination hotspots. These

scores are ranked and the genes within the top 5% of these

scores are tested for enrichment in certain pathways (separately

for each phenotype) as given by different databases (GO:

http://www.geneontology.org/, KEGG: http://www.genome.

jp/kegg/, Ingenuity: http://www.ingenuity.com/products/

pathways_analysis.html, and PANTHER: http://www.

pantherdb.org/). MAGENTA determines whether the genes

among the 5% top scores link to certain pathways more often

than expected by chance. FDR is controlled at 5% via 10,000

permutations (using a random set of genes with the same

number of genes as those observed).

Search for biological and functional knowledge of the
seven association regions

For the seven confirmed sex-difference loci (defined as the

regions depicted by SNPs within 1.0 cM of the respective lead

SNP showing a certain level of association, P#100 * PleadSNP), we

searched several catalogues and data bases to depict potential

biologically relevant links or functional entities. We extended the

regions of interest to +2500 kB around the lead SNP if the regions

were very small and no gene was inflicted (as for the PPARG,

VEGFA, MAP3K1 loci).

First, we performed an automated search for reported genes

or variants in our regions in PubMed (http://www.pubmed.

com) and OMIM (http://www.ncbi.nlm.nih.gov/omim) using

Snipper (http://csg.sph.umich.edu/boehnke/snipper) or man-

ually inspected UCSC (PMID: 22086951) and Ensembl (PMID:

21045057) genome browsers as well as the NHGRI GWAS

catalog [78,79]. Second, we explored whether SNPs known to

provide reliable tags for Copy-Number-Variations (CNVs) in

European-descent samples (combining four catalogues includ-

ing 60167 CNV-tagging SNPs as described previously [31])

correlated with our lead SNPs. Third, we performed several

online database searches to establish whether known variants

within 500 kb of each lead SNP, that are correlated (r2.0.8 or

0.5) with our lead SNPs (using SNAP Proxy search [80]), might

have putative or predicted function. (i) We searched the SIFT

database [81] to determine whether any of these SNPs was

predicted to affect protein function. (ii) We used SNPinfo [82]

to investigate predicted and putative function in several

functional classes, including splicing regulation, stop codons,

polyphen predictions, SNPs3D predictions, transcription factor

binding site (TFBS) prediction, and miRNA binding site

prediction.

Expression QTL analyses in human and mouse tissue
We examined transcript expression of genes near each of the

seven identified SNP. For human eQTL, we explored four

different tissues (subcutaneous adipose tissue, whole blood, and

lymphoblastoid cells; details on methodology and tissue samples

in the Text S1). We computed sex-specific association including

conditional analyses and r2 measures to identify cis eQTL

signals that were likely to be coincident with the anthropometric

trait signal. For mouse eQTL, we had four types of tissues

(inguinal fat, gonadal fat, liver, brown fat) with expression

derived by real-time RT-PCR as well as three types of tissue

(liver, inguinal fat, gonadal fat) with Illumina assays (details in
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Text S1). The sex-specific association and a test for sex-

differences were computed.

Supporting Information

Figure S1 Sensitivity Analysis excluding patient groups shows

consistent results. Shown are sex-specific beta-estimates of the

seven identified SNPs in the follow-up data without (original

analysis) and with exclusion of patient groups. It can be seen that

the results are robust and patient groups do not trigger the

observed sex-differences.

(TIF)

Figure S2 Region plot of the 7 identified loci showing the (a)

association P-value in women, (b) association P-value in men, and

(c) the sex difference P-value.

(PDF)

Figure S3 Distribution of waist-to-hip ratio adjusted for BMI.

Shown are the 5th, 25th, 50th (median), 75th, and 95th percentiles of

the residuals of waist-hip-ratio (before inverse normal transform)

adjusted for BMI (therefore zero mean) for each contributing

study. It can be seen that the variability of the phenotype is

symmetric and to a similar extent in men and women.

(TIFF)

Figure S4 Power comparison. (A) Discovery: Shown is the

power for selecting a sex-sensitive SNP (42969 women, 34629

men; assuming a signal as PPARG in women, MAF = 0.42,

R2
women = 0.00057, various effects for men) into follow-up at

a= 261025 for the sex-specific (orange) scan, the sex-difference

scan (magenta), or the sex-combined scan (black). (B) Follow-up:

Power (60936 women, 47896 men; assuming a signal such as

PPARG as above in women, various effects for men) to establish

sex-difference among the 348 SNPs in the follow-up by (i) testing

all 348 SNPs for sex-difference (no prior filter for a main effect;

blue) at 5% FDR (corresponding to a P-diff of 9.961024; blue), or

by (ii) testing first for a main effect (P-value combined for men and

women ,0.01) and then testing the remaining 74 SNPs for sex-

difference at 5% FDR (here corresponding to a P-diff of 4.261023;

red).

(TIF)

Figure S5 Inflated P-values of the sex-difference test due to the

selection on sex-specific association. We have simulated 1 Million

SNPs under the null hypothesis of no sex-difference (and no

association), selected 348 SNPs with the most extreme sex-specific

association, and plotted the observed P-values of the sex-difference

test compared to the expected. It can be seen that the observed

sex-difference P-values are inflated (i.e. do not lie on the identity

line), which indicates that the sex-difference test is not independent

from the sex-specific association selection.

(TIFF)

Table S1 List of studies including sample sizes.

(XLS)

Table S2 Association results of the 348 loci put forward to

follow-up, showing the results from 46 discovery studies including

60,556 men and 73,133 women and 48 follow-up studies including

62,397 men and 74,651 women. These include 46 SNPs with

genome-wide significant association in men or women in the joint

analysis of discovery and follow-up studies.

(XLS)

Table S3 Study-specific designs and references. (follow-up stage

only).

(XLS)

Table S4 Study-specific methods. (follow-up stage only) (A)

insilico studies, (B) metabochip studies.

(XLS)

Table S5 Study-specific descriptives. (follow-up stage only).

(XLS)

Table S6 Further ten SNP show sex-difference at 30% FDR.

Shown are the SNPs with sex-difference in the follow-up according

to 30% FDR additional to those shown in Table 1. These include

the further three loci previously reported for sexually dimorph

waist-hip ratio associations, HOXC13, ITPR2/SSPN, and RPO3/

C6orf173 [31].

(XLS)

Table S7 No difference in any of the 7 associations between age

groups. Age-stratified analyses results were conducted from 59

discovery and in silico follow-up studies for the seven identified

SNPs.

(XLS)

Table S8 Sex-specific association of the 7 SNPs with other

traits.(A) BMI, height and weight: From the joint discovery and

follow-up including 122,907 men and 147,746 women for height,

97,482 and 97,062 for weight, and 120,975 and 142,332 for BMI.

It should be noted that results in Table 1 and Table S7 are only

for the phenotype and sex for which the SNP was selected. (B) hip

circumference (HIP), waist circumference (WC), waist-hip-ratio

(WHR): Including 75,102 men and 96,383 women for hip,

86,196 and 108,303 for waist circumference, and 76,838 and

98,747 for waist-hip-ratio. (C) hip circumference adjusted for

BMI (HIPadjBMI), waist circumference adjusted for BMI

(WCadjBMI), waist-hip-ratio adjusted for BMI (WHRadjBMI).

Including 74,949 men and 96,353 women for HIPadjBMI,

86,036 and 108,052 for WCadjBMI, and 76,625 and 98,352 for

WHRadjBMI. (D) lipid traits: From the Global Lipids Consor-

tium (Teslovich et al., 2010) including 39,104 men and 64,235

women. (E) glycaemic traits: From the MAGIC consortium

(Prokopenko et al., 2009) including 54,046 men and 60,450

women. (F) type 2 diabetes: From the DIAGRAM consortium

(Zeggini et al., 2008) including 18,786 men (4,451 cases and

14,335 controls) and 28,332 women (3,680 cases and 24,652

controls). (G) Summary of enrichment statistics: for sex-specific

association of the 7 SNPs with the metabolic traits.

(XLS)

Table S9 Pathway analysis reveals enrichment of PPAR

signaling among genes with evidence for sex-difference. Shown

are P-values for phenotype-specific enrichment using MAGENTA

to determine whether certain pathways/biological processes/

molecular functions are enriched among genes harboring SNPs

with evidence for sex-difference. Only categories with false

discovery rate (FDR),10% are reported in the table and those

with FDR,5% are considered statistically significant (bold). In

short, for a certain phenotype in the discovery data, MAGENTA

assigns a gene-specific score based on the sex-difference P-values of

SNPs in or nearby (40 kb down-, 100 kb upstream) the respective

gene. The score is calculated for each o the ,18 000 annotated

genes and corrected for gene-size, number of independent SNPs,

LD pattern, length in genetic distance, and number of recombi-

nation hotspots. Then MAGENTA determines whether the genes

with a score in the top 5% (,900 genes for each phenotype)

overlap with certain pathways more than expected by chance (i.e.

as compared to a random gene set including the same number of

genes).

(XLS)
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Table S10 Associations with cis gene expression (eQTL) in

human subcutaneous adipose tissue (SAT) and lymphocytes.

Transcripts of genes near each of the identified seven SNPs were

examined in four differenet data sets (DeCode, MoIOBB,

childhood asthma study, HapMap, details in Text S1). Sex-

specific associations with the transcript are shown for the identified

SNP with and without conditioning on the most significant SNP

for that transcript (peak SNP) and also for the peak SNP with and

without conditioning on the identified SNP, if FDR,5%

(DeCode) or FDR,1% (MolOBB, childhood asthma study,

HapMap) in one sex. For GRB14 and ADAMTS9, our identified

SNP was highly correlated (r2.0.8) with the peak transcript SNP

in men. No SNP showed nominally significant sex difference

(Pdiff.0.05).

(XLS)

Table S11 Gene expression in mice. Shown are expression levels

in female and male mice, if expression was nominally significant in

at least on sex, and the P-value testing for sex difference (P-

diff,0.05) from the mouse experiments in three different center: (i)

21 male and 21 female mice with Illumina array for inguinal or

gonadal fat (Houston, H), (ii) 139 male and 133 female mice with

Illumina array for liver (Oxford, O), (iii) 7 male and 7 female mice

with PCR analysis for brown fat, inguinal or gonadal fat, and liver

(Regensburg, R). Examined genes are listed in Table S13.

(XLS)

Table S12 Sex-specific phenotype description. Shown are mean

and standard deviation (std.) of the investigated traits in a German

general population study (KORA-S3 and KORA-S4). Age range

is 25–75 years of age with mean of 53.6 for men and 52.9 for

women. All phenotypes are adjusted for age and age2 as in the

genetic association analyses.

(XLS)

Table S13 Genes included in mouse eQTL investigations. (A)

Regensburg mouse eQTL. Also shown are primers used for

analysis of gene expression. (B) Oxford and Houston mouse

eQTL. We explored all genes containing SNPs with at least some

level of association in the initial discovery (P_men or P_women

smaller than hundred times the index SNP P-value), but at least 3

genes and at maximum all genes within 61 cM of the index SNP

(annotation using genome browser Ensembl build 54).

(XLS)

Text S1 Supplementary note.

(PDF)

Text S2 Extended acknowledgments.

(PDF)
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