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Abstract

This thesis presents the implementation of a numerical real-space method for

the calculation of the electronic structure of molecular systems within the self-

consistent field approximations of quantum chemistry. The code is based on the

multi-resolution multiwavelet basis which provide sparse representations of func-

tions and operators, in particular integral operators with Green’s function con-

volution kernels. The mathematical formalism provides efficient (linear-scaling)

algorithms for operator application, e.g. for the Coulomb operator for the cal-

culation of electrostatic potentials, as well as rigorous error control.

The Hartree-Fock and Kohn-Sham equations of quantum chemistry are re-

formulated in integral form and solved to self-consistency using iterative solution

techniques. The code is able to attain high-accuracy for many-electron molec-

ular systems, both restricted closed-shell and unrestricted open-shell.

Because of the inherent high demands on computational resources that comes

with real-space methods, the code relies on parallel algorithms and data distri-

bution in order to become competitive with conventional methods, and the code

has been properly adapted in order to utilize modern massively parallel com-

puting architectures.
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Chapter 1

Introduction

1.1 Numerical analysis and real-world physics

The aim of the natural sciences is to model the complex processes occuring in

nature as accurately as possible. It is a remarkable fact that the fundamental

features of nature are so well described in terms of mathematics, by simple

and elegant expressions like the wave equation, Newton’s laws of motion and

gravitation, and Maxwell’s equations of electrodynamics. Equally remarkable

is it that these simple expressions can give rise to the vast complexity that we

observe in the world around us.

The underlying complexity of the these equations means that analytic so-

lutions are available only for very simple, idealized systems, often with high

symmetry, thus limiting their practial usefullness. Over the years, not few sci-

ence students have been questioning the applicability of computing a cannon

ball’s trajecory in vacuum or the electric field around a point charge alone in

the universe.

The bridge between the idealized model systems and what we observe in the

real world is made through numerical analysis, which involves the translation of

the physical equations into the language of the digital computer. Most modern

applied sciences relies heavily upon numerical analysis and simulations, either

for performing numerically intensive calculations or for analysing large amounts

of data. Over the last decades computer simulation has emerged as a third way
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in science besides the experimental and theoretical approach, and has become

an indispesable tool for the investigation and prediction of physical and chemical

processes.

However, with the breakdown of Moore’s law (on a single computational

device) the computational scientist cannot blindly rely on the advances of com-

puter technology in order to push the limits of the attainable accuracy and the

size of the systems, and a lot more responsibility is put back to the computa-

tional scientist in developing algorithms suitable for parallel execution. While

the computational speed of a processor no longer can be said to double every

second year, Moore’s law continues to be valid in a more fundamental sense,

as the number of transistors continues to grow, but in the form of multi-core

processors. This means this in the future we might see a paradigm change

where currently inferior numerical methods and algorithms will enter the stage

because of favourable scaling with respect to system size and with the number

of processors.

1.2 Chemistry without chemicals

Scientists have for centuries sought an ab initio theory of chemical phenomena,

where molecular structure, properties and reactions can be computed with a

minimal amount of empirical parameters, but without the fundamental knowl-

edge of the building blocks of matter this was for a long time a hopeless endeavor.

With the introduction of quantum mechanics almost a century ago, the com-

plete physical theory for molecular systems became available, but although the

exact problem is decievingly simple to state for an arbitrary system through the

Schrödinger equation

ĤΨ = EΨ (1.1)

its solution for many-body problems is quite the opposite. In fact, whenever

the system contains more than two particles the problem cannot be solved (at

least not in the usual sense in terms of the standard elementary functions of

calculus).

The most common approach in modern computational chemistry is the self-

consistent field approximations that are based on the familiar chemical concept
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of one-electron orbitals ϕi, each a solution of a Schrödinger-like equation

F̂ϕi = εiϕi (1.2)

While the solution of this set of N coupled, nonlinear, three-dimensional partial

differential equations is still a formidable computational task, the complexity of

the full 3N -dimensional Schrödinger equation has been sufficiently reduced for

the numerical solution to be feasable for systems with a remarkable number of

particles.

This has been made possible by combining a great deal of chemical intuition

into the development of computational methods. In particular, the introduction

of the atomic orbital basis in the form of atom-centered Gaussians can be at-

tributed most of the success of modern computational chemistry, by providing

efficient and compact representations with a consistent cancellation of errors.

However, although the Gaussian basis is ideal for obtaining qualitative num-

bers fast, it struggles when high precision is required. Moreover, as the Gaussian

functions extend throughout the entire system, it is difficult to reduce the prob-

lem into truly independent tasks that can be easily distributed among several

computers and executed simultaneously.

The alternative to the elegant, compact representations using a carefully

chosen, preoptimized atomic orbital basis, would be a brute force numerical

solution using real-space representations in terms of numerical grids or finite

elements. Such an approach would yield robust, unbiased results that do not

rely on cancellation of errors (but neither would it benefit from it).

It is a well-known fact that the electronic density in molecular systems is

rapidly varying in the vicinity of the atomic nuclei, and a usual problem with

real-space methods is that an accurate treatment of the system requires high

resolution of grid points in the nuclear regions. Keeping this high resolution

uniformly througout the computaitonal domain would yield unnecessary high

accuracy in the interatomic regions, thus the real-space treatment of molecular

systems is demanding a multiresolution framework in order to achieve numerical

efficiency.
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1.3 Multiwavelets

As the theory of wavelets is vast and can be considered a rather advanced

topic of applied mathematics, it remains unfamiliar to most chemists. How-

ever, Alpert’s[1] construction of multiwavelets is rather simple. Starting with a

small set of polynomials {φj}kj=0 of order ≤ k on the unit interval, we attempt

to represent a given function. If this basis turns out to be too crude to ac-

curately describe the function, we can increase the flexibility by adding higher

order polynomials (thus increasing the polynomial order k), and we approach a

complete basis (and an exact representation) as k →∞.

Alpert shows that there is a second way to approach completeness in this

basis. Instead of increasing the polynomial order, we split the interval and

double the number of basis functions by dilating and translating the original

basis to both subintervals

φ1j,l(x) = 21/2φj(2x− l), l = 0, 1 (1.3)

The splitting procedure can be continued until we have reached a scale n where

we are satisfied with the accuracy of the representation. At this level of refine-

ment the unit interval has been split into 2n intervals, each of size 2−n containing

a dilated and translated version of the original k-order basis

φnj,l(x) = 2n/2φj(2
nx− l), l = 0, . . . , 2n − 1 (1.4)

This basis can be used to represent any square integrable function to any finite

accuracy by adjusting the polynomial order k and/or the level of refinement n.

The construction in three dimensions is similar, where at refinement level n the

unit cube has been uniformly divided into 23n subcubes.

The main advantage of multiwavelets over the similar finite element bases

is the possibility of constructing non-uniform grids, and thus focusing the com-

putational efforts into the problematic nuclear region. Moreover, the grid con-

struction can be completely automated to yield representations with guaranteed

accuracy.

Although similar constructions were already familiar through the multigrid

approaches within the finite element community, these methods suffered from a

lack of mathematical rigour and generality, with complicated problem-specific
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algorithms. Alpert’s construction, on the other hand, was founded upon the

well established, powerful theory of wavelets, making the basis applicable to a

wide variety of physical problems and operators, yielding sparse representations

and fast algorithms.

1.4 Organization of the thesis

The multiwavelet basis is described in detail within the framework of multires-

olution analysis in Chap. 2, and the practical implementation of this formalism

into a working computer code is presented in Chap. 3. In particular, we de-

scribe the mathematical operations necessary in order to solve the equations

appearing in the self-consistent field methods of quantum chemistry. An in-

troduction to these methods is given in Chap. 4, together with algorithms for

their numerical solution. Finally, in Chap. 5, a brief discussion is given on the

orbital-free methods of density functional theory, and some preliminary results

are presented.

Included in this thesis are also three papers submitted for publication, that

can be considered linked to each of the three main chapters. The first paper

involves the construction of the multiwavelet basis and is an attempt to reduce

the memory requirements of the method by decreasing the polynomial order k

of the basis as the level of refinement n is increased.

The second paper describes the parallel implementation of the code with par-

ticular focus on the calculation of electrostatic potentials. The performance of

the code (numerical accuracy, linear scaling of computational time with respect

to system size, and parallel efficiency) is demonstrated on realistic molecular

systems of up to 600 atoms.

The topic of the third paper is the solution of the self-consistent field problem

in quantum chemistry. General algorithms are presented for the iterative solu-

tion of the Hartree-Fock and Kohn-Sham equations for many-electron systems

in both a canonical and localized orbital framework. High accuracy energies are

presented for small molecules, while robust and fast convergence is demonstrated

for small and medium sized systems (less than 100 electrons).
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Chapter 2

Multiresolution analysis

In this chapter a general introduction to multiwavelet theory will be given

through the concept of multiresolution analysis (MRA)1, that was developed

by Mallat[2] and Daubechies[3] in the late 1980s. A detailed description of

MRAs can be found in Keinert[4], from which a brief summary of the key issues

are given in the following, with the difference that we limit our discussion to

the unit interval instead of the real line.

2.1 Orthogonal MRA

A multiresolution analysis of L2([0, 1]) is an infinite nested sequence of subspaces

V 0
k ⊂ V 1

k ⊂ · · · ⊂ V nk ⊂ · · · ⊂ L2([0, 1]) (2.1)

with the following properties

1.
⋃∞
n=0 V

n
k is dense in L2([0, 1]).

2. f(x) ∈ V nk ⇐⇒ f(2x) ∈ V n+1
k , ∀n ∈ N.

3. f(x) ∈ V nk ⇐⇒ f(x− 2−nl) ∈ V nk , ∀n ∈ N, 0 ≤ l ≤ 2n − 1.

4. There exists a function vector φ in L2([0, 1]) of length k+ 1 such that the

vector components φi forms a basis of V 0
k .

1Mallat[2] uses the term multiresolution approximation, but in this work we will use mul-

tiresolution analysis, as it is more commonly used in the literature.
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This means that if we can construct a basis of V 0
k , which consists of only k + 1

functions, we can construct a basis of any space V nk , by simple compression (by

a factor of 2n, property 2), and translations (to all dyadic grid points at scale

n, property 3), of the original k + 1 functions, and by increasing the scale n,

we are approaching a complete basis of L2([0, 1]). Since V nk ⊂ V n+1
k the basis

functions of V nk can be expanded in the basis of V n+1
k

φni,l(x)
def
= 2n/2φi(2

nx− l) =

2n−1∑
m=0

k∑
j=0

H
(m)
ij φn+1

j,m (x) (2.2)

where H(m) are the so-called filter matrices that describe the transformation

between different spaces V nk . The MRA is called orthogonal if

〈φni,l, φnj,m〉 = δi,jδl,m (2.3)

This orthogonality condition means that the functions are orthogonal both

within one function vector and through all possible translations on one scale,

but not through the different scales.

Complementary to the nested sequence of subspaces V nk , we can define an-

other series of spaces Wn
k that complements V nk in V n+1

k

V n+1
k = V nk ⊕Wn

k (2.4)

where there exists another function vector ψ of lenght k + 1 that, with all

its translations on scale n form a basis for Wn
k . Analogously to Eq. (2.2) the

function vector can be expanded in the basis of V n+1
k

ψni,l(x)
def
= 2n/2ψi(2

nx− l) =

2n−1∑
m=0

k∑
j=0

G
(m)
ij φn+1

j,m (x) (2.5)

with filter matrices G(m). In orthogonal MRA the functions ψ fulfill the same

othogonality condition as Eq. (2.3), and if we combine Eq. (2.1) and Eq. (2.4)

we see that they must also be orthogonal with respect to different scales

〈ψnj,l, ψn
′

i,m〉 = δi,jδl,mδn,n′ (2.6)

Recursive application of Eq. (2.4) yields the important relation

V nk = V 0
k ⊕W 0

k ⊕W 1
k ⊕ · · · ⊕Wn−1

k (2.7)
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2.2 Multiwavelets

There are many ways to choose the basis functions φ and ψ (which define

the spanned spaces V nk and Wn
k ), leading to different wavelet families. There

is a one-to-one correspondence between the basis functions φ and ψ, and the

filter matrices H(m) and G(m) used in the two-scale relations Eq. (2.2) and

Eq. (2.5), and most well known wavelet families are defined only through their

filter coefficients, such as Daubechies’ family of compactly supported wavelets[3].

In the following we are taking a different approach, which follows the original

construction of multiwavelets by Alpert[1]. We define the scaling space V nk as

the space of piecewise polynomials

V nk
def
= {f : all polynomials of degree ≤ k

on the interval (2−nl, 2−n(l + 1))

for 0 ≤ l < 2n, f vanishes elsewhere}

(2.8)

This definition fulfills the conditions for a multiresolution analysis, and if the

basis is chosen to be orthogonal, the V nk constitutes an orthogonal MRA.

2.2.1 The scaling basis

The construction of the scaling functions is quite straightforward; k+ 1 orthog-

onal polynomials are chosen to span the space of polynomials of degree ≤ k on

the unit interval. The total scaling basis for V nk is then obtained by appropriate

dilation and translation of these functions. One way to construct the basis is to

start with the standard basis {1, x, x2, . . . , xk} and orthonormalize with respect

to the L2 inner product on the unit interval.

2.2.2 The wavelet basis

The wavelet space Wn
k is defined, according to Eq. (2.4), as the orthogonal com-

plement of V nk in V n+1
k . The wavelet basis functions of Wn

k are hence piecewise

polynomials of degree ≤ k on each of the two intervals on scale n + 1 that

overlaps with one interval on scale n (but may be discontinous in the merging

point). In the construction of the wavelet basis these piecewise polynomials

should be made orthogonal both to the scaling basis of V nk and to each other.
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One important property of the wavelet basis is its number of vanishing mo-

ments. The m-th continuous moment of a function ψ is defined as the integral

µm
def
=

∫ 1

0

xmψ(x)dx (2.9)

and the function ψ is said to have M vanishing moments if

µm = 0, m = 0, . . . ,M − 1 (2.10)

The vanishing moments of the wavelet functions gives information on the ap-

proximation order of the scaling functions. If the wavelet function ψ has M

vanishing moments, any polynomial of order ≤ M − 1 can be exactly repro-

duced in the scaling space, and the error in representing an arbitrary function

in the scaling basis is of M -th order. By construction, xm is in the space V 0
k for

0 ≤ m ≤ k, and since Wn
k ⊥ V 0

k for all n >= 0, the first k + 1 moments of ψnj

must vanish.

2.2.3 Filter relations

With the multiwavelet basis defined, we can construct the filter matrices that

fulfill the two-scale relations in Eq.(2.2) and Eq.(2.5). The exact construction

will depend on the choice of scaling and wavelet polynomials, and will not be

treated here, but some important properties of the filter matrices are already

apparent from the definition of the scaling spaces given in Eq. (2.8).

Because of the disjoint support of the basis polynomials it is clear that a

basis vector at scale n will overlap with two basis vectors at scale n+ 1, and we

end up with four matrices H(0), H(1), G(0) and G(1), each of size (k+1)×(k+1).

Eq. (2.2) and Eq. (2.5) thus reduces to

ψnl
φnl

 =

G(1) G(0)

H(1) H(0)

φn+1
2l+1

φn+1
2l

 (2.11)

The locality of this transformation is important for numerical implementa-

tions, as it leads to efficient, linear scaling algorithms. The transformation in

Eq. (2.11) is called forward wavelet transform or wavelet decomposition, while

its inverse is called backward wavelet transform or wavelet reconstruction.
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2.2.4 Multiwavelets in d dimensions

Multi-dimensional wavelets are usually constructed by tensor products, where

the scaling space is defined as

V n,dk
def
=

d⊗
V nk (2.12)

The basis for this d-dimensional space is given as tensor products of the one-

dimensional bases

Φnj,l(x) = Φnj1j2...jd,l1l2...ld(x1, x2, . . . , xd)
def
=

d∏
p=1

φnjp,lp(xp) (2.13)

The number of basis functions on each hypercube l = (l1, l2, . . . , ld) becomes

(k + 1)d, while the number of such hypercubes on scale n becomes 2dn, which

means that the total number of basis functions is growing exponentially with

the number of dimensions.

The wavelet space can be defined using Eq. (2.4)

V n+1,d
k =

d⊗
V n+1
k =

d⊗
(V nk ⊕Wn

k ) (2.14)

where the pure scaling term obtained when expanding the product on the right

hand side of Eq. (2.14) is recognized as V n,dk , making the wavelet space Wn,d
k

consist of all the remaining terms of the product, which are terms that contain

at least one wavelet space.

To achieve a uniform notation, we can introduce a “generalized” one-dimensional

wavelet function {ϕα,nj,l } that, depending on the index α can be either the scaling

or the wavelet function

ϕ
αp,n
jp,lp

def
=

 φnjp,lp if αp = 0

ψnjp,lp if αp = 1
(2.15)

The wavelet functions for the d-dimensional space can thus be expressed as

Ψα,n
j,l (x) =

d∏
p=1

ϕ
αp,n
jp,lp

(xp) (2.16)

Where the total α index on Ψ separates the 2d different possibilities of combining

scaling/wavelet functions with the same index combination j = (j0, j1, . . . , jk).
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α is given by the binary expansion (αd · · ·α1α0) and thus runs from 0 to 2d− 1.

By closer inspection we see that α = 0 recovers the pure scaling function

Ψ0,n
j,l (x) ≡ Φnj,l(x) (2.17)

and we will keep the notation Φnj,l for the scaling function, and exclude the

α = 0 term in the wavelet notation when treating multi-dimensional functions.

We can immediately see that the dimensionality of the wavelet space is higher

than the scaling space on the same scale n, specifically 2d−1 times higher. This

must be the case in order to conserve the dimensionality through the equation

V n+1,d
k = V n,dk ⊕Wn,d

k (2.18)

since dim(V n+1,d
k ) = 2ddim(V n,dk ).

As for the mono-dimensional case we can define filter matrices that transform

the scaling functions at scale n+1, {Φn+1
j,l }, into scaling and wavelet functions at

scale n, {Ψα,n
j,l }

2d−1
α=0 . Details of this construction can be found in the supporting

information of Frediani et al. [5], where the corresponding matrices are shown

to be tensor products of the mono-dimensional matrices. This means that the

multi-dimensional wavelet transform can be done by consecutive application of

d mono-dimensional filters. A detailed discussion on multi-dimensional MRAs

and wavelet transforms can be found in Tymczak et al. [6].

2.3 Function representation

In this section we will describe how to represent functions in the multiwavelet

basis, as well as how to perform simple arithmetic operations.

2.3.1 Function projection

We introduce the projection operator Pnk onto the basis {φnj,l} that span the

scaling space V nk

f(x) ≈ Pnk f(x)
def
= fn(x) =

2n−1∑
l=0

k∑
j=0

sn,fj,l φ
n
j,l(x) (2.19)

12



where the expansion coefficients sn,fj,l , the so-called scaling coefficients, are ob-

tained by the projection integral

sn,fj,l
def
=

∫ 1

0

f(x)φnj,l(x) dx (2.20)

The accuracy of this approximation is determined by the scale n at which the

projection is performed, and the order k of the polynomial basis.

2.3.2 Multiresolution functions

We can also introduce the projection operator Qnk that projects onto the wavelet

basis {ψnj,l} of the space Wn
k

Qnkf(x)
def
= dfn(x) =

2n−1∑
l=0

k∑
j=0

wn,fj,l ψ
n
j,l(x) (2.21)

where the wavelet coefficients are given as

wn,fj,l
def
=

∫ 1

0

f(x)ψnj,l(x) dx (2.22)

According to Eq. (2.4) we have the following relationship between the projection

operators

Pn+1
k = Pnk +Qnk (2.23)

which means that the wavelet projection should not be regarded as an approxi-

mation of the function f , but rather the difference between two approximations

dfn = Qnkf = (Pn+1
k − Pnk )f = fn+1 − fn (2.24)

This means that the wavelet projection dfn can be used as a measure of the

accuracy of the scaling projection fn, provided that the projection sequence

is converging, limn→∞ fn = f , which will be the case for square integrable

functions[1]. By recursive application of Eq. (2.24) a given approximation fN

can be expressed as the much coarser approximation f0 with a number of wavelet

corrections

f(x) ≈ fN (x) (2.25)

= f0(x) +

N−1∑
n=0

dfn(x) (2.26)
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These equivalent representations are the high-resolution and multi-resolution

approximations, respectively, of the function f . The forward and backward

wavelet transforms of Eq. (2.11) allow us to change between the representations

of Eqs. (2.25) and (2.26).

In principle it is possible to perform wavelet reconstructions beyond the finest

scale N in the function representation fN . In this case the wavelet contribu-

tions ψnl in the inverse of Eq. (2.11) are zero, and no additional information

is given to the scaling representation. However, the size of the scaling basis is

doubled when the scale is increased by one, and the effect of such a wavelet

reconstruction is that we get an oversampled representation of the function.

This upsampling, usually denoted by the operator ↑ (fN ), is often necessary in

practical implementations, as it is usually convenient to relate different function

representations at a common scale that might be beyond the finest scale of one

of the individual representations.

We also have the downsampling operator ↓ (fN ) that reduces the size of

the basis, which means that information is thrown away in the process. In

particular, a downsampling correspond to a projection onto the next coarser

scaling space, and we have ↓ (fN ) ≡ fN−1. Note that the upsampling and

downsampling operators do not commute, as

↓ (↑ (fN )) = fN (2.27)

↑ (↓ (fN )) =↑ (fN−1) 6= fN (2.28)

2.3.3 Multiresolution functions in d dimensions

The multi-dimensional function representation is obtained similarly to Eq. (2.19)

by projection onto the multi-dimensional basis Eq. (2.13)

f(x) ≈ fn(x) =
∑
l

∑
j

sn,fj,l Φnj,l(x) (2.29)

where the sums are over all possible translation vectors l = (l1, . . . , ld) for

0 ≤ lp ≤ 2n − 1, and all possible scaling function combinations j = (j1, . . . , jd)

for 0 ≤ jp ≤ k. The scaling coefficients are obtained by the multi-dimensional

integral

sn,fj,l
def
=

∫
[0,1]d

f(x)Φnj,l(x) dx (2.30)
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The wavelet components are given as

dfn(x) =
∑
l

∑
j

2d−1∑
α=1

wα,n,fj,l Ψα,n
j,l (x) (2.31)

where the l and j summations are the same as in Eq. (2.29), and the α sum

is over all combinations of scaling/wavelet functions (excluding the pure scal-

ing α = 0). The expansion coefficients are obtained by the multi-dimensional

projection

wα,n,fj,l
def
=

∫
[0,1]d

f(x)Ψα,n
j,l (x)dx (2.32)

We can again approximate the function f(x) at scale N and decompose it into

its multiresolution components

f(x) ≈ fN (x) = f0(x) +

N−1∑
n=0

dfn(x) (2.33)

2.3.4 Addition of functions

The addition of functions in the multiwavelet basis is quite straightforward, as

it is represented by the mappings

V nk + V nk → V nk

Wn
k +Wn

k →Wn
k

(2.34)

This basically means that the projection of the sum equals the sum of the

projections. In the polynomial basis this is simply the fact that the sum of two

k-order polynomials is still a k-order polynomial.

2.3.5 Multiplication of functions

Multiplication of functions in the multiwavelet basis is somewhat more involved

than addition. The reason for this is that, in contrast to Eq. (2.34), the product

is represented by the mapping

V nk × V nk → V n2k (2.35)

This means that the product of two functions falls outside of the MRA and needs

to be projected back onto the scaling space sequence. Following Beylkin [7] we
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can say that the product of two functions on a given scale ”spills over” into the

finer scales

V nk × V nk → V nk ⊕
∞⊕

n′=n

Wn′

k (2.36)

Working with a finite precision it is desirable to make the product as accurate

as each of the multiplicands. This is done by terminating the sum in Eq. (2.36)

at some sufficiently large scale N > n

V nk × V nk → V nk ⊕
N−1⊕
n′=n

Wn′

k = V Nk (2.37)

As the finest scale N required in the product in general will be higher than

the finest scale n in each of the multiplicands, it is convenient to perform the

multiplication on oversampled representations of the multiplicands obtained by

N − n upsamplings.

2.4 Operator representation

In this section we discuss the multiresolution analysis of a general operator T

g(x) = [Tf ](x) (2.38)

and we describe two different multiresolution representation of the operator:

the so-called standard and non-standard representations. The difference be-

tween the two is largely a matter of implementation, as they are mathematically

equivalent, but as we will see below, the non-standard form leads to considerably

simpler algorithms, especially in the multi-dimensional implementation. In the

standard representation the operator couples all length scales in all dimensions,

leading to a very complicated operator structure, while in the non-standard rep-

resentation the different scales are decoupled in the operator application, while

the interaction between scales are handled by a post-processing step.

An essential feature in the discussion of operators in the multiresolution

framework is the number of vanishing moments of the chosen basis. This prop-

erty leads to effectively sparse representations of certain operators (in the sense

that sparse representations can be obtained to a given accuracy by a priori

thresholding of small coefficients), and fast (linear-scaling) algorithms can be

obtained for the operator application.
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A necessary assumption for an efficient implementation of a multi-dimensional

operator is that it is separable in the Cartesian coordinates. This, combined

with the tensor structure of the multiwavelet basis, ensures that the multi-

dimensional operator application can be performed using mono-dimensional

algorithms, and that the exponential scaling in the dimension is significantly

reduced. This assumption does not limit the applicability of the method on

real-world problems, as many important non-separable operators in physics can

be made separable to a finite, but arbitrary precision.

2.4.1 Operator projection

Working in the multiresolution analysis, the operator is applied to the projection

of f at a given scaling space V nk

ĝ(x) = [TPnk f ](x) (2.39)

and we are looking for the projected solution

Pnk ĝ(x) = [Pnk TP
n
k f ](x) (2.40)

Using the fundamental property of projection operators Pnk P
n
k = Pnk we get

Pnk ĝ(x) = [Pnk TP
n
k P

n
k f ](x) (2.41)

and we can represent the full operator application on scale n

ĝn(x) = nTnfn(x) (2.42)

where the projection of the operator T at the scaling space V nk is defined as

nTn
def
= Pnk TP

n
k (2.43)

This operation should be performed at a scale N where the overall accuracy of

the representations are satisfactory, and we can assume that

ĝN ≈ gN def
= (Tf)N ≈ g (2.44)

Algorithms for how to achieve this accuracy is presented in Chap. 3.
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2.4.2 Multiresolution operators

Making use of Eqs. (2.43) and (2.23) we can decompose the scaling representa-

tion of the operator at scale n+ 1 into scaling and wavelet contributions at the

next coarser scale

T ≈ Pn+1
k TPn+1

k (2.45)

=
(
Pnk +Qnk

)
T
(
Pnk +Qnk

)
(2.46)

= Pnk TP
n
k + Pnk TQ

n
k + QnkTP

n
k + QnkTQ

n
k (2.47)

and we simplify the notation with the following definitions, including a gener-

alization of the definition in Eq. (2.43)

nAn
′ def

= QnkTQ
n′

k : Wn′

k →Wn
k

nBn
′ def

= QnkTP
n′

k : V n
′

k →Wn
k

nCn
′ def

= Pnk TQ
n′

k : Wn′

k → V nk

nTn
′ def

= Pnk TP
n′

k : V n
′

k → V nk

(2.48)

leading to the relation

n+1Tn+1 = nTn + nCn + nBn + nAn (2.49)

The motivation for such a decomposition of the operator lies in the vanishing

moments of the basis. The A, B and C parts of the operator involves projections

into the wavelet basis, which has the property of vanishing moments, and we

will see later that this leads to sparse representations of certain operators.

The decomposition in Eq. (2.49) can be continued recursively, and by this

introduce more sparsity into the operator, and there are two ways to proceed in

order to achieve this. In the following both the standard and the non-standard

form of the multiresolution operator will be presented.

2.4.3 Standard representation

The standard representation is the straightforward matrix realization of the

operator in the multiresolution basis. In order to obtain this representation we
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start with the matrix representation in the scaling basis at scale N

NTN





fN



=



gN


(2.50)

This matrix can be decomposed into four submatrices according to Eq. (2.49)

while the functions are decomposed into scaling and wavelet contributions at

scale N − 1

fN = fN−1 + dfN−1 (2.51)

gN = gN−1 + dgN−1 (2.52)

According to Eq. (2.48) nTn and nCn produce the scaling part of g, acting

on the scaling and wavelet parts of f , respectively. Similarly, nAn and nBn

produce the wavelet part of g, by acting on the wavelet and scaling parts of f ,
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respectively. The matrix equation Eq. (2.50) can thus be decomposed as

N−1TN−1 N−1CN−1

N−1BN−1 N−1AN−1





fN−1

dfN−1



=



gN−1

dgN−1


(2.53)

where the size of the total matrix is unchanged. We can now do the same

decomposition of N−1TN−1 into submatrices at scale N − 2. The function com-

ponents fN−1 and gN−1 need to be decomposed as well, so to keep everything

consistent, the N−1BN−1 and N−1CN−1 parts of the operator will have to be

transformed accoringly. To proceed from here we need the following relations

nBn = QnkTP
n
k

= QnkT (Pn−1k +Qn−1k )

= QnkTP
n−1
k +QnkTQ

n−1
k

= nBn−1 + nAn−1 (2.54)

and similarly for the C block

nCn = n−1Cn + n−1An (2.55)

which is the change in the operator that is taking place when we decompose fn

into fn−1 + dfn−1 and gn into gn−1 + dgn−1. The matrix equation now turns
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into

N−2TN−2 N−2CN−2

N−2BN−2 N−2AN−2

N−2CN−1

N−2AN−1

N−1BN−2 N−1AN−2 N−1AN−1





fN−2

dfN−2

dfN−1



=



gN−2

dgN−2

dgN−1


(2.56)

and we can continue this transformation recursively until we reach the coarsest

scale.

Symbolically, we can do the decomposition of Eq. (2.49) by recursive appli-

cation of itself as well as Eqs. (2.54) and (2.55), where we gradually introduce

more A-character into the operator

NTN = 0T 0+

N−1∑
n=0

nCn +

N−1∑
n=0

nBn +

N−1∑
n=0

nAn

= 0T 0+

N−1∑
n=0

(
0Cn +

∑
n′<n

n′An
)

+

N−1∑
n=0

(
nB0 +

∑
n′>n

n′An
)

+

N−1∑
n=0

nAn

= 0T 0+

N−1∑
n=0

(
0Cn + nB0 +

N−1∑
n′=0

nAn
′
)

(2.57)

This multiresolution matrix representation of the operator is called the standard

representation.

2.4.4 Non-Standard representation

While the standard form of the operator given in Eq. (2.57) does lead to sparse

representations, it gives rise to rather complicated algorithms, especially in sev-
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eral dimensions, as it couples all scales in the problem. Beylkin et al. [8] intro-

duced a different approach, which they called the non-standard representation,

where the scales are explicitly separated, by organizing the operator as a collec-

tion of triples

NTN = 0T 0 +

N−1∑
n=0

(
nAn + nBn + nCn

)
(2.58)

where each triple ( nAn, nBn, nCn) corresponds to the interaction at a partic-

ular scale n. The interaction between different length scales are not explicitly

treated in this representation, and needs to be accounted for in a post-prosessing

step. In order to achieve this separation of scales some redundancy is necessary

in the function representations for f and g, as we need to keep the scaling pro-

jections at all scales. The operator matrix that is applied to the function will

in this case be

N−1TN−1 N−1CN−1

N−1BN−1 N−1AN−1

N−1CN−1

N−1BN−1 N−1AN−1





fN−2

dfN−2

fN−1

dfN−1


(2.59)
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and although the total matrix has grown in size, this representation leads to

straightforward adaptive algorithms, as the operator can be applied one scale

at the time, starting from the coarsest (usually n = 0). As pointed out above,

this does not directly account for the interaction between scales, but this can

be included by a series of wavelet transforms on parts of the result. This is

described fully in the implementation part in Chap. 3. The post-processing

wavelet transforms require O(N) operations, and provided sparse A, B and C

parts of the operator, the complete non-standard application scales as O(N),

in contrast to the standard form, where scale-to-scale interactions are treated

explicitly, which has a formal O(NlogN) scaling [8].

2.4.5 Integral operator

Multiwavelets were originally introduced for their effectively sparse representa-

tion of certain integral operators, in particular operators with non-oscillatory

kernels that are analytic except along a finite set of curves [1]. To be more

specific, we consider one-dimensional operators on the form

[Tf ](x) =

∫
K(x, y)f(y) dy (2.60)

The sparsity of the operator representation follows under certain conditions on

the integral kernelK, which is discussed below. We start, however, by expanding

the kernel in the multiwavelet basis

Kn(x, y) =
∑
l,m

∑
i,j

[
τnlm
]
ij
φni,l(x)φnj,m(y) (2.61)

where the expansion coefficients are given by the integrals[
τnlm
]
ij

=

∫ ∫
K(x, y)φni,l(x)φnj,m(y) dxdy (2.62)

Inserting Eq. (2.61) into Eq. (2.60) yields

nTnfn(x) =

∫ ∑
l,m

∑
i,j

[
τnlm
]
ij
φni,l(x)φnj,m(y)

 f(y) dy (2.63)

=
∑
l,m

∑
i,j

[
τnlm
]
ij
φni,l(x)

∫
f(y)φnj,m(y) dy (2.64)

where the last integral is recognized as the vector of scaling coefficients of f

from Eq. (2.20)

nTnfn(x) =
∑
l,m

∑
i,j

[
τnlm
]
ij
φni,l(x)sn,fj,m (2.65)
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We can now identify τnlm as the matrix elements of nTn and Eq. (2.65) is

Eq. (2.50) written explicitly. Similarly, we define α, β and γ as the matrix

elements of A, B and C, respectively[
αnlm

]
ij

=

∫ ∫
K(x, y)ψni,l(x)ψnj,m(y) dx dy (2.66)[

βnlm
]
ij

=

∫ ∫
K(x, y)ψni,l(x)φnj,m(y) dxdy (2.67)[

γnlm
]
ij

=

∫ ∫
K(x, y)φni,l(x)ψnj,m(y) dxdy (2.68)

which act on the function representations of f in the following way

nAn dfn(x) =
∑
l,m

∑
i,j

[
αnlm

]
ij
ψni,l(x)wn,fj,m (2.69)

nBnfn(x) =
∑
l,m

∑
i,j

[
βnlm
]
ij
ψni,l(x)sn,fj,m (2.70)

nCn dfn(x) =
∑
l,m

∑
i,j

[
γnlm
]
ij
φni,l(x)wn,fj,m (2.71)

As was mentioned above, the motivation for decomposing the operator into A, B

and C terms is that these matrices will be sparse for certain operators. Suppose

that the integral kernel in Eq. (2.60) satisfy the estimates

|K(x, y)| ≤ 1

|x− y|
(2.72)

|∂Mx K(x, y)|+ |∂My K(x, y)| ≤ CM
|x− y|M+1

(2.73)

for some M ≥ 1. Such operators are called Calderon-Zygmund operators, and

include both the Poisson and bound-state Helmholtz operators which are dis-

cussed in detail in Chap. 3. Beylkin et al. [8] shows that in a basis with M

vanishing moments, the wavelet components α, β and γ will be bounded as

‖αlm‖2 + ‖βlm‖2 + ‖γlm‖2 ≤
CM

1 + |l −m|M+1
(2.74)

where the expression has been adapted to a multiwavelet setting using the ma-

trix 2-norm. This means that within a given accuracy, all contributions beyond

a certain spatial separation |l−m| can be set to zero, leading to operators that

are banded along the diagonal.

2.4.6 Derivative operator

Alpert et al. [9] described how to construct derivative operators in the multi-

wavelet basis. Since the basis is discontinuous, there does not exist a unique
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representation of the derivative operator. This non-uniqueness appears as two

adjustable parameters that handles boundary conditions at the discontinuous

merging point between basis functions. The representation can be viewed as

the straightforward differentiation of the basis functions at the interior of each

interval, combined with a finite difference representation across intervals.

The matrix representation of the operator T = d/dx is formally given as

[
τnlm
]
ij

=

∫ 2−n(l+1)

2−nl

φni,l(x)Tφnj,m(x) dx (2.75)

= 2n
∫ 1

0

φi(x)Tφj(x− (l −m)) dx (2.76)

However, for derivative operators, this integral is not absolutely convergent.

Because of the disjoint support of the basis functions, it is immidiately clear

that there will be no interaction beyond the neighboring interval, and τ lm = 0

for |l −m| > 1. The case |l −m| = 1 needs to be treated with care, since there

are boundary effects to consider even if the basis functions are non-overlapping.

This becomes apparent if we look at the scaling coefficients of the derivative f ′
n

of a function fn represented in the scaling basis at scale n

sn,f
′

i,l =

∫ 2−n(l+1)

2−nl

φni,l(x)
d

dx
fn(x) dx (2.77)

Integration by parts now introduces a boundary term

sn,f
′

i,l = φni,l(x)fn(x)
∣∣∣2−n(l+1)

2−nl
−
∫ 2−n(l+1)

2−nl

fn(x)
d

dx
φni,l(x) dx (2.78)

= 2n/2
[
fn(2−n(l + 1))φi(1)− fn(2−nl)φi(0)

]
− 2n

k∑
j=0

Kijs
n,f
j,l (2.79)

where the matrix K is defined

Kij =

∫ 1

0

φj(x)
d

dx
φi(x) dx (2.80)

We see in Eq. (2.79) that the function representation fn needs to be evaluated

precisely at the discontinuities of the basis where the function value is not well

defined. This problem is circumvented by interpolating between the function

values obtained at both sides of the boundary

fn = afn− + bfn+ (2.81)
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where a and b are adjustable parameters. In the Haar basis (piecewise constants)

this reduces to a finite difference definition of the derivative, with the choice

a = b = 1/2 corresponding to central difference, and a = 1, b = 0 and a = 0, b =

1 corresponding to forward and backward differences, respectively. With the

choice a = b = 0 no boundary effects are treated, and the derivative is obtained

by a straightforward piecewise derivative of the polynomial basis.

2.4.7 Multiresolution operators in d dimensions

We assume that we have a separable representation of a d-dimensional operator

T such that

T =

d⊗
p=1

Tp (2.82)

where Tp correspond to a one-dimensional operator as described above. As for

the one-dimensional case we have the equation

gn+1 =

d⊗
n+1Tn+1fn+1 (2.83)

which we can decompose to

gn + dgn =

d⊗ (
nAn + nBn + nCn + nTn

)(
fn + dfn

)
(2.84)

and we can simplify the notation in the following way

nAn = O11,n nBn = O10,n

nCn = O01,n nTn = O00,n
(2.85)

and the tensor product of the operator can be written

d⊗ (
nAn + nBn + nCn + nTn

)
=

2d−1∑
α=0

2d−1∑
β=0

Oα,β,n (2.86)

where we define

Oαβ,n
def
=

d⊗
p

Oαpβp,n (2.87)

with 0 ≤ α < 2d and 0 ≤ β < 2d and αp and βp are defined by the binary ex-

pansion of α and β in d dimensions. We can now obtain a completely equivalent

structure as for the mono-dimensional case

gn + dgn =
(
An + Bn + Cn + T n

)(
fn + dfn

)
(2.88)
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with the following definitions

An def
=

2d−1∑
α=1

2d−1∑
β=1

Oαβ,n Bn def
=

2d−1∑
α=1

Oα0,n

Cn def
=

2d−1∑
β=1

O0β,n T n def
= O00,n

(2.89)

We could now proceed with a further decomposition of the scaling parts of

the operator and functions to the next coarser scale, obtaining the standard

representation of the operator in multiple dimension. It is quite clear that the

notation (as well as implementation) becomes very complicated in this case, and

this is one of the main motivations for using the non-standard representation

of operators, as the scales are decoupled, and Eq. (2.88) applies to each scale

separately.
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Chapter 3

Implementation

The multiresolution formalism presented in Chap. 2 gives prospects of efficient

(sparse) representations of functions and operators, and in this chapter we de-

scribe how this is achieved in practice. By local thresholding of small wavelet

coefficients, functions can be represented on adaptive, multiresolution grids,

where each grid is specifically constructed to the function it holds. For opera-

tors, we use the concept of separation of variables [10, 11] in order to reduce the

complexity of application i three dimensions, together with a priori thresholding

of long-range wavelet terms according to the estimates of Eq. (2.74).

In the following we describe the important data structures and algorithms

that are used in the MultiResolution Computational Program Package (MR-

CPP). The code is written in C++, utilizing the concepts of object-orientation

and generic programming, where for instance the dimension appears as a tem-

plate parameter, which means that the code is immediately applicable to any

dimension, although some algorithms are specialized and optimized for d = 3.

Due to the inherent high demands on memory and computational resources

that comes with all real-space numerical methods, the code relies heavily upon

parallel algorithms and data distribution. In the current code data distribu-

tion is handled by the Message-Passing Interface (MPI), and further work load

distribution is provided by an additional shared memory (OpenMP) paralleliza-

tion on top. The parallel implementation and the performance of the code is

discussed fully in publication II.
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3.1 Data structures

3.1.1 Node

The node is the multidimensional box on which the set of scaling and wavelet

functions that share the same support are defined. The node is specified by its

scale n, which gives its size ([0, 2−n]d) and translation vector l = (l1, l2, . . . , ld),

which gives its position. The node holds the (k + 1)d scaling coefficients and

(2d − 1)(k + 1)d wavelet coefficients that share the same scale and translation.

It will also keep track of its parent and all 2d children nodes, giving the nodes

a tree-like structure.

3.1.2 Tree

The tree data structure is a collection of nodes that makes up a function. In

order to minimize the memory requirements, all variables that are common to

all nodes (like polynomial order, number of coefficients, type of scaling func-

tions, etc) are stored in the tree structure. The tree keeps the entire set of

nodes, from root to leaf, and each node keeps both the scaling and wavelet co-

efficients. This means that there is a redundancy in the function representation

as the multiresolution representation in Eq. (2.26) requires scaling coefficients

at the coarsest scale only. However, it proves more efficient to keep all scaling

coefficients in memory rather than obtaining them by the filter operations of

Eq. (2.11), as they are needed e.g. in the non-standard operator application.

3.1.3 Parallel data distribution

As the data storage requirements of real-space methods quickly exceeds the

available memory on a single computational device, it eventually becomes nec-

essary to distribute the data that is contained in the full tree representation of

a function among the memory of several computers (hosts). In the multiwavelet

basis the function representations are conveniently partitioned into equally sized

portions (equal in terms of memory, not spatial extension), and data distribution

is achieved by dividing these nodes among the available hosts.

There are several possible strategies for how the nodes could be distributed

and we have chosen one that leads to strictly connected domains, in the sense
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8.4 Parallel Tree Methods 361

Fig. 8.22. Three steps in the construction of the Lebesgue curve.

Fig. 8.23. Three steps in the construction of the Hilbert curve.

connected by a straight line, only the common edge of the two squares is
crossed. The construction is made clearer in Figure 8.23. One can show that
the sequence Kn for Hilbert’s curve converges uniformly to a curve K, which
implies that the limit curve K is continuous. For the Lebesgue curve, the
sequence only converges pointwise and the limit is discontinuous.

The construction can be generalized to arbitrary space dimensions DIM,
i.e. to curves K : [0, 1] → [0, 1]DIM. Such a Hilbert curve is shown for the
three-dimensional case in Figures 8.24 and 8.25.
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Fig. 8.24. Construction of a three-dimensional Hilbert curve.

Figure 1: Three refinement levels in the construction of the Lebesgue curve in 2D.
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implies that the limit curve K is continuous. For the Lebesgue curve, the
sequence only converges pointwise and the limit is discontinuous.

The construction can be generalized to arbitrary space dimensions DIM,
i.e. to curves K : [0, 1] → [0, 1]DIM. Such a Hilbert curve is shown for the
three-dimensional case in Figures 8.24 and 8.25.
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Fig. 8.24. Construction of a three-dimensional Hilbert curve.

Figure 2: Three refinement levels in the construction of the Hilbert curve in 2D.

that all nodes belonging to a given host is connected (share a common vertice,

not necessarily on the same scale) to at least one other node owned by the

same host. This ensures that the real-space domain of a given host will be

localized in space, with the motivation that the interaction between hosts could

be limited to involve only near neighbors, and thus hopefully reduce the need

for communication between hosts.

In order to achieve this localization we traverse the tree following a space-

filling path, assigning nodes to hosts as we go. By following a so-called Hilbert

path [12], we obtain a continuous curve with good locality properties, that

can be partitioned among the hosts. The construction of the curve is done

recursively, going through the 2d children of each node in a specific order. Using

bit notation (one bit for each dimension), the natural ordering (Lebesgue) will

lead to a discontinuous path. For d = 2 this is shown as the Z shape of the

bit sequence (00, 01, 10, 11) in Fig. 1. A corresponding (there are several

possibilities) Hilbert path through the four children in two dimensions could be

the bit sequence (00, 10, 11, 01) shown in the first panel in Fig. 2. In order

to keep the continuity as the path is recursively refined, the order in which the

children are traversed needs to be adapted, and will depend on the position of

the parent among its siblings, as shown in Fig. 2.
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3.2 Adaptive algorithm

Algorithm 1 Generation of adaptive multiwavelet representation of a function

1: create tree skeleton of empty nodes

2: MPI: distribute leaf nodes among hosts through Hilbert path

3: MPI: create list of local nodes owned by this host

4: while number of local nodes on current iteration Ni > 0 do

5: OpenMP: divide local nodes among available processors

6: for each node at current iteration do

7: compute scaling and wavelet coefficients

8: if node needs to be refined then

9: mark node as non-terminal

10: allocate children nodes

11: update list of local nodes for next iteration

12: else

13: mark node as terminal

14: end if

15: end for

16: increment iteration

17: end while

Alg. 1 used to obtain adaptive representations of functions was originally pre-

sented in [5], but is here extended to include parallelization. The first lines

in this algorithm are very important in order to ensure a good load balancing

among MPI hosts. By utilizing some a priori knowledge of the function that

is about to be buildt, we try to estimate the final tree structure as closely

as possible before calculating any coefficients. In this way we have a lot more

flexibility when it comes to parallel distribution of data and work load in all

iterations. Without this preprocessing step, the first three iterations would con-

tain one, eight and 64 nodes, respectively, allowing little freedom in parallel

computations. It is important in this step to capture the global structure of the

function (where in space is high level of refinement needed), as this initial tree

skeleton is used in the data distribution among MPI hosts and all subsequent

additional refinent is done locally on each host (although some load balancing

can be preformed by redistribution of data if needed). How to construct this
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skeleton depends on the function, and will be discussed in the following sections.

The algorithm consists of two loops, the first iteration will add levels of

refinement on top of the initial skeleton wherever necessary in order to guarantee

the overall accuracy of the representation. This loop terminates when no further

refinement is needed. The second loop runs over the nodes present at the

current iteration (only local nodes that belong to the given MPI host), and

these are distributed among the available processors (OpenMP) at the given

host. Once the scaling/wavelet coefficients of a given node are known, a split

check is performed based on the desired precision. If the node does not satisfy

the accuracy criterion, it is marked as non-terminal and its children nodes are

allocated and added to the list of nodes needed in the next iteration. If the node

does not need to be split, it is marked as terminal and no children nodes are

allocated. In this way, once the loop over nodes on one iteration is terminated,

the complete list of nodes needed in the next iteration has been obtained. The

tree is grown until no nodes are needed at the next iteration.

There are two points in the algorithm that need to be elaborated further, the

first being the actual computation of the coefficients (line 7). This can be done

in many ways, e.g. projection or by operator application, and will be treated in

the subsequent sections.

The second point is how to perform the split check (line 8), which is used

to decide whether or not the function is represented accurately enough on the

current node, based on a predefined relative precision ε. Formally, this relative

precision requires that

‖f − fn‖ < ε‖f‖ (3.1)

However, this check cannot be performed since the true function f is generally

not known. Instead we will use the norm of the wavelet projections as a measure

of the accuracy of the representation. Specifically, the norm of the wavelet

coefficients on one node is used as a measure for the accuracy of the part of the

function represented by this node, and we require that

‖wn
l ‖ <

ε

2n/2
‖fn‖ (3.2)

The local, disjoint support of the wavelet basis ensures that the global error of

the representation can be controlled by locally truncating the wavelet expan-
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Figure 3: Adaptive grid-partitioning of the unit cube needed to reproduce the Gaussian

function f(x) = (β/π)3/2e−β(x−x0)
2

with exponent β = 500 in position x0 = (1/2, 1/2, 1/2)

to a relative accuracy of ε = 10−8 using multiwavelets of order k = 9.

sion, allowing a fully on-the-fly adaptive algorithm. This reduces the number

of expansion coefficients needed to represent the function to the given accu-

racy dramatically compared to the uniform high-resolution representation in

Eq. (2.25). In practical calculations one can easily get significant contribution

over a range of ten length scales, and a uniform grid in three dimensions at scale

n = 10 would require (2d)n = 810 ∼ 109 nodes, while a typical multi-resolution

representation requires in the order of 102 − 104 nodes per scale. Fig. 3 shows

an adaptive grid used for representing a spherical Gaussian positioned at the

center of the unit cube.

The presented algorithm is very general, and is used to build adaptive repre-

sentations of functions regardless of how the expansion coefficients are obtained,

and later in the chapter we will look at different ways of doing this.
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3.3 Choice of basis functions

Before we can describe how to calculate expansion coefficients we need to specify

the type of scaling and wavelet functions that is used in the multiresolution

analysis. In principal, any polynomial basis that span the appropriate scaling V nk

and wavelet Wn
k spaces can be used, and in the original construction Alpert [1]

used Legendre polynomials as scaling basis, but in a later work, Alpert et al.

[9] introduced an alternative basis with interpolating properties. Both scaling

bases have been implemented, but in practice only the latter is used, because

of its superior numerical efficiency. The choice of wavelet basis follows that of

Alpert [1].

3.3.1 Legendre scaling functions

The Legendre polynomials {Lj(x)}j∈N are a family of functions, defined on the

interval [−1, 1]. The functions are orthogonal with respect to the L2([−1, 1])

inner product ∫ 1

−1
Li(x)Lj(x) dx = 0, i 6= j (3.3)

but they are usually normalized such that Lj(1) = 1. The polynomials can be

constructed by induction

L0(x) = 1 (3.4)

L1(x) = x (3.5)

Lj+1(x) =
2j + 1

j + 1
xLj(x)− j

j + 1
Lj−1 (3.6)

and the Legendre scaling functions φLj are obtained by dilation and translation

to the unit interval, followed by L2 normalization

φLj (x) =
√

2j + 1Lj(2x− 1), x ∈ [0, 1] (3.7)

This is the original construction of scaling functions by Alpert [1].

3.3.2 Interpolating scaling functions

Alpert et al. [9] presented an alternative set of scaling functions with inter-

polating properties. These Interpolating scaling functions φIj are based on the
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Legendre scaling functions {φLj }kj=0, and the roots {xj}kj=0 and weights {ωj}kj=0

of the Gauss-Legendre quadrature of order k + 1, and are constructed as the

linear combinations

φIj (x) =
√
ωj

k∑
i=0

φLi (xj)φ
L
i (x), x ∈ [0, 1] (3.8)

This construction leads to orthogonality on the unit interval, as well as the

interpolating property

φIj (xi) =
δj,i√
ωi

(3.9)

which will prove important for numerical efficiency. A detailed discussion on

the properties of interpolating wavelets can be found in Donoho [13].

3.3.3 Wavelet basis

There are two necessary constraints in the construction of the wavelet functions

ψj : they must be orthogonal to the scaling functions and orthogonal among

themselves. It turns out that this is not sufficient in order to determine the

wavelet functions uniquely, so Alpert [1] posed additional conditions in terms

of vanishing moments. The exact construction is done iteratively, starting with

the following set of functions {fj(x)}kj=0 defined on the interval (−1, 1)

fj(x) =


xj , x ∈ (0, 1)

−xj , x ∈ (−1, 0)

0, otherwise

(3.10)

followed by a Gram-Schmidt orthogonalization with respect to the low-order

polynomials 1, x, x2, . . . , xk that span the corresponding scaling space. Further-

more, we require that the function fj has j+1 additional vanishing moments by

orthogonalization with respect to the polynomials xk+1, . . . , xj+k+1, and finally,

the functions fj are orthogonalized among themselves in order of increasing j.

The wavelet basis ψj of the space W 0
k is then constructed by dilation and trans-

lation to the unit interval, followed by L2 normalization.
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3.4 Function projection

In order to obtain the expansion coefficients of a general function f in the

scaling basis we need to evaluate the projection integral in Eq. (2.19). This is

done numerically using Gauss-Legendre quadrature

sn,fj,l =

∫ 2−n(l+1)

2−nl

f(x)φnj,l(x) dx (3.11)

= 2−n/2
∫ 1

0

f
(
2−n(x+ l)

)
φj(x) dx (3.12)

≈ 2−n/2
kq−1∑
q=0

ωqf
(
2−n(xq + l)

)
φj(xq) (3.13)

where {ωq}
kq−1
q=0 are the weights and {xq}

kq−1
q=0 the roots of the Legendre poly-

nomial Lkq used in kq-th order quadrature. The Legendre quadrature holds a

(2k − 1)-rule which states that the k-order quadrature is exact whenever the

integrand is a polynomial of order 2k−1. By choosing kq = k+ 1 order quadra-

ture, where k is the order of the polynomial basis, we will obtain the exact

coefficient whenever f(x) is a polynomial of degree ≤ (k + 1), and we will use

quadrature order k + 1 throughout.

3.4.1 Projection in d dimensions

In the multi-dimensional case the expansion coefficients are given by multi-

dimensional quadrature

sn,fj,l = 2−nd/2
k∑

q1=0

k∑
q2=0

· · ·
k∑

qd=0

f
(
2−n(xq + l)

) d∏
i=1

ωqiφjp(xqi) (3.14)

using the following notation for the vector of quadrature roots

xq
def
= (xq1 , xq2 , . . . , xqd) (3.15)

This multi-dimensional quadrature is not very efficient in a general polynomial

basis, as the number of terms scales as (k+1)d. This can be avoided if the func-

tion f is separable and can be written f(x1, x2, . . . , xd) = f1(x1)f2(x2) · · · fd(xd),

in which Eq. (3.14) can be reduced to a product of mono-dimensional summa-

tions with a scaling of d(k + 1).

However, working in the Interpolating basis, no assumption needs to be

made on the function to obtain numerical efficiency. By choosing a quadrature
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order of kq = k + 1, a very important property of the Interpolating scaling

functions emerges, that follows from the specific construction of these functions

in Eq. (3.8). The interpolating property in Eq. (3.9) inserts a Kronecker delta

whenever the scaling function is evaluated in a quadrature root, which is exactly

the case in the quadrature sum. This reduces Eq. (3.14) to

sn,fj,l = 2−nd/2f
(
2−n(xj + l)

) d∏
i=1

√
ωji (3.16)

which means that the scaling coefficients are related to the function values on the

quadrature grid by simple constant factors, leading to very efficient evaluation.

3.4.2 Obtaining the wavelet coefficients

The wavelet coefficients are formally obtained by the projection of the function

onto the wavelet basis, and we could derive expressions similar to the scaling

expressions based on quadrature. There are however some accuracy issues con-

nected to this wavelet quadrature, so we will take another approach that utilizes

the wavelet transform. We know that we can obtain the scaling and wavelet

coefficients on scale n by doing a wavelet decomposition of the scaling coeffi-

cients on scale n+ 1 according to Eq. (2.11). Line 7 of Alg. 1 is thus performed

by computing the scaling coefficients of the 2d children of the current node by

the appropriate expression (Legendre or Interpolating) followed by a wavelet

decomposition.

3.4.3 Estimating the tree structure

In projection of analytic functions it is quite straightforward to predict the final

adaptive tree structure of the representation without any actual calculation of

coefficients. E.g. in the case of Gaussian (e−β(x−x0)
2)) and Slater (e−β|x−x0|)

type functions, the position x0 and exponent β tells you where and approx-

imately how much the grid needs to be refined. Furthermore, in the case of

very narrow, high-exponent functions this ”forced” refinement is essential, as

the quadrature at the coarsest scale would probably not pick up any signal at

all, giving a zero-representation of the function.
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3.5 Arithmetic operations

3.5.1 Addition

The recipe for the addition of two function trees follows straightforwardly

from the mappings in Eq. (2.34). Consider the equation h(x) = f(x) + g(x).

Projecting h onto the scaling space V nk yields

hn(x) = Pnk (f(x) + g(x)) (3.17)

= Pnk f(x) + Pnk g(x) (3.18)

= fn(x) + gn(x) (3.19)

and similarly for the wavelet projections. At a deeper level it simply means

adding scaling and wavelet coefficients on corresponding nodes

sn,hj,l = sn,fj,l + sn,gj,l (3.20)

wn,hj,l = wn,fj,l + wn,gj,l (3.21)

If the given node does not exist in the representation of either f or g, it is

obtained by oversampling using the wavelet transform Eq. (2.11). No absolute

accuracy will be lost during an addition, but relative accuracy might be lost if

the additon reduces the norm of the function.

3.5.2 Multiplication

Consider the equation h(x) = f(x) × g(x). In practice this means to multiply

the representations fn and gn

h(x) ≈ ĥ(x)
def
= fn(x)× gn(x) (3.22)

However, as we have seen in Sec. 2.3.5, the product of the scaling representa-

tions at scale n will give wavelet contributions at higher scales, and Beylkin [7]

suggests to perform the multiplication of oversampled function representations

ĥn+1 = Pn+1
k

(
↑ (fn) × ↑ (gn)

)
(3.23)

to allow enough flexibility in the basis to represent the product. In our imple-

mentation the adaptive algorithm will take care of the extra refinement in the
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product only if and where it is necessary. We will thus perform the multiplica-

tion in Eq. (3.22) purely on the given scale n, which means that we project the

product of the representations back onto the scaling space V nk

ĥn = Pnk
(
fn × gn

)
(3.24)

and the coefficients of the product are approximated by the projection integral

sn,h
jh,l
≈
∫ 2−n(l+1)

2−nl

ĥ(x)φnjh,l(x) dx (3.25)

=

∫ 2−n(l+1)

2−nl

fn(x)gn(x)φnjh,l(x) dx (3.26)

= 2−n/2
∫ 1

0

fn
(
2−n(x+ l)

)
gn
(
2−n(x+ l)

)
φjh(x) dx (3.27)

The projection integral is again done by Gauss-Legendre quadrature and all

the information we need from the multiplicands are their pointvalues in the

quadrature roots {xq}kq=0 at scale n, which can be obtained from their respective

scaling coefficients

sn,h
jh,l
≈ 2−n/2

k∑
q=0

ωqf
n
(
2−n(xq + l)

)
gn
(
2−n(xq + l)

)
φjh(xq) (3.28)

= 2n/2
k∑
q=0

ωq

 k∑
jf=0

sn,f
jf ,l

φjf (xq)

 k∑
jg=0

sn,gjg,lφjg (xq)

φjh(xq) (3.29)

3.5.3 Multiplication in d dimensions

Generalizing the above expression for multiple dimensions reveals that multipli-

cation will become a time consuming process in a general polynomial basis

sn,h
jh,l
≈ 2nd/2

k∑
q1=0

k∑
q2=0

· · ·
k∑

qd=0

(( d∏
i=1

ωqi

)

×

(
k∑

jf1 =0

k∑
jf2 =0

· · ·
k∑

jfd=0

sn,f
jf l

( d∏
i=1

φjfi
(xqi)

))

×

(
k∑

jg1=0

k∑
jg2=0

· · ·
k∑

jgd=0

sn,gjgl

( d∏
i=1

φjgi (xqi)

))

×
d∏
i=1

φjhi (xqi)

)
(3.30)

The scaling behavior of this expression is (k + 1)2d, however, the only function

evaluations that are actually taking place are again the k + 1 different scaling
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functions evaluated in the k+ 1 different quadrature roots. These (k+ 1)2 func-

tion values need to be evaluated only once, and fetched from memory whenever

needed in the expression Eq. (3.30), which will speed up the process.

Working in the Interpolating basis, the multiplication complexity is signifi-

cantly reduced, as the basis is specifically designed to return Kronecker deltas

when evaluated in the quadrature roots. Inserting this property into Eq. (3.30)

will remove all nested summations are left with a single term in the evaluation

of the coefficient of the product

sn,h
jhl

= 2nd/2sn,f
jhl
sn,g
jhl

d∏
i=1

1
√ωjhi

(3.31)

3.5.4 Obtaining the wavelet coefficients

In the case of multiplication, the calculation of the wavelet coefficients on a given

scale n is done in the same way as for the projection, by wavelet transform of

the scaling coefficients at scale n + 1. Line 7 of Alg. 1 is again obtained by

calculation of the scaling coefficients of the 2d children of the current node by

the appropriate expression (Legendre or Interpolating), followed by a wavelet

decomposition.

3.5.5 Estimating the tree structure

In both addition and multiplication we use the union of the tree structures of

the input functions as the starting guess for the tree structure of the result.

In the case of addition, there is no need for further refinement, as there will

be no wavelet contribution beyond this level of refinement in the result. In

multiplications, however, it might be necessary to refine a scale or two locally,

and this is taken care of by the adaptive algorithm.

3.6 Operator construction

It was shown in Chap. 2 that the matrix elements of a general one-dimensional

integral operator is obtained by projection of the two-dimensional integral kernel

onto the multiwavelet basis. This corresponds to a regular function projection,

as described in Sec. 3.4, and at the end of the day the construction of such
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operators will follow the algorithms presented above for projection. However, for

d-dimensional problems, the integral kernel will in general have 2d dimensions,

and this complexity needs to be reduced in order to obtain efficient algorithms

both in the construction and application of operators in multiple dimensions.

This can be achieved by the technique of separation of variables.

3.6.1 Separated representation of operators

In the discussion of multi-dimensional operators in Chap. 2 it was assumed

that the kernel is separable in the Cartesian coordinates. This assumption is

necessary in order to make calculations feasable in higher dimensions, as the

straightforward generalization of a one-dimensional approach leads to a pro-

hibitive exponential scaling in the dimension. It is, however, not necessary that

the operator separates exactly, and Beylkin and Mohlenkamp [10, 11] shows

that the integral kernel of many physically interresting operators can be ap-

proximated as a linear combination of products of one-dimensional kernels

K(x,y) ≈ K̂(x,y)
def
=

M∑
κ=1

ακ

d∏
p=1

Kκ
p (xp, yp) (3.32)

The accuracy of this separated representation can be controlled by adapting the

functions Kκ
p , the expansion coefficients ακ and the separation rank M , and any

precision can in principle be achieved. Such a representation allows the multi-

dimensional operator to be applied one dimension at the time, reducing the

computational complexity from k2d per node of the full non-separable operator,

to Mdkd+1 per node of the separated representation in Eq. (3.32), where k is

the order of the polynomial basis. While the scaling is still exponential in the

dimension, the exponent is sufficiently reduced for the approach to be applicable

for d = 2, 3.

3.6.2 Poisson kernel

The Poisson equation is usually written in its differential form

∇2g(x) = −f(x) (3.33)

and the solution of can be expressed in terms of the convolution integral

g(x) =

∫
P (x− y)f(y) dy (3.34)
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where P (x−y) is the Green’s function satisfying the fundamental equation with

free boundary conditions (zero at infinity)

∇2P (x− y) = −δ(x− y) (3.35)

This equation can be solved analytically and the Green’s function for the Poisson

equation for d = 3 is given as

P (x− y) =
1

4π‖x− y‖
(3.36)

3.6.3 Helmholtz kernel

The inhomogeneous Helmholtz equation (also called screened Poisson equation)

is a generalization of the Poisson equation, and is given in differential form

(
∇2 − µ2

)
g(x) = −f(x) (3.37)

The solution can again be expressed as an integral

g(x) =

∫
Hµ(x− y)f(y) dy (3.38)

using the Helmholtz kernel Hµ(x−y), which is the Greeen’s function satisfying

the fundamental equation

(
∇2 − µ2

)
Hµ(x− y) = −δ(x− y) (3.39)

with zero boundary conditions at infinity. The Green’s function for the Helmholtz

equation for d = 3 is known analytically as

Hµ(x− y) =
e−µ‖x−y‖

4π‖x− y‖
(3.40)

3.6.4 Separation using Gaussians

Neither the Poisson nor the Helmholtz kernel is separable in the Cartesian co-

ordinates, but it is possible to obtain a separated representation as in Eq. (3.32)

of low rank using Gaussian functions

K(x− y) ≈ K̂(x− y) =

M∑
κ=1

ακe
−βκ‖x−y‖2 (3.41)
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This representation is motivated by the well known integral representation of

the Poisson kernel[14]

P (r) =
1

r
=

4√
π

∫ ∞
0

e−4r
2t2 dt, r

def
= ‖x− y‖ (3.42)

and the parameters in Eq. (3.41) are obtained in the case of the Poisson kernel

by transforming Eq. (3.42) into an integral of super-exponential decay, and

discretizing using the trapezoidal rule [15, 5]. In this way, and similarly in the

case of the Helmholtz kernel, it is possible to obtain a separated representation

K̂ of Eq.(3.41) with accuracy εs over a finite interval

supr>0

∣∣∣K(r)− K̂(r)

K(r)

∣∣∣ < εs, r ∈ [r0, r1] (3.43)

where the upper bound r1 should be chosen as the longest possible distance in

the computational domain (r1 =
√

3 for the unit cube), and the lower bound r0

should be chosen so that the contribution due to the integration at the singu-

larity can be neglected[5].

3.6.5 Derivative kernel

As a final note we show how we can obtain approximate representations of the

derivative operator using the framework of integral operators presented above.

The derivative operator can be expressed as

d

dx
f(x) =

∫
d

dx
δ(x− y)f(y) dy (3.44)

where the delta function can be approximated by a high-exponent Gaussian

δ(x− y) ≈
√
β

π
e−β(x−y)

2

(3.45)

which is normalized so that it integrates to unity. This approximation can be

differentiated, and the derivative operator can be expressed as the integral

d

dx
f(x) =

∫
D(x− y)f(y) dy (3.46)

using the derivative kernel

D(x− y) =
d

dx

√
β

π
e−β(x−y)

2

= −2β

√
β

π
(x− y)e−β(x−y)

2

(3.47)

This representation approaches the exact derivative as defined by Alpert et al.

[9] and presented in Sec. 2.4.6 as the Gaussian in Eq. (3.45) approaches the

delta function (β →∞).
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3.6.6 Cross-Correlation functions

All operators presented above involve integrals with convolution kernelsK(x, y) =

K(x − y), and the matrix elements can be expressed in terms of the cross-

correlation of the scaling functions [16]

Φij(z) =

∫ 1

0

φi(z + y)φj(y) dy (3.48)

and the two-dimensional projection integral is reduced to one dimension

[
τnlm
]
ij

=

∫ 1

0

∫ 1

0

K(x− y)φni (x− l)φnj (y −m) dx dy (3.49)

=

∫ 1

−1
K(z)Φij(2

nz +m− l) dz (3.50)

For d-dimensional operators the kernel is 2d-dimensional, and the cross-correlation

functions will reduce the integral to d dimensions. Moreover, if the kernel is

separable, the matrix element can be computed as products of one-dimensional

integrals [
τnlm

]
ij

=

d∏
p=1

∫ 1

−1
Kp(zp)Φij

(
2nzp +mp − lp

)
dzp (3.51)

which significantly reduces the cost of constructing multi-dimensional operators.

3.7 Operator application

In the non-standard operator application given in the matrix equation (2.59),

the length scales of the problem have been explicitly separated. In this way it

is possible to use Alg. 1 to adaptively build the resulting function tree, also

in several dimensions. For a node at a given scale n we need to calculate the

scaling and wavelet representations of the resulting function g

gn + dgn =
(
nAn + nBn + nCn + nTn

)(
fn + dfn

)
(3.52)

but as was pointed out in the theory part in Sec. 2.4, the T part of the operator

is only applied at the coarsest scale, and thus, no interaction with the coarser

scales are taken into account for n > 0. However, when the operator is applied

scale by scale, the effect of the missing T part at scale n has already been

calculated at scale n−1, and this information can be retrieved by making use of
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the wavelet transform in Eq. (2.11). We define the following auxiliary functions

ĝn
def
= nTnfn (3.53)

g̃n
def
= nCn dfn (3.54)

dg̃n
def
=
(
nAn + nBn

)(
fn + dfn

)
(3.55)

where all three contributions are calculated at the coarsest scale. At all scales

n > 0, however, we only need to calculate g̃n and dg̃n, as ĝn can be obtained

from the next coarser scale

ĝn = ĝn−1 + g̃n−1 + dg̃n−1, n > 0 (3.56)

and this is continued locally node by node until we reach a representation of

sufficient accuracy, following the same algorithm as before.

3.7.1 Obtaining the coefficients

Algorithm 2 Operator application. Inserted in line 7 of Alg. 1
1: for each separated component (κ = 1, . . . ,M) of the operator do

2: for each (α = 0, . . . , 2d − 1) of output function do

3: for each (β = 0, . . . , 2d − 1) of input function do

4: get operator component Oαβ,nκ =
⊗d
p=1O

αpβp,n
κ

5: construct bandwidth

6: fetch input and operator nodes within bandwidth

7: prune list of input nodes based on norm product
(
‖Oαβ,nκ,l−m‖2 · ‖w

α,n,f
l ‖

)
8: for each contributing input node do

9: apply operator wα,n,g
l + =

⊗d
p=1O

αpβp,n

κ,l−m w
βp,n,f
m

10: end for

11: end for

12: end for

13: end for

The calculation of scaling/wavelet coefficients (line 7 of Alg. 1) in the operator

application is somewhat involved in multiple dimensions, and is presented in

Alg. 2. Each component of the separated representation of the operator needs to

be applied separately in order to exploit the tensorial structure of the operator.

Also, the different separated components will have very different bandwidths at

a given scale (the higher the Gaussian exponent of the operator, the deeper in
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scale its main contribution will be). A more detailed discussion of the algorithm

can be found in Frediani et al. [5].

The bandwith of each specific operator component can be calculated ac-

cording to Eq. (2.74), and by explicitly treating and thresholding all 22d (A, B,

C and T in each dimension) operator components the number of contributing

terms is reduced significantly, with prospects of algorithms that scale linearly

with system size.

In parallel computations where the data of the functions involved are dis-

tributed among the memory of several computational hosts, the presented al-

gorithm inevitably requires some communication, as the calculation of a given

node of the result requires all nodes of the input function within the band-

width, and these input nodes are not necessarily located on the same host.

There are different strategies for how this data transfer can be performed, and

this is discussed in publication II, where the performance (linear scaling and

parallelization) of the code is presented.

The actual calculation of the coefficients is performed in the following way,

for simplicity presented for a single operator component in one dimension. At

the coarsest scale, in this case n = 0, the T part of the operator is applied,

where we according to Eq. (2.65) have

ĝ0(x) = 0T 0f0(x) (3.57)∑
i

ŝ0,gi,0 φ
0
i,0(x) =

∑
i,j

[
τ000
]
ij
s0,fj,0 φ

0
i,0(x) (3.58)

ŝ0,gi,0 =
∑
j

[
τ000
]
ij
s0,fj,0 (3.59)

The A, B and C parts are applied at all scales n ≥ 0, and from Eqs. (2.69)-

(2.71), we see that we get a contribution to the scaling coefficient from C

g̃n(x) = nCn dfn(x) (3.60)∑
l

∑
i

s̃n,gi,l φ
n
i,l(x) =

∑
l,m

∑
i,j

[
γnlm
]
ij
wn,fj,mφ

n
i,l(x) (3.61)

s̃n,gi,l =
∑
m

∑
j

[
γnlm
]
ij
wn,fj,m (3.62)
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while the wavelet coefficients are obtained from parts B and A

dg̃n(x) = nBnfn + nAn dfn (3.63)∑
l

∑
i

w̃n,gi,l ψ
n
i,l(x) =

∑
l,m

∑
i,j

([
βnlm
]
ij
sn,fj,m +

[
αnlm

]
ij
wn,fj,m

)
ψni,l(x) (3.64)

w̃n,gi,l =
∑
m

∑
j

([
βnlm
]
ij
sn,fj,m +

[
αnlm

]
ij
wn,fj,m

)
(3.65)

For all scales n > 0 the T part is obtained by wavelet reconstruction of the

result at the next coarser scale according to Eq. (3.56)

ŝn,gi,(l=even) =
∑
j

(
H

(0)
ji

(
ŝn−1,gj,l/2 + s̃n−1,gj,l/2

)
+G

(0)
ji w̃

n−1,g
j,l/2

)
(3.66)

ŝn,gi,(l=odd) =
∑
j

(
H

(1)
ji

(
ŝn−1,gj,(l−1)/2 + s̃n−1,gj,(l−1)/2

)
+G

(1)
ji w̃

n−1,g
j,(l−1)/2

)
(3.67)

3.7.2 Estimating the tree structure

One way of estimating the tree structure in the case of operator application

is simply to copy the grid of the input function, which is done by Beylkin et

al. [17]. However, as the integral operators treated in this work are known for

their smoothing properties, the output function will in general require a coarser

(but possibly wider) grid than the input, and such a construction will lead to

an overestimation of the grid refinement.

Instead we will set up a much simplified operator whose purpose is only to

build the initial grid. We have found that by only applying the purly diagonal

part (l = m) of the original operator, we capture more than 95% of the norm

of the result, but at a fraction of the computational cost, and by building an

adaptive grid using this operator, we end up with a tree structure that is quite

close to the final grid of the full operator. Only when this estimated grid is

complete we apply the full operator, and the grid is further refined if needed.

Moreover, if the operator expansion has M terms, it is in general not necessary

to include all of them in the simplified operator, and typically M/10 should be

sufficient, if the terms are chosen among the full range of exponents.
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Chapter 4

Electronic structure theory

In this chapter we present the equations that govern chemical systems, in par-

ticular the electronic stucture of atoms and molecules. At the molecular length

scale, nature is most accurately described by the theory of quantum mechan-

ics, where the central problem is the solution of the non-relativistic Schrödinger

equation.

Being that this problem cannot be solved exactly by any analytical method

whenever the system contains more than two particles, much of the work in the

field of quantum chemistry has been concerned with developing accurate and

efficient approximations, a work that has been given invaluable support by the

developments in computer technology over the last half-century.

This chapter will give an introduction to the self-consistent field (SCF) ap-

proximations that are commonly employed in computational chemistry. We will

start with a traditional presentation of the orbital based methods of Hartree-

Fock and Kohn-Sham density functional theory, where the aim of the chapter is

to rewrite the equations into their less familiar integral form. An optimization

algorithm using the mathematical tools as implemented in Chap. 3 is demon-

strated for simple one-electron systems, while the treatment of general many-

electron systems is the topic of publication III.

Most of the exposition follows that of the standard textbooks of computa-

tional chemistry, like Szabo and Ostlund[18], Parr and Yang[19] and Jensen[20],

as well as the thesis of Losilla[21].
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4.1 The electronic Schrödinger equation

The physical state of a quantum system influenced by potentials that do not

change with time is described by the time-independent Schrödinger equation

ĤΨ = EΨ (4.1)

where the Hamiltonian Ĥ is the operator for the total energy E of the system.

The wave function Ψ is an eigenfunction of the Hamiltonian operator, and is

a multi-dimensional (in general complex-valued) function that depends on the

degrees of freedom of the system, e.i. the position r and spin s of all N particles,

and we have Ψ = Ψ(x1,x2, . . . ,xN ), where xi = (ri, si) denotes the position

and spin of the i-th particle. There are in general infinitely many eigenfunctions

for a given Hamiltonian operator, each corresponding to a possible state.

The wave function contains all the information that can possibly be extracted

from the physical system. For each physical observable Ω there is an associated

mathematical operator Ω̂, such that the expectation value of an experimental

measurement is given by

〈Ω̂〉 =
〈Ψ|Ω̂|Ψ〉
〈Ψ|Ψ〉

(4.2)

This means that the fundamental problem in quantum chemistry is to obtain

the molecular wave function by solving the Schrödinger equation (4.1). For a

molecule, the Hamiltonian contains kinetic T̂ and potential V̂ energy of the

electrons and nuclei that make up the system

Ĥ = T̂nuc + T̂el + V̂nn + V̂ee + V̂ne (4.3)

Analytic solutions exists only for the one- and two-particle problems, and ap-

proximations are inevitable if we want to be able to treat more interresting

chemical systems.

The first approximation for molecular systems is almost exclusively the Born-

Oppenheimer approximation[22], in which we consider the nuclei to be fixed in

space, so that the electrons move in a static nuclear potential. The motivation

behind this approximation is that the nuclei are much heavier than the electrons,

and hence move much slower, so that at the electronic time scale, the nuclei are

percieved as classical particles frozen in space. This means that we can disregard
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the instantaneous correlation between the electrons and the nuclei, and we can

separate the nuclear kinetic energy from an electronic Hamiltonian

Ĥ = T̂nuc + Ĥel (4.4)

Ĥel = T̂el + V̂ne + V̂ee + V̂nn (4.5)

In atomic units1, using uppercase indices for the nuclei and lowercase indices

for the electrons, we have the electron kinetic energy

T̂el = −
∑
i

1

2
∇2
i (4.6)

the electron-nuclear attraction

V̂ne = −
∑
i,I

ZI
‖ri −RI‖

(4.7)

the electron-electron repulsion

V̂ee =
∑
i>j

1

‖rj − ri‖
(4.8)

and finally the nuclear-nuclear repulsion

V̂nn =
∑
I>J

ZIZJ
‖RI −RJ‖

(4.9)

Within the Born-Oppenheimer approximation, the last term is a simple additive

constant and is usually left out when solving the electronic problem

Ĥelψel = Eelψel (4.10)

At the nuclear time scale, the electrons are percieved as a diffuse charge density

that is able to respond instantaneously to the movement of the nuclei, and

molecular rotations and vibrations are described by the nuclear wave function

which is influenced by this dynamic electron density. In the following, however,

we are concerned exclusively with the calculation of the electronic wave function

through Eq. (4.10), where the el subscript henceforth will be dropped.

The particular state ψ0 with the lowest energy E0 is called the electronic

ground state of the system and serves special attention in quantum chemistry.

The reason for this is that for most chemical systems the ground state is the only

1e = me = ~ = 4πε0 = 1
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state significantly populated under normal laboratory conditions, and hence,

most chemical phenomena can be explained in terms of properties of the elec-

tronic ground state. The way to calculate the ground state is usually to exploit

the variational principle, which states that for a given Hamiltonian Ĥ with true

ground state ψ0, we have for an arbitrary trial wave function ψ̃

〈ψ̃|Ĥ|ψ̃〉
〈ψ̃|ψ̃〉

≥ 〈ψ0|Ĥ|ψ0〉
〈ψ0|ψ0〉

(4.11)

which means that finding the ground state can be regarded as a minimization

problem, where the trial wave function is varied to the point where the corre-

sponding energy is minimized.

4.2 Hartree-Fock Theory

The most apparent complication in developing approximate methods for the so-

lution of the electronic Schödinger equation is perhaps the high dimensionality

of the problem. For a system containing N electrons, the wave function is a 3N -

dimensional scalar function (disregarding spin). The common way to approach

such high-dimensional problems is by approximating the full d-dimensional func-

tion in terms of products of functions of lower dimensionality. In chemistry it is

convenient to use one-particle functions φi, called spin-orbitals, which depend

on the coordinates of a single electron

ψ(x1,x2, . . . ,xN ) =
∑
m

cmφ
m
1 (x1)φm2 (x2) · · ·φmN (xN ) (4.12)

Unfortunately, the convergence of such expansions is not very good, and a large

number of terms is usually required in order to obtain high accuracy (chemical

accuracy is usually defined as 1 kcal/mol). One way of improving the conver-

gence is to include two-particle functions in the expansion. Such approaches,

known as explicitly correlated methods[23, 24], will not be discussed in this the-

sis, and in the following we use wave functions constructed using one-particle

functions in the form of a Slater determinant.
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4.2.1 Slater determinant

Being fermionic, the electronic wave function needs to be anti-symmetric with

respect to the exchange of two particles

ψ(x1,x2,x3, . . . ,xN ) = −ψ(x2,x1,x3 . . . ,xN ) (4.13)

This condition is known as the Pauli exclusion principle[25], which has the

consequence that each fermionic state can only be occupied by one particle.

The simplest way of constructing a wave function that fulfills the anti-symmetry

requirement using one-particle spin-orbitals is the Slater determinant[26]

ψ = |φ1φ2 · · ·φN 〉
def
=

1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) · · · φ1(xN )

φ2(x1) φ2(x2) · · · φ2(xN )
...

...
. . .

...

φN (x1) φN (x2) · · · φN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣
(4.14)

where the spin-orbitals φi(x) are orthonormal and can be expressed as a product

of a three-dimensional spatial part and a spin part. The energy of such a wave

function is evaluated as the expectation value of the Hamiltonian

E[ψ] = 〈φ1φ2 · · ·φN |Ĥ|φ1φ2 · · ·φN 〉 (4.15)

=

N∑
i=1

〈φi|ĥ|φi〉+
1

2

N∑
i=1

N∑
j=1

〈φi|Ĵj − K̂j |φi〉 (4.16)

where we have defined the one-electron operator

ĥφi(x) =

(
− 1

2
∇2 −

∑
I

ZI
‖r −RI‖

)
φi(x) (4.17)

as well as the Coulomb Ĵj and exchange K̂j operators

Ĵjφi(x) =

(∫
φ∗j (x

′)φj(x
′)

‖r − r′‖
dx′
)
φi(x) (4.18)

K̂jφi(x) =

(∫
φ∗j (x

′)φi(x
′)

‖r − r′‖
dx′
)
φj(x) (4.19)

where it is important to note that the integration is over space and spin coor-

dinates, which means that the exchange operator is zero if the spin of orbitals

i and j differ. The Coulomb operator, on the other hand, in non-vanishing for

all pairs of spin-orbitals.
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4.2.2 The Hartree-Fock equations

The best approximation to the ground state in terms of a single Slater deter-

minant is called the Hartree-Fock wave function, and is obtained by minimizing

the energy with respect to orbital variations

E0 = min
ψ

E[ψ] (4.20)

following the variational principle of Eq. (4.11). In the following we will assume

that we have a closed-shell system, so that the N electrons are grouped into

N/2 pairs sharing the same spatial function, but with opposite spins

φσi (x) = φi(r)σ(s), σ = α, β (4.21)

By imposing the constraint that the spatial orbitals remain orthonormal 〈φi|φj〉 =

δi,j by means of Lagrange multipliers, the energy minimization yields the Hartree-

Fock equations

F̂ φi(r) = εiφi(r) (4.22)

where the Fock operator is given as

F̂ = ĥ+

N/2∑
j

(
2Ĵj − K̂j

)
(4.23)

The (restricted) Hartree-Fock wave function is then obtained as the Slater de-

terminant constructed by the N/2 lowest energy eigenfunctions φi of the Fock

operator, each appearing twice with paired spins

ψ = |φα1φ
β
1 · · ·φαN/2φ

β
N/2〉 (4.24)

Some of the terms included in the Fock operator can be expressed as multiplica-

tive potentials instead of operators. The core Hamiltonian ĥ includes the scalar

electrostatic potential arising from the nuclear charges

vnuc(r) =
∑
I

ZI
‖r −RI‖

(4.25)

and the sum of the Coulomb operators is the potential arising from all electrons

of the system

vel(r) =

N/2∑
j

2Ĵj = 2

N/2∑
j

∫
|φj(r′)|2

‖r − r′‖
dr′ (4.26)
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If we further collect the exchange operators into a single operator

K̂φi(r) =

N/2∑
j

K̂jφi(r) =

N/2∑
j

φj(r)

∫
φ∗j (r

′)φi(r
′)

‖r − r′‖
dr′ (4.27)

we can write the Hartree-Fock equations as[
− 1

2
∇2 + vnuc(r) + vel(r)− K̂

]
φi(r) = εiφi(r) (4.28)

As both the electronic potential vel and the exchange operator K̂ depend on the

set of occupied orbitals, we have a set of coupled non-linear differential equations

that need to be solved iteratively until we reach a self-consistent solution.

The main deficiancy of such a self-consistent field (SCF) approximation is

that each electron only interacts with the average field created by the other

electrons. While this is a good approximation for the electron’s interaction

with the slow moving nuclei, the instantaneous correlation is more important

between two electrons. The Hartree-Fock method still provides a reasonable

qualitative description of molecules near their equilibrium geometry, capturing

95-99% of the total energy. This, however, is generally not sufficient in order to

reach chemical accuracy, and there exist several post-Hartree-Fock methods that

model the missing correlation energy, including configuration interaction (CI)

and coupled-cluster (CC) theory, but these will not be discussed (see e.g.[18,

20, 27]).

4.3 Density Functional Theory

We have seen that the main computational challenge in solving the Schrödinger

equation is its high dimensionality, and that by introducing one-particle or-

bitals the 3N -dimensional differential equation can be separated into N (N/2

for a closed-shell system) coupled three-dimensional equations. Hohenberg and

Kohn[28] showed that the complexity can be reduced even further by proving

that the only quantity that is really needed in order to determine the system

uniquely is the three-dimensional electron density

ρ(r1) = N

∫
|ψ(x1,x2, . . . ,xN )|2 ds1 dx2 · · · dxN (4.29)
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and that the true energy of the system can be expressed in terms of a universal

energy functional

E[ρ] = T [ρ] + Vne[ρ] + Vee[ρ] (4.30)

where the ground state density can be obtained by minimizing the energy

E0 = min
ρ

E[ρ] (4.31)

with the constraints that the density is everywhere positive and integrates to

the number of electrons. Within the Born-Oppenheimer approximation the

electron-nuclear interaction energy is known as the classical electrostatic energy

between charge densities

Vne[ρ] =

∫
ρ(r)vnuc(r) dr (4.32)

with the nuclear potential defined through Eq. (4.25), but the functional form of

the kinetic and electron-electron energies are not known for quantum mechani-

cal densities (as we have seen in the previous section, the quantum mechanical

interaction between electrons includes both exchange and correlation energy, in

addition to the classical electrostatic interaction), and the fundamental problem

in density functional theory (DFT) is to find good approximations for these en-

ergy functionals, either based on theoretical considerations, or semi-empirically

by fitting parameters to experimental data.

4.3.1 The Kohn-Sham equations

The general idea of DFT appears very appealing, as we only need to solve one

three-dimensional equation for the electron density. However, it turns out to be

very difficult to find good approximations for the kinetic energy functional, and

according to the virial theorem this energy is of the order of the total energy

of the system, and thus needs to be accurately represented. To circumvent

this problem, Kohn and Sham[29] proposed to express the density in terms of

one-particle functions, which for a closed shell system with double occupancy

yields

ρ(r) = 2

N/2∑
i

|φi(r)|2 (4.33)
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thus reintroducing the orbital notion of Hartree-Fock theory. The motivation

behind this is that the kinetic energy is known for a set of (non-interacting)

orbitals as

Ts[ρ] = 2

N/2∑
i

〈φi| −
1

2
∇2|φi〉 (4.34)

However, this is not equal to the real kinetic energy of the (interacting) system,

and we are missing a small part of the total energy T [ρ]−Ts[ρ]. We can similarly

extract the known classical part from the density’s interaction with itself

J [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

‖r − r′‖
dr dr′ =

1

2

∫
ρ(r)vel(r) dr (4.35)

where again we are missing a small part of the total energy Vee[ρ] − J [ρ]. The

custom in Kohn-Sham theory is then to collect the missing parts into a single

exchange-correlation functional

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ] (4.36)

and we get the total Kohn-Sham energy expressed as

E[ρ] = Ts[ρ] + Ven[ρ] + J [ρ] + Exc[ρ] (4.37)

Minimizing the energy with respect to the density leads to the Euler equation

µ =
δTs[ρ]

δρ(r)
+ veff (r) (4.38)

where the chemical potential µ is a Lagrange multiplier that fixes the number of

electrons, and the effective potential is given in terms of functional derivatives

veff (r) =
δVen[ρ]

δρ(r)
+
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
(4.39)

= vnuc(r) + vel(r) + vxc(r) (4.40)

The Euler equation (4.38) describes a system of non-interacting electrons moving

in an effective potential veff , and the Hamiltonian for such a system is given

trivially as

Ĥ = −
N/2∑
i

1

2
∇2
i +

N/2∑
i

veff (ri) (4.41)

This operator is separable and the exact wave function is a single determinant

constructed by the N/2 lowest energy eigenfunctions of the Fock (or Kohn-

Sham) operator

F̂ = −1

2
∇2 + veff (r) (4.42)
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each appearing twice with paired spins, and the minimization problem of the

DFT Euler equation now entails solving the Kohn-Sham equations[
− 1

2
∇2 + vnuc(r) + vel(r) + vxc(r)

]
φi(r) = εiφi(r) (4.43)

We see that by reintroducing orbitals we abandon the hope of expressing the

problem in terms of a single three-dimensional equation, and again we get a set

of N/2 coupled non-linear equations for the orbitals. As the effective potential

in the Kohn-Sham operator depends on the density, and thus on the orbitals,

Kohn-Sham DFT is also referred to as an SCF method, and given the similarity

with the Hartree-Fock equations (4.28), the same techniques can be used to

solve both problems.

4.3.2 Density functional approximations

As already mentioned, the exact form of the universal exchange-correlation func-

tional is not known, so the quality of any Kohn-Sham calculation is only as good

as the quality of the density functional approximation (DFA) being used. The

exchange-correlation energy is expressed as an integral over an energy density

Exc[ρ] =

∫
Fxc dr (4.44)

In the local density approximation (LDA) the energy density is a function of

the density alone Fxc(ρ), in the generalized gradient approximation (GGA) it

is a function of the density and its gradient Fxc(ρ, |∇ρ|), while in meta-GGA’s,

higher order derivatives are introduced Fxc(ρ, |∇ρ|,∇2ρ, · · · ). Hybrid function-

als are GGA’s with a certain amount of exact Hartree-Fock exchange, evaluated

as in Eq. (4.27) using Kohn-Sham orbitals. This increasing complexity in the

DFA will in general yield increasingly accurate results.

The exchange-correlation potential was implicitly defined in Eq. (4.40) as

the functional derivative of the exchange-correlation energy with respect to the

density

vxc =
δExc[ρ]

δρ
=

δ

δρ

∫
Fxc dr (4.45)
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which can be calculated for LDAs and GGAs through

vLDAxc =
∂Fxc
∂ρ

(4.46)

vGGAxc =
∂Fxc
∂ρ
−∇ · ∂Fxc

∂∇ρ
(4.47)

A wide range of DFAs are available in the literature, with different costs, accu-

racies and ranges of applicability[30].

4.4 Basis sets in computational chemistry

Even with the approximations presented in the previous sections, the SCF equa-

tions are still to complicated to be solved analytically for many-electron systems,

and we rely on numerical solution algorithms in order to make the theoretical

methods useful. As computers work in finite arithmetic using floating point

numbers of finite accuracy, we need to discretize the problem in one way or

another. This can be done either by representing functions as a collection of

point values on a grid with some kind of regularity, where for instance differ-

ential operators can be defined through finite differences, or by expanding the

solution in terms of a set of basis functions χp

f(r) =

∞∑
p

cpχp(r) ≈
N∑
p

cpχp(r) (4.48)

The equality in Eq. (4.48) holds for any function f if the basis set is complete,

but this usually requires an infinite expansion. In practice, the expansion is

truncated at some point, yielding an approximation of the given function, and

the problem has been discretized to a finite number of expansion coefficients cp.

In principle any set of linearly independent functions can be used as a ba-

sis, but there are certain properties that we want from the basis for it to be

computationally attractive[21]

• Accuracy

The basis set must be able to represent the target functions faithfully, and

provide results that are sufficiently accurate for a given purpose.

• Compactness

For a given accuracy, the size of the basis set should be as small as possible.
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• Efficiency

The mathematical operations that involve the basis functions should be

performed as fast as possible.

• Systematicity

The basis set should depend on a set of parameters that can be modified

such that the accuracy of a given calculation will improve.

• Universality

The performance, in terms of accuracy and efficiency, should be adequate

to model a large variety of properties and systems.

It turns out that no basis can give you all these properties at once, so we have to

make some kind of compromise when choosing a basis set for a certain problem,

and the choice will often depend on known analytical properties of the solution.

For instance, it is known that the ground state wave function is continuous,

but not differentiable at the nuclear positions[31]. Similar cusps appear in the

wave function when the coordinate of two electrons coincide, as well as for the

molecular orbitals and the electron density at the nuclear positions. Specifically,

the behavior of the density close to a nucleus is known to be

ρ(r) ∼ e−2ZJ |r−RJ |, |r −RJ | � 1 (4.49)

while it decays exponentially at long distances

ρ(r) ∼ e−2
√
2EI |r−RJ |, |r −RJ | � 1 (4.50)

where EI is the ionization potential. Similar conditions apply for the molecular

orbitals.

4.4.1 Atom-centered basis functions

It is desireable to use basis functions with the same asymptotic behavior as

the density in order to get efficient representations, e.i. localized functions

centered at the nuclear positions, with a short range cusp and an exponential

tail. Furthermore, the chemical notion of a molecule being a collection of atoms

suggests that a reasonable approach would be to express the molecular orbitals
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(MOs) as linear combinations of atomic orbitals (LCAO)

φi(r) =
∑
I

MI∑
p

cipχp(r −RI) (4.51)

where the atomic orbitals (AOs) are atom-centered functions similar to the

eigenfunctions of the hydrogen atom. Even if the presence of several nuclei in a

molecule breaks the angular symmetry around each atom, the nuclear potential

is so steep that the symmetry is to a large extent retained in the vicinity of

the nucleus. The AOs are thus chosen to be spherically symmetric functions

that can be separated into an angular part, in the form of spherical harmonics

Ylm(θ, ϕ), and a radial part R(r)

χp(r) = Rp(r)Ylp,mp(θ, ϕ) (4.52)

This basis can approach completeness both in the angular part, by increasing the

maximum angular momentum L in the spherical harmonics, and in the radial

part by adding more linearly independent radial functions. It is well established

that the convergence in the angular part is exponential (∼ e−
√
L) for Hartree-

Fock energies (for post-Hartree-Fock methods the convergence is slower ∼ L−3),

which means that very large L is typically not needed for SCF calculations.

By choosing exponential radial functions

RSTOp (r) = Npr
npe−ξpr (4.53)

we get the so-called Slater type orbitals (STO)[32], which have the correct

asymptotic behavior. This means that the basis is rather efficient for describing

molecular orbitals and densities, leading to compact representations and fairly

rapid basis set convergence also for the radial part. The main problem, how-

ever, with STOs is numerical efficiency. In Hartree-Fock calculations the main

bottleneck is the evaluation of three- and four-center two-electron integrals in

the form

gpqrs =

∫ ∫
χp(r1)χq(r1)

1

‖r1 − r2‖
χr(r2)χs(r2) dr1 dr2 (4.54)

for which there exist no analytic formula in the case of STOs. For this reason, the

main applications for the STO basis is for small systems (atoms and diatomics)

where high accuracy is required, or for density functional methods that do not
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include exact exchange, and where the Coulomb energy is calculated using an

auxiliary basis.

The computational efficiency of the evaluation of two-electron integrals can

be dramatically improved by choosing Gaussian type orbitals (GTOs)[33], where

the radial functions have the form

RGTOp (r) = Npr
npe−ξpr

2

(4.55)

In this case the integrals can be calculated analytically, however, the r2 depen-

dence in the exponential makes the GTOs inferior to the STOs in describing

molecular orbitals and densities, as they do not have the correct asymptotic

behavior: at the nucleus the GTO has zero slope instead of a cusp, and it falls

off too rapidly at long distances. This means that much larger basis sets are

required for a given accuacy, but this is more than compensated for in terms

of computational efficiency by the ease of which the required integrals can be

calculated. Furthermore, by using contracted GTOs, where each basis function

can contain several primitive Gaussians

RcGTOp (r) = rnp
∑
j

apje
−ξpjr2 (4.56)

where the coefficients apj are kept fixed, we can to a large degree compensate

for the incorrect asymptotic behavior, while keeping the number of variational

parameters that need to be optimized as low as possible. The computational

efficiency of the cGTO bases have made them by far the most popular choice

in computational chemistry. The parameters (contraction coefficients and ex-

ponents) of the basis are preoptimized, usually based on atomic calculations,

and there are several basis set families that are systematized in sequences of

increasing accuracy (and consequently increasing computational cost).

A rigorous systematicity, however, holds only for smaller systems in the

lower-quality end of the basis set ladder. When the number of basis functions

grows, the basis sets become overcomplete, and linear dependencies appear,

leading to numerical instabilities, poorly conditioned equations and poor con-

vergence of iterative methods. This also affects the minimum error attainable,

making it difficult to approach the basis set limit for a given level of theory.

Another problem of atom-centered basis sets is their lack of universality.

The preoptimization of the parameters biases the results towards a particular
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property, making it difficult to judge the quality of the calculation of other

properties.

4.4.2 Plane wave basis functions

Rather than using localized AO-like basis functions that are trying to model

each atom separately, and forming molecular orbitals through LCAOs, one can

start with basis functions that are aimed directly at the full system. This ap-

proach is most appropriate for modelling infinite systems represented by a unit

cell with periodic boundary conditions, such as metals where the valence elec-

trons are delocalized and thus well represented by solutions of the free electron

Schrödinger equation. The three-dimensional plane wave basis is usually written

in terms of complex exponentials

χp(r) = eikp·r (4.57)

where the wave vector k gives the oscillation frequency and is related to the

energy of the basis function. The size of the basis is determined by the sam-

pling resolution in k-space (spacing between k-vectors) and the highest energy

k-vector included, which depend on the size of the unit cell, and is usually

significantly larger than the size of typical Gaussian basis sets.

Plane waves can in principle be used for non-periodic systems as well, by

placing the molecule in a sufficiently large unit cell where its interaction with its

own image in the neighboring cells can be neglected. However, placing a small

molecule in a large unit cell requires disproportionally many basis functions,

and the molecule is represented much more efficiently using localized atomic

orbitals.

The plane wave basis is also ill-suited to represent the core region of atoms,

where many rapidly oscillating functions are required, and especially the sin-

gularity in the nuclear potential, which is almost impossible to describe in this

basis. On the other hand, plane waves are ideal for representing the smooth

density of delocalized valence electrons, and are usually used in connection with

pseudopotentials[?], where the effect of the core electrons are combined with

the nuclear charges to give an effective core potential, and only the valence elec-

trons are treated explicitly. This, in combination with the fast Fourier transform
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(FFT), have made plane wave methods the preferred choice for the treatment

of many-particle problems of condensed phases.

4.4.3 Real-space representations

Most of the problems connected with atom-centered basis sets are related to

their global support, and these issues can be adressed using numerical real-

space methods. In these methods each expansion coefficient is usually directly

related to the function value at a certain grid point in space, and a systematic

improvement of the accuracy is readily obtained by decreasing the spacing be-

tween the grid points. The finite element (FE) basis is considered a real-space

method even if the representations are given through basis set expansions. The

reason for this is that the basis is grouped into a small number of n functions

sharing the same compact support, disjoint from the support of all other basis

functions, making them responsible for the function representation in a certain

region of real space. The expansion coefficients are usually obtained through

numerical quadrature, which means that the n functions are related to n point

values. Moreover, using interpolating polynomials each basis function is directly

connected to a single grid point.

While the FE bases can solve the problems of the AO basis concerning

systematicity, universality and attainable accuracy, they suffer from a lack of

compactness of the representation. Originally, the FE bases required a uniform

grid, making them highly inefficient for the treatment of multiscale problems

like the electronic structure of molecules, where high precision requires high

resolution in the nuclear region. A uniform grid will in this case result in an

excessive overrepresentation of the much smoother interatomic region, making

accurate calculations very computationally demanding, even if the fundamental

mathematical operations involving the polynomial basis are very efficient.

Due to the high cost of real-space methods, applications in electronic struc-

trure calculations are uncommon, and for a long time they were limited to

benchmarking calculations on small systems of high symmetry[34, 35, 36, 37].

Some attempts have been made to overcome the problem, either by removing

the high frequency core region by means of pseudopotentials, or by combining

the FE basis with another basis of AO type with complementary properties that

63



is able to treat the nuclear region more efficiently[38, 39, 40, 41]. Another ap-

proach, which is the one persued in this work, that is applicable to all-electron

calculations of systems of arbitrary geometries, is based on multiresolution anal-

ysis and the multiwavelet basis. This approach, that was pioneered by Harrison

and coworkers[42, 43, 44, 45] ten years ago, allows for strict error control using

adaptive non-uniform grids, thus reducing the computational cost significantly.

4.5 Integral formulation

The discretization of the Hartree-Fock (4.28) and Kohn-Sham (4.43) equations

using the atom-centered basis leads to the Roothaan-Hall[46, 47] matrix equa-

tions that are solved iteratively using standard convergence acceleration tech-

niques like the direct inversion of the iterative subspace (DIIS)[48]. This ap-

proach is not appropriate for the FE and multiwavelet bases due to the high

number of basis functions involved, as well as the requirement of a fixed basis

set. Moreover, in a discontinuous basis, differential operators (especially higher

order operators like the kinetic energy) should be avoided in order to maintain

high accuracy[42].

Following Harrison et al. [42], we use Kalos’[49] integral formulation of the

Schrödinger equation, and in the following we rewrite the Hartree-Fock (4.28)

and Kohn-Sham (4.43) equations into their integral form, using the integral

convolution operators

g(r) = Ĝ
[
f
]
(r)

def
=

∫
G(r − r′)f(r′) dr′ (4.58)

that were presented in Chap. 3, where we specifically described the implemen-

tation of the Poisson, the bound-state Helmholtz and the first order derivative

operators, with respective integral kernels

P (r − r′) =
1

4π‖r − r′‖
(4.59)

Hµ(r − r′) =
e−µ‖r−r

′‖

4π‖r − r′‖
(4.60)

D(x− x′) = −2β

√
β

π
(x− x′)e−β(x−x

′)2 (4.61)

The Poisson operator P̂ =
[
−∇2

]−1
will be used in the calculation of electro-

static potentials as well as the Hartree-Fock exchange operator, the Helmholtz
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operator Ĥµ =
[
−∇2+µ2

]−1
appears in the integral formulation of the Hartree-

Fock and Kohn-Sham equations, and the derivative operator D̂x is needed

for the calculation of exchange-correlation potentials using GGA functionals

through Eq. (4.47).

4.5.1 Hartree-Fock

In the closed-shell restricted Hartree-Fock model, the electron density is given

from N/2 doubly occupied orbitals

ρ(r) =

N/2∑
i

2|φi(r)|2 (4.62)

The electronic potential is calculated from the electron density by application

of the Poisson operator

vel(r) = P̂
[
ρ
]
(r) (4.63)

and we denote the total Coulomb potential experienced by the electrons as

vcoul(r) = vnuc(r) + vel(r) (4.64)

The exchange operator can also be expressed in terms of the Poisson operator

K̂φi(r) =

N/2∑
j

φj(r)P̂
[
φiφj

]
(r) (4.65)

Furthermore, we can rearrange the Hartree-Fock equations so that they can be

expressed in terms of the Helmholtz operator[
− 1

2
∇2 + vcoul(r) + K̂

]
φi(r) = εiφi(r) (4.66)[

−∇2 − 2εi
]
φi(r) = −2

[(
vcoul(r)− K̂

)
φi(r) (4.67)

φi = −2Ĥµi
[(
vcoul − K̂

)
φi

]
(4.68)

with µi =
√
−2εi. The equations are still implicitly coupled through the

electronic potential and the exchange operator, and need to be solved self-

consistently by iterative methods. Note that both the orbitals φi and their

corresponding energy εi are unknowns in the equations, and must be deter-

mined simultaneously.

65



4.5.2 Kohn-Sham DFT

In the Kohn-Sham equations the exchange operator is replaced by the exchange-

correlation potential, which for a given functional can be calculated from Eqs. (4.46)

and (4.47) for LDAs and GGAs, respectively, using the gradient operator ∇ =(
D̂x, D̂y, D̂z

)
in case of the latter. Following the same procedure as for the

Hartree-Fock equations we get N/2 separated equations[
− 1

2
∇2 + veff (r)

]
φi(r) = εiφi(r) (4.69)

φi = −2Ĥµi
[
veffφi

]
(4.70)

where µi =
√
−2εi. Again, the equations are coupled through the effective po-

tential, and are solved self-consistently with respect to the orbitals and energies.

4.5.3 Calculation of energy

We will now assume that the Hartree-Fock or Kohn-Sham equations have been

solved to obtain the orbitals φi that make up ground state wave function, as

well as their energies εi, and use these to calculate the electronic energy of the

molecular system. Numerical algorithms for how to solve these equations are

presented in Sec. 4.6 in the simple case of a one-electron system, and more gen-

erally in publication III for many-electron systems. In addition to the electronic

energy we have the constant nuclear repulsion energy

V̂nn =
∑
I>J

ZIZJ
‖RI −RJ‖

(4.71)

The goal of this section is to rewrite the expressions given above into something

better suited for evaluation in the multiwavelet framework. In particular this

means to avoid the application of the kinetic energy operator.

Hartree-Fock

The energy of a Slater determinant wave function was given in Eq. (4.16), which

can be expressed in the following way, assuming a closed-shell system and doubly
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occupied orbitals

E =

N/2∑
i

2〈φi|ĥ|φi〉+
1

2

N/2∑
i

2〈φi|2Ĵ − K̂|φi〉 (4.72)

=

N/2∑
i

2〈φi|T̂ |φi〉+

N/2∑
i

2〈φi|vnuc|φi〉+

N/2∑
i

〈φi|vel − K̂|φi〉 (4.73)

=

N/2∑
i

〈φi|2T̂ − K̂|φi〉+

∫
ρ(r)vnuc(r) dr +

1

2

∫
ρ(r)vel(r) dr (4.74)

The kinetic energy operator can be avoided by making the following observation

N/2∑
i

2εi =

N/2∑
i

2〈φi|T̂ + vnuc + vel − K̂|φi〉 (4.75)

=

N/2∑
i

2〈φi|T̂ − K̂|φi〉+

∫
ρ(r)vnuc(r) dr +

∫
ρ(r)vel(r) dr (4.76)

Comparing the expressions in Eqs. (4.74) and (4.76) we see that the total elec-

tronic energy can be calculated as

E = 2

N/2∑
i

εi −
1

2

∫
ρ(r)vel(r) dr −

N/2∑
i

〈φi|K̂|φi〉 (4.77)

without the need of applying the kinetic energy operator, given the orbitals and

orbital energies that solves the Hartree-Fock equations.

Kohn-Sham DFT

The energy in Kohn-Sham DFT was given through the energy functionals

E[ρ] = Ts[ρ] + Ven[ρ] + J [ρ] + Exc[ρ] (4.78)

which for a closed-shell system with double occupancy gives

E =

N/2∑
i

2〈φi|T̂ |φi〉+

∫
ρ(r)vnuc(r) dr +

1

2

∫
ρ(r)vel(r) dr +

∫
Fxc dr (4.79)

The sum of orbital energies can be expressed as

N/2∑
i

2εi =

N/2∑
i

2〈φi|T̂ + veff |φi〉 (4.80)

=

N/2∑
i

2〈φi|T̂ |φi〉+

∫
ρ(r)

[
vnuc(r) + vel(r) + vxc(r)

]
dr (4.81)
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Combining Eqs. (4.79) and (4.81) gives an expression without kinetic energy

E = 2

N/2∑
i

εi −
1

2

∫
ρ(r)vel(r) dr +

∫
Fxc dr −

∫
ρ(r)vxc(r) dr (4.82)

where it should be noted that

Exc[ρ] =

∫
Fxc dr 6=

∫
ρ(r)vxc(r) dr (4.83)

4.6 Iterative solution algorithms

We will illustrate the iterative algorithms by looking at a simple one-electron

system in which the electron is influenced only by a fixed nuclear potential

V̂ = vnuc(r), which include the H atom, the He+ and H+
2 ions or any other

one-electron molecular ion within the Born-Oppenheimer approximation. Just

as the Hartree-Fock and Kohn-Sham equations presented above, the electronic

Scrödinger equation is rewritten in integral form[
− 1

2
∇2 + V̂

]
ψ(r) = Eψ(r) (4.84)

ψ(r) = −2

∫
Hµ(r − r′)V̂ (r′)ψ(r′) dr′ (4.85)

ψ = −2Ĥµ
[
V̂ ψ
]

(4.86)

with µ =
√
−2E. This equation needs to be solved with respect to both the

wave function ψ and the energy E.

4.6.1 The power method

Eq. (4.86) defines a fixed-point problem, and perhaps the simplest procedure

to solve such a problem is the power method, where the operator is applied

iteratively

ψ̃n+1 = −2Ĥµn
[
V̂ ψn

]
(4.87)

ψn+1 =
ψ̃n+1

‖ψ̃n+1‖
(4.88)

The tilde on the new wave function denotes that it is no longer normalized,

as the operator Ĥµ does not conserve the norm when the eigenvalue is not

exact[49]. The iteration label on the operator reflects the fact that the operator
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depends on the energy through µn =
√
−2En which needs to be updated in

each iteration.

Such an iteration sequence xn+1 = Ô(xn) will converge to the lowest en-

ergy eigenfunction of Ô, provided that Ô defines a so-called contraction map.

Schneider et al. [50] proves linear convergence of the wave function and quadratic

convergence of the energy for a simplified fixed operator Ô (a general proof of

the convergence of the Hartree-Fock and Kohn-Sham equations is yet to be

found).

4.6.2 Energy calculation

The energy of the wave function is formally calculated as the expectation value

E =
〈ψ|T̂ + V̂ |ψ〉
〈ψ|ψ〉

(4.89)

where T̂ = −∇2/2 is the kinetic energy operator, and the potential energy

operator in this case is the fixed nuclear potential V̂ = vnuc(r). As pointed

out above, it is desirable to avoid the application of the kinetic operator, so

following Harrison et al. [42] we exploit the fact that the Helmholtz operator is

basically the inverse of the kinetic operator 2Ĥµ = (T̂ −E)−1, and extract the

energy through the application of this operator. Given a wave function ψn and

energy En (this does not have to be the exact energy of ψn, but it must be the

energy used in µn =
√
−2En in the construction of the operator Ĥµn) at one

iteration, we can calculate the (exact) energy En+1 of the wave function ψn+1

at the next iteration as follows

Ẽn+1 = 〈ψ̃n+1|T̂ + V̂ |ψ̃n+1〉 (4.90)

= 〈ψ̃n+1|T̂ − En|ψ̃n+1〉+ 〈ψ̃n+1|En + V̂ |ψ̃n+1〉 (4.91)

= 〈ψ̃n+1|T̂ − En| − 2Ĥµn
[
V̂ ψn

]
〉+ 〈ψ̃n+1|En + V̂ |ψ̃n+1〉 (4.92)

= −〈ψ̃n+1|V̂ |ψn〉+ 〈ψ̃n+1|En + V̂ |ψ̃n+1〉 (4.93)

= En〈ψ̃n+1|ψ̃n+1〉+ 〈ψ̃n+1|V̂ |∆ψ̃n〉 (4.94)
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where ∆ψ̃n
def
= ψ̃n+1−ψn. Normalizing this expression gives the energy of ψn+1,

calculated directly from the wave function update

En+1 = En + ∆En (4.95)

∆En =
〈ψ̃n+1|V̂ |∆ψ̃n〉
〈ψ̃n+1|ψ̃n+1〉

(4.96)

without having to apply the kinetic energy operator, provided that the update

comes directly from the application of the Helmholtz operator. For future ref-

erence, we also define the ”normalized” wave function update

∆ψn = ψn+1 − ψn =
−2Ĥµn

[
V̂ ψn

]
‖ψ̃n+1‖

− ψn (4.97)

4.6.3 Krylov subspace accelerated inexact Newton method

The fixed-point problem in Eq. (4.86) can be viewed as finding the roots of the

the following residual function

f(ψ) = −2Ĥµ
[
V̂ ψ
]
− ψ (4.98)

which can be done using Newton’s method

ψn+1 = ψn −
[
J(ψn)

]−1
f(ψn) (4.99)

= ψn −
[
J(ψn)

]−1(− 2Ĥµn
[
V̂ ψn

]
− ψn

)
(4.100)

where J(ψn) is the Jacobian. Comparing Eq. (4.100) with Eq. (4.87), we can

identify the power method as an inexact Newton method where the Jacobian

is approximated by J(ψ) ≈ −1. Harrison[51] describes how to make use of

the information in the iterative history (Krylov subspace) to improve the ap-

proximation of the Jacobian in the Krylov subspace accelerated inexact Newton

(KAIN) method. The method is similar to the more commonly used direct

inversion of iterative subspace (DIIS) method of Pulay[48], but while DIIS is

looking for the best step within the iterative subspace, KAIN is using the same

information to extrapolate to a step outside the iterative subspace and is thus

considered superior to DIIS[51].

Collecting the wave function and the energy into a vector x = (ψ,E) we

get the non-linear equation f(x) = 0. At a given iteration n, we have the

current approximation xn = (ψn, En) and the corresponding residual f(xn) =
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(∆ψn,∆En) defined through Eqs. (4.96) and (4.97). In the KAIN method the

new update δxn is calculated in terms of the m latest iterations

δxn = f(xn) +

m∑
j=1

cj
[ (
xj − xn

)
+
(
f(xj)− f(xn)

) ]
(4.101)

where the coefficients cj are obtained by solving the linear system Ac = b

Aij = 〈xn − xi|f(xn)− f(xj)〉 (4.102)

bi = 〈xn − xi|f(xn)〉 (4.103)

The size m of the Krylov subspace is without constraints. The larger it is,

the better is the Krylov update, but also the larger is the linear system. In

general, the Krylov update will not conserve the norm of the wave function, so

an additional normalization step should be added at this point.

4.6.4 Algorithm for one-electron systems

The single-orbital algorithm is quite straightforward. Starting from an arbitrary

initial guess for the wave function and the energy, the Helmholtz operator is

applied once, the resulting wave function is normalized, and the correction ∆ψn

and the corresponding energy update ∆En is calculated as described above.

Then the wave function and energy are added to the KAIN history

xn = (ψn, En) f(xn) = (∆ψn,∆En) (4.104)

If the length of the history exceeds some modest number the oldest vector is

discarded. New updates are then calculated based on Eq. (4.101)

δxn = (δψn, δEn) (4.105)

which are added to the previous guess, and the iteration is continued until the

norm of the wave function update (after the Helmholtz operator application) is

below some threshold.

4.6.5 Extension to many-electron systems

There are a few important complications when the algorithm is extended to

many-electron systems. In the self-consistent field approximations we get sys-

tems of equations involving one-electron orbitals, like the canonical Kohn-Sham
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Algorithm 3 Iterative algorithm for the solution of the one-election Schrödinger

equation in its integral formulation.

1: Given initial wave function ψ0 and energy E0

2: while ε > threshold do

3: Construct Helmholtz operator Ĥµn using µn =
√
−2En

4: Multiply wave function ψn with potential

5: Apply Helmholtz operator Eq.(4.87) and normalize

6: Calculate wave function update ∆ψn = ψn+1 − ψn

7: Calculate wave function error ε = ‖∆ψn‖

8: Calculate energy update ∆En from Eq.(4.96)

9: Add
(
ψn, En

)
and

(
∆ψn,∆En

)
to KAIN history

10: Calculate KAIN updates
(
δψ̃n, δEn

)
from Eq.(4.101)

11: Update wave function ψ̃n+1 = ψn + δψ̃n and normalize

12: Update energy En+1 = En + δEn

13: end while

equations

φi = −2Ĥµi
[
veffφi

]
(4.106)

These equations can be solved in the same way as the one-electron Schrödinger

equation presented above, by iterating each equation separately. However, to

avoid a collapse of all orbitals into the lowest energy eigenfunction, orthogonality

between the orbitals must be explicitly enforced[42]. There are many ways in

which this can be achieved, but it is convenient to keep the canonical character

of the orbitals throughout the optimization, by calculating and diagonalizing

the Fock matrix in each iteration. The calculation of the Fock matrix

Fij = 〈φi|T̂ + V̂ |φj〉 (4.107)

can be done without the need to apply the kinetic energy operator by the same

arguments as for the energy calculation of the one-electron wave function, but

now the orbital dependence of the effective potential must be accounted for as

well. Further complication arises in the KAIN solver, where all orbitals and
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energies are included in the Krylov vector

xn = (φn0 , · · · , φnN , εn0 , · · · , εnN ) (4.108)

f(xn) = (∆φn0 , · · · ,∆φnN ,∆εn0 , · · · ,∆εnN ) (4.109)

where it is important to keep track of the ordering of the orbitals throughout

the iteration, especially in the case of degeneracies, where the orbitals are not

uniquely defined. This is discussed further in publication III.
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Chapter 5

Orbital-Free DFT

The orbital-based formulation of density functional theory that was introduced

by Kohn and Sham[29] fifty years ago has been the most widely used method for

determining the electronic structure of molecules during the last few decades.

Even without the systematic improvability of the wave function based, post-

Hartree-Fock methods, modern density functional approximations are capable

of reaching accuracies far surpassing the Hartree-Fock method, but at similar

computational cost, although some experience is required for judging the appli-

cability of each functional for a particular problem.

Despite the tremendous success of the method, Kohn-Sham density func-

tional theory (KS-DFT) still runs into trouble when applied to very large

systems due to its relience on one-electron orbitals. For an N -electron sys-

tem, this leads to N coupled, non-linear equations, for which a general so-

lution scales approximately N3, although several order-N methods have been

proposed[52, 53, 54, 55]. Furthermore, in the limit of macroscopic systems,

the notion of one-electron orbitals appears utterly impractical, and in fact, the

Hohenberg-Kohn[28] theorems suggests that the key quantity should be the

three-dimensional electron density, where the energy is given through the uni-

versal functional

E[ρ] = Ts[ρ] + Ven[ρ] + J [ρ] + Exc[ρ] (5.1)

In this expression we have kept the notion of non-interacting electrons that was

introduced in Kohn-Sham theory, and separated the energy into non-interacting
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kinetic energy Ts, classical electrostatic interaction between electrons and nu-

clei Ven and between electrons J , and the quantum mechanical remainder Exc,

that accounts for electron exchange and correlation as well as the remaining

”interacting” part of the kinetic energy.

5.1 Density functionals

In the early years of quantum mechanics, some attempts was made to model

the kinetic and exchange energies as pure density functionals. These models,

by the work of Thomas[56], Fermi[57] and Dirac[58], are based on theoretical

considerations of the three-dimensional particle-in-a-box problem, and are exact

for a non-interacting uniform electron gas. The Thomas-Fermi kinetic energy is

given by

TTF [ρ] =
3

10
(3π2)2/3

∫
ρ5/3(r) dr (5.2)

whereas the Dirac exchange energy has the form

Ex[ρ] = −3

4

(
3

π

)1/3 ∫
ρ4/3(r) dr (5.3)

Needless to say, the uniform electron gas description does not apply to molecular

densities, and the above approximations (especially for the kinetic energy) fail

to give even a qualitative description of real chemical systems (Teller[59] even

proved that chemical binding is impossible within these models), and for this

reason DFT was more or less discarded as a method for chemistry and solid-

state physics. At that time, there was also no proof that the energy could in fact

be expressed as a functional of the electron density, and there was no theory of

density functionals.

This, of course, was going to change in the 1960’s when a rigorous theory

was founded upon the Hohenberg-Kohn theorems, and practical (and accurate)

calculations became available through the Kohn-Sham formulation. Even so,

the original orbital-free (OF-DFT) formulation was still regarded as unsuited for

treating molecular systems, mainly because of the many unsuccessful attempts

of improving the accuracy of the kinetic energy functional.

However, some progress have been made over the years. The introduction
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of a gradient correction to the Thomas-Fermi energy by von Weizäcker[60]

TW [ρ] =
1

8

∫
|∇ρ(r)|2

ρ(r)
dr (5.4)

which gives the exact energy for one- and two-electron (singlet) systems, made

chemical binding possible. The more recent approaches are commonly separated

into two distinct classes, one-point functionals

Ts[ρ] =

∫
ts(ρ; r) dr (5.5)

and two-point functionals, which are able to reproduce the shell structure of

atomic densities[61]

Ts[ρ] =

∫ ∫
f1(ρ; r)χ(r, r′)f2(ρ; r) dr dr′ (5.6)

and a lot of work has gone into the development of new functionals based on

purely theoretical considerations, see e.g. Karasiev et al. [62]. For instance, the

exponents of the density appearing in the Thomas-Fermi and Dirac models are

not arbitrary, but satisfy the known coordinate scaling of the exact functional.

A functional is said to be homogeneous of degree m under coordinate scaling if

it satisfies

F [λ3ρ(λr)] = λmF [ρ(r)] (5.7)

and the exact exchange and non-interacting kinetic energies are homogeneus

of degrees 1 and 2, respectively, leading to their respective exponents ρ4/3 and

ρ5/3.

In a recent work, Borgoo and Tozer[63] have looked into the less familiar

density scaling, where a functional homogeneous of order k satisfies

F [λρ(r)] = λkF [ρ(r)] (5.8)

and the exact functional is believed to be inhomogeneous. However, the suffi-

ciently accurate approximation that would make OF-DFT useful for the descrip-

tion of molecular systems remains to be found[64], although some applications

are found for large, periodic systems in condensed-phase physics in combination

with pseudo-potentials, where the valence electrons are better approximated as

a uniform electron gas[65, 66].

Nevertheless, with the highly appealing prospect of fully realizing the Hohenberg-

Kohn theorems by expressing the energy purely as a functional of the density,

work continues in finding better approximations.
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5.2 Solution of the Euler equation

In OF-DFT, the ground state density is obtained by solving a single three-

dimensional Euler equation

δTs[ρ]

δρ(r)
+ vKS(r) = µ (5.9)

where vKS is the effective potential of Kohn-Sham theory, as defined in Eq. (4.40),

and µ is the chemical potential. As the problem now involves the treatment of

just a few global functions (density and potentials), instead of N (possibly lo-

calized) one-electron orbitals appearing in KS-DFT, the lack of compactness

of real-space representations becomes less of a problem[67, 68]. In particular,

properties such as grid adaptivity and guaranteed accuracy should make the

multiwavelet basis well suited to tackle the problem, if the equations can be

formulated in such a way that an efficient optimization is possible.

It is common to separate the non-interacting kinetic energy into the von

Weizäcker contribution given in Eq. (5.4) plus a non-negative remainder, known

as the Pauli term

Ts[ρ] = TW [ρ] + Tθ[ρ], Tθ[ρ] ≥ 0 (5.10)

The functional derivative of the von Weizäcker energy is

δTW [ρ]

δρ(r)
=

1√
ρ(r)

(
− 1

2
∇2
)√

ρ(r) (5.11)

which brings the Euler equation over to the form[
− 1

2
∇2 + vθ(r) + vKS(r)

]√
ρ(r) = µ

√
ρ(r) (5.12)

which is identical to the Kohn-Sham equations for one ”orbital” φ(r) =
√
ρ(r)

and effective potential veff = vθ + vnuc + vel + vxc[
− 1

2
∇2 + veff (r)

]
φ(r) = µφ(r) (5.13)

The similarity with the KS equations have lead to the misconception that the

problem can be easily solved to self-consistency by any Kohn-Sham solver by

only minor modifications[69]. More recent studies, however, have shown the

opposite, both in the context of the usual atomic GTOs[70] and in a real-space

numerical basis[71]. The claim is that the kinetic energy is to non-quadratic for

a straightforward iterative optimization, and that more robust techniques are

required, like the one presented by Jiang et al. [72].
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5.3 Preliminary results

In the following we will attempt to solve the OF-DFT Euler equation (5.9) in

the multiwavelet framework using a modified form of the KS-DFT solver that is

presented in publication III. The iterative procedure is based on the one-orbital

formulation given in Eq. (5.13), and thus relies on the von Weizäcker kinetic

energy functional. The single orbital is normalized to the number of electrons

〈φ|φ〉 = N , so that the density is given as

ρ(r) = |φ(r)|2 (5.14)

Also appearing in the equation is the usual nuclear and electronic potentials

vnuc(r) =
∑
I

ZI
‖r −RI‖

(5.15)

vel(r) =

∫
ρ(r′)

‖r − r′‖
dr′ (5.16)

where the singularities in the nuclear potential have been smoothed out as de-

scribed in publication III, originally introduced by Harrison et al. [42]. As vxc

we choose the simple Dirac exchange functional presented above in Eq. (5.3)

with no correlation treatment, which gives the potential

vxc(r) =
δEx[ρ]

δρ
= −

(
3

π

)1/3

ρ1/3(r) (5.17)

and we perform calculations both in the Dirac-vonWeizäcker (DvW) model,

where the Pauli term is zero Tθ = 0, and in the Thomas-Fermi-Dirac-vonWeizäcker

(TFDvW) model, where the Pauli term is chosen as the Thomas-Fermi kinetic

functional given in Eq. (5.2), giving a purely repulsive potential

vθ(r) =
δTθ[ρ]

δρ
=

1

2

(
3π2
)2/3

ρ2/3(r) (5.18)

The results (chemical potential and total energy) of such calculations are pre-

sented in Tab. 5.1, where the total energies are compared to conventional (spin-

restricted) KS-DFT calculations, using the same Dirac exchange, as well as

(spin-restricted) Hartree-Fock energies, taken from Karasiev and Trickey[71] and

Chan et al. [70], respectively (The Hartree-Fock energies presented in Ref.[70]

are actually calculations taken from an old reference, Clementi and Roetti[73]).

As can be seen from Tab. 5.1, we are able to reach self-consistent solutions

that agree with previously reported numbers for small systems. All calculations
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Table 5.1: Chemical potentials and total energies of atoms and small molecules

using the Dirac-von-Weizäcker (DvW), Thomas-Fermi-Dirac-von-Weizäcker

(TFDvW) OF-DFT models, and in spin-restricted KS-DFT using the Dirac

exchange functional (LDA) as well as spin-restricted Hartree-Fock (RHF).

Chemical potential Total energy (Hartree)

DvW TFDvW DvW TFDvW LDA RHF

H MRChem -0.194320 -0.071640 -0.406534 -0.261826 -0.406534 -0.500000

Ref.[70] -0.071 -0.2618 -0.5000

Ref.[71] -0.1943 -0.0715 -0.406534 -0.261827 -0.4065

He MRChem -0.516991 -0.108327 -2.723640 -1.477451

Ref.[70] -0.108 -1.4775 -2.8617

Ref.[71] -2.7236

Li MRChem -0.957510 -0.130656 -8.525825 -4.105425

Ref.[70] -0.131 -4.1054 -7.4327

Ref.[71] -0.9575 -0.1306 -8.525825 -4.105425 -7.1749

Be MRChem -1.510360 -0.145379 -19.352891 -8.492186

Ref.[70] -0.145 -8.4922 -14.5730

Ref.[71] -14.2233

B MRChem -2.172342 -0.155706 -36.729140 -14.925883

Ref.[70] -0.156 -14.9258 -24.5291

Ref.[71] -24.5275

C MRChem -2.941311 -0.163319 -62.169552 -23.656875

Ref.[70] -0.163 -23.6568 -37.6886

Ref.[71] -37.6863

N MRChem -3.815709 -0.169164 -97.182735 -34.908435

Ref.[70] -0.169 -34.9084 -54.4009

Ref.[71] -54.3977

O MRChem -4.794343 -0.173804 -143.272616 -48.883228

Ref.[70] -0.174 -48.8831 -74.8094

Ref.[71] -74.8076

F MRChem -5.876263 -0.177591 -201.939506 -65.767584

Ref.[70] -0.178 -65.7674 -99.4094

Ref.[71] -99.4072

Ne MRChem -7.060692 -0.180760 -274.680827 -85.734479 -127.490748 -128.547101

Ref.[70] -0.181 -85.7343 -128.5471

Ref.[71] -7.0607 -0.1807 -274.68080 -85.734451 -127.4907

H2 MRChem -0.331330 -0.100168 -1.043736 -0.430723 -1.043736 -1.133619

BH MRChem -1.170066 -0.146852 -38.589138 -15.301851 -24.629804 -25.131640
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Figure 1: Density plots of hydrogen and neon atoms, calculated at different levels of theory.

were performed using a 9th order multiwavelet basis with an relative accuracy

threshold of ε = 10−6, and converged to a residual norm of ‖φn+1−φn‖ < 10−6,

which means that the presented numbers should be correct to six significant

digits. We observe, in accord with the claims of Chan and Karasiev, that the

optimization is non-trivial, in particular when the Thomas-Fermi (TF) potential

is included, and we were unable to reach convergence for bigger systems than

the ones presented within a reasonable number of iterations.

Without the TF potential, however, we observe similar convergence as for

a single-orbital KS-DFT calculation, and all the presented calculations reached

the desired accuracy in about 10 iterations, starting from a random Gaussian

density, but it seems that things get more complicated when more nuclear sites

are introduced, as for instance the benzene molecule did not converge from a

similar poor starting point. As already mentioned, the inclusion of the purely

repulsive TF term makes convergence much more problematic, and only the

hydrogen atom converged straightforwardly. In all other calculations the TF

term had to be introduced gradually. By introducing a TF parameter α and

writing the effective potential as

veff = αvθ + vnuc + vel + vxc (5.19)

we were able to converge the many-electron systems in many intermediate steps,

where for instance one could start with α = 0.20 and converge to 10−2, and then

add five per cent TF (∆α = 0.05), converge again to 10−2, add another five per

cent, and so on until the full TFDvW is reached. This, of course, requires a
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Figure 2: Density plots of H2 and BH molecules, calculated at different levels of theory.

lot of iterations, and the bigger the system, the more sensitive it is to the TF

potential, and consequently, a smaller ∆α is required. Introduce the TF too

fast, and the solution blows up and diverges. For instance, the neon energy was

obtained using ∆α = 0.005, and required more than 600 iterations. However,

no attempt was made to optimize the parameters on this respect.

If we examine the physics of these models we see that both DvW and TFDvW

fail to reproduce the Hartree-Fock energies, even qualitatively. As mentioned

above, the von Weizäcker functional is exact for one-orbital systems, which

means that DvW model is identical to LDA for the hydrogen and helium atoms,

as well as the hydrogen molecule, as can be seen from the numbers. The same

is observed in the density plots in Figs. 1 and 2, where we can see the radial

density of the hydrogen and neon atoms in Fig. 1, and the density along the

internuclear axis of the H2 and BH molecules in Fig. 2.

From this we can conclude, as is already well established, that the Thomas-

Fermi-Dirac-von-Weizäcker models do not perform well for atomic and molecular

systems. It is common to introduce a parameter λ for the von Weizäcker term

in order to correct for a known over-estimation for molecular systems

Ts = λTW + Tθ (5.20)

and by adjusting this parameter one can get within a few per cent of the Hartree-

Fock energy for the given atomic systems, as is shown by Chan et al. [70] using

λ = 1/5. However, this parameter is not universal, and the densities that are

obtained are not equally accurate (see Ref.[70] for details).
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5.4 Outlook

The purpose of this study was not to examine the performance of the given

kinetic energy functionals on molecular systems, as their inadequacies in this

respect are well known, but rather to see whether the multiresolution framework

is appropriate for the solution of the OF-DFT Euler equation. It seems quite

clear that its formulation as a one-orbital Kohn-Sham problem is not appro-

priate, as the convergence of the iterative solution for many-electron systems is

problematic at best, as the Thomas-Fermi contribution had to be introduced

very carefully to avoid divergence. However, this is related to the mathematical

formulation of the problem, and is not specific to the multiwavelet basis. Also,

once the full TF potential had been included, high order convergence was not

difficult to obtain, and accuracies of 10−9 was easily achieved.

Given the properties of the multiwavelet basis, which is easily parallelizable

for the few global functions that are involved, and with representations that are

free of basis set error, this could still be the ideal framework for the development

of better kinetic energy functionals, but this will require much more robust

optimization algorithms. This will be subject for further investigation.
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Chapter 6

Summary of papers

6.1 Paper I: Adaptive order polynomial algo-

rithm in a multiwavelet representation scheme

In this work, a new strategy is presented for the reduction of the storage re-

quirements of functions in a multiwavelet framework. The work is based on

Alpert’s[1] definition of the multiwavelet basis which leads to considerable data

compression by allowing adaptive refinement of the grid for a given order k of

the polynomial basis. We propose an additional adaptivity in the polynomial

order, where the order k(n) depends on the refinement level n. We have found

that decreasing the order with increasing refinement can lead to considerable re-

duction in storage requirements for the representations of multivariate functions

to a given accuracy.

Stig Rune Jensen wrote the computer implementation of the mathematical

formalism presented in the paper, and assisted in running the test calculations.

The theory was developed by Antoine Durdek.
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6.2 Paper II: Linear scaling Coulomb interac-

tion in the multiwavelet basis, a parallel im-

plementation

The paper describes the implementation of a general Poisson solver in a mul-

tiwavelet framework, using the non-standard form of operators. By exploiting

the sparsity in the representation of the involved functions and operators, we

were able to achieve linear scaling complexity with respect to system size. The

performance of the code was demonstrated for molecular systems with up to

600 atoms.

The presented code is based on an implementation of the application of op-

erators in the multiwavelet basis using the non-standard form, written in the C

language by Frediani and Fossgaard[5]. The code was completely rewritten in

C++ by Stig Rune Jensen and Jonas Jusèlus using a hybrid MPI/OpenMP par-

allelization strategy. The code, which is called MultiResolution Computational

Program Package (MRCPP) is organized as a mathematical library with general

features such as function representation and non-standard operator application

in multiple dimensions. Jensen also planned and ran all test calculations and

wrote parts of the manuscript.
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6.3 Paper III: Real-Space Density Functional The-

ory with Localized Orbitals and Multiwavelets

We present algorithms for the minimization of the Hartree-Fock and Kohn-

Sham energies for many-electron molecular systems. The general non-canonical

HF/KS equations are rewritten in integral form and solved in the multiwavelet

framework using localized orbitals. Robust and fast convergence is demon-

strated for small and medium sized systems, and high accuracy energies are

presented for a variety of small molecules.

Stig Rune Jensen wrote (with contributions from Peter Wind) the computa-

tional chemistry program MultiResolution Chemistry (MRChem) based on the

MRCPP library, and together with Antoine Durdek, developed the algorithms

for the SCF optimization. Jensen also planned and ran all test calculations and

wrote parts of the manuscript.
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