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Introduction	

Atlantic salmon, Salmo salar, is the predominant species in the Norwegian aquaculture 

industry. Generating a biomass of 1.2 million tons of slaughtered salmon in 2012, 

Norway is one of the largest producers of salmon in the world (1). Despite the large 

amounts produced, production loss is high, especially in the seawater phase. A major part 

of the losses can be attributed to various viral diseases. Viral infections in the fish 

farming industry are of economical concern, but also a fish welfare issue. The most 

common viral diseases of salmon in Norway are caused by infectious pancreatic necrosis 

virus (IPNV), infectious salmon anemia virus (ISAV), salmon pancreas disease virus 

(SPDV), piscine reovirus (PRV) and piscine myocarditis virus (PMCV).  

Vaccines are available for IPNV, SPDV and ISAV, but at present vaccination 

against these viruses do not give satisfactory protection. To develop more efficient 

vaccines and other methods to fight viral diseases of Atlantic salmon, there is a need for a 

better understanding of antiviral immune mechanisms in this species. Interferons 

(IFNs)play a crucial role in innate immune responses against virus infections in 

mammals whereby host cells synthesize and secrete IFNsupon recognition of viral 

nucleic acids. IFNs protect other cells from further viral infection by inducing antiviral 

proteins that inhibit viral replication and stimulate adaptive immune responses against the 

infecting virus. The importance of the IFN system in immunity is highlighted by the fact 

that most vertebrate viruses encode antagonistic proteins that inhibit transcription of IFN 

or IFN-stimulated genes (2, 3). 
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This thesis has focused on the mechanism involved in how viruses activate 

transcription of IFN in Atlantic salmon, and how IPNV antagonize IFN transcription. To 

give an introduction to this work, I will first give a brief description of the role of IFN in 

the innate antiviral immunity. Then the different receptors and signaling pathways that 

the cell utilizes for recognition of viruses to induce type I IFN are reviewed. Some 

selected antiviral proteins induced by IFN are described. I will also give a description of 

infectious pancreatic necrosis virus in more detail. 

 

Immunity	

The immune system plays a key role in protecting animals against invading pathogens. In 

vertebrates it consists of two different yet intermingled branches, the innate and the 

adaptive immune system. Whilst the innate immune system operates in the immediate 

frontline in the combat against invading pathogens, the adaptive immune system gives  a 

later and more targeted response (4). Innate immunity is conferring a broad response 

consisting of physical barriers, cellular mechanisms and antiviral proteins generally 

believed to lack specific memory. The adaptive immunity consists of a targeted response 

mediated by antibody producing B-cells and cytotoxic T-cells adapted to the specific 

pathogen and with an acquired specific memory function. The focus in this thesis will be 

on the innate immune system.  
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Innate	immunity	

Evolved early in the metazoan lineage, innate immunity can be considered to be the first 

line of defense against invading pathogens. Invertebrates for instance lack the adaptive 

branch of the immune system, and are believed to rely solely on innate immunity. 

Dependent on the ability of the organism to recognize foreign molecular patterns, 

the innate immune system comprise a wide range of germ line-encoded non-rearrangable 

pattern-recognition receptors (PRR), antimicrobial molecules and immune cells. The 

innate immune system does not only combat the infection itself, but is also a link to 

activation of adaptive immunity in vertebrates. The recognition of pathogen associated 

molecular patterns (PAMPs) by the PRR initiates effector molecules inside the cells as 

well as secretion of cytokines. Cytokines are a group of secreted proteins that regulate 

important cellular functions. Some cytokines such as IFNs function as alarm molecules, 

warning other cells of the ongoing infection. Cytokines are also involved in regulation of 

the adaptive immune system by promoting B- and T-cell differentiation, and thereby 

provide a link between innate and adaptive immunity (5).  

The	interferon	system	

IFNs are a group of cytokines involved in activation of immune cells, up-regulation of 

antigen presentation to T-cells and in inducing an antiviral state in uninfected cells to 

protect against infection. IFNs can be subdivided into three types, type I, type II and type 

III, defined by their differences in structure, receptor usage and biological activity. Type I 

IFNs and the more recently discovered type III IFNs both have antiviral properties and 

play a major role in the innate immunity against viruses. Mammalian type I IFNs consists 
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of several classes, with the IFNalfa and IFNbeta as the predominant IFNs in the first line 

of defence against viruses. There are 13 subtypes of IFNalpha (α), and a single IFNbeta 

(β) protein. Also IFNkappa (κ), IFNomega (ω), IFNepsilon (ε), IFNdelta (δ) and IFNtau 

(τ) are present (6). Type III IFNs encompass IFNlambda (λ). Type II IFN is identical to 

IFNgamma (γ) and is mainly implicated in the adaptive immune response, where it is 

produced by T-cells and activate macrophages (7, 8). Type I IFNs were the first cytokines 

that were identified, and are named after their ability to interfere with the replication of 

invading viral pathogens (9). Type I interferons can also enhance the development of 

adaptive immune responses (10-13). Mammalian type I IFNs are single-exon genes, the 

type II is a four exon – one intron gene, and type III IFNs are five exon – four intron 

genes. The type I, type II and type III IFNs signal through distinct receptor complexes, 

composed of IFNAR1/IFNAR2, IFNLR1/IL-10R2 and IFNGR1/IFNGR2 respectively 

(6). 

Type I and type II IFNs have been identified in several fish species, but to date 

type III IFNs have not been found in fish. The first type I IFN genes from fish were 

cloned in 2003, from Atlantic salmon, zebrafish (Danio rerio) and green spotted puffer 

(Tetraodon nigoviridis) (14-16). The type I IFN genes in fish are of particular interest 

because fish, like mammals, have multiple linked copies of IFNs in the genome. But 

unlike the one-exon type I IFN genes found in mammals, reptiles and birds, the fish type 

I IFNs contain four introns. This makes them interesting not just in functional studies but 

also from an evolutionary viewpoint. There is also a question whether this apparent 

redundancy of IFNs and also of IFN-inducing pathways, and the great sequence 
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differences despite similar functions in as divergent species as fish and mammals, reflects 

co-evolution between host and virus. 

Mammalian type I IFN members are not true orthologues of fish type I IFN 

members, as the expansion of the mammalian IFN genes is believed to have occurred 

after the divergence of birds and mammals (17). The mammalian type I IFN gene also 

lack introns in contrast to the fish type I IFN genes which typically contain five exons 

and four introns. Analyses of amino-acid sequences and structure of fish IFNs, and 

resolution of the crystal structure of two zebrafish IFNs supports their classification as 

type I IFNs and not type III IFNs (14, 15, 18-20). The question thus arises whether the 

fish IFNs have similar properties as the mammalian IFNs. 

 

Type	I	IFNs	

Cells infected with viruses synthesize and secrete type I IFNs, warning other cells of the 

ongoing infection. When IFNs bind IFN receptors on cells, a signaling cascade called the 

JAK-STAT pathway is activated, resulting in transcription of hundreds of IFN-stimulated 

genes (ISGs). Some of these genes encode proteins with potent antiviral functions (21). 

An overview of the IFN response is shown in figure 1. 
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The type I IFN family in humans consists of IFNα, IFNβ, IFNε, IFNκ and IFNω. 

13 IFNα subtypes, and one each of the other have been identified (6). In addition to the 

human IFNs, other mammalian type I IFNs have been described that only exist in some 

species. The main type I IFNs involved in the response to viral infection in humans are 

IFNα and IFNβ. Even though these different IFNs bind the same receptor, the 

physiological responses induced are distinct. It has recently been shown that the binding 

affinity of the separate type I IFNs to the receptor determines the biological activity (22). 

The type I IFN genes can also be divided in genes belonging to an early phase that does 

not require ongoing protein synthesis, and a later phase with a delayed response. IFNβ 

belongs to the early phase IFNs, whilst most of IFNαs belong to the later phase (23). 

In fish, type I IFN can be classified into two groups, one with IFNs containing 

two conserved cysteine residues (2C IFNs), and another with four conserved cysteine 

residues (4C IFNs). The 2C IFNs can be further subdivided into IFNa and IFNd, and the 

4C IFNs can be divided into subgroup IFNb and IFNc (24, 25). So far, 13 type I IFN 

genes have been identified in Atlantic salmon. The 4C IFNs have only been reported in 

Atlantic salmon, rainbow trout (Onchorhynchus mykiss) and zebrafish, and Atlantic 

salmon is at present the only species with all four subgroups of type I IFN has been 

found. Interestingly, in contrast to mammalian type I IFNs that utilize the same receptor, 

zebrafish type I IFNs signals through different receptors depending on whether they are 

2C or 4C IFNs (19).  
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Because the type I IFNs of mammals and fish have evolved independently, the 

pathways leading to induction of IFN transcription, and the cell types producing them 

could also have differences. In a recently published study by Svingerud et al on IFNs 

from Atlantic salmon, the 2C IFNa and 4C IFNc show similar antiviral activities and 

ability to induce antiviral genes (26). The 4C IFNb has some antiviral activity, but 

markedly lower than IFNa and IFNc. No antiviral activity could be detected for the 2C 

IFNd. When comparing expression of the IFNs by the IFN inducers poly(I:C) and R848, 

poly(I:C) is a strong inducer of IFNa in cell lines, whilst the other IFNs showed little 

response. This indicates that IFNa is the main IFN subtype induced through the RLR 

pathway (27, 28). R848 on the other hand induced high transcript levels of IFNb and 

IFNc, and low levels of IFNa in the lymphoid organs head kidney and spleen. The 

imidazoquinoline R848 is known to induce IFNs through TLR7 (29, 30). IFNd show 

constitutive expression in cells and organs that is unaffected by poly(I:C) and R848 

treatment. The findings were supported by in situ hybridization studies, that showed 

poly(I:C) to induce IFNa and IFNc in a variety of cells and organs, whilst R848 induced 

co-expression of IFNb and IFNc in distinct cells in head kidney and spleen. These cells 

are reminiscent of the plasmacytoid dendritic cells in mammals that are specialized IFN-

superproducers (26).  
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Downstream	signaling	‐	The	JAK‐STAT	pathway	

In mammals, the type I IFN receptor is expressed in most cells (31). This gives the type I 

IFNs the capacity to alert the cells of the presence of pathogens, so that an antiviral 

response can be mounted. After IFNs have bound to the IFN receptor, the JAK-STAT 

pathway is activated. It culminates with the formation of a transcription factor complex 

consisting of STAT1, STAT2 and IRF9, forming the IFN-stimulated gene factor 3 

(ISGF3). ISGF3 translocates to the nucleus, where it binds to IFN-stimulated response 

elements (ISRE) in the promoters of ISGs, initiating the transcription of antiviral genes 

(7, 32). An overview of the JAK-STAT pathway is shown in figure 2. 
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Figure 2. Type I IFN signaling through the JAK/STAT pathway. Upon binding of type I IFN to the IFN 
receptor heterodimer, TYK2 and JAK1 phosphorylates the receptor. In turn, STAT1 and STAT2 are 
phosphorylated and associate with IRF9, forming the ISGF3 complex. ISGF3 translocates to the nucleus, 
where it binds ISRE-elements in the promoter regions of ISGs, initiating gene transcription. Some ISGs 
encode antiviral proteins. 

	

Sensing	of	pathogens,	and	signaling	pathways	of	type	I	IFN	induction	

The main viral PAMPs recognized by the cell are viral nucleic acids. PRRs that can 

recognize viral nucleic acids can be divided into extracytoplasmic and intracytoplasmic 

receptors. The extracytoplasmic receptors consist of several members of Toll-like 

receptors (TLRs). The intracytoplasmic receptors include the RNA sensing receptors 
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retinoic acid-inducible gene I (RIG-I), melanoma differentiation associated gene 5 

(MDA5), protein kinase R (PKR), and a range of DNA sensing receptors including DAI 

and AIM2. Together, these PRRs form a network of signaling pathways that converge in 

activation of nuclear factor kappa B (NFκB) and interferon regulatory factor (IRF) 

activation (33).  

Extracytoplasmic	pathways	for	sensing	viruses	

In total, 13 TLRs have been identified in mammals (34, 35). All TLRs share an N-

terminal extracytoplasmic domain with leucine-rich repeats (LRR) which is responsible 

for pathogen sensing, a transmembrane (TM) domain, and cytoplasmic Toll/IL-1 receptor 

(TIR) domain responsible for downstream signaling through TIR-domain containing 

adaptor proteins. The extracytoplasmic domains are diverse and can recognize a wide 

variety of pathogens by interacting with specific PAMPs associated with them.  

TLR2, 3, 7, 8 and 9 mediate IFN induction in response to viral infections (table 

1). TLR2 resides in the plasma membrane, and is mainly known for its ability to detect 

bacterial cell wall components. TLR3, 7, 8 and 9 all mainly reside in the endosomal 

compartment and are specialized in detection of different nucleic acids. TLRs mainly 

function in specialized cells of the innate immune system to detect viral nucleic acids, 

such as macrophages and plasmacytoid dendritic cells (pDC). They are largely 

dispensable for most other cell types, which rely on the cytoplasmic sensors of pathogens 

(36, 37).  
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Table 1 Extracytoplasmic sensors of viral nucleic acids 

Sensor Ligand  (Signal 
mediators) 

TLR2  Myd88 

TLR3 (short*) 
dsRNA 

TRIF 

TLR7/8 ssRNA MyD88 

TLR9 CpG DNA Myd88 

TLR22 (long*) 
dsRNA 

TRIF 

*fish 

TLR3 was the first PRR identified for sensing viral dsRNA (28). It is primarily 

located in endosomes, although it can also be found in the plasma membrane of epithelial 

cells and fibroblasts (38). TLR7 and TLR8 can both sense viral ssRNA in endosomes (39, 

40). TLR9 senses unmethylated CpG DNA motives in endosomes (41). Binding of viral 

nucleic acids to TLR7, 8 and 9 activates IRF7 by signaling through the adaptor protein 

Myd88. TLR2 is best known for sensing bacterial cell wall components, and does not 

induce an antiviral response in most cells. However, it can detect vaccinia virus infection 

in inflammatory monocytes of bone marrow, and like TLR7, 8 and 9 it can induce type I 

IFN by signaling through Myd88 (42).  

In addition to the orthologues of the mammalian TLRs, fish also contain several 

TLRs not found in the mammalian genome (43). One of the fish specific TLRs, TLR22, 

is a dsRNA sensor that like TLR3 can recognize the synthetic dsRNA poly(I:C) (44). In 

mammals TLR3 can be found in either the endosomes or the plasma membrane, in fish it 
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appears that TLR3 is located in the endosomes while TLR22 is located on the plasma 

membrane. 

 

Cytoplasmic	pathways	for	sensing	viruses	

A wide range of cytoplasmic PRR for nucleic acids exist (Table 2). Cytoplasmic PRR for 

detecting viral nucleic acids include the RIG-I like receptors (RLR) RIG-I and MDA5. 

Both RIG-I and MDA5 recognize viral RNA in the cytoplasm. MDA5 recognizes long 

dsRNA, and RIG-I recognizes 5´-three-phosphate (5’3P) containing uncapped ssRNA 

and short dsRNA (45). Most self-RNAs are capped at the 5´end, while many ssRNA 

viruses lack this capping. The versatility of these receptors enables them to recognize 

RNA from a wide variety of both single stranded and double stranded RNA viruses, and 

also some DNA viruses (table 2). The detection of DNA viruses involves the DNA-

dependent RNA polymerase III, which can convert cytoplasmic B-form dsDNA (poly 

dA:dT) to 5’ 3P-RNA that is detected by RIG-I (46, 47). 
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Table 2 Cytoplasmic sensors of nucleic acids 

Sensor Ligand Signal 
mediators 

RIG-I 5’3p ssRNA, 
short Poly I:C 

IPS-1 

MDA5 Long Poly I:C  IPS-1 

LGP2 dsRNA IPS-1 

NOD2 ssRNA IPS-1 

RNA pol III Poly(dA:dT) IPS-1 

PKR dsRNA eIF-2α 

AIM2 dsDNA Inflammasome 

DAI/DLM-
1/ZBP1 

DNA (all 
conformations) 

 

LRRFIP1 dsRNA, 
dsDNA 

Β-catenin 

DHX9 dsDNA Myd88 

DHX36 dsDNA Myd88 

IFI16/p204 dsDNA STING 

 

Although TLRs and RLRs are thought to be the main PRRs for detection of viral 

nucleic acids, several DNA sensors with the capacity of inducing gene transcription of 

type I IFN have recently been identified. So far NOD2, DAI, DHX9, DHX36 and the 

AIM2-like receptors IFI16 and p204 are recognized as sensors mediating induction of 

type I IFN transcription (48-53). Induction of type I IFN in response to cytoplasmic DNA 

requires the signal mediator STING (54).  
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Signal	transduction	in	the	RLR	pathway	

Upon recognition of viral RNA in most cells types, the RLRs RIG-I and MDA5 are the 

main sensors of inducers of IFN (55, 56). The construction of RIG-I knockout mice 

demonstrated that fibroblasts, conventional dendritic cells and epithelial cells are 

dependent on the RLR pathway for stimulating IFN production (57). However, 

plasmacytoid dendritic cells (pDC), known as superproducers of IFNα, prefer to use TLR 

mediated signaling over RLR (58).  

RIG-I and MDA5 both contain two N-terminal caspase activation and recruitment 

(CARD) domains that are essential for their signaling activity (59). They also contain an 

internal DExD/H-box helicase domain, with an ATPase activity that is necessary for 

signaling (60, 61). RIG-I has a C-terminal repressor domain not found in MDA5 (62). 

The third member of the RLR family, LGP2, has a helicase domain and repressor domain 

but lack the tandem CARD domains at the N-terminal end. The role of LGP2 in RLR 

signaling is disputed. It was initially identified as a negative regulator of RIG-I and 

MDA5 mediated signaling, proposed to act through sequestration of RNA (63, 64). The 

view on LGP2 as a negative regulator has later been nuanced, as studies revealed that 

LGP2 was required for RIG-I and MDA5 mediated antiviral responses (65, 66). 
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Figure 3. Domain structures of the RLRs and IPS-1. The RLR proteins can be divided into three basic 
domains. The tandem CARD domains in the N-terminal end, the central helicase domain with ATPase 
activity and the C-terminal regulatory region. The regulatory region of RIG-I and LGP2 contains a 
repressor domain. LGP2 lacks the CARD-domains found in the other RLRs. IPS-1 has a single CARD 
domain that physically interacts with the CARD-domains of activated RIG-I or MDA5. 

 

While inactive, the RIG-I helicase acts as a monomer. Upon binding of viral RNA 

to the helicase domain, the molecule undergoes a conformational change that promotes 

dimerization. This conformational change is dependent on the ATPase activity of the 

helicase domain. As a dimer, RIG-I is believed to bind directly to IFNβ-promoter 

stimulator 1 (IPS-1) through their shared CARD-domain (figure 3).  

IPS-1 is also known as mitochondrial antiviral signaling protein (MAVS), virus-

induced signaling adaptor (VISA) or CARD adaptor inducing IFNβ (Cardif) (67-70). 

IPS-1 contains an N-terminal CARD domain, a proline rich region and a C-terminal 

transmembrane (TM) domain. The TM domain anchors the protein in the mitochondrial 

membrane, the mitochondrial-associated ER membrane or the peroxisomes associated 

with the mitochondrial-associated ER (68, 71, 72). The transmembrane domain is, like 

the CARD-domain, vital for a functional signal transduction through IPS-1. Upon 
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interaction with an activated RIG-I or MDA5, IPS-1 oligomerizes and IPS-1 acts as a 

scaffold for a multiprotein complex. This complex leads to a coordinated activation of 

IRF3/7 and NFκB (figure 4).  

 

 

Figure 4. Activation of IFNβ transcription through the RLR pathway. Detection of foreign RNA by 
the RLRs MDA5 or RIG-I in the cytoplasmic compartment. The RLRs interact with the mitochondria-
bound molecule IPS-1. This activates a signaling cascade resulting in activation of the transcription factors 
IRF3/IRF7 and NFκB, which moves from the cytoplasm to the nucleus. The blue boxes represent the steps 
in the signal transduction after activation of IPS-1. In the nucleus, the transcription factors associate with 
their respective binding sites in the IFN promoter, leading to transcription of the IFN gene. When the IFN 
transcripts have been translated to proteins, the IFNs are released from the cell.  
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NFκB	activation	by	IPS‐1	

In activation of NFκB by IPS-1, IPS-1 binds TRADD which interacts with RIP1 in a 

complex with FADD through their shared death-domain (DD) (67, 73, 74). This complex 

is further associated with TRAF2 and/or TRAF6 (69). FADD interacts with caspase8 and 

caspase10, which are cleaved upon stimulation to act as positive stimulators (75). The 

signal is further transmitted through a duplex consisting of TANK and NEMO (also 

known as IKKγ) (76, 77). The TANK/NEMO is found in both the NFκB- and the IRF-

activating branch of IPS-1 signaling. In NFκB-activation, TANK/NEMO initiates the 

activation of IKKα and IKKβ. This in turn phosphorylates the inhibitory IκB subunit of 

the NFκB complex, releasing active NFκB that translocate to the nucleus (78). 

IRF	activation	by	IPS‐1	

The IRFs are a family of transcription factors consisting of nine members in mammals, 

IRF1 – IRF9 (79, 80). An additional member not found in mammals, IRF10, has been 

identified in chicken (81). The IRFs consist of a conserved N-terminal DNA-binding 

domain (DBD) that can recognize the IRF-binding element (IRF-E) binding site in the 

IFN promoters. The consensus sequence for the IRF-E, G(A)AAAG/C
T/CGAAAG/C

T/C, 

overlaps with the consensus sequence for ISRE, A/GNGAAANNGAAACT, which binds 

IRF9 in ISG promoters (82, 83). Orthologues of all IRF members have been found in fish 

genomes (84-86).  In fish, IRF1, IRF3 and IRF7 have been shown to be able to activate 

expression of IFNs and ISGs (87-90). 
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In activation of IRFs, IPS-1 binds TRAF3, and TRAF3 binds UXT-V1 (91, 92). 

This then interacts with TANK/NEMO, NAP1 and SINTBAD. Both NAP1 and 

SINTBAD can interact with both IKKε and TBK1 (93, 94). TBK1/IKKε are essential for 

phosphorylation of the transcription factors IRF3 and IRF7. The phosphorylation of IRFs 

by TBK1/IKKε promotes dimerization and translocation of the IRF dimer into the 

nucleus (95).  

Another key adaptor molecule acting as a scaffold for downstream signaling from 

RIG-I is STING (also known as MITA, ERIS and MPYS) (96-99). STING is only 

involved in RNA sensing downstream of RIG-I, not MDA5, whilst IPS-1 is involved in 

both RIG-I and MDA5 signaling (96). STING predominantly resides in the 

endoplasmatic reticulum (ER), but is also found in the mitochondrial membrane and even 

the plasma membrane (99). 

 

Positive	and	negative	regulators	of	the	RLR	pathway	

Prolonged or excessive activation of the RLR pathway will have deleterious effects on 

the host tissues, and in concurrence with this the induction of IFN by RLR is subject to 

stringent control by a wide range of regulators. Among these regulations we find 

modifications by protein-protein interactions and post-translational modifications, such as 

ubiquitination, ISGylation and SUMOylation (100-105). The previously discussed RLR 

LGP2 is one of the modifiers acting through protein-protein interactions. Other regulators 

acting through protein-protein interactions include splice variants of both IPS-1 and RIG-

I, the NLRX1 protein, Tetraspanin6, and dihydroacetone kinase (106-110).  
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The	RLR	signaling	pathway	‐	What	about	fish?	

Recently a number of studies in fish have identified functional orthologues of the central 

members of the RLR-signaling pathway. RIG-I, MDA5 and LGP2 have all been 

identified in fish, RIG-I in salmon, trout and cyprinids, MDA5 in trout, cyprinids and 

flounder, LGP2 in trout, cyprinids and flounder (111-116). The gene sequence for NOD2 

has been identified in several fish species (117). The zebrafish sequence of the negative 

regulator NLRX1 predicts that it will localize to the mitochondria, like its mammalian 

orthologue (118). Another negative regulator, a PIAS4 homologue, PIAS4a has been 

identified in zebrafish, where it acts as an inhibitor of IPS-1-mediated type I IFN 

induction (119). In mammals, the proteins belonging to the  PIAS family are known as 

regulators of the STAT-factors in JAK/STAT signaling downstream of IFN induction, 

and the zebrafish PIAS4a is the first PIAS molecule to be identified to be involved in 

negative regulation of IPS-1 mediated signaling (120). The mammalian PIAS2β has been 

proposed to positively regulate MDA5 by SUMOylation (102).  

Orthologues of all IRF members have been found in fish genomes (84-86).  In 

fish, IRF1, IRF3 and IRF7 have been shown to be able to activate expression of IFNs and 

ISGs (87-90). STING has been identified in carp, where it can mediate antiviral activity 

through induction of IRF3/7 (116). 
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Antiviral	proteins	induced	by	IFN		

Hundreds of different ISGs have been identified in humans by microarray and gene 

knockout studies (121, 122). Knock-out studies demonstrated the redundancy of the 

ISGs, as multiple knock-out mice were still able to establish a functional antiviral 

response. Taken together, the antiviral proteins induced by IFN are collectively able to 

inhibit virtually every step of the viral replication cycle (123). The different IFNs have 

their own ISG-profile, and some ISGs can even be induced directly by viruses without 

the presence of IFNs (124). Some ISGs are affecting a wide range of viruses, whilst 

others have a more targeted effect (125). Some of the best characterized antiviral ISGs 

that have also been found in fish are PKR, myxovirus resistance (Mx) proteins and 

ISG15. Also antiviral proteins specific to fish have been revealed, one of which is the 

protein kinase Z (PKZ).  

Mx proteins have broad antiviral activity against RNA viruses, and also confer 

protection against some DNA viruses. They were named after the ability to provide 

resistance against the orthomyxoviruses (126). Mx proteins are relatively well conserved 

among vertebrates. The Mx protein is a GTPase that can be present both in the nucleus 

and in the cytoplasm. The antiviral mechanism of Mx is not completely understood, and 

it is possible that the mechanism varies between different species. Mx from fish was first 

cloned from the common perch (127). In Atlantic salmon, three Mx encoding cDNAs 

have been identified (128). Salmon Mx has a cytoplasmic localization, and it has been 

shown that Atlantic salmon Mx1 has potent antiviral activity against IPNV (129).  
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ISG15 is an ubiquitin-like protein that is heavily induced upon type I IFN 

stimulation in mammals (130, 131). ISG15 is conjugated to target proteins by a process 

called ISGylation. ISGylation is a post-translational process that can modify the stability, 

function or localization of the targeted protein. The antiviral effect of ISG15 seems in 

many cases to be through competition with ubiquitin, where the ISGylation prevents 

ubiqutination of the target proteins. This is the case for the Gag protein from HIV-1 and 

for the VP40 protein of Ebola virus (132, 133). Also other viruses, like Sindbis virus and 

influenza B virus, are strongly inhibited by ISG15, but the specific target protein is not 

known (134, 135). In Atlantic salmon, ISG15 has been shown to be overexpressed after 

infectious salmon anemia virus (ISAV) infection, Salmon anemia virus (SAV) infection, 

and by dsRNA treatment (136, 137). Atlantic salmon ISG15 is able to interact with 

intracellular proteins and also with an ISAV protein. 

PKR is a dsRNA-dependent protein kinase involved in many cellular processes, 

including cell proliferation, cell growth, apoptosis and tumor suppression (138). Human 

PKR is constitutively expressed in most cells, and is activated by autophosphorylation 

when it interacts with dsRNA (139, 140). The best-characterized function of PKR is its 

ability to phosphorylate the eukaryotic initiation factor 2 (eIF-2α) (141). PKR has two 

regulatory dsRNA binding domains (dsRBD), and a kinase domain. Upon activation, 

PKR induces eIF-2α, resulting in a potent inhibition of protein synthesis (142). A wide 

range of viruses have developed different mechanisms to inhibit the activation of PKR 

upon infection (143-145). Several PKR-encoding genes have been identified in different 

fish species, where the number of dsRBD varies from one to three (146). It has been 
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shown that overexpression of PKR from flounder increases eIF-2α phosphorylation, and 

has antiviral effect (147).  

A PKR-like protein has also been identified in fish, but instead of the dsRBD 

found in PKR, the protein contains two Z-DNA-binding (Zα) domains (148-151). 

Atlantic salmon PKZ has been shown to be able to phosphorylate eIF-2α, indicating a 

similar role as the PKR (150). Gene conservation analysis indicates that fish PKR is more 

related to fish PKZ than to mammalian PKR (149). So far, PKZ has only been identified 

in fish species. 

 

Viral	evasion	of	IFN	immune	responses	

The mechanisms used by viruses to circumvent the IFN response can be divided into 

several categories. One of the mechanisms used is inhibition of cellular gene expression. 

This can be obtained by inhibition of transcription, RNA processing and inhibition of 

transcription and translation (152). Viruses specifically target pathways involved in IFN 

response, by viral proteins known as IFN antagonists. IFN antagonism most often targets 

the induction of IRFs, the JAK-STAT pathway or the PKR pathway. The antagonism can 

happen at any level of the signaling pathways, and some viral products can even inhibit 

several of the pathways, for instance respiratory syncytial virus NS1 and NS2 inhibit both 

IRF3 and STAT activation (123). 

Another strategy employed by viruses is to limit the viral PAMPs available for the 

host to recognize. The virus can also have a replication strategy that is insensitive to the 
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IFN effect. Multifunctional viral proteins with multiple antagonistic effects on the IFN 

system are not uncommon. A single viral protein can even target several distinctly 

different components of the same pathway. And a virus can display antagonistic effects 

on more than one of the pathways in the IFN immune response. 

Taken together, viruses have many potential targets in the IFN inductive pathway, 

and a single viral protein can have many functions in evading the immune response. In 

order for the host not to be overwhelmed by the viral smartness, the host needs to employ 

advanced strategies to combat the viral infection. The IFNs and the antiviral proteins 

induced by the IFN response have evolved as pivotal components in the viral combatting 

machinery of the host. The constant strain of viral infections have allowed for a co-

evolution of both viral and host genes in a constant standoff  between the virus trying to 

evade destruction by the immune system, and the hosts attempt to terminate the viral 

infection. 
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Figure 5. Members of the RLR signaling pathway that are targeted by viral IFN antagonistic 

proteins. The blue boxes groups viruses that have proteins antagonizing the same part of the RLR pathway. 

For an expansion of the abbreviations used for the viruses, see table 3. 
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Table 3 Antagonism of type I IFN induction by the RLR pathway 

Target Virus Genome References 

MDA5  Paramyxoviruses 

Poliovirus (PV) 

(‐)ssRNA

(+)ssRNA 

(153) 

(154) 

RIG‐I  Poliovirus (PV) 

Borna disease virus (BDV) 

Crimean Congo hemorrhagic fever virus (CCHFV) 

Hantaan virus (HTNV) 

Influenza A virus (FLUAV) 

Rabies virus (RABV) 

Respiratory syncytial virus (RSV) 

New world arenaviruses 

(+)ssRNA

(‐)ssRNA 

(‐)ssRNA 

(‐)ssRNA 

(‐)ssRNA 

(‐)ssRNA 

(‐)ssRNA 

(‐)ssRNA 

(155) 

(156) 

(156) 

(156) 

(157) 

(158) 

(159) 

(160) 

IPS‐1  Hepatitis C virus (HCV) 

GB virus B (GBV‐B) 

Hepatitis A virus  (HAV) 

Hepatitis B virus (HBV) 

Infectious spleen and kidney necrosis virus (ISKNV) 

(+)ssRNA

(+)ssRNA 

(+)ssRNA 

dsDNA 

dsDNA 

(161) 

(162) 

(163) 

(164) 

(165) 

TBK1/ 

IRFs 

NY‐1 hantavirus (NY‐1V) 

Hepatitis C virus (HCV) 

SARS coronavirus (SARS) 

Murine hepatitis virus (MHV) 

Human papillomavirus 16 (HPV‐16) 

Kaposi sarcoma‐associated herpesvirus (KSHV) 

Epstein‐Barr virus (EBV) 

Bovine herpesvirus 1 (BoHV‐1) 

Ebolavirus 

Borna disease virus (BDV) 

Vaccinia virus (VACV) 

(‐)ssRNA

(+)ssRNA 

(+)ssRNA 

(+)ssRNA 

dsDNA 

dsDNA 

dsDNA 

dsDNA 

(‐)ssRNA 

(‐)ssRNA 

dsDNA 

(166) 

(167) 

(168) 

(169) 

(170) 

(171) (172) 

(173) (174) 

(175) 

(176, 177) 

(178) 

(179) 

Multiple  

targets 

Rotavirus 

Classical swine fever virus (CSFV) 

dsRNA

(+)ssRNA 

(180‐184) 

(185, 186) 
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Antagonism	on	induction	of	type	I	IFN	–	the	RLR	pathway	

Table 3 lists viruses with antagonistic effects on the RLR pathway. The viral proteins 

utilize a range of different strategies in preventing the mounting of a successful IFN 

response. Paramyxovirus protein V binds MDA5, thereby inhibiting interaction with IPS-

1, whilst the poliovirus promotes degradation of MDA5 (153, 154). When it comes to 

RIG-I, four viruses seem to hide or protect its viral RNA genome from being detected by 

RIG-I (156, 158). Influenza A NS1 inhibits RIG-I from being activated by ubiquitination. 

The poliovirus 3Cpro protein cleaves RIG-I, whilst the respiratory syncytial virus NS2 

and the New World areanavirus Z protein both bind RIG-I (155, 157, 159, 160).  

Antagonism on IPS-1 was first identified shortly after the identification of IPS-1, 

when the cleavage of IPS-1 by the viral protease NS3/4A was shown to suppress the 

induction of IFNβ (161). The viral NS3/4A protease of the GB virus B, a virus related to 

hepatitis C virus, is also able to cleave IPS-1 (162). Also the protease precursor 3ABC 

from hepatitis A virus cleaves IPS-1 (163). Hepatitis B virus HBx protein also targets 

IPS-1. HBx promotes ubiquitination of IPS-1, targeting it for proteasomal degradation 

(164).  

Many different viruses target the IRFs, either directly or indirectly. The SARS 

coronavirus M protein, the NY-1 hantavirus Gn protein and the hepatitis C virus NS3 all 

binds TBK1 or other members of the TBK1 signaling complex. This prevents TBK1 from 

phosphorylation of the IRFs (166-168). Both the Borna disease virus with its P protein 

and the Kaposi sarcoma-associated herpesvirus with ORF45 provide viral proteins as 

alternative substrates for phosphorylation by the TBK1/IKKε complex, limiting 



28 

 

phosphorylation of IRFs (171, 178). Viral proteins from three different viruses have been 

shown to bind IRF7, the Epstein-Barr virus BZLF-1, the bovine herpesvirus 1 blCP0 and 

the Ebolavirus VP35. In addition to inhibiting IRF7, blCP0 can also degrade IRF3. The 

VP35  inhibits IRF7 by exploiting the host SUMOylation machinery, by interacting with 

IRF7, a host SUMO E2 enzyme and E3 ligase together, it enhances SUMOylation of 

IRF7 (176). The inhibition of IRF7 by VP35 is specific for the RLR pathway, and has no 

effect on the TLR mediated induction of IFN (177). Human papillomavirus 16 E6 protein 

and Epstein-Barr virus BGLF4 inhibits IFN production by binding IRF3 (170, 173). The 

Murine hepatitis virus NS3 protein has deubiquitinase activity, and functions by 

deubiquitinating IRF3, preventing it from being able to enter the nucleus (169). 

The targeting of the host DDX3 protein by the vaccinia virus K7R protein 

revealed that the DDX3 is part of the TBK1/IKKε complex (179). The interaction of K7R 

with DDX3 prevented activation of IRF3 by TBK1/IKKε. Finally for the inhibition on 

the IRFs, the Kaposi sarcoma-associated herpesvirus LANA-1 protein binds IRF-E in the 

IFNβ promoter, outcompeting the binding of IRF3 (171). The Kaposi sarcoma-associated 

herpesvirus thus has two different proteins using two different strategies in inhibiting the 

same part of the RLR pathway. 

The classical swine fever virus Npro targets both the IRF and the NFκB branch of 

the RLR pathway. Npro promotes proteasomal degradation of IRF3, thereby inhibiting 

IFN production.  It can also bind IκBα, however the significance of this interaction is not 

clear (185). Rotavirus NSP1 protein targets multiple steps of the RLR pathway. It 

promotes proteasomal degradation of IRFs (180-182). It also promotes proteasomal 
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degradation of a subunit of the ubiquitin E3 ligase responsible for ubiquitination of IκBα, 

a ubiquitination necessary for the release of NFκB (183). NSP1 is also a down-regulator 

of RIG-I in a proteasome-independent manner (184). 

Of the IFN antagonistic proteins targeting the RLR pathway identified so far, one 

has been identified in a fish pathogen. The Infectious spleen and kidney necrosis virus 

(ISKNV) ORFIIIL protein is a TRAF protein that can replace the cell’s TRAF2 or 

TRAF3 proteins in interaction with TRADD (165). 

In addition to finding viral antagonistic proteins with multiple targets in the RLR 

pathway listed in table 3, some of the viral proteins with antagonistic effects on the RLR 

pathway are also antagonistic on other parts of the IFN system.  The Influenza virus NS1 

protein is for instance well known for its antagonistic properties both in IFN induction 

through blocking RIG-I activation, and in directly inhibiting antiviral proteins such as 

PKR and OAS/RNaseL. NS1 also inhibits export of mRNA from the nucleus (187). The 

NS3/4A from Hepatitis C virus in addition to cleaving IPS-1 also cleaves TRIF, a signal 

mediator in the TLR3/TLR22 mediated activation of IFN (188). 

So far, virtually every step in the RLR signaling cascade has been identified as a 

target for viral antagonism. Some viruses targets the main members of the signaling 

cascade, but also targeting the more peripheral modifiers of the RLR cascade is a 

frequently used antagonistic property. 
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Infectious	pancreatic	necrosis	virus	

Infectious pancreatic necrosis virus (IPNV) is the causative agent of infectious pancreatic 

necrosis (IPN), one of the most common viral diseases of farmed salmonids worldwide. 

IPN as a disease infecting salmonids has been known since the 1940s (189). In 1955, it 

was established that the disease was caused by a virus, and the disease was named IPN 

based on the lesions observed on the pancreas (190). It was the first fish virus isolated 

and characterized in cell culture (191). 

Susceptibility and pathogenesis may vary greatly dependent on the host infected, 

the virus strain and the environmental conditions (192). IPNV has a wide host range, and 

has been identified in more than 80 different species including shellfish, and a wide range 

of marine and freshwater fish species (193). Most of the organisms show no sign of 

disease after infection with IPNV. 

IPNV causes mortality in Atlantic salmon juveniles during the hatchery period 

and on postsmolts shortly after transfer to the sea, resulting in substantial losses for the 

salmon farming industry (192). Vaccines are commercially available (194), but do not 

appear to provide a high level of protection. The numbers of outbreaks and losses due to 

IPN have been high over many years despite the fact that the majority of farmed Atlantic 

salmons in Norway have been vaccinated against IPNV (1, 195). A well-known feature 

of IPNV is its ability to establish a carrier state in salmonids, which makes it difficult to 

remove the virus from affected fish stocks. The impact of the IPNV carrier state on the 

health status of salmon is still unknown. Recent years there has been a decline in the 

number of IPN outbreaks in Norway that may in part be contributed to the expanding use 
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of fish with increased resistance to infection, so called quantitative trait loci (QTL)-fish 

(1, 196, 197). Elucidation of the molecular mechanisms underlying the infectivity of 

IPNV is important to further understand its pathogenic properties.  At present, the 

selective breeding of QTL-fish might seems to be a successful method to combat the 

problems of IPNV infection, but the selection of one trait could cause the loss of other 

traits. A too homogenous population might also be less suited to deal with potential new 

emerging viral diseases currently not present in the IPN problem areas.  

IPNV is an aquatic dsRNA virus belonging to the genus Aquabirnavirus of the 

Birnaviridae family. Birnaviruses are non-enveloped, single-shelled icosahedrical RNA 

viruses with a genome consisting of two segments dsRNA (198-200). Infectious bursal 

disease virus is the most extensively studied virus of the Birnaviridae family. It causes 

immunosuppression in infected birds by specifically targeting B-cells in the immune 

organ bursa for destruction (201). 



32 

 

 

Figure 6. IPNV. A. IPNV is a virus about 60 nm in diameter. The virus has no outer membrane, and 
consists of an icosahedral capsid of 60-70 nm protecting the dsRNA genome. B. The two genomic 
segments encode five proteins. The polyprotein encoded by segment A is cotranslationally cleaved by the 
cis-acting viral protease VP4 to yield VP4, and the structural proteins VP3 and preVP2. A separate reading 
frame of segment A encodes the non-structural protein VP5. Segment B encodes the viral RNA-dependent 
RNA polymerase.  

 

The IPNV genome consists of two double-stranded (ds) RNA segments, packed in 

a non-enveloped single-shelled icosahedral capsid (198-200) (figure 6). The genome 

encodes five proteins termed VP1, VP2, VP3, VP4 and VP5 depending on the size. 

Segment B encodes VP1, which is a 94 kDa RNA dependent RNA polymerase (RdRp) 

found both in a free and a genome-linked form in the virion (202). The genome-linked 



33 

 

form of VP1 is covalently linked to both genome segments at the 5’ end by a 

phosphodiester bond (202). The rest of the viral genes are located on segment A, where 

the VP2 (51 kDa), VP4 (24 kDa) and VP3 (27 kDa) are encoded as a polyprotein, whilst 

VP5 is encoded in a second overlapping ORF. The polyprotein is co-translationally 

cleaved into the separate viral proteins by VP4, which is a serine-lysine protease (203, 

204). The site of the lysine general base, K674, and the reactive serine residue, S633, are 

vital for the protease activity (205). The crystal structure of VP4 identified the substrate 

binding pockets and other substrate-VP4 interactions (206). VP2 is released from the 

polyprotein as a preprotein, and is further processed to yield the mature outer capsid 

protein VP2.  Neutralizing antibodies against IPNV are mainly targeting the variable 

region and C-terminal end of VP2 (207). VP3 is a structural protein found in the inner 

surface of the viral capsid. VP3 has been shown to interact with VP1 and also with 

double-stranded RNA (208). ). Segment A contains a small overlapping ORF encoding 

VP5 is encoded by ORF in segment A overlapping the ORF of the polyprotein. It is a 

non-structural protein. The role of VP5 is yet undefined, and the previously proposed 

anti-apoptotic function is disputed as recombinant viruses deficient in VP5 expression 

has been shown to induce apoptosis to a similar degree as viruses encoding full-length 

and truncated forms of VP5 (209, 210). The size of VP5 may vary depending on the 

isolate, but some isolates lack the VP5 reading-frame altogether (211, 212). 

Unlike DNA viruses, which for a large part rely on the host polymerases for 

replication, dsRNA viruses harbor their own RNA-dependent RNA polymerase (RdRp). 

For most dsRNA viruses, replication is monocistronic. After the viral particle is 

internalized in the cell, the genomic dsRNA is transcribed to mRNA shed from the virus 
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particle. The viral mRNA serves as the basis for both translation and replication. To 

avoid detection by the host antiviral machinery, many dsRNA viruses are replicating their 

genome inside the viral capsids (213).  

IPNV enters cells through receptor-mediated endocytosis (214-216). The 

molecule responsible for cell attachment has not been identified, but is proposed to be 

VP2 (217). The replication cycle of IPNV takes place in the cytoplasm, and takes about 

24 h at 15°C (218).  At cell entry, the virus can immediately start the replication cycle, as 

the viral RdRp is active without any proteolytic alterations (219).  During the replication 

cycle, two different viral particles are formed. First an uninfective, immature viral 

particle is formed, whilst an infective mature virion can be detected at a later timepoint 

(220). The majority of viral RNA in an infective cycle is not associated with viral 

particles, but rather with a viral ribonucleoprotein complex which mainly contains viral 

RNA species and VP1 (221). Of the IPNV-encoded proteins, only VP1 could be detected 

in the immature particle, although trace amounts of other proteins could be present 

without being detected. At early timepoints, only negative strand RNA is present, this 

likely reflects that the negative strand is synthesized first and used as a template for the 

synthesis of the positive strand. The positive strand is synthesized by a semi-conservative 

strand-displacement mechanism primed by the viral VP1, while the mechanism of 

synthesis of the negative-strand is unknown (202, 222).  VP3 synthesis can be detected at 

6 hours post infection, and VP2 after 8 hours. Early in the infection cycle it appears that 

VP2 and VP3 are synthesized in free polyribosomes, and when the majority of viral RNA 

has been synthesized, assembly of the viral particle takes place near the nucleus of the 

cell (223).  
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There are multiple strains of IPNV. The strains can be divided into nine subtypes 

in serogroup A and one in serogroup B (224). The subtypes display markedly different 

virulence (225). Comparison of isolates from the strains shows that the viral genome 

contains hyper variable regions (HVR) in the VP2 gene, and these regions are associated 

with pathogenicity. The HVR can be recognized by neutralizing antibodies, and the VP2 

has been targeted for vaccine development (207, 226-228). Comparing sequences of 

IPNV from disease outbreaks shows that IPNV exists as mixed populations with 

differences in amino acid positions 217, 221 and 247 of VP2. There are four common 

combinations of amino acids in these positions, TAT, TTT, PAA and PTA. It has been 

shown that the different amino acid combinations play an important role for 

immunogenicity of IPNV vaccines, where the vaccines based on the virulent strains 

displaying the TAT-motif give a higher response in virus neutralization assays, ELISA 

antibody titers and less pathological signs in vaccinated fish after challenge (229). 

Development of new live vaccines based on the virulent phenotypes displaying the TAT 

motif in VP2 could be promising, and would lessen some of the concerns of the possible 

over-dependency of the use of QTL-fish. 

 

IFN	antagonism	by	IPNV	

IPNV is sensitive to the antiviral action of IFN, as demonstrated by the efficient 

inhibition of virus growth in cell cultures pretreated with exogenous IFNa1 (14). In 

addition to the antagonistic effects by IPNV in the IFN system prior to transcription of 

IFN, antagonistic effects downstream of IFN induction have also been demonstrated. If 
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IFN treatment succeeds IPNV infection, IPNV is able to inhibit IFN signaling in the cells 

(230-232). The induction of transcription of ISGs by administration of exogenous IFN to 

cells is down-regulated by the IPN virus. Also, the salmon Mx protein have been shown 

to directly inhibit viral protein synthesis (129). The viral and host proteins directly 

involved in these actions have yet to be determined. Screening attempts in a yeast two-

hybrid assay did not show any positive interactions between the IPNV proteins and one 

of the Atlantic salmon STAT1 isotypes (233). 
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Aims	of	study	

The purpose of this project was to study the regulation of the Atlantic salmon type I IFN 

system with special focus on IFNa and viral antagonism by IPNV. 

The major aims were  

- to study the promoter regions of the IFNa1 and a2 genes 

- to study the cytoplasmic IFNa induction pathway 

- to study the IPNV antagonism on IFNa induction 

General	summary	(of	papers)	

Paper	I	

Promoters	of	type	I	interferon	genes	from	Atlantic	salmon	contain	two	main	
regulatory	regions	

In paper I we cloned the promoter regions from two type I IFN genes from Atlantic 

salmon. Both genes contained two promoter regions, and had the potential to encode IFN 

transcripts with either a long or a short 5’-untranslated regions, apparently controlled by 

two distinct promoter regions. The distal promoter regions contained IRF binding sites 

and a putative ATF-2/c-Jun element. The proximal promoter region contained a TATA-

box, two IRF binding sites and a putative NFκB binding site. Both complete and several 

truncated promoter constructs were fused to a gene encoding firefly luciferase as a 

reporter. The different promoter reporter constructs were analyzed for activity in 

salmonid cell lines. Constructs containing the distal promoter were only poorly inducible 

by the synthetic dsRNA poly (I:C). The proximal promoter was highly inducible by poly 
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(I:C), and the induction was apparently NFκB -dependent. We concluded that the 

proximal promoter is the main promoter region in inducing transcription of the examined 

IFNs in Atlantic salmon. IPNV and ISAV were tested for their ability to induce the 

proximal promoter, and only ISAV were able to induce transcription before the cells died 

from the infection.  

Paper	II	

Atlantic	salmon	IPS‐1	mediates	induction	of	IFNa1	and	activation	of	NF‐
kappaB	and	localizes	to	mitochondria	

RLR being identified as the main type I IFN inducing pathway in most cells of higher 

vertebrates, we wanted to examine whether it was also present in Atlantic salmon. A 

putative IPS-1 homologue from Atlantic salmon, AsIPS-1, was cloned and characterized. 

The AsIPS-1 had a relative low amino acid sequence identity to the described 

mammalian counterparts, only 18% identity to human IPS-1, but it contained the same 

characteristic domain structure found in mammalian IPS-1; a CARD-domain, a proline-

rich region and a transmembrane domain. Functional studies showed that AsIPS-1 was 

expressed in all examined tissues, and overexpression of AsIPS-1 in cell culture induced 

an antiviral state. Deletion of either the CARD-domain or transmembrane domain 

abolished the induction of an antiviral state, and also only the full length protein was able 

to induce the IFNa1 promoter and an NF-κB binding promoter. Taken together, we 

identified AsIPS-1 as the Atlantic salmon IPS-1 homologue, with comparable functions 

to the mammalian IPS-1. 
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Paper	III	

Infectious	Pancreatic	Necrosis	Virus	Proteins	VP2,	VP3,	VP4	and	VP5	
Antagonize	IFNa1	Promoter	Activation	while	VP1	induces	IFNa1	

Using the tools obtained in the previous studies, we wanted to identify possible IFN 

antagonistic genes in infectious pancreatic necrosis virus (IPNV). Among the many 

microbial threats to fish, IPNV is one of the major viral pathogens causing disease in the 

aquaculture industry worldwide. The IPNV is highly sensitive to IFNa, yet cannot mount 

an efficient IFNa response in infected cells. It was therefore very relevant to study the 

effect the separate IPN proteins had on IFNa induction. In paper III we show that several 

of the IPN proteins have powerful IFN antagonistic properties. Each of the separate IPNV 

genes cloned into an expression vector were tested for the ability to influence activation 

of the Atlantic salmon IFNa promoter or an NFκB-driven promoter mediated by the 

Atlantic salmon IPS-1 or interferon regulatory factors (IRF). This showed that preVP2, 

VP3 and VP5 have antagonistic effects on the activation of both promoters, whilst VP4 

only had antagonistic effects on the IFNa promoter. The viral protease VP4 was the most 

potent inhibitor of IFN induction apparently targeting the IRF1 and IRF3 branch of the 

signaling cascade. The antagonism of VP4 is independent of the protease activity since 

the catalytically dead mutant VP4K674A inhibited activation of the IFNa1 promoter to a 

similar extent as wild type VP4. In contrast to the other IPNV proteins, the viral RNA-

dependent RNA polymerase, VP1 activated the IFNa promoter in absence of the 

antagonistic viral proteins. VP1 also showed synergistic effects with IRF1 and IRF3 in 

inducing an IFNa-dependent antiviral state in cells. Taken together these results suggest 
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that IPNV has developed multiple IFN antagonistic properties to prevent IFN-induction 

by VP1 and IPNV’s dsRNA genome. 
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General	discussion	

The results are discussed in detail in the respective papers. Here some selected topics are 

further discussed, especially for the two first papers where new insight in the field has 

emerged after publication.  

 

Governing	the	IFN	production	–IFN	promoter	elements	

The research in paper I focus on characterizing the IFNa1/a2 promoters. Previous studies 

where IFN cDNA from Atlantic salmon was cloned, had shown that several transcript 

variants of IFNa existed, some containing a long 5’-UTR, some with a short 5’-UTR 

(14). These genes were classified as type I IFN genes based on that they were acid stable, 

could be induced by viral infection, had antiviral activity, and shared sequence 

similarities with other type I IFNs. In the initial studies, the Atlantic salmon IFNa was 

termed SasaIFNα due to similarities with the mammalian IFNα in a BLASTX analysis, 

and the presence of a cysteine residue as the first amino acid in the putative mature 

protein, similar to the mammalian IFNα (14). Also similarities with human IFNβ were 

present, and like IFNβ, the Atlantic salmon sequences contained mRNA destabilization 

elements in the 3’-UTR region of the cDNAs (14). The small cDNA was named 

SasaIFNα1 and the large SasaIFNα2.   

In paper I, the promoter regions of SasaIFNα1 and SasaIFNα2 were cloned from 

bacterial artificial chromosome (BAC) clones. It was initially thought that SasaIFNα1 

only existed as a short transcript and 2 only as a long transcript. However, the promoter 

sequences of the two genes suggested that both genes had the potential to produce 
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transcripts with both a short and a long 5’-UTR. The promoter regions from both genes 

have both a proximal and a distal promoter region, where the proximal promoter region 

includes position -202 to +26 relative to the SasaIFN-A1 transcription start site. This 

region was determined to be the main control region, as experiments with the distal 

promoter region showed that it was hardly inducible by the synthetic dsRNA poly(I:C) 

used to mimic a viral infection. The minimal promoter region of the proximal promoter 

was highly inducible.   

In mammals, the main difference of the promoter region of IFNα and IFNβ is the 

presence or absence of an NFκB-binding element. The IFNβ promoter contains an NFκB-

binding element essential for an immediate early response to viral infection (234, 235). 

The IFNα promoter contains no NFκB-binding element, but has multiple IRF binding 

sites, and is generally induced at a later timepoint than IFNβ. The structure of the 

proximal promoter region PR-I for both SasaIFNα1 and SasaIFNα2 and the sensitivity of 

PR-I to NFκB inhibitors, suggests that they have the capacity to govern an immediate 

early response, and that their induction properties are more related to the mammalian 

IFNβ. The long transcript produced from the distal promoter region PR-II was mainly 

present in lymphoid tissue, as the transcript levels in TO cells were very low compared 

with the transcript levels previously seen in head kidney (14). It is possible that the 

distinct PR-II responds to other stimuli than poly (I:C).  

The presence of mRNA transcript variants of different length of the same IFN 

gene has been found in Atlantic salmon, zebrafish, channel catfish and rainbow trout 

(Paper I, (236-238)). It has been speculated that the long transcripts from Atlantic 
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salmon, channel catfish and rainbow trout that lack a classical signal peptide might be a 

way of diversifying the IFN functions, but more studies are needed to examine this 

possibility (239). 

It has after publication of paper I been established that Atlantic salmon has 

additional IFN genes. The SasaIFNα1 is present in a multigene cluster with seven other 

IFN genes (25). As the salmon IFNs were found not to be orthologues of the mammalian 

IFNs, the salmon IFNs were given a new nomenclature (25). The former salmon IFNα1 

and IFNα2 are now called IFNa1 and IFNa2. The other IFNs identified were classified 

based on sequence and expression properties. In Atlantic salmon at least 13 different type 

I IFNs exist. The fish type I IFNs can be subdivided into at least four different classes, 

termed IFNa, IFNb, IFNc and IFNd based on phylogenetic relationships (24). They can 

also be separated in two groups according to the presence of two or four cysteins (240). 

IFNa and IFNd contain 2 cysteins (2C IFNs) while IFNb and IFNc contain 4 cysteins (4C 

IFNs) (26). So far, Atlantic salmon is the only fish species where IFNs of all subtypes has 

been identified (24, 25). Like the mammalian IFNs, fish IFN genes can be found in 

multiple copies linked in the genome. The classes of IFNs present, and the number of 

copies of IFN genes can vary extensively depending on the fish species (239).  The 

Atlantic salmon IFNs differ in promoter structure, where only the IFNa genes have an 

NFκB-binding site flanked by two IRF binding sites, characteristic of the immediate early 

mammalian IFNs induced by the RNA-binding pattern recognition receptors (PRRs) 

RIG-I/MDA5 and TLR3 (Paper I, (25)).  
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The	RLR	pathway	in	Atlantic	salmon	

In 2005, four separate groups identified IPS-1 (also known as MAVS/VISA/Cardif) in 

mammals as a key adaptor protein leading to IFNβ-induction by activating IRF3 and 

NFκB (67-70). Overexpression of IPS-1 triggered an antiviral state without further 

stimuli. In paper II we describe the cloning and characterization of an IPS-1-like 

molecule from Atlantic salmon. The Atlantic salmon (As) IPS-1 showed only 18% amino 

acid identity with the human IPS-1, and a multiple alignment analysis of putative IPS-1 

genes from a range of different species showed that the amino acid identity was low, 

ranging from 22% for green spotted pufferfish to as little as 14% identity with chicken 

IPS-1.  

Even though the amino acid identity with mammalian IPS-1 was low, AsIPS-1 

contained all three characteristic domains found in mammalian IPS-1, the CARD-

domain, a proline-rich region and a transmembrane (TM) domain was identified. The 

most conserved region of the protein was found in the CARD domain, with 25 – 43% 

amino acid identity to the other species. In co-transfection assays, we found that AsIPS-1 

was able to stimulate the minimal Atlantic salmon IFNa1 promoter studied in paper I. 

Deletion of either the CARD-domain or the TM abolished the promoter activation. 

AsIPS-1 could, like the mammalian IPS-1, activate NFκB. Transfection of a Chinook 

salmon-derived cell line (CHSE214) with the AsIPS-1 mediated antiviral activity against 

IPNV, this in accordance with the results showing antiviral activity of overexpressed IPS-

1 in mammalian studies. Adding a neutralizing antibody against IFNa reduced the 

antiviral potential of the transfected AsIPS-1. The cells still retained some resistance to 
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the viral infection even in the presence of the IFNa antibody. This might be an artifact of 

the method used, where the transfected cells will continue to produce IFNs due to the 

overexpression of IPS-1. Other possibilities are that it reflects the presence of other IFNs. 

Another potential reason is that the overexpressed IPS-1 might induce antiviral genes 

directly, without the need of the presence of IFN. The discovery of peroxisome-anchored 

IPS-1 in mammals that can directly induce the expression of the antiviral ISG viperin 

provides the rationale for this possibility (72). 

The same year as paper II was published, another paper concerning fish IPS-1 was 

published, where IPS-1 orthologues from Atlantic salmon, zebrafish and cyprinids were 

cloned (111). This paper also showed antiviral activity of overexpressed IPS-1 in cell 

lines against several RNA viruses of the rhabdoviridae family and also a DNA virus of 

the iridoviridae family. Almost complete inhibition of the negative-stranded RNA virus 

replication was observed, and a marked decline in CPE caused by the dsDNA virus. 

They also cloned RIG-I and demonstrated its involvement in induction of IFN. Taken 

together, the results from paper II and Biacchesi et al were the first to demonstrate that 

IPS-1 plays similar roles in fish and mammals, and despite the sequence divergence, the 

function is conserved. These findings further supports that IFNa has similar roles as 

IFNβ. 
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IFN	antagonism	by	IPNV	

Considering the wide host range and the abundant and widespread distribution of IPNV, 

the most likely counter-measure to fight the disease in the salmon aquaculture industry is 

to develop efficient vaccines against the disease. So far, despite the extensive use of 

vaccination in Norway, IPNV remains responsible for large losses every year. As one of 

the main functions of the IFN system is to fight viral infections, we wanted to investigate 

the interaction between IPNV and the induction of IFNa. The cloning and 

characterization of the Atlantic salmon IRF transcription factors provided an additional 

tool for studying the IFN induction pathway (87, 241). In mammals it was recently shown 

that IPS-1 can also be found on the surface of peroxisomes. It seems that this peroxisomal 

localization can induce ISGs directly by activation of IRF1, whilst the mitochondrial 

localization activates IRF3, leading to induction of type I IFNs (72). In Atlantic salmon, 

it seems that IRF3 is the main regulator of IFNa induction, but also IRF1 and IRF7  are 

potent activators of the IFNa1 promoter (87).  

In paper III, we found that four out of five genes from IPNV could antagonize the 

induction of IFNa. The most potent antagonist was the viral protease VP4. VP4 was also 

the viral protein with the most specific effect on the RLR signaling cascade, acting on the 

IRF branch and not the NFκB branch. A schematic overview of the results obtained in 

paper III is shown in figure 7. We did not succeed in finding the specific molecular 

mechanism underlying the antagonistic effects observed, and this would be an interesting 

topic for further studies. Especially looking into the modifications by the avian birnavirus 

VP4 on the GILZ-protein could be an interesting candidate for further studies on IPNV 
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VP4 (242). However, the complexity of the RLR-mediated signaling cascade makes the 

identification of the specific proteins difficult, as far from all the proteins identified as 

members of the RLR signaling cascade have been identified in Atlantic salmon. And not 

only the central members of the signaling cascade, but also the positive and negative 

regulators of the signaling members, are possible targets of viral IFN-antagonism. 

 

Figure 7. Proposed model of IPNV proteins’ effect on RLR pathway in activation of the IFNa 
promoter. Summary of the results from paper III. IPNV VP2, VP3 and VP5 antagonize both the IRF and 
the NFκB branch of the RLR pathway, whilst VP4 acts specifically on the IRF part of the pathway. VP1 on 
the other hand can be recognized by the RLRs, resulting in an activation of the IFNa promoter. 

  

The inhibitory effects observed for VP2, VP3 and VP5 seemed to be of a more 

general nature than that of VP4, negating induction of both the IFN promoter and an 
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NFκB-driven promoter. The structural protein VP3 has previously been shown to interact 

with dsRNA, and also to bind to the viral RdRp VP1, potentially mechanisms to hide the 

viral RNA from detection (208). No consistent impact was observed on the levels of the 

transfection control gene used, Renilla luciferase, so the inhibition seemed not to be a 

general decline in cellular transcription and translation. The RdRp VP1 could by itself 

trigger the activation of the IFNa1 promoter construct used, providing a rationale for the 

necessity of the powerful IFN antagonistic properties observed by the other viral proteins. 

Concluding	remarks	and	future	perspectives		

The IFN system is highly complex, with a multitude of different receptors and 

intermingling signaling pathways resulting in the activation of different – or the same – 

IFN. The different IFNs involved in antiviral activity have somewhat separate but very 

powerful antiviral profiles. The presence of a multitude of different IFNs have been 

proposed to be due to two different reasons, that they have different properties and that 

they are produced at different times and places (243). In addition to that, it is possible that 

the IFNs reflect the redundancy in induction pathways and in antiviral protein profiles 

that may have co-evolved with viral disease to make it harder for viral antagonistic 

mechanisms to negate the antiviral response, or the different responses may have adapted 

to specifically combat different viral pathogens. When one part of the interferon system is 

attacked and brought down by a virus, another part might be ready to take its place. 

It has been shown that IFNa, IFNb, IFNc and IFNd show differences in that they 

are induced in different cells, by different stimuli, in different organs and in different 
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amounts (26). In such a perspective, the characterization of the other IFN promoters 

would be a very interesting topic for further studies.  

The presentation of the establishment of an antiviral state as a linear process is a 

highly simplified version. In reality multiple feedback mechanisms and loops in the 

presented pathways exist. It is possible for ISGs to be induced directly by infecting 

viruses, and the ISGs and IFNs have negative feedback regulatory mechanisms. An 

excessively elevated level of IFN induction can have deleterious effects on the organism, 

so a tight and carefully adjusted control regime is expected. 

Our and other studies have found that IFNa from Atlantic salmon has functional 

similarities with the mammalian IFNβ. This considering antiviral activity, what cell-types 

are expressing IFNa and the signaling pathway leading to induction of IFNa expression. 

Even if the IFNs from fish and mammals are not evolutionary orthologues, the co-

evolution of IFNs with similar induction pathways and antiviral properties shows the 

importance of the IFN system as a countermeasure for viral infections. 

Studying viral-host interactions on the level of specific protein-protein interactions might 

potentially also reveal host proteins previously unknown to be involved in innate 

immunity.  

  



50 

 

The IFN promoter constructs from Atlantic salmon along with the expression 

constructs for the proteins involved in IFN induction provide tools to further elucidate 

potential and specific antagonistic properties of fish pathogenic viruses. Knowing more 

about the host-virus relationship for each virus will lead to better understanding of viral 

disease. 

	

Main	conclusions		

- The promoter structure of IFNa1/2 is reminiscent of the promoter structure of 

human IFNβ. 

- Members of the signaling pathway leading to type I IFN induction are conserved 

through evolution. 

- IFNa is induced through the RLR-mediated pathway with the conserved central 

adaptor IPS-1. 

- Most of the IPNV proteins have IFN-antagonistic properties, where VP4 is the 

most potent antagonist on the RLR-mediated pathway. 

- The IFN reporter construct along with the members of the signaling pathway can 

be used for initial testing of antagonism in other viruses. 
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