Sharing is caring – kunnskap som et kollektivt gode

En teoretisk analyse av forretningsmodeller for Open Access-publisering i tosidige markeder

Johanne Gimsøy Johnsen
Stine Marlen Kronstad
Masteroppgave i økonomi og administrasjon - mai 2014
Forord

Denne oppgaven representerer siste del av masterstudiet i økonomi og administrasjon og mange fine, lærerike år ved Handelshøgskolen.

Vi har gjennom vår tid som studenter ved Handelshøgskolen hatt flere lærerike og utfordrende emner, men vi har funnet emnene om næringsøkonomi spesielt interessant. Valget om tema for masteroppgaven falt derfor naturlig på dette fagområdet. Etter forslag fra veileder ble vi oppmerksomme på debatten rundt vitenskapelig publisering og open access, og at denne debatten kunne belyses ved bruk av tosidige markedsmodeller. Som resultat av research på feltet fant vi ut at dette var et interessant og viktig problem. I løpet av studieårene har vi flittig benyttet artikler i forbindelse med eksamenslesing og semesteroppgaver og vi har tatt tilgangen til disse artikkene som en selvfølge. Vi utfordret derfor oss selv til å velge en slik analyse av tosidige markeder, selv om dette i grunn ikke var noe vi hadde vært innom i noen av emnene pensum.

Vi vil derfor rette en stor takk til vår veileder professor Jan Yngve Sand for hjelp til valg av tema, men også for hans kunnskap, innsikt, tid, konstruktive tilbakemeldinger og våre interessante diskusjoner. Arbeidet med oppgaven ville uten hans hjelp blitt en mye større utfordring.

Tromsø, 29.05.14

Johanne Gimsøy Johnsen Stine Marlen Kronstad
Sammendrag

Publisering av vitenskapelige artikler er svært viktig for det vitenskapelige miljøet og samfunnet for øvrig siden kunnskap er et kollektivt gode. Dagens publiseringsmodell har det siste tiåret høstet mye kritikk, og både forskere og myndigheter verden over har begynt å se etter en ny og mer rettferdig modell. Kritikken retter seg hovedsakelig mot at den eksisterende publiseringsmodellen favoriserer de store forlagene og lar bibliotekene, forfatterne og leserne betale prisen for at forlagene ønsker å tjene høy profitt.

Publisering av vitenskapelige artikler kan karakteriseres som et tosidig marked, hvor journalen fungerer som en plattform som knytter forfattere og lesere sammen. Teorien rundt tosidige markeder kan derfor benyttes for å belyse problematikken knyttet til OA og publisering av vitenskapelige artikler.

Med utgangspunkt i tidligere forsking og teori, undersøker vi om det finnes en bærekraftig forretningsmodell for åpen publisering av vitenskapelige artikler som løser disse problemene. Vi belyser med bakgrunn i dette følgende problemstilling:

“Hva kan være en bærekraftig forretningsmodell for åpen publisering av vitenskapelige artikler i tosidige markeder?”

Vi tar utgangspunkt i to modeller for vitenskapelig publisering i tosidige markeder. Den første artikkelen fokuserer på å vise intuitisjonen bak prisene som oppstår i likevekt for journalene i et tosidig marked. Den andre artikkelen analyserer hvordan kvalitet og størrelsen på lesermassen påvirkes av overgangen fra tradisjonell leserbetaling til OA, med utgangspunkt i samfunnsøkonomisk velferd og lesernes totale nytte.
OA virker å være en bærekraftig modell i markedet for publisering av vitenskapelige journaler. For både “non-profit”-journaler og profittmaksimerende journaler virker OA å være samfunnsøkonomisk effektivt under gitte betingelser. Markedsmakt kan skape en barriere for OA hvis journalen er en profittmaksimerende monopolist. For journaler med andre objektiver enn profittmaksimering virker markedsmakt på den andre siden å øke sannsynligheten for at OA innføres. Analysen indikerer en nedgang i kvalitet ved OA for gitte betingelser, men at kvalitetsnivået vil opprettholdes hvis lesermassen holdes konstant.

Nøkkelord: tosidig marked, open access, OA, akademisk litteratur, åpen publisering
Innholdsfortegnelse

FORORD ... II

SAMMENDRAG .. III

1. INNLEDDNING .. 1
 1.1 BAKGRUNN OG AKTUALISERING ... 1
 1.2 FORMÅL OG PROBLEMFORMULERING ... 3
 1.3 AVGRENSNING ... 3
 1.4 OPPGAVENS STRUKTUR ... 3

2. TEORETISK REFERANSLAMMER ... 5
 2.1 UTVIKLING TOSIDIGE MARKEDER .. 5
 2.1.1 Fremveksen av det toside markedskonseptet 5
 2.1.2 Generelt om toside markeder ... 6
 2.2 MARKEDSKONSEPT .. 8
 2.2.1 Nettverkseffekter .. 8
 2.2.2 Skalafordeler og skalaülemper ... 10
 2.2.3 Opphopning og overbelastning .. 11
 2.2.4 Plattformdifferensiering ... 11
 2.2.5 Single- og multi-homing ... 11
 2.3 PRIS OG PRISSTRUKTUR .. 12
 2.4 PRIS OG PRISSTRUKTUR I TOSIDIGE MARKEDER 12
 2.5 GENERELL GIENOMGANG AV ØKONOMISKE BEGREPER 14
 2.5.1 Samfunnsøkonomisk velferd, første-beste og nest-beste økonomi 14
 2.5.2 Insentiver .. 16

3. VITENSKAPELIG PUBLISERING ... 18
 3.1 HISTORISK UTVIKLING .. 18
 3.2 PRESENTASJON AV MARKEDET ... 19
 3.2.1 Reed Elsevier ... 21
 3.2.2 Wiley-Blackwell .. 22
 3.2.3 Springer Science + Business Media ... 24
 3.2.4 Oxford University Press ... 24
 3.2.5 Hvilke strategier benyttes? ... 25
 3.2.6 Innsendings- og publiseringkostnader .. 25
 3.2.7 Abonnemekerkostnad ... 26
 3.3 PUBLISERING OG INSENTIVER ... 28
 3.4 OPEN ACCESS .. 29
 3.4.1 Eksisterende modeller innenfor open access 30
 3.4.2 Kvalitet og open access ... 32
 3.4.3 Kostnadsstruktur open access ... 33
 3.4.4 Velferd og open access ... 33
 3.4.5 Insentiver open access ... 34

4. MODELLER FOR STUDIE AV MARKEDET FOR AKADEMISKE JOURNALER 35
 4.1 PRIS OG PRISSTRUKTUR .. 35
 4.1.1 Modell pris og prisstruktur ... 36
 4.2 KVALITET OG LESERMASSE ... 38
 4.2.1 Modell kvalitet og lesermasse ... 39

5. ANALYSE ... 41
 5.1 PRIS OG PRISSTRUKTUR .. 41
 5.1.1 Monopol ... 41
 5.1.2 Nest-beste allokantering ... 43
 5.1.3 Konkurranse duopoljournaler ... 44
 5.1.4 Numeriske eksempler .. 46
5.2 KVALITET OG LESERMASSE ... 51
 5.2.1 Første-beste allokering ... 52
 5.2.2 Nest-beste allokering ... 55
 5.2.3 Andre målsettinger enn velferdsmaksimering 57
 5.2.4 Sammenligning av normativ og positiv analyse 61

6. OPPSUMMERENDE DISKUSJON OG AVSLUTNING 66
 6.1 PRIS OG PRISSTRUKTUR ... 66
 6.1.1 Symmetrisk nytte ... 68
 6.1.2 Asymmetrisk nytte – høy forfatternytte 69
 6.1.3 Asymmetrisk nytte – høy lesernytte 69
 6.1.4 Oppsummering pris og prisstruktur 70
 6.2 KVALITET OG LESERMASSE ... 71
 6.2.1 Normativ analyse .. 71
 6.2.2 Positiv analyse .. 71
 6.2.3 Sammenligning av scenarioene ... 72
 6.3 AVSLUTNING ... 74
 6.4 BEGRENSNINGER ... 77

REFERANSLER .. 80

Liste over figurer og tabeller:

Figur 1: Illustasjonsvisuell representasjon av tosidig marked og netverksomheng................................. 9
Figur 2: Oppbygning av det kommersielle journalmarkedet .. 20
Figur 3: Illustrasjon av aktørenes gjensidige avhengighet .. 20
Figur 4: Illustrasjon av Reed Elseviers inntekt etter format og type (Reed Elsevier, strategy) 22
Figur 6: Utvikling av elektroniske publikasjoner 2000-2011 (Cristin, 2014) .. 25
Figur 7: Illustrasjon av det tosidige journalmarkedet .. 35
Figur 8: Diskontinuitet i etterspøringskurvene på redusert form (McCabe og Snyder, 2010) 46
Figur 9: Kontinuum av konkreranselikevekter i tre nummeriske eksempler (McCabe og Snyder, 2010) 48
Figur 10: Allokeringene under “leser-betal” og open access (Jeon og Rochet, 2010) 58

Tabell 1: Faktorer som påvirker markedsstruktur (Evans og Schmalensee, 2007) 8
Tabell 3: Kostnadskonfigurasjoner ved symmetrisk forfatter- og lesernytte (McCabe og Snyder, 2010) 47
Tabell 4: Kostnadskonfigurasjoner ved høyere forfatternytte enn lesernytte (McCabe og Snyder, 2010) 50
Tabell 5: Kostnadskonfigurasjoner ved høyere lesernytte enn forfatternytte (McCabe og Snyder, 2010) 51
1. Innledning

1.1 Bakgrunn og aktualisering

Publisering av vitenskapelige artikler er svært viktig for det vitenskapelige miljøet og samfunnet for øvrig siden kunnskap er et kollektivt gode. Dagens publiseringsmodell har det siste tiåret høstet mye kritikk, og både forskere og myndigheter verden over har begynt å se etter en ny og mer rettferdig modell. Kritikken retter seg hovedsakelig mot at den eksisterende publiseringsmodellen favoriserer de store forlagene og lar bibliotekene, forfatterne og leserne betale prisen for at forlagene tjener høy profitt.

Forskningen som gjøres ved de ulike utdannings- og forskningsinstitusjonene finansieres av private aktører, det offentlige eller andre støttespillere. Det finnes flere ulike insentiver knyttet til å gjennomføre forskningsprosjekter, med både finansielle og ikke-finansielle aspekter. Resultatene fra forskningen er av stor betydning for videre utvikling av kunnskap på grunn av at ny forskning ofte baserer seg på eksisterende forskningsresultater. Forskningsresultatene blir kvalitetssikret av fagfeller og delt med omverdenen hovedsakelig som artikler i journaler.

I dag det slik at forfatterne overfører eierskapet til sine egne artikler over til journalen når de publiserer, og dette skyldes at journalen vil ha enerett på innholdet de publiserer for å styrke sin egen posisjon i markedet.

Det største markedet for journaler er universitetsbibliotekene, som er avhengig av tilgang til ulike journaler innenfor hvert fagfelt. Forlagene publiserer flere journaler innenfor hvert fagfelt, og ofte tilbyr de en pakkepris til de store institusjonene ved kjøp av flere journaler. Det vil si at det å kjøpe én journal isolert sett ofte er dyrere enn å kjøpe pakken med flere journaler. Trenden de siste årene har vært at både omfanget av journaler og prisen på journalene har økt. Dette har ført til at universitetsbibliotekene har måtte avslutte abonnement på enkelte journaler og bøker for å kunne betale for de aller viktigste (Nevo et.al., 2005). I tillegg eksisterer det tilfeller hvor utdanningsinstitusjonene betaler dobbelt for forskningen.

Først bruker de tildelte midler for å finansiere forskningen og deretter for å få tilgang til den samme forskningen. Dette bidrar til å skape et hull i tilgjengeligheten kunnskap, samt at det fører til at kun de som har mulighet til å betale for kunnskap får tilgang til den. Kunnskap er et kollektivt gode, noe som betyr at flere kan nyte godt av kunnskapen på samme tid uten at
dette reduserer andres muligheter til å benytte samme kunnskap. For å få størst mulig spredning av kunnskapen isolert sett vil en ønske lav pris, eventuelt gratis tilgang.

1.2 Formål og problemformulering

Vi ønsker derfor, med utgangspunkt i tidligere forsking og teori, å undersøke om det finnes en bærekraftig forretningsmodell for åpen publisering av vitenskapelige artikler som løser disse problemene. Vi vil med bakgrunn i dette belyse følgende problemstilling:

“Hva kan være en bærekraftig forretningsmodell for åpen publisering av vitenskapelige artikler i tosidige markeder?”

For å undersøke problemstillingen utleder vi følgende forskningsspørsmål:

1) Skaper markedsmakt en barriere for implementering av åpen publisering?
2) Er åpen publisering av akademisk litteratur mer samfunnsøkonomisk effektiv?
3) Er en OA-journal det samme som en lavkvalitets-journal?

1.3 Avgrensning

Vi har valgt en teoretisk tilnærming til problemstillingen. Det vil si at vi benytter andres teorier og modeller som utgangspunkt for å besvare problemstillingen og forskningsspørsmålene.

Det finnes flere studier som har undersøkt vitenskapelig publisering og OA. Vi avgrenser vår oppgave til å kun se på to studier. Vi ser videre bort fra alle utenforliggende faktorer og ser kun på pris, kvalitet og publiseringsinsentiver for journalen, dens forfattere og lesere.

1.4 Oppgavens struktur

Oppgavens oppbygning vil videre ha følgende struktur. I kapittel 2 presenteres den teoretiske referanserammen for oppgaven. Her vil vi generelt redegjøre for teorien om tosidige markedere, avgjørende faktorer for markedsstrukturen og pris/prisstruktur i tosidige markedere. I tillegg presenteres generelle økonomiske begreper som er relevant i forhold til problemstillingen. I kapittel 3 presenteres markedet for vitenskapelig publisering, de største aktørne og deres strategier. Videre presenteres OA og vi redegjør for de eksisterende modellene for publisering av åpen litteratur. Vi ser også på OA i tilknytning til kvalitet, kostnadsstruktur, samfunnsøkonomisk velferd og publiseringsinsentiver. I kapittel 4 presenteres de to modellene vi har valgt å analysere for å belyse på problemstillingen og
forskningspørsmålene. I kapittel 5 presenteres analysen med bakgrunn i de to modellene. Avslutningsvis i kapittel 6 diskuteres analysen opp mot problemstillingen og forskningsspørsmålene. Her redegjør vi også for begrensninger og implikasjoner ved vår analyse og vi kommer samtidig med forslag til videre forskning.
2. Teoretisk referanseramme

I dette kapittelet vil vi presentere den teoretiske referanserammen for oppgaven. Her vil vi starte med å gi en generell redegjørelse for teorien om tosidige markeder og dens utvikling. Videre vil vi se på faktorer som er med på å avgjøre markedsstrukturen, pris og prisstruktur i tosidige markeder. Til slutt vil vi redegjøre for generelle økonomiske begreper som er relevant i forhold til vår undersøkelse av problemstillingen.

2.1 Utvikling tosidige markeder

2.1.1 Fremveksten av det tosidige markedskonseptet

Tosidige plattformer koordinerer etterspørselen fra ulike kundegrupper som på en eller annen måte er avhengige av hverandre (Evans, 2003). Dette kan for eksempel være dating-nettsider som koordinerer etterspørselen fra kvinner og menn, spillkonsoller som koordinerer etterspørsel fra spillutviklere og spillere, eller flyplasser som koordinerer etterspørsel fra flyselskap og reisende. Tosidige markeder skiller seg fra andre markeder fordi interaksjonen mellom de to sidene gir opphav til sterke komplementariteter og medfølgende eksternaliteter. Plattformens funksjon er å løse disse eksternalitetene ved å skape en felles møteplass for de ulike kundegruppene og å legge til rette for interaksjoner mellom dem. En av de viktigste problemstillingene knyttet til dette er det såkalte ”chicken-and-egg”-problemet som går ut på å få begge sidene av plattformen ”om bord”.

Begrepet tosidige plattformer brukes i en del litteratur synonymt med tosidige markeder, og Rochet og Tirole (2006:665) presenterte den første klare definisjonen:

"A market is two-sided if the platform can affect the volume of transactions by charging more to one side of the market and reducing the price paid by the other side by an equal amount; in
other words, the price structure matters, and platforms must design it so as to bring both
sides on board."

Dersom transaksjonen mellom kjøper og selger involverer en pris som settes gjennom
forhandlinger mellom partene eller tradisjonell monopolprising, er markedet ensidig. Dette
gjelder så lenge det ikke eksisterer eksternaliteter mellom kjøper og selger og så lenge det
ikke er informasjonsasymmetri mellom partene. Definisjonen betinger derfor at partene er
avhengig av plattformen for kommunikasjon og interaksjon med hverandre, og at ingen av
partene kan drive arbitrasje for å komme seg unna prisstrukturen i plattformen.

Modellene av tosidige markeder bygger på antakelser om det økonomiske forholdet blant
aktørene i markedet, og det er vanskelig å få resultater uten å gjøre videre antakelser om
etterspørsel, kostnader og indirekte nettverkseffekter. Svakheter oppstår på grunn av at de
ulike modellene bygger på ulike forutsetninger, i tillegg til at industrien og dens teknologi
spiller en viktig rolle i forskningsarbeidet. Det er derfor vanskelig å generalisere resultatene
på bakgrunn av abstrakte modeller (Evans og Schmalensee, 2007). Det er imidlertid slik at
flere grunnleggende prinsipper har vokst frem som kun avhenger av antakelsene om at
plattformen har to kundegrupper, at det er indirekte nettverkseffekter og at kundene ikke kan
løse disse eksternalitetene selv. Disse prinsippene påvirker prising for, og utforming av
plattformen.

2.1.2 Generelt om tosidige markeder

En tosidig plattforms rolle, sett fra et økonomisk perspektiv, er å legge til rette for at partene
skal oppnå en gevinst ved å redusere transaksjonskostnadene forbundet med søk og
interaksjon (Evans og Schmalensee, 2007). Plattformen blir da en "matchmaker" som setter
de to kundegruppene sammen, bygger opp målgruppene og reduserer kostnadene ved å tilby
en fysisk eller virtuell felles møteplass.

Investerings- og prisstrategier spiller en viktig rolle i forbindelse med å få begge sider
ombord, på grunn av at etterspørselen på begge sider forsvinner om etterspørselen på den ene
siden forsvinner. En måte å løse "chicken-and-egg"-problemet er å investere på den ene siden
for å redusere kostnadene til aktørene på den aktuelle siden slik at de deltar. Slike
investeringer kan for eksempel være å investere i teknologi som gjør det mer attraktivt å delta
på plattformen. Hvis plattformen for eksempel investerer i programvare som gjør det enklere
for spillutviklere å utvikle spill, kan det bli mer attraktivt for utviklere å tilknytte seg den. En annen måte å løse problemet på er å kreve ulike priser fra de to sidene. Deltagelse kan bli mer attraktivt for aktørene på én side dersom de tilbys en lavere pris enn aktørene på den andre siden. Begge disse mulige løsningene vil, på grunn av nettverkseffektene, føre til at det blir mer attraktivt for den andre siden å delta (Evans, 2003). Asymmetrisk prising er vanlig og mange tosidige plattformer virker å innhente profitten sin fra én side, og en stor del av tosidige plattformer virker å ta priser som er under marginalkostnad (Evans og Schmalensee, 2007).

Teorien om tosidige markeder er på den måten en krysning mellom nettverksøkonomi og flerproduktprising.
2.3 Markedsstruktur

<table>
<thead>
<tr>
<th>Årsak</th>
<th>Effekt på størrelse/konsentrasjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirekte nettverkseffekter</td>
<td>+</td>
</tr>
<tr>
<td>Skala-økonomi</td>
<td>+</td>
</tr>
<tr>
<td>Opphopning og overbelastning</td>
<td>-</td>
</tr>
<tr>
<td>Plattformdifferensiering</td>
<td>-</td>
</tr>
<tr>
<td>Multi-homing</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabell 1: Faktorer som påvirker markedsstruktur (Evans og Schmalensee, 2007)

Nedenfor vil vi utdype årsakene ytterligere.

2.3.1 Nettverkseffekter

Nettverkseffekter er eksternaliteter som oppstår når én gruppe i et nettverk får økt nytte ved at en annen gruppe deltar i nettverket. Dette vil si at den ene gruppens oppfattede verdi ved å delta i plattformen avhenger av hvor mange fra gruppen på andre siden av markedet som
Deltar. Nettverkseffektene kan deles inn i direkte nettverkseffekter som avhenger av størrelsen på etterspørselssidene, og indirekte nettverkseffekter som avhenger av bredden og variasjonen i tilbudet.

Indirekte nettverkseffekter måles ved variasjon i komplementære tjenester, men også ved de komplementære tjenestenes kvalitet og utviklingshastighet. Det vil si at konsumenten er opptatt av om andre konsumenter velger tjenesten eller produktet fordi det har en innvirkning på produksjon av komplementære goder. Jo flere konsumenter som bruker tjenesten eller produktet, desto mer sannsynlig er det at mengde, kvalitet og utviklingshastighet av komplementære goder øker. Et eksempel kan være en dating-side på internett. Menn vil ha nytte av at flere menn er brukere av dating-nettsiden fordi det tiltrekker seg flere kvinner, og omvendt.

![Figur 1: Illustrasjon tosidig marked og nettverkseffekter](image.png)

Plattformen kan internalisere de indirekte nettverkseffektene mer effektivt fordi informasjon og transaksjonskostnader gjør det vanskelig for gruppemedlemmene å gjøre dette selv. Derfor er aktørene avhengig av at Plattformen gjør dette for dem. Det gjøres ved at Plattformen skaper en felles møteplass for de to sidene. Dette er illustrert i figur 1 ovenfor.
De indirekte nettverkseffektene fører til at plattpormer med flere brukere på hver side er mer verdifull for aktørene på begge sidene. Indirekte nettverkseffekt er altså avhengig av hvor flink plattpormen er å tiltrike seg medlemmer i den andre gruppen. Om et medlem i gruppe én utøver en stor positiv effekt på hvert medlem av gruppe to, vil plattpormen målrette seg aggressivt mot gruppe én. For at en plattporm skal kunne konkurrere effektivt på én side av markedet må den gjøre det bra på den andre siden og vice versa. Dette skaper et nedgående press på prisene til begge gruppene sammenlignet med tilfellet hvor ingen nettverkseffekter eksisterer mellom gruppene. Dette indikerer at plattpormer har et insentiv til å finne måter å motvirke nettverkseffekter på, for eksempel ved å ha faste priser eller transaksjonspriser til brukerne. Indirekte nettverkseffekt er svakere ved transaksjonspriser, fordi en del av nytten ved å interagere med et ekstra medlem på den andre siden blir svekket ved den ekstra kostnaden som påløper (Armstrong, 2006).

De indirekte nettverkseffektene påvirker, som vi kommer tilbake til nedenfor, også prisesettingen mellom de to sidene av plattpormen i tosidige marked. Det virker som at plattpormen har en tendens til å vri prisene til én av sidene, avhengig av størrelsen på de indirekte nettverkseffektene som oppstår på den siden (Evans, 2003).

Om det ikke er noen motvirkende faktorer, kan en forvente at indirekte nettverkseffekt vil kunne lede til at tosidige plattpormer konkurrerer for markedet, som fremmer større og færre konkurrerende tosidige plattpormer. Den første som etablerer seg i markedet vil ha et konkurransefortrinn, når alt annet holdes konstant. Andre plattpormer vil kun ha mulighet til å konkurrere mot dette konkurransefortrinnet hvis de kan tilby gruppene på én eller begge sider noe som utligner den første etablertes konkurransefortrinn.

2.3.2 Skalafordeler og skalaulemper

2.3.3 Opphopning og overbelastning

2.3.4 Plattformdifferensiering

2.3.5 Single- og multi-homing

kjennetegnet ved single-homing kan det tenkes å bidra til å redusere konkurransen plattformer i mellom. Prissetting på den ene siden av markedet påvirkes derfor av graden av multi-homing på den andre siden av markedet. Multi-homing på den ene siden øker graden av priskonkurranse på den andre siden fordi Plattformen bruker lave priser i et forsøk på å få alle til å tilknytte seg én Plattform.

Det er tre mulige situasjoner for tilknytning til plattformer: 1) begge grupper kjennetegnes ved single-homing, 2) en gruppe kjennetegnes ved single-homing og den andre gruppen kjennetegnes ved multi-homing, 3) begge grupper kjennetegnes ved multi-homing. Utfall 2) refereres til som flaskehaller i konkurranseutsatte markedet.

2.4 Pris og prisstruktur i tosidige markeder

Plattformene må fokusere på å finne og vedlikeholde en optimal prisstruktur. Dette er noe av det vanskeligste ved å konkurrere i et flersidig marked (Evans, 2003). Optimal prisstruktur avhenger av markedsstruktur. Det vil si at antall Plattformen som opererer i markedet, og
hvorvidt de ulike aktørene velger å tilknytte seg en eller flere plattformer, påvirker prisstrukturen i mer eller mindre grad. En tendens i flersidige markeder er som nevnt tidligere at bedrifter bruker skjeve prisstrukturer hvor marginen er mye lavere på én side i forhold til den andre. Prisstrukturen påvirker profitt og økonomisk effektivitet, og det brukes mye tid og ressurser på å avgjøre hvilken gruppe som skal bære størsteparten av prisen. Ofte ender det opp med at en tjener lite på den ene siden og gjenvinner kostnadene på den andre siden (Rochet og Tirole, 2004).

En nødvendig betingelse for at et marked er tosidig er at Coase-teoremet ikke holder i relasjonen mellom de to sidene av plattformen. Coase-teoremet går ut på at så lenge eiendomsretten er omsettelig og klart definert og det ikke eksisterer transaksjonskostnader eller asymmetrisk informasjon, vil aktørene kunne forhandle seg frem til en Pareto-optimal løsning selv om det eksisterer eksternaliteter i markedet (Rochet og Tirole, 2004). Coase-teoremet representerer derfor prisnøytralitet. Det betyr at fravær av prisnøytralitet skaper tosidighet. At aktørene i markedet på grunn av eksternalitetene og asymmetrisk informasjon ikke har mulighet til å forhandle seg frem til en Pareto-optimal løsning er derfor grunnen til at prisstrukturen ikke er nøytral i tosidige markeder. Dette gjelder også dersom aktørene står ovenfor faste transaksjonskostnader.

En annen viktig faktor som motvirker nøytral prisstruktur er tilstedeværelsen av kostnader for sluttbrukeren som ikke avhenger av transaksjonen (Evans, 2003). Dette kan både være faste kostnader pålagt av plattformen eller faste kostnader på brukersiden. Allokeringen av disse kostnadene påvirker det tosidige markedet fordi en økning i faste kostnader påvirker begge sidenes valg om deltakelse i markedet. En økning i kostnader på en side av markedet kan ikke føres over til den andre siden. Når avgjørelsen om å delta i markedet er gjort sees derfor disse kostnadene på som irreversible. Det betyr med andre ord at en økning i kostnadene til den ene siden av plattformen, med tilsvarende reduksjon for den andre siden for å holde plattformens profitt konstant, vil påvirke transaksjonsvolumet og samfunnsøkonomisk velferd.

Prisstrukturen påvirkes også av hvilke aktører som er på de ulike sidene av plattformen. Lojale aktører og aktører som er viktige for gruppen på den ene siden av plattformen kan få lavere pris på sin side, samtidig som den andre siden får høyere pris.
Det er med andre ord mye som avgjør hvordan prisstrukturen i tosidige markeder utalter seg, og med flere faktorer som spiller inn vil hver situasjon være unik på bakgrunn av strukturen i markedet, plattformen og de to kundegruppene.

2.5 Generell gjennomgang av økonomiske begreper

For å skape en helhetlig forståelse av modellene som blir presentert i kapittel 4 vil vi redegjøre for noen generelle økonomiske begreper som går igjen.

2.5.1 Samfunnsøkonomisk velferd, første-beste og nest-beste økonomi

Når det er mulig å bevege seg langs kontraktskurven ved å omfordele tilbudet av godene og bare la markedskreftene gjøre sin jobb, kalles en slik økonomi som en første-beste økonomi. I en nest-beste økonomi, som regnes som mer realistisk, er det ikke like lett å omfordele godene. I en slik økonomi spiller myndighetene en større rolle og det oppstår en konflikt mellom egenkapital og effektivitet, som kan reguleres gjennom reformer, avgifter og skatt.

Avgjørelsen av hvilken av de effektive allokeringene som skal velges kan gjøres ved å benytte en såkalt samfunnsøkonomisk velferdsfunksjon. Den viser hvordan beslutningstakerne veier opp en persons gevinst mot en annen persons tap. I en enkel bytteøkonomi med to personer og to goder vil en når en flytter seg langs kontraktskurven gjøre situasjonen bedre for person 1 og verre for person 2. Her kommer konsumentenes nyttefunksjon inn i bildet. Ved å benytte konsumentenes nytte kan en si noe om hvor fornyet vedkommende er, men også sammenligne vedkommende med andre personer. Velferdsfunksjonen $W(u_1, u_2)$ måler hvor godt samfunnet har det når person 1 har nytte u_1 og person 2 har nytte u_2. Målet med velferdsfunksjonen er å maksimere samfunnsøkonomisk velferd blant alle de ulike
allokeringene. Dette gjøres ved å finne den kombinasjonen av u_1 og u_2 som maksimerer $W(u_1, u_2)$.

For å kunne foreta fornuftige prioriteringer må konsekvensene av alternative tiltak være undersøkt og godt dokumentert. Dette er funksjonen til den samfunnsøkonomiske analysen og en sier ofte at det er den velferdsmaksimerende planleggeren som gjennomfører slike analyser når første- og nest-best allokering blir presentert.
2.5.2 Insentiver

For å forstå hva insentiver er kan vi ta utgangspunkt i Barnards (1938:139) definisjon, som tilsynelatende var den første som definerte begrepet innenfor økonomisk teori:

"(…) an essential element of organizations is the willingness of persons to contribute their individual efforts to the cooperative system (…). Inadequate incentives mean dissolution, or changes of organization purpose, or failure to cooperate. Hence, in all sorts of organizations the affording of adequate incentives becomes the most definitely emphasized task in their existence."

Videre kan insentivene være av generell eller spesifikk art:

"The specific inducements that may be offered are of several classes, for example: a) material inducements; b) personal non material opportunities; c) desirable physical conditions; d) ideal benefactions. General incentives afforded are, for example: e) associational
attractiveness; f) adaptation of conditions to habitual methods and attitudes; g) opportunity of enlarged participation; h) the condition of communion." (Barnard, 1938:142).

Insentivordninger er etter økonomisk teori utformet på en slik måte at det kun belønner de som øker arbeidsinnsatsen, slik at de som velger å ikke øke arbeidsinnsatsen ikke blir straffet. Likevel viser forskning at mennesker blir påvirket av hverandre, både hva deres arbeidsinnsats angår og hva de får i belønning (Fischbacher og Gächter, 2010). Utformingen på intensivordningen vil på en kompleks måte avgjøre hvorvidt deltagere velger å legge inn ekstra arbeidsinnsats på arbeidsplassen. Empiri viser at antagelsen om hvor mye andre vil bidra avgjør hvor mye en selv velger å bidra. Det antas derfor at det eksisterer en slags sosial norm for ekstra bidragsytelse, og det viser seg at hvis én av deltagerne innad i en gruppe får være en tidlig bidragsyter og dette blir videreformidlet til de andre innad i gruppen, vil resten av gruppen innrette bidraget sitt etter det første bidraget slik at det samsvarer på et vis (Fischbacher og Gächter, 2010).
3. Vitenskapelig publisering

I dette kapittelet presenteres markedet for vitenskapelig publisering, de største aktørene og deres strategier. Videre vil vi presentere open access-konseptet (OA) og redegjøre for de eksisterende modellene for publisering av åpen litteratur. Vi ser også på OA i tilknytning til kvalitet, kostnadsstruktur, samfunnsøkonomisk velferd og insentiver.

3.1 Historisk utvikling

Før utviklingen av vitenskapelige journaler var det vanlig at forskere sendte sine artikler til andre forskere som igjen sendte til andre forskere og så videre. I tillegg til at denne distribusjonen tok lang tid ble det også større tvil om opphavet jo lengre artikkelen kom. En av de første fagfellevurderte vitenskapelige journalene var Philosophical Transactions og fungerte nesten som et patentkontor for forskningsideer hvor eierskap til en forskers teorier og funn ble fastsatt (Willinsky, 2006). Etter dette begynte flere vitenskapelige samfunn rundt om i Europa å danne sine egne journaler som de eide og drev til nytte for samfunnet og dets medlemmer. Slik fungerte journalmarkedet til etter andre verdenskrig da myndighetene begynte å investere stort i vitenskapelig forskning ved universitetene. Da produksjonen av vitenskapelige artikler økте, økte også universitetsbibliotekenes etterspørsel etter forskning og journalplass, idet kunnskapen og nye forskningsfelter utviklet seg. Å starte nye journaler var dyrt og de vitenskapelige samfunnene klarte ikke å holde følge med etterspørselen.

Kommersielle forlag begynte på dette tidspunktet å undersøke mulighetene for vitenskapelig publisering, og de erfarte at dette kunne være svært profitabelt på grunn av myndighetenes økte finansiering.

Resultatet av kommersielle publisisters inntog i journalmarkedet var nyttig fordi tilbudet dekket etterspørselen for journaler og journalplass, men det førte også til det som i dag blant bibliotekene kalles ”serial-pricing crisis” (Willinsky, 2006). Prisen på journalene økte godt over inflasjonsraten og førte etter hvert til at bibliotekenes evne til å opprettholde journalsamlingene ble svekket. I tillegg resulterte kommersielle publisisters mulighet til å tjene profit til et ”rush” til å starte nye journaler og kjøpe opp så mange eksisterende journaler som mulig. Resultatet av oppkjøpene er store sammenslåinger og et svært konsentrert marked. I dag eier kommersielle publisister 45 % av vitenskapelige journaler og bistår i å publisere ytterligere 17 % av disse journalene for vitenskapelige samfunn (Willinsky, 2006).

Uavhengige journaler et det minste segmentet og består av individuelle forskere eller forskergrupper som sammen produserer en journal eller på en annen måte bidrar til sirkulasjon av vitenskapelig litteratur (Willinsky, 2009). Arbeidet i slike journaler er hovedsakelig basert på samarbeid blant forskere og har dermed lav abonnementspris for å nå ut til flest mulig. De uavhengige journalene har ofte utviklet seg til å bli vitenskapelige samfunn og i noen tilfeller blitt en del av kommersielle publisister. På den måten kan de uavhengige journalene dra nytte av de kommersielle publisistenes infrastruktur og markedsføring.

Vitenskapelige samfunn er lik de uavhengige journalene, men større. De genererer nok overskudd til å dekke kostnadene knyttet til medlemmene i felleskapet (Willinsky, 2009). Inntektene kommer fra salg til universitetsbibliotek og disse samfunnene står for rundt 40 % av de fagfellevurderte journalene som publiseres i dag.

Kommersielle publisister er det største segmentet og har vokst til å bli dominant i journalmarkedet. Hovedsakelig på grunn av oppstart av journaler i perioden etter andre verdenskrig, da de vitenskapelige samfunnene var for trege til å svare på økningen i etterspørselen etter universitetsforskning. Ved å sikre redaktørrettigheter for respekterte vitenskapelige samfunn og forskere, og å aktivt kreve høy pris, har de ikke bare økt markedsandelen, men også abonnementsavgiftene. På grunn av dette står de for over 60 % av alle fagfellevurderte journaler og nesten 30 % av alle vitenskapelige journaler (Willinsky, 2009).

3.2 Presentasjon av markedet

Nedenfor vil vi presentere det kommersielle journalmarkedets oppbygging og de fire største aktørene for å skape en generell forståelse for hvordan markedet fungerer i dag. I forhold til
problemstillingen finner vi det nødvendig å illustrere og forklare strukturen som kan observeres i det marked vi ser på. Oppbygningen av journalmarkedet presenteres i figur 2. Forfattere mottar forskningsmidler og produserer, på bakgrunn av forskningen som gjøres, artikler som sendes inn til forlagene. Forlagene vurderer og publiserer artiklene og distribuerer videre artiklene til leserne.

Figur 2: Oppbygning av det kommersielle journalmarkedet

Leddene i figuren er avhengige av hverandre og påvirker hverandre i mer eller mindre grad. I Norge mottar institusjoner statlige forskningsmidler på bakgrunn av tidligere oppnådde resultater fra forskning. Institusjonene har på den ene siden forskerne som produserer artiklene, og på den andre siden bibliotekene som abonnerer på denne og annen forskning. Abonnementer kan også være enkeltstående personer som har interesse innenfor fagfeltet forlaget publiserer i, men ofte er institusjonene en av de største kundegruppene til forlagene. I figur 3 nedenfor illustreres den gjensidige avhengigheten mellom aktørene.

Figur 3: Illustrasjon av aktørenes gjensidige avhengighet

Institusjonen mottar finansiering basert på hvor stor poengsum forskningen/artiklene høster fra fagfellevurderingen, og mottar i neste omgang for eksempel mer finansiering hvis forskningen som er utført gis gode poeng. Da kan ytterligere forskning utføres og dette gir et bedre grunnlag for å gjøre forskningen mer fremragende og bedre. Antall siteringer kan påvirke forfatterens renommé og karrieremessige utvikling, da flere siteringer av artikkelen kan føre til større spredning og økt innflytelse.

De siste årene har det, som nevnt tidligere, vært slik at forlag som specialiserer seg innenfor vitenskapelig, tekniske og medisinske journaler og bøker generer de største inntektene. Det virker som at det er begrenset interesse for å utvide segmenteringen blant disse forlagene, og det ser ut til at disse forlagene velger å fokusere på det segmentet som allerede er etablert.

Vi vil nå presentere de fire store aktørene hver for seg for å skape et helhetlig bilde:

3.2.1 Reed Elsevier

Reed Elsevier Group er et britisk forlag eid av to morselskaper, Reed Elsevier PLC og Reed Elsevier NV. Elsevier er verdens største forlag innenfor vitenskapelig, teknisk og medisinsk publisering, og publiserte i 2012 om lag 333 000 nye forskningsartikler i nærmere 2000 ulike journaler, og med over 1 million førstegangsinnsendte artikler i 2012. Elsevier har også verdens største digitale database for forskning innen vitenskap og medisin. Elsevier Health and Science publisører omtrent 20 000 titler, hvor 85 % av disse er tilgjengelig på nett. I regnskapsåret 2012 hadde de en vekst på ca. 2 %, og videre 7 % i 2013 grunnet en systematisk overgang fra trykk til digital publisering. Veksten ble generert fra primærforskning, databaser og verktøy på tvers av vitenskapelige og medisinske segmenter med spesielt styrke i fremvoksende markeder. Omtrent 66 % av inntektene ble generert fra elektroniske produkter i 2013 hvor om lag 52 % av totalinntektene kom fra abonnements, og
som illustrert i figur 4 nedenfor har inntekten fra elektronisk materiale økt hvert år siden 2001 [2].

Figur 4: Illustrasjon av Reed Elseviers inntekt etter format og type (Reed Elsevier, strategy)

3.2.2 Wiley-Blackwell

illusert og som vi ser sto deres abonnementsinntekter for ca. 64 % av totale inntekter i 2012 [5].

![Illustrasjon inntektsfordeling Wiley Global Research (Årsberetning Wiley, 2012)](image)

Videre fra tabell 2 nedenfor ser vi at samme kjernevirksomhet bidrar med en margin på 30,5 %.

<table>
<thead>
<tr>
<th>Research</th>
<th>Dollars in thousands 2012</th>
<th>2011</th>
<th>% change</th>
<th>% change w/o FX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal Subscriptions</td>
<td>$650,938</td>
<td>$621,551</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>Books</td>
<td>179,204</td>
<td>175,611</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Other Publishing Income</td>
<td>210,585</td>
<td>201,740</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>TOTAL REVENUE</td>
<td>$1,040,727</td>
<td>$998,902</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>Cost of Sales</td>
<td>(278,427)</td>
<td>(268,971)</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>GROSS PROFIT</td>
<td>762,300</td>
<td>729,931</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>Gross Profit Margin</td>
<td>73.2%</td>
<td>73.1%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Direct Expenses</td>
<td>(283,840)</td>
<td>(280,028)</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Amortization of Intangibles</td>
<td>(26,186)</td>
<td>(25,106)</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>DIRECT CONTRIBUTION TO PROFIT</td>
<td>$452,274</td>
<td>$424,797</td>
<td>6%</td>
<td>4%</td>
</tr>
<tr>
<td>Direct Contribution Margin</td>
<td>43.5%</td>
<td>42.5%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Allocated Shared Services and Administrative Costs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td>(47,995)</td>
<td>(52,101)</td>
<td>-8%</td>
<td>-9%</td>
</tr>
<tr>
<td>Technology Services</td>
<td>(65,734)</td>
<td>(63,820)</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Occupancy and Other</td>
<td>(21,085)</td>
<td>(17,820)</td>
<td>18%</td>
<td>16%</td>
</tr>
<tr>
<td>CONTRIBUTION TO PROFIT</td>
<td>$317,460</td>
<td>$291,056</td>
<td>9%</td>
<td>6%</td>
</tr>
<tr>
<td>Contribution Margin</td>
<td>30.5%</td>
<td>29.1%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

3.2.3 Springer Science + Business Media

3.2.4 Oxford University Press

3.2.5 Hvilke strategier benyttes?

Etter utviklingen av internett oppsto behovet for økt tilgjengelighet for akademisk litteratur. Spesielt da smarttelefoner og nettbrett ble introdusert på markedet opplevde bedrifter generelt at etterspørselen etter mobiltillpassede og enklere løsninger økte. Den tradisjonelle løsningen
hvor journaler blir sendt ut til alle abonnementene hver gang et nytt nummer kommer ut, krever mye informasjon om brukerne (navn, adresse, betalingsinformasjon) og er dermed svært tids- og kostnadskrevende. OA gjør det mulig å redusere tids- og kostnadsforbruket for publisistene dramatisk, og man har gjennom de siste 10 årene sett at flere legger om strategiene for å kunne gjøre OA tilgjengelig for leserne sine i mer eller mindre grad. Dette har skjedd som en reaksjon på den tradisjonelle "bundlingen" av tidsskriftabonnementer i store pakker, og press fra biblioteker og forskere om at den tradisjonelle løsningen var ressurskrevende, lite oppdatert og lite tilgjengelig. I figuren under illustreres utviklingen av elektroniske publikasjoner både med og uten “Article Processing Charge”, APC [9].

![Figur 6: Utvikling av elektroniske publikasjoner 2000-2011 (Cristin, 2014)](image)

3.2.6 Innsendings- og publiseringskostnader

Elsevier har som et resultat av både deres organiske vekst og endring av porteføljen redusert inntekten på trykte enheter til under 20 %, fra over 50 % syv år tidligere. Per i dag kommer 66 % av inntektene fra digitale produkter, noe som kan sies å være en enorm utvikling over de siste ti årene [10]. Det er tydelig at fokuset og strategiene er endret for å få større lønnsomhet, og de jobber kontinuerlig med forbedring for ytterlige vekst. Hvis en forfatter ønsker å publisere OA i en av deres journaler koster det mellom 3 000-30 000 NOK avhengig av journalen forfatteren ønsker å publisere i [11].
Wiley har som strategi å gjøre innhold mer tilgjengelig enn det noen gang har vært, og gjennom deres organiske vekst lanserte de Wiley Online Library som tilbyr tilgang til tidsskrifter, bøker og databaser [12]. Tilgangen kan oppnås på to mulige måter, Online Open eller Wiley Open Access. Online Open er et program som tilbyr en hybridmodell av OA som gir tilgang til mer enn 1240 journaler med en fast publikasjonskostnad på ca. 18 000 NOK [13]. Wiley Open Access er et program med full OA som grovt estimert koster mellom ca. 5 000-25 000 NOK alt ettersom hvordan journal en vil publisere i [14].

Springer tilbyr tre ulike måter å publisere OA på, OpenChoice, SpringerOpen og BioMed Central. OpenChoice gir forfattere muligheten til å publisere OA i majoriteten av deres journaler som koster ca.18 000 NOK. SpringerOpen gir forfattere muligheten til å publisere i en av deres 175 peer-reviewed fulle OA journaler som koster ca. 7 200 NOK. BioMed central som gir forfattere muligheten til å publisere i 264 peer-reviewed fulle OA journaler gratis, hvor institusjonen dekker publikasjonskostnaden (APC) [15].

Oxford University Press har lagt til rette for å skape bredest mulig spredning av forskning av høy kvalitet, og har siden 2004 publisert journaler i OA. De opererer med to ulike former for OA: OxfordOpen som gir mulighet til å publisere deres artikkel i OA hos flesteparten av journalene deres, eller en kan publisere i en av deres 17 fulle OA journaler til en pris som varierer mellom ca. 10 000-25 000 NOK alt etter hvilken journal forfatteren ønsker å publisere i og hvilken av de to formene han ønsker å publisere i [16].

3.2.7 Abonnementskostnad

Når det gjelder journalpriser til institusjoner, bibliotek og enkeltpersoner varierer de både i forhold til hvilket forlag og hvilken journal man ønsker å abonnere på. Tradisjonelt sett tilbyr forlagene, som nevnt, ulike pakkeløsninger hvor man får flere journaler eller et visst antall artikler til en fastsatt pris.

Elsevier tilbyr aktørene en pris for hver individuelle journal, og prisen kan i gjennomsnitt variere ca. 1 500-33 500 NOK for de som bestiller fra Europa, avhengig hvor mange utgaver man får av den enkelte journal og hvilken type journal det er. De tilbyr også bundlingspakker på 20, 50, 100, 200 eller 500 artikler og e-bok kapitler [17]. Til enkeltpersoner tilbyr de bundlingspakker på 5, 10, 20, 50 og 100 artikler med et prisspenn på ca. 1000 NOK for 5 artikler og ca. 18 000 NOK for 100 artikler i ett år. Man kan velge mellom 1900 journaler og
10 000+ bøker. Her kan man være opptil 5 brukere, og det er dermed mulighet for å dele prisen slik at den enkelte betaler mindre [18].

Wiley differensierer prisene sine i forhold til om man vil ha journalene på trykk, elektronisk eller begge deler, hvor sistnevnte er klart dyrest. Prisene varierer også for hvor man befinner seg i verden, men i gjennomsnitt varierer de fra ca. 400-20 000 NOK avhengig av hvor mange utgaver man får av den enkelte journal og hvilken type journal det er. Dette er prisene som tilbys til biblioteker og institusjoner [19].

Springer tilbyr trykte journaler som basispakke, hvor man kan velge mellom to digitale muligheter til basispakken: enten begrenset tilgang hvor man kun kan lese journalene, eller utvidet tilgang. For journaler med utvidet tilgang til digitalt materiale ligger prisen i gjennomsnitt mellom 1 500-25 000 NOK avhengig av hvor mange utgaver man får av den enkelte journal og hvilken type journal det er. Dette er prisene som tilbys til biblioteker og institusjoner [20].

Oxford University Press tilbyr pakkeløsninger, hvor man kan velge hvilken disiplin man ønsker journaler fra, for eksempel medisin, sosial vitenskap, humanitær vitenskap etc., og pakkene varierer fra 31 til 81 titler i de ulike disiplinene. De tilbyr også skreddersydde pakkeløsninger for institusjoner som ønsker å ha med flere disipliner enn kun én, og løsninger til enkeltpersoner [21]. De tilbyr trykk, elektronisk, eller begge deler. For sistnevnte ligger pris per journal i gjennomsnitt på 2 500-15 000 NOK avhengig av hvilken journal det er og hvor mange utgaver man får av den enkelte journal [22].

Basert på utredelsen ovenfor ser det ut til at de fleste forlagene har omtrent samme system når det gjelder pakkeløsninger og tilbud, men at de varierer noe i pris. Elsevier er det forlaget som ser ut til å ta høyest pris for en journal, men det kan ha sammenheng med at de har flere prestisjefylte journaler med stor innflytelse. Likevel kan vi konstatere at det er svært kostnadskrevende å få tilgang til akademisk materiale. Ved å se på prisene til de enkelte journalene får en et bilde av kostnadsrammen, da det for et universitet kreves mange journaler innenfor hver disiplin for å kunne ha stabil og bred tilgang på akademisk litteratur. Det er tydelig at det er flere mekanismer enn kun teknologien som styrer prisene i markedet.
3.3 Publisering og insentiver

Mange nasjonale myndigheter har implementert retningslinjer som skal skape insentiver til forskere for å publisere, spesielt i prestisjefylte journaler. Franzoni et. al. (2011) deler insentiver opp i tre kategorier: 1) reformer som linker institusjonell finansiering til publiseringsresultater, 2) reformer som linker forfremmelse og lønn til publiseringsresultater og 3) reformer som gir pengebonuser til individet som anerkjennelse for publiseringsresultater. Over en periode på 10 år fant de at implementering av insentiver er assosiert med en 22 % økning i innsendinger, når alt annet er holdt konstant. Pengebonuser er assosiert med den største prosentdelen av økning i innsendinger (46 %), mens karriereinsentiver viste seg å være det som betydde noe i forhold til publikasjoner. Deres forskning indikerer at insentiver til publisering som er skapt av myndighetene er assosiert med en økning i antall innsendinger og publikasjoner. Insentiver for publisering i internasjonale journaler ble mer utbredt i 1980-årene, hvor Storbritannia var først ute med reformen ”Research Assessment Exercise” (RAE) i 1986 som allokerte nasjonale midler til institusjoner basert på tidligere resultater og fagfellevurdering. Storbritannia gikk ut som et eksempel for myndigheter verden over, og flere nasjoner endret sine eksisterende reformer for å kunne gjøre det samme, deriblant Australia, New Zealand, Norge, Danmark og Belgia.

Reformen skal gi finansiering til akademiske institusjoner, hvor de som presterer bedre mottar mer enn de som presterer mindre bra. Andre land fokuserer mer på insentiver rettet mot individet i stedet for institusjonen, hvor reformene handler om å linke forfremmelse og lønn til internasjonale publiseringsresultater. Til slutt er det noen land som har introdusert et system som gir pengebonuser til individer for hver publiserte artikkelen i en prestisjefylt internasjonal journal (Franzoni et. al., 2011).

I Norge finansieres mesteparten av forskningen av tilskudd fra det offentlige, og universitetene tildeles midler på bakgrunn av forskningsresultater. Denne ordningen er ment å stimulere institusjonene til å forbedre deres resultater, som måles gjennom publiseringspoeng. Dette er en resultatbasert omfordeling som ikke bare avhenger av egne resultater, men også andre institusjoners resultater. Publiseringspoeng er en av fire indikatorer som brukes i denne omfordelingen av forskningsinsentiver. Publiseringspoeng beregnes ut fra publikasjonsform, kvalitetsnivå og forfatterandeler. De tre andre indikatorene er doktorgradskandidater, midler fra EUs 7. rammeprogram for forskning og midler fra forskningsrådet [23]. De ikke-
finansielle insentivene knytter seg blant annet karrieremessige aspekter som forfremmelser, anerkjennelse og spredning av kunnskap.

Fremtiden til universiteter vil påvirkes sterkt av ”publish or perish”-syndromet, et resultat av universitets forsøk på å øke institusjonell prestisje (Backes-Gellner og Schlinghoff, 2010). Dette ”syndromet” går ut på at forskere og/eller institusjonene de tilhører blir for opptatt av “impact” (innflytelse), og rangeringssystemer. Derfor vil belønningsystemene innen høyere utdanning føre til økte utfordringer for forskningsinstitusjonene.

3.4 Open Access

OA ble i 2002 og 2003 definert gjennom tre offentlige uttaleler: Budapest Open Access Initiative, Bethesda Statement on Open Access Publishing og Berlin Declaration on Open Access to Knowledge in the Sciences and Humanities, som samlet kalles for ”the BBB statement” (Suber, 2012).

Budapests uttalelse definerte OA som litteratur som er fritt tilgjengelig på internett, og som gir alle lesere tillatelse til å lese, laste ned, kopiere, distribuere, skrive ut, søke i, linke til eller bruke litteraturen på en annen måte, uten finansiell, rettslige eller tekniske barrierer (Suber, 2012). Den eneste begrensningen for reproduksjon, distribusjon og copyright er at man må gi

3.4.1 Eksisterende modeller innenfor open access

en kan betale for kun den artikkelen man ønsker å lese. 10) OA samarbeid: Flere institusjoner går sammen og samarbeider om å bidra til støtte for OA-journaler og utvikling av publiseringsressurser.

Per i dag har mange universiteter rundt om i Norge en egen database hvor de arkiverer og tilbyr gratis tilgang til forskningsresultater og artikler såfremt utgiver gir tillatelse for det (den grønne veien). Hovedtanken ved å ha åpen tilgang til artikler og tidsskrifter er at kunnskapen skal spres raskere og videre kunne gjøre fremskritt i forskningen, som vil gi økt forskningsproduktivitet og mer omfattende og effektiv kunnskapsoverføring. Samtidig vil større tilgang til forskningen gi den større verdi.

På grunn av at forskning er helt eller delvis er statlig finansiert ønsker den norske regjeringen at det skal være åpen tilgang til alt av artikler som produseres på bakgrunn av forskningen [24].

Finansiering fra forfatterens institusjon sto ut som hovedkilden til finansiering av OA-journaler, men også stipender/tilskudd fra andre støttespillere. Publiseringsavgiften dekkes derfor av finansieringen forfatteren mottar og ikke av forfatteren personlig. Redigering og publiserings av OA-journaler blir i stor grad sett på som frivillig arbeid og ofte akseptert som en del av jobben til professorer som driver med forskning (Hedlund et al. 2004).

3.4.2 Kvalitet og open access

Flere har vært kritisk til OA i forbindelse med kvalitet og de hevder at OA-journaler har dårligere kvalitet enn abonnementsfinansierte journaler (McCabe og Snyder, 2010). Journalers kvalitet måles hovedsakelig ut i fra dens innflytelse (“impact”-faktor) og kalkuleres med utgangspunkt i antall siteringer til artikler i journalen. “Impact”-faktor kalkulasjonene produseres av the Institute for Scientific Information, ISI, i Scientific Citation Index og det er derfor avgjørende for journalen å indekseres av ISI (Hedlund et al., 2004). Siteringer kan sies å være journalmarkedets valuta og det som indikerer hvor stor innflytelse et universitets forskning har på dets prestisje og lønn (McCabe og Snyder, 2011).

Det er ingen entydige resultater som viser eller avviser den kausale sammenhengen mellom OA og antall siteringer. Flere undersøkelser benytter siteringer som utgangspunkt for å måle kvalitet. Harnad og Brody (2004) hevder at gjennomsnittlige siteringer ikke er nok for å gi et nøyaktig mål på kvalitet og mener at hvor ofte en artikkel siteres også må analyseres. Et gjennomsnitt vil ikke gi et rettvisende bilde av en artikkels kvalitet, mens en analyse av hyppighet i siteringene vil skape et mer helhetlig bilde av artikkelens innflytelse. For å få et realistisk estimat på effekten OA har på ”impact” er det ikke nok å sammenligne de få av ISIs
journaler som er OA, mot de mange som ikke er OA for å finne ut om de er lik i “impact”. Tilgang er ikke en tilstrekkelig betingelse for sitering, men en nødvendighet. OA øker antall potensielle brukere drastisk ved å inkludere de som ellers ikke ville hatt tilgang. Derfor kan OA øke både bruken og “impact” (Harnad og Brody, 2004).

3.4.3 Kostnadsstruktur open access

På grunn av den store graden av frivillig innsats, blant annet under fagfellevurderingen, er det vanskelig å kartlegge de eksakte kostnadene knyttet til en OA-journals publiseringssprosess. Typiske OA-journaler har i dag ikke et budsjett eller direkte kostnader. Tidsbruk brukes derfor ofte som et mål på kostnadene og for å kunne sammenligne produksjonskostnadene til OA-journaler og tradisjonelle journaler kalkuleres kostnadene ut i fra tidsbruk og timelønn til redaktørene (Hedlund et al., 2004).

En av de største forskjellene mellom trykk og elektronisk publisering er distribusjonskostnaden. For trykte journaler er distribusjonskostnaden forbundet med hver kopi svært høy og dette er noe av det som kan forsvare abonnementsavgifter til leserne (Willinsky, 2006). Ved elektronisk publisering elimineres denne distribusjonskostnaden, noe som fører til at journalens drift må finansieres på andre måter. Selv om det fortsatt er kostnader forbundet med elektronisk publisering kreves det på grunn av teknologi færre ressurser enn tidligere. Dette fører til at det er enklere å starte og drive en journal, noe som er en av hovedårsakene til fremveksten av OA-journaler.

3.4.4 Velferd og open access

Det kan tenkes at OA øker den samfunnsøkonomiske velferden når markedet er i likevekt, og med at all forskning blir gjort tilgjengelig for allmennheten. Forskning er et kollektivt gode og større spredning kan dermed på lang sikt påvirke den generelle økonomien til å bli mer produktiv (Dosi, 1988; Freeman, 1994; McCabe og Snyder, 2011). Det kan også tenkes at når forskning blir gjort fritt tilgjengelig for alle vil en kunne unngå situasjoner hvor samme
forskning blir gjort flere ganger. Samtidig er det ikke så enkelt å definere hva som er ren duplisering og hva som er nye bidrag. Resultatene publiseres uavhengig av om de er OA eller ikke, og de fleste forskere vil ha tilgang til i alle fall “working papers”.

3.4.5 Insentiver open access

4. Modeller for studie av markedet for akademiske journaler

I dette kapittelet presenteres de to modellene vi har valgt å analysere for å finne svar på problemstillingen og forskningsspørsmålene. Den ene modellen fokuserer på pris og prissetting for en monopoljournal og to duopoljournaler under open access (OA). Den andre modellen fokuserer på kvalitet og lesermasse for en elektronisk “non-profit”-journal som går fra leserbetaling til OA.

Tosidige markeder er nøkkelen for å forstå hvordan markedet for publisering av akademisk litteratur fungerer.

![Diagram av tosidig journalmarked](image)

Figur 7: Illustrasjon av det tosidige journalmarkedet

4.1 Pris og prisstruktur

McCabe og Snyder (2010) adresserer i sin studie tre hypoteser knyttet til OA: 1) Det er ikke selvsagt at profittmaksimerende journaler frivillig vil velge å ha OA. 2) Det er heller ikke
Selvsagt at en "non-profit"-journal med OA vil være konkurransedyktig. 3) Det er ikke selvsagt at samfunnsøkonomisk velferd øker ved OA.

4.1.1 Modell pris og prisstruktur

Modellen har tre typer økonomiske agenter: journaler, forfattere og lesere. Journalene er bindeledd mellom forfatterne og leserne, og de "bundler" artikler sammen til en journalutgave som de distribuerer til leserne.

Begge sidene av plattformen får nytte fra eksternaliteter gitt av den andre siden. Forfattere får nytte av ytterligere lesere fordi det øker forfatterens "impact" og siteringer. Leseren får nytte av ytterligere artikler fordi artiklene har innhold som er verdifullt for leseren. På grunn av at forfatterne og leserne ikke kan kompensere hverandre for disse eksternalitetene vil fordelingen av totale avgifter avgjøres i likevekt.

Hver artikkel påfører journalen tre kostnader: \(c^A \), \(c^R \) og \(c \). \(c^A \) er journalens prosesseringskostnad forbundet med den enkelte artikkel. \(c^R \) er en fast distribusjonskostnad per artikkel, og \(c \) er en variabel distribusjonskostnad per artikkel. Hver forfatter, \(i \), produserer én artikkel, og får følgende nytte per leser: \(b_i^A \in \mathbb{R} \), hvor \(b_i^A \) kan være alle reelle tall på tallinjen. I dette inngår nytten av å bli lest og sitert av flere lesere og dermed utvikling av karriere for forfatteren. Denne variabelen er tilfeldig gitt i fordelingsfunksjon \(F^A \). Antall
forfattere normaliseres til 1.Leser k får $b_k^R \in \mathbb{R}$ i nytte per leste artikkel på grunn av informasjonen artikken inneholder. b_k^R kan være alle reelle tall på tallinjen. Denne variabelen er tilfeldig gitt i fordelingsfunksjon F_R. Antall lesere normaliseres til 1.

Det er ingen eksogene forskjeller mellom journalene og de har identiske kostnader. De kan kun skille seg fra hverandre i kvalitet i den grad at de publiserer et ulikt antall artikler og ikke ved kvaliteten på artiklene de publiserer. Artiklene er dermed av lik kvalitet. Det antas videre også en viss grad av linearitet ved at forfatterens (leserens) nytte stiger eller synker proporsjonalt med antall lesere (artikler). Forfatterne og leserne kan ikke gjennomføre direkte betalinger til hverandre og er avhengig av journalen for interaksjon. Nytten forfatter og leser gir hverandre er dermed eksternalitet.

Videre beregnes aktørenes overskudd:

Anta at journal j har n_j^A forfattere og n_j^R lesere. Dens profitt er:

$$p_j^A n_j^A + p_j^R n_j^R - TC(n_j^A, n_j^R)$$

(1.1)

hvor $TC(n_j^A, n_j^R)$ er den totale kostnadsfunksjonen

$$TC(n_j^A, n_j^R) = c_j^A n_j^A + c_j^R n_j^R + c_{n_j} n_j^A n_j^R$$

(1.2)

Om forfatter i sender inn sin artikkel til journal j, får han nettonytte

$$n_j^R b_i^A - p_j^A$$

(1.3)

Om leser k abonnerer på journal j, får han nettonytte

$$n_j^A b_k^R - p_j^R$$

(1.4)
Uendelig antall spillere genererer flere delspillperfekte forventningslikevekter på grunn av spillernes koordineringsaktiviteter. For eksempel så kan det ved monopol eksistere en rasjonell forventningslikevekt med marginalkostnadsprising. Likevekten støttes av forfattere og leseres strategier om å ikke tilknytte seg journalen med mindre journalen setter priser lik marginalkostnad. Fordi journalen da ikke kan oppnå positiv profit kan den dermed like godt sette pris lik marginalkostnad. Forfatter (eller leser) har ingen insentiv til å avvike om journalen setter høyere priser fordi den ikke får noe overskudd ved å knytte seg til en journal uten lesere (eller forfattere).

4.2 Kvalitet og lesermasse

4.2.1 Modell kvalitet og lesermasse

Forfatteren observerer selv kvaliteten til sin artikkel, mens journalen observerer nøyaktig kvalitet ved hjelp av teknologi som medfører en kostnad \(\gamma_R \) per artikkel. Siden det er en elektronisk journal distribuert over internett antar de at marginalkostnaden ved distribusjon er null. Journalen pådrar seg også en fast publikasjonskostnad \(\gamma_P \) per publisert artikkel, og journalen publiserer kun artikler av kvalitet \(q \geq q_{\text{min}} \). Journalen opererer med tre avgifter: innsendingsavgift \(p_S \) for alle innsendte artikler, publiseringssavgift \(p_P \) for alle publiserte artikler og abonnementsavgift \(p_R \). Det antas at leserne kun kan observere kvaliteten til en artikkel etter å ha lest den. Alle lesere oppnår samme forventet nytte \(q \) etter å ha lest en artikkel av kvalitet \(q \), men leserne har ulik lesekostnad \(c \).

Forfatterens totale nytte er gitt ved \(u + \alpha_A q n_R \) hvor parameteren \(u \) er en positiv konstant som måler den faste nytten ved å publisere artikkelen. Konstanten \(\alpha_A \) er positiv og måler styrken mellom innflytelsen (publiseringseffekten) og nytten til forfatteren. \(n_R \) representerer antall lesere og \(\alpha_A q n_R \) er en variabel komponent som avhenger av kvaliteten på artikkelen. \(q n_R \) tolkes som innflytelsen artikkelen har, som er proporsjonal med etterfølgende siteringer eller patenter som følger av artikkelen. En liknende ligning \(\alpha_S q n_R \) med positiv \(\alpha_S \) representerer den resterende nytten leserne ikke tar bruk og som overføres til resten av samfunnet. Til sammen blir da \(\alpha = \alpha_A + \alpha_S \) den totale eksternalitetsfunksjonen.

Den potensielle leseren avgjør hvorvidt han skal lese journalen eller ikke basert på sine forventninger til kvaliteten på de publiserte artiklene og lesekostnaden \(c \).

Spillet har følgende timing:
• Journalen annonserer kvalitetskravene \(q_{min} \) og prisene \(p_S, p_P \) og \(p_R \)
• Forfatterne velger om de skal sende inn artiklene eller ikke
• Journalen dømmer alle innsendte artikler og godkjenner eller avviser hver av dem
• Leserne velger om de skal abonnere på journalen og lese artiklene

Siden både forfatteren og journalen perfekt kan observere kvaliteten \(q \) på en innsendt artikkel, vil forfatteren være kjent med om artikkelen vil bli akseptert eller ikke. Dersom kvaliteten er \(q < q_{min} \) og prisen for å sende inn er \(p_S > 0 \) vil ikke artikkelen bli sendt inn av forfatteren. Dette innebærer et ubestemt forhold mellom prisene til forfatter \(p_S \) og \(p_P \): kun \(p_A \) er av betydning, siden forfatteren må betale totalen, altså \(p_A(\equiv p_S + p_P) \). Det faktum at artikler av kvalitet som overgår \(q_{min} \) blir innsendt indikerer at det som betyr noe for journalen er kun summen av publikasjonskostnaden per artikkel \(\gamma_P \) og kostnaden forbundet med bedømming av artikkelen \(\gamma_R \), ikke deres sammensetning. Derfor er \(\gamma \equiv \gamma_P + \gamma_R \). Det antas at \(\gamma > u \), noe som indikerer at selv om lesekostnaden er null vil det ikke være optimalt å publisere artikler av laveste kvalitet. Denne antagelsen fanger sertifieringsrollen som den akademiske journalen har – ved å avvise artikler av lav kvalitet gjør journalen det mulig for leserne å konsentrere seg om viktige artikler, og unngå de dårlige.

Oppsummert, når en artikkel blir publisert får forfatteren en fast nytte \(u \), mens journalen får en fast kostnad \(\gamma(\geq u) \). Når en artikkel av kvalitet \(q \) er lest av en leser med kostnad \(c \), får leseren nytte \((q - c) \), og resten av samfunnet, inkludert forfatteren, får nytte \(\alpha q \). Om de \(n_A \) beste artiklene blir publisert blir nettonytten til en leser med lesekostnad \(c \):
\[U_R = n_A [Q^A(n_A) - c] - p_R \] hvor \(Q^A(n_A) \) er den (forventede) gjennomsnittskvaliteten på artiklene publisert av journalen.
5. Analyse

I dette kapittelet vil vi presentere analysen av de to modellene som ble redegjort for i forrige kapittel.

I det følgende vil vi presentere analysen av modellen til McCabe og Snyder (2010).

5.1 Pris og prisstruktur

5.1.1 Monopol

Forfatter vil sende inn sin artikkel til journalen om hans overskudd (uttrykk 1.3) er positivt, eller omskrevet: \(b_f^A > p^A/n^R \). Siden antall forfattere er normalisert til 1 vil ligningen for forfatterens etterspørsel etter journaltjenesten være

\[
 n^A = 1 - F^A\left(\frac{p^A}{n^R}\right) \quad (1.5)
\]

og ligningen for lesernes etterspørsel etter journaltjenesten

\[
 n^R = 1 - F^R\left(\frac{p^R}{n^A}\right) \quad (1.6)
\]
For enkelhetsskyld benyttes følgende ligning for (1.5) og (1.6) videre:

\[n^x = 1 - F^x \left(\frac{p^x}{n^x} \right) \]
(1.7)

hvor \(x \in \{A, R\} \) refererer til én side av markedet og \(y \in \{A, R\}, y \neq x \) refererer til den andre siden. Løses systemet av ligninger i (1.7) simultant får vi en løsning på redusert form for etterspørselen etter journaltjenesten

\[\hat{n}^x(p^x, p^y) = \sup \{n \mid G^x(n, p^x, p^y) = 0\} \]
(1.8)

hvor

\[G^x(n, p^x, p^y) = 1 - F^x \left(\frac{p^x}{1 - F^y \left(\frac{p^y}{n} \right)} \right) - n \]
(1.9)

for \(x, y \in \{A, R\}, x \neq y \).

Etterspørslene på redusert form har direkte sammenlignbare egenskaper. For eksempel er forfatters etterspørsel \(\hat{n}^A(p^A, p^R) \) svakt synkende i innsendingsavgifter ("submission fees") \(p^A \). Forfatters etterspørsel er også svakt synkende i abonnementsavgift \(p^R \). Grunnen til dette er at forfatterne forventer at høye abonnementsavgifter reduserer antallet lesere og dermed også forfatterens nytte ved å publisere i journalen. Å utleder disse sammenlignbare resultatene kompliseres av at ligningen \(G^x(n, p^x, p^y) = 0 \) kan ha flere løsninger for \(n \), og disse løsningene kan variere diskontinuerlig med \(p^x \) og \(p^y \). McCabe og Snyder (2010) påpeker at om en øker \(p^A \) over en viss terskel kan det føre til at forfatteretterspørselen faller til null ettersom reduksjon i innsendinger og antall abonnenter får markedet til å kollapse.

Påstand 1.1: Monopolettespørsel \(\hat{n}^x(p^x, p^y) \) er svakt synkende i prisene \(p^x \) og \(p^y \) for alle \(x, y \in \{A, R\}, x \neq y \).

Monopoljournalen maksimerer profitten gitt ligning (1.1), ved å substituere \(\hat{n}^x(p^x, p^y) \) for etterspørsel til både forfatter og leser. Denne profitten kalles \(\pi^m(p^x, p^y) \). Forfatterens og leserens etterspørsel \(\hat{n}^x(p^x, p^y) \) behøver ikke å være kontinuerlig, men det antas for nå at etterspørselen er kontinuerlig og differensierbar, og at monopoloptimum er gitt ved en innvendig løsning. La \(MC^x \) være den effektive marginkostnaden ved å legge til en kunde på side \(x \in \{A, R\} \) av markedet. Fra den totale kostnadsfunksjonen (uttrykk 1.2) i modellkapittelet, har vi \(MC^x = c^x + c\hat{n}^y \). Førsteordensbetingelsen for optimum er

\[\hat{n}^x + (p^x - MC^x) \frac{\partial \hat{n}^x}{\partial p^x} + (p^y - MC^y) \frac{\partial \hat{n}^y}{\partial p^x} = 0 \]
(1.14)
for alle \(x, y \in \{A, R\}, x \neq y\). Førsteordensbetingelsen i (1.14) ligner den for en flerproduktsmonopolist med gjensidig avhengige etterspørsler. Den kan omskrives til en Lerner-indeks. Lerner-indeksen defineres som \(L^x = (p^x - MC^x)/p^x\) og etterspørselselastisiteten defineres som \(\varepsilon^xy = \left(\frac{\partial \pi^x}{\partial p^y}\right)_{\partial^x/p^y}\) for \(x, y \in \{A, R\}\). Elastisitet er ett uttrykk som beskriver prosentvis endring i \(x\) gitt en prosentvis i \(y\) (vanligvis 1 %). I dette tilfellet er derfor etterspørselselastisiteten et uttrykk for hvor mye etterspørselen endrer seg når prisen endres med 1 %. Fra dette følger

\[
L^x = \frac{1}{|\varepsilon^xy|} \left[1 + \frac{LY\varepsilon^yx \left(\frac{p^y/h^y}{p^x/h^x}\right)}{1 + \frac{LY\varepsilon^yx \left(\frac{p^y/h^y}{p^x/h^x}\right)}{1 + \frac{LY\varepsilon^yx \left(\frac{p^y/h^y}{p^x/h^x}\right)}}} \right]
\]
\[(1.15)\]

Påstand 1 forutsetter \(\varepsilon^yx \leq 0\) for alle \(x, y \in \{A, R\}\). Dette forutsetter altså at monopoljournalen priser som en flerproduktsmonopolist med komplementære goeder gjør (i dette tilfellet forfattere og lesere). Monopoljournalen nyanserer innsendingsavgiften \(p^A\) litt ned i forhold til en-produkts Lerner-indeksformel for å ta hensyn til effekten av at økning i antall artikler øker antall lesere. Det samme gjelder for abonnementsavgiften \(p^B\).

Ligning (1.15) indikerer at en monopoljournal kan kreve avgifter som er høyere enn marginkostnader for både forfattere og lesere. Dette vil være situasjonen dersom begge sider av markedet er symmetrisk eller nesten symmetrisk. Å kreve en avgift som gir positiv avanse tillater monopolisten å trekke ut overskudd fra begge sidene av markedet. For at monopolisten skal kreve en avgift som gir null eller negativ avanse må de to sidene av markedet være tilstrekkelig asymmetrisk. Det kan for eksempel være dersom inntektene fra den ene sidene av markedet er tilstrekkelig større enn fra den andre siden. Monopolisten vil da subsidiere den siden som genererer lav inntekt for å kunne hente ut mer overskudd fra den siden som genererer høy inntekt.

5.1.2 Nest-beste allokering

Som en referanse analyseres den nest-beste allokeringen for en velferdsmaksimerende planlegger. Denne løsningen maksimerer summen av produsent- og konsumentoverskudd gitt en nullprofittbetingelse for bedriften. Det antas også her at etterspørslene \(\tilde{h}^x(p^x, p^y)\) er kontinuerlig og differensierbar, og videre at den velferdsmaksimerende planleggerens problem har en innvendig løsning. Langrange-funksjonen forbundet med dette begrensede optimeringsproblemet er
\[\int_{p^A/\hat{\gamma}^R}^{\infty} \hat{\gamma}^R b dF^A(b) + \int_{p^R/\hat{\gamma}^A}^{\infty} \hat{\gamma}^A b dF^R(b) - TC(\hat{\gamma}^A, \hat{\gamma}^R) + \lambda \pi^m(p^A, p^R) \quad (1.10) \]

hvor \(\lambda \) er Langrange-multiplikatoren for nullprofitbetingelsen. Funksjonen \(V^x(p^x, p^y) \) er nytten ved å få en ny kunde på side \(x \in \{A, R\} \) av markedet i snitt av populasjonen av kunder på den andre siden av markedet, \(y \in \{A, R\}, y \neq x \):

\[V^x(p^x, p^y) = \int_{p^y/\hat{\gamma}^x}^{\infty} b dF^y(b) \quad (1.11) \]

Førsteordensbetingelsene knyttet til Langrange-funksjonen (1.10) er

\[\lambda \hat{\gamma}^x + [(1 + \lambda)(p^x - MC^x) + V^x] \frac{\partial \hat{\gamma}^x}{\partial p^x} + [(1 + \lambda)(p^y - MC^y) + V^y] \frac{\partial \hat{\gamma}^y}{\partial p^x} = 0 \quad (1.12) \]

for \(x, y \in \{A, R\}, x \neq y \). Ligning (1.12) kan omformes til en Lerner-indexformel:

\[L^x = \frac{1}{|e^{xy}|} \left(\frac{\lambda}{1+\lambda} + e^{yx} \left[L^y + \frac{V^y}{(1+\lambda)p^y} \right] \left(p^y/\hat{\gamma}^y \right) \right) - \frac{V^x}{(1+\lambda)p^x} \quad (1.13) \]

Om en ignorerer \(V^A \) og \(V^R \) vil en ha en formel for Ramsey-prising. Ramsey-prising går ut på hvilken pris en monopolist må sette for å dekke sine faste kostnader mest mulig effektivt (Laffont og Tirole, 1993). \(V^A \) og \(V^R \) representerer de positive eksternalitetene de to sidene av markedet påfører hverandre. Ved å inkludere \(V^A \) og \(V^R \) reflekteres disse eksternalitetene. Jo høyere \(V^A \) er, desto større eksternaliteter påfører forfatterer leserne. Derfor er det høyere avanse på abonnementsavgiften for å betale for den reduserte avansen på innsendingsavgift.

Det motsatte gjelder for \(V^R \). På grunn av at totalkostnadsfunksjonen demonstrerer en ikke-synkende "ray average cost" kan avansene i ligning (1.13) være negativ. "Ray average cost" er gjenomsnittskostnaden for en flerproduktmonopolist (Carlton og Perloff, 2005). Dette er tilfelle dersom nullprofitbetingelsen gjelder. I et slikt tilfelle vil minst én av de nest-beste allokeringene, \(L^A \) eller \(L^R \) fra ligning (1.13), ikke være positiv.

5.1.3 Konkurrerende duopoljournaler

Videre analyseres situasjonen for konkurrerende duopoljournaler. Det antas å være to identiske journaler \(j = 1, 2 \) som velger prisene \(p^j_A \) og \(p^j_R \) simultant før forfatterer og leserne foretar sin beslutning om å delta i markedet. Som nevnt tidligere innebærer likevektssneglet

Symmetrisk pris

Påstand 1.2: I et duopols likevekt med symmetrisk pris under nullprofittbetingelsen koordinerer forfattere og lesere slik at de knytter seg til én journal selv om de kan velge mellom to journaler.

Påstand 1.2 viser at nullprofittbetingelsen ikke samsvarer med full symmetri i forstand av like journalpriser og like mengder. Grunnen er at i stedet for at forfattere og lesere fordeler seg selv over to journaler, kan aktørene dra nytte av å koordinere om å knytte seg til én av de to. Kravet om at uendelig antall spillere må koordinere om et Pareto-optimum i hvert delspill fører til at forfattere og lesere koordinerer om å tilknytte seg til én journal.

Påstand 1.3: I et duopols likevekt med symmetrisk pris i journalspillet under nullprofittbetingelsen, vil likevektsprisene \((p^A^*, p^R^*)\) tilfredsstille

\[
\pi^m (p^A^*, p^R^*) = 0 \tag{1.16}
\]
om monopoletterspørsel $\hat{h}(x^*, y^*), x, y \in \{A, R\}, x \neq y$ er kontinuerlig med (p^A, p^R). Det vil si at dersom én av journalene betjener hele markedet alene til disse likevektsprisene vil den tjene null i profitt. Det betyr at den andre journalen også vil tjene null i profitt. Om monopoletterspørselen ikke er kontinuerlig med (p^A, p^R) kan begge journalene tjene positiv profitt i likevekt.

Påstand 1.4. Anta at journalens nullprofittbetingelse gjelder i nest-beste allokering. Det er i duopolspillet en likevekt som tilfredsstiller nullprofittbetingelsen når journalen krever samme priser som i nest-beste allokering.

I et standard Bertrand-spill er det kun ett likeveks-utfall; marginkostnadsprisning for det enkelte godet, som fører til null profitt. Med to priser kan det være et kontinuum av priser som tilfredsstiller nullprofittbetingelsen i ligning (1.16), derfor er det også et potensielt kontinuum av likevekter, både symmetriske priser som vi har sett over, og asymmetriske priser.

5.1.4 Numeriske eksempler

![Diskontinuitet i etterspørselskurvene på redusert form (McCabe og Snyder, 2010)](image-url)
Som etterspørselskurvene i figur 8 viser, kan det være diskontinuitet i etterspørselskurvene for de fleste eksemplene med uniform distribuert nytte. En slik diskontinuitet kan føre til at antakelsene bak Lerner-indeksformlene (1.13) og (1.15) ikke holder.

De numeriske eksemplene analyseres i tre deler. Først for symmetrisk nytte mellom forfattere og lesere, deretter for høyere forfatternytte enn lesernytte og til slutt for høyere lesernytte enn forfatternytte.

Symmetrisk nytte

Først analyseres situasjonen med bakgrunn i antakelsen om at distribusjonen av forfatter- og lesernytte, F^A og F^B, er symmetrisk ved at begge er uniforme distribusjoner i $[0,1]$. Tabell 3 viser resultat fra tre ulike kostnadskonfigurasjoner for dette eksempelat.

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Maximizing Authors</th>
<th>Maximizing Readers</th>
<th>Second Best</th>
<th>First Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monopoly</td>
<td>0.237</td>
<td>0.055</td>
<td>0.250</td>
<td>0.100</td>
</tr>
<tr>
<td>Example 1</td>
<td>0.237</td>
<td>0.055</td>
<td>0.250</td>
<td>0.100</td>
</tr>
<tr>
<td>Submission Fee</td>
<td>0.237</td>
<td>0.055</td>
<td>0.250</td>
<td>0.100</td>
</tr>
<tr>
<td>Subscription Fee</td>
<td>0.237</td>
<td>0.055</td>
<td>0.250</td>
<td>0.100</td>
</tr>
<tr>
<td>Number Authors</td>
<td>0.612</td>
<td>1.000</td>
<td>0.770</td>
<td>0.887</td>
</tr>
<tr>
<td>Number Readers</td>
<td>0.612</td>
<td>1.000</td>
<td>0.770</td>
<td>0.887</td>
</tr>
<tr>
<td>Industry Profit</td>
<td>0.168</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Consumer Surplus</td>
<td>0.229</td>
<td>0.682</td>
<td>0.082</td>
<td>0.690</td>
</tr>
<tr>
<td>Social Welfare</td>
<td>0.398</td>
<td>0.682</td>
<td>0.082</td>
<td>0.690</td>
</tr>
</tbody>
</table>

Tabell 3: Kostnadskonfigurasjoner ved symmetrisk forfatter- og lesernytte (McCabe og Snyder, 2010)

Som eksempel 1 viser settes kostnadskonfigurasjonene, $(c^A = 0.1, c^B = 0.1, c = 0)$, for å gjøre forfattere og lesere helt symmetrisk ut i fra nytte og kostnader. Det kan fange opp situasjonen med trykte journaler hvor det er en fast kostnad ved å produsere en utgave av en journal og
distribuere journalen til en leser. Eksempel 2 \((c^A = 0.1, c^R = 0.0, c = 0.1)\) er ment å fange opp en situasjon med trykte journaler hvor kostnaden ved å produsere og distribuere journalen til en leser avhenger lineært av antallet artikler eller sidetall i journalen. Eksempel 3 \((c^A = 0.1, c^R = 0.0, c = 0.0)\) er ment å fange opp en situasjon med online-journaler. De fleste kostnader i denne situasjonen er forbundet med å prosessere artiklene og publisere dem elektronisk. Det er lav marginalkostnad knyttet til å betjene leserne. Eksempel 3 er det som er mest nyttig når det kommer til å besvare open access-spørsmålet.

I hvert av eksemplene (1-3) ser en at monopoljournalen krever en pris som er betydelig høyere enn marginalkostnad, og at samfunnsøkonomisk velferd for en monopoljournal er omtrent bare halvparten sammenlignet med første-beste allokering.

Det er flere likevekter i situasjonen med konkurrerende journaler enn for monopoljournaler. Tabell 3 viser de to ytterpunktene av spekteret. Figur 9 viser hele spekteret for hvert av de tre eksemplene.

Figur 9: Kontinuum av konkurranselikevekter i tre nummeriske eksempler (McCabe og Snyder, 2010)

Likevekten som maksimerer antall forfattere setter alle avgiftene til lesersiden (punkt A i figur 9) og likevekten som maksimerer antall lesere setter alle avgiftene til forfattersiden (punkt R i figur 9). Punkt T i figur 9 maksimerer forfatternes og lesernes totale konsumentoverskudd.

Som nevnt tidligere er prisene begrenset eksogent til å være positive. Det er derfor mulig at det ville være ytterligere likevekter dersom en slik betingelse ikke hadde vært satt.
I tabell 3 kan en også se at de fleste abonnementsavgiftene er fallende når den faste distribusjonskostnaden er redusert fra $c^R = 0.1$ i eksempel 1 til $c^R = 0.0$ i eksempel 2 og 3. Abonnementsavgiftene faller på grunn av at den effektive marginale distribusjonskostnaden ved å legge til en leser, MC^R, faller ved en reduksjon i c^R. Den lavere kostnaden reflekteres av lavere priser. Likevektene som maksimerer antall lesere involverer OA i alle tre eksemplene. De virker å gi høyere samfunnsøkonomisk velferd enn likevekten som maksimerer antall forfattere og de gir et overskudd som er nært den nest-bestefeste allokeringen.

Avgiftene i den første-bestefeste allokeringen er lavere enn marginalkostnad. Journalen kan subsidieres i den førstepreste situasjonen og behøver ikke å dekke noen kostnader. Også i den nest-bestefeste allokeringen kan avgiftene være lavere enn marginalkostnaden. Fra ligning (1.13) husker vi at avansen over marginalkostnad i den nest-bestefeste allokeringen ikke behøver å være positiv fordi kostnadsfunksjonen demonstrerer en økende "ray average costs". Derfor kan prisen være lavere enn marginalkostnad og journalen kan fortsatt ha inntekt høyere enn totale kostnader.

Videre analyseres numeriske eksempler for situasjonen med asymmetrisk nytte for forfatter og leser.

Asymmetrisk nytte

Høyere forfatternytte enn lesernytte

Tabell 4 på neste side viser flere eksempler på når forfatteres nytte er større enn leseres nytte.

Forfatternes nytte har en uniform distribusjon i $[0,2]$, som er dobbelt av hva de var i tabell 3. Leseres nytte har en uniform distribusjon i $[0,1]$, slik som i tabell 3.

Kostnadskonfigurasjonene er de samme som i tabell 3. Sammenlignet med situasjonen med symmetrisk nytte for forfattere og lesere i tabell 3, øker monopoljournalen prisen til den siden av markedet med høyest etterspørrelse (forfattere) og senker prisen til den siden av markedet med lavest etterspørrelse (lesere) i tabell 4 på neste side.
Tabell 4: Kostnadskonfigurasjoner ved høyere forfatternytte enn lesernytte (McCabe og Snyder 2010)

<table>
<thead>
<tr>
<th></th>
<th>Competitive Equilibria</th>
<th>Social Optimum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monopoly</td>
<td>Maximizing Authors</td>
</tr>
<tr>
<td>Example 4 (Equal author and reader costs): $c_a = 0.1, c^r = 0.1, c = 0.0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submission Fee</td>
<td>0.009</td>
<td>0.000</td>
</tr>
<tr>
<td>Subscription Fee</td>
<td>0.048</td>
<td>0.250</td>
</tr>
<tr>
<td>Number Authors</td>
<td>0.497</td>
<td>1.000</td>
</tr>
<tr>
<td>Number Readers</td>
<td>0.983</td>
<td>0.770</td>
</tr>
<tr>
<td>Industry Profit</td>
<td>0.356</td>
<td>0.000</td>
</tr>
<tr>
<td>Consumer Surplus</td>
<td>0.426</td>
<td>1.067</td>
</tr>
<tr>
<td>Social Welfare</td>
<td>0.786</td>
<td>1.067</td>
</tr>
</tbody>
</table>

Example 5 (Print journals case): $c_a = 0.1, c^r = 0.0, c = 0.1$

Example 6 (Online journals case): $c_a = 0.1, c^r = 0.0, c = 0.0$

I eksempel 6 benytter monopoljournalen OA. Selv om reduksjon i abonnementsavgiften fører til lavere inntekt fra lesersiden påfører leserne en så stor positiv eksternalitet på forfattere at denne nedgangen i inntekt utlignes av økningen i innsendingsavgiften monopoljournalen kan kreve når flere lesere er forventet å abonnere. Dette resultatet viser det vi så i Lerner-indeksen i (1.15). Ligning (1.15) viser at avansen må oppjusteres for den siden av markedet som genererer størst inntekt.

Høyere lesernytte enn forfatternytte

Tabell 5 illustrerer situasjonen hvor leserne har større nytte enn forfatterne.

Tabell 5: Kostnadskonfigurasjoner ved høyere lesernytte enn forfatternytte (McCabe og Snyder, 2010)

<table>
<thead>
<tr>
<th></th>
<th>Competitive Equilibria</th>
<th>Social Optimum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monopoly</td>
<td>Maximizing Authors</td>
</tr>
<tr>
<td>Example 7 (Equal author and reader costs): $c^A = 0.1, c^R = 0.1, c = 0.0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submission Fee</td>
<td>0.048</td>
<td>0.000</td>
</tr>
<tr>
<td>Subscription Fee</td>
<td>0.099</td>
<td>0.212</td>
</tr>
<tr>
<td>Number Authors</td>
<td>0.035</td>
<td>1.000</td>
</tr>
<tr>
<td>Number Readers</td>
<td>0.437</td>
<td>0.094</td>
</tr>
<tr>
<td>Industry Profit</td>
<td>0.355</td>
<td>0.000</td>
</tr>
<tr>
<td>Consumer Surplus</td>
<td>0.425</td>
<td>1.245</td>
</tr>
<tr>
<td>Social Welfare</td>
<td>0.780</td>
<td>1.245</td>
</tr>
</tbody>
</table>

Example 8 (Print journals case): $c^A = 0.1, c^R = 0.0, c = 0.1$

<table>
<thead>
<tr>
<th></th>
<th>Maximizing Authors</th>
<th>Maximizing Readers</th>
<th>Second Best</th>
<th>First Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submission Fee</td>
<td>0.894</td>
<td>0.000</td>
<td>0.200</td>
<td>0.000</td>
</tr>
<tr>
<td>Subscription Fee</td>
<td>0.811</td>
<td>0.212</td>
<td>0.000</td>
<td>0.212</td>
</tr>
<tr>
<td>Number Authors</td>
<td>0.837</td>
<td>1.000</td>
<td>0.800</td>
<td>1.000</td>
</tr>
<tr>
<td>Number Readers</td>
<td>0.516</td>
<td>0.894</td>
<td>1.000</td>
<td>0.894</td>
</tr>
<tr>
<td>Industry Profit</td>
<td>0.362</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.200</td>
</tr>
<tr>
<td>Consumer Surplus</td>
<td>0.403</td>
<td>1.245</td>
<td>1.129</td>
<td>1.245</td>
</tr>
<tr>
<td>Social Welfare</td>
<td>0.765</td>
<td>1.245</td>
<td>1.129</td>
<td>1.245</td>
</tr>
</tbody>
</table>

Example 9 (Online journals case): $c^A = 0.1, c^R = 0.0, c = 0.0$

<table>
<thead>
<tr>
<th></th>
<th>Maximizing Authors</th>
<th>Maximizing Readers</th>
<th>Second Best</th>
<th>First Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submission Fee</td>
<td>0.067</td>
<td>0.000</td>
<td>0.100</td>
<td>0.000</td>
</tr>
<tr>
<td>Subscription Fee</td>
<td>0.820</td>
<td>0.100</td>
<td>0.000</td>
<td>0.106</td>
</tr>
<tr>
<td>Number Authors</td>
<td>0.875</td>
<td>1.000</td>
<td>0.900</td>
<td>1.000</td>
</tr>
<tr>
<td>Number Readers</td>
<td>0.581</td>
<td>0.047</td>
<td>1.000</td>
<td>0.947</td>
</tr>
<tr>
<td>Industry Profit</td>
<td>0.436</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.100</td>
</tr>
<tr>
<td>Consumer Surplus</td>
<td>0.450</td>
<td>1.371</td>
<td>1.305</td>
<td>1.371</td>
</tr>
<tr>
<td>Social Welfare</td>
<td>0.857</td>
<td>1.371</td>
<td>1.305</td>
<td>1.371</td>
</tr>
</tbody>
</table>

Lesernes nytte har en uniform distribusjon i $[0,2]$, som er det dobbelte av i tabell 3.

Forfatternes nytte har en uniform distribusjon i $[0,1]$, som i tabell 3. Selv om OA oppstår i de konkurranselikevektene som maksimerer antall lesere, er ikke OA nest-best effektivt i noen av dem. Den første-beste allokeringen involverer OA, men journalene ender opp med negativ profit, så et slikt utfall vil ikke være gjennomførbart uten subsidier.

I det følgende vil vi presentere analysen av modellen til Jeon og Rochet (2010).

5.2 Kvalitet og lesermasse

Som nevnt innledningsvis i kapittel 5 er analysen todelt. Den normative vil presenteres først.

Med en normativ analysemetode menes at innholdet er verdiladet og tar stilling til kvaliteter og problemer som formidler verdimessige holdninger. I normative analyser er formålet å forklare fenomener ved å anbefale, drøfte og konkludere i forhold til den gitte
Problemstillingen. Derfor er en slik metodefremgang verdifullt for denne oppgaven. En normativ analyse er gjerne subjektiv i den forstand at den er lite etterprøvbar og ikke generaliserbar på grunn av antagelsene som gjøres i de spesifikke modellene, og på grunn av forhold som uttrykker holdninger på et gitt tidspunkt. På grunn av at de to forslagene nedenfor ser på muligheten for maksimering av samfunnsøkonomisk velferd er derfor en normativ analyse valgt.

5.2.1 Første-beste allokering

Om det er \(n_A \) artikler som blir publisert og \(n_R \) lesere, kreves det (for at det skal være samfunnsøkonomisk effektivt) at artiklene som blir publisert er de med den høyeste kvaliteten \((q \geq q(n_A)) \) og at leserne er de med de laveste kostnadene \((c \leq c(n_R)) \).

Førsteordensbetingelsen for samfunnsøkonomisk velferd er da gitt ved \(W(n_A, n_R) \):

\[
W(n_A, n_R) \equiv (1 + \alpha) n_R \int_0^{n_A} q(x)dx - n_A (\gamma - u) - n_R \int_0^{n_R} c(y)dy
\] (2.1)

Første ledd i formelen representerer samfunnsøkonomiske fordeler (forfatter + leser + resten av samfunnet) når de \(n_A \) beste artiklene blir publisert og lest av de leserne \(n_R \) som har de laveste lesekostnadene. Andre ledd i formelen er summen av forlagets kostnader forbundet med publisering minus den faste nytten til forfatterne. Siste ledd i formelen representerer den aggregerte kostnaden forbundet med å lese journalen. Det antas at parameterne er slik at maksimum av \(W \) er inferiør, det vil si at antall artikler publisert er mellom null og en. Fra førsteordensbetingelsen med hensyn på \(n_A \) får vi:

\[
(1 + \alpha) n_R q(n_A) = (\gamma - u) + \int_0^{n_R} c(y)dy
\] (2.2)

Gitt at de leserne, \(n_R \), med lavest kostnad leser journalen, betyr (2.2) at det optimale antall artikler som blir publisert, \(n_A \), er bestemt av samfunnets utjevnede marginalfordel ved å publisere en artikkel av kvalitet \(q(n_A) \) til samfunnets marginalkostnad (dette inkluderer eventuelle eksterne effekter). Samfunnets utjevnede marginalfordel er lik summen av nettokostnadene forbundet med publisering av en artikkel og den aggregerte kostnaden forbundet med lesing av en artikkel. Likning (2.2) kan skrives om til:

\[
(1 + \alpha) q(n_A) = \frac{\gamma - u}{n_R} + C^a(n_R)
\] (2.3)

hvor
\[C^a(n_R) = \int_0^{n_R} c(y)\,dy \]

bettegn gjennomsnittlig lesekostnad for leserne. Fra førsteordensbetingelsen med hensyn på \(n_R \) får vi:

\[(1 + \alpha) \int_0^{n_A} q(x)\,dx = n_A c(n_R) \quad (2.4)\]

Gitt at de \(n_A \) artikler med kvalitet \(q \geq q(n_A) \) blir publisert i journalen, betyr (2.4) at optimalt antall lesere er bestemt ved den utjevnede samfunnsøkonomiske nyten ved å ha én ekstra leser til den totale kostnaden pålopt av lesing ved denne marginalen leseren. Betingelse (2.4) er ekvivalent med

\[(1 + \alpha)Q^a(n_A) = c(n_R) \quad (2.5)\]

Siden eksternalitetsutrykket \(\alpha \) er positivt indikerer (2.5) at for den marginale leseren er gjennomsnittsnytten ved å lese artikler lavere enn lesekostnaden, og derfor bør den ekstra leseren bli subsidieret. Dette på grunn av at de positive eksternalitetene som genereres ved lesing føres over på samfunnet. La \((n_A^{FB}, n_R^{FB}) \) være den første-beste allokeringen, karakterisert av (2.3) og (2.5). FB står for første-beste ("First Best”). Vi finner nå minimum kvalitetsstandard \(q_{min}^{FB} \) og de prisene \((p_A^{FB}, p_R^{FB}) \) som implementeres i den første-beste allokeringen \((n_A^{FB}, n_R^{FB}) \) når betingelsene til både lesere og forfattere må tilfredsstilles. \(q_{min}^{FB} \) må være lik \(q(n_A^{FB}) \) i den første-beste allokeringen. Gitt \(n_R \), la \(U_A(n_A; n_R) \) være nyttelen som forfatteren får fra å publisere artikkelen i journalen. Vi har:

\[U_A(n_A; n_R) = \alpha_A q(n_A)n_R + u - p_A \quad (2.6)\]

For å sikre innsending av alle artikler med kvalitet høyere enn \(q(n_A^{FB}) \) må den følgende deltakelsesbetingelsen (“Participation Constraint”), \((PC_A) \) være tilfredsstilt:

\[(PC_A)U_A(n_A^{FB}; n_R^{FB}) = \alpha_A q(n_A^{FB})n_R^{FB} + u - p_A \geq 0 \quad (PC_A)\]

som er ekvivalent med

\[p_A \leq \alpha_A q(n_A^{FB})n_R^{FB} + u \equiv p_A^{max} \]

Tilsvarende, gitt \(n_A \), la \(U_R(n_R; n_A) \) representere nyttelen som leseren får fra å abonnere på og lese journalen. Vi har
\[U_R(n_R:n_A) = [Q^a(n_A) - c(n_R)]n_A - p_R \]
(2.7)

hvor \(Q^a(n_A)\) er den forventede gjennomsnittskvaliteten på de publiserte artiklene. For at hver lesers insentiv til å abonnere på og lese journalen skal samsvar med det samfunnssøkonomiske insentivet (altså for å få kun de med \(c \leq c(n_R^{FB})\) til å abonnere på journalen), må den følgende insentivbetingelsen (“Incentive Constraint”), \((IC_R)\) være tilfredsstilt for den marginale leseren:

\[(IC_R)U_R(n_R^{FB}:n_A^{FB}) = [Q^a(n_A^{FB}) - c(n_R^{FB})]n_A^{FB} - p_R = 0 \]
(\(IC_R\))

som er ekvivalent med

\[p_R = [Q^a(n_A^{FB}) - c(n_R^{FB})]n_A^{FB} \equiv p_R^{FB} \]

Fra (2.5) har vi

\[p_R^{FB} = -\alpha Q^a(n_A^{FB})n_A^{FB} < 0 \]
(2.8)

Derfor må \(p_R^{FB}\) være strengt negativ. I kontrast til dette kan \(p_A^{FB}\) være strengt positiv. Dette kommer av at en forfatter får positiv nytte fra å publisere artikkelen i journalen samtidig som han ikke pådrar seg noe innsendingskostnad. Dette indikerer at å ta en lav (men positiv) pris samsvarer med innsending av artikler som er av høyere kvalitet enn \(q(n_A^{FB})\). faktisk vil enhver \(p_A \leq p_A^{max}\) oppnå det. Leserne på sin side pådrar seg kostnader ved å lese journalen. Siden leser genererer positive eksternaliteter til resten av samfunnet, er det optimalt å subsidiere leserne med en pris som er lavere enn marginal distribusjonskostnad. For en elektronisk journal er denne kostnaden null, derfor må abonnementsprisen være negativ.

Påstand 2.1

1) Den første-beste allokeringen \((n_A^{FB}:n_R^{FB})\) er karakterisert ved:

\[(1 + \alpha)q(n_A) = \gamma - \frac{u}{n_R} + C^a(n_R), \]

\[(1 + \alpha)Q^a(n_A) = c(n_R) \]

2) For å implementere den første-beste allokeringen, må den velferdsmaksimerende planleggeren velge en minimums kvalitetsstandard som er lik \(q_{min}^{FB} \equiv q(n_A^{FB})\) og priser \((p_A^{FB}, p_R^{FB})\) som tilfredsstiller
\[p_{AB}^F \leq \alpha_A q(n_{AB}^F) n_{AB}^F + u \equiv p_{AB}^{\text{max}}; p_{RB}^F = -\alpha q^a(n_{AB}^F) n_{AB}^F \]

Det vil ikke være bærekraftig i det lange løp å ha en negativ abonnementspris. Vi går derfor videre for å se på den nest-bestø økonomien:

5.2.2 Nest-bestø allokering

I den tidligere analysen av den første-bestø allokeringen viste vi en antagelse om at den velferdsmaksimerende planleggeren kunne påvirke den marginale leseren av type \(c(n_{RB}^F) \) til å lese journalen ved å subsidiere leseren. Å ta en negativ abonnementspris vil likevel ikke nødvendigvis føre til at den marginale leseren leser journalen. Dette kommer av at det er vanskelig å overvåke hvorvidt leseren faktisk leser journalen. En negativ abonnementspris vil kunne tiltrekke falske lesere som har ingen eller et veldig svakt insentiv til å lese journalen, og de vil kun abonnere på grunn av subsidie. Derfor ser vi nå på den nest-bestø allokeringen hvor den velferdsmaksimerende planleggeren må ta en positiv abonnementspris (\(p_R \geq 0 \)).

Gitt \(p_R \), er den marginale leseren bestemt av

\[U_R(n_R; n_A) = \int_0^{n_A} q(x)dx - c(n_R)n_A - p_R = 0 \]

Det vil si at å kreve \(p_R \geq 0 \) er ekvivalent med å kreve

\[c(n_R)n_A \leq \int_0^{n_A} q(x)dx \] (2.9)

Derfor må den velferdsmaksimerende planleggeren maksimere \(W(n_A, n_R) \) med hensyn på (2.9) i den nest-bestø allokeringen. Igjen antar vi at parameterne i optimum i den nest-bestø allokeringen er slik at andelen publiserte artikler er mellom null og en.

En kan definere Lerner-indeksen, \(LSB = W - \lambda_1[c(n_R)n_A - \int_0^{n_A} q(x)dx] \) hvor \(\lambda_1(\geq 0) \) representerer Lagrangemultiplikatoren assosiert med (2.9). Førsteordensbetingelsene med hensyn på \(n_A \) og \(n_R \) er

\[(1 + \alpha)n_R q(n_A) = (\gamma - u) + \int_0^{n_R} c(y)dy + \lambda_1[c(n_R) - q(n_A)] \] (2.10)

\[(1 + \alpha) \int_0^{n_A} q(x)dx = n_A c(n_R) + \lambda_1 c'(n_R) n_A \] (2.11)

Når betingelse (2.9) holder, finner vi fra (2.11)
\[\lambda_1 = \frac{\alpha c(n_R)}{c'(n_R)} > 0 \]

Ved å sette \(\lambda_1 = \frac{\alpha c(n_R)}{c'(n_R)} \) inn i (2.10) får vi

\[
(1 + \alpha) n_R q(n_A) = (\gamma - u) + \int_0^{n_R} c(y) \, dy + \frac{\alpha c(n_R)}{c(n_R)} [c(n_R) - q(n_A)] \quad (2.12)
\]

Det faktum at (2.9) holder indikerer at

\[c(n_R) = Q^a(n_A) \quad (2.13) \]

Med andre ord er den marginale leserens kostnad lik gjennomsnittskvaliteten til de publiserte artiklene i journalen. Dette, sammen med \(Q^a(n_A) > q(n_A) \) indikerer at når vi sammenligner (2.2) med (2.10), er samfunnets marginalkostnad forbundet med publisering av en ekstra artikkel større i den nest-beste allokeringen enn i den første-best allokeringen. Dette kommer av at den ekstra delen \(\lambda_1 [c(n_R) - q(n_A)] \) er positiv. Sammenligning av (2.4) med (2.11) viser at samfunnets marginalkostnad forbundet med å ha en ekstra leser er større i den nest-best allokeringen enn i den første-best allokeringen. La \((n^{SB}_A, n^{SB}_R)\) representere den nest-best allokeringen karakterisert ved (2.12) og (2.13). SB står for nest-best ("Second Best"). Det tidligere argumentet indikerer at \(n^{FB}_A > n^{SB}_A \) og \(n^{FB}_R > n^{SB}_R \), i alle fall om \(W \) er kvasikonkav. La \((p^{SB}_A, p^{SB}_R)\) representerer prisene i den nest-best allokeringen \((n^{SB}_A, n^{SB}_R)\) når den velferdsmaksimerende planleggeren velger en kvalitetsstandard \(q^{SB} \equiv q(n^{SB}_A) \). Siden (2.9) holder, har vi \(p^{SB}_R = 0 \). Derfor er open access (OA) optimal i den nest-best allokeringen. \(p^{SB}_A \) må tilfredsstille deltakelsesbetingelsen \((PC_A)\) til den marginale forfatteren, som indikerer at:

\[p^{SB}_A \leq \alpha_A q(n^{SB}_A) n^{SB}_R + u \]

Påstand 2.2: Når negative abonnementspriser ikke er mulig:

1) OA er samfunnsøkonomisk optimalt.

2) i dette tilfellet, er den nest-best allokeringen \((n^{SB}_A, n^{SB}_R)\) karakterisert ved uttrykk (2.12) og (2.13). Den marginale leserens kostnader er her lik gjennomsnittskvaliteten til de publiserte artiklene.

3) Om \(W \) er kvasikonkav i \((n_R, n_A)\), vil den nest-best allokeringen involvere færre lesere og færre publikasjoner enn i den første-best allokeringen, altså \(n^{SB}_A < n^{FB}_A \) og \(n^{SB}_R < n^{FB}_R \).
Påstand 2.2 karakteriserer situasjoner hvor OA er samfunnsøkonomisk optimalt. Når de positive eksternalitetene generert av lesere (for eksempel gjennom spredning av kunnskapen, sitering og videre forskning) overgår kostnadene for distribusjon av artiklene (som er null for en internettbasert journal), og når subsidierrende lesing ikke er mulig slik som i første-beste allokering, er det samfunnsøkonomisk optimalt å ta en abonnementspris som er null. Dette reduserer antall lesere med hensyn på den første-beste allokeringen, som videre reduserer nettonyten av å publisere en artikkel. Dette gjør at minimumskvalitetsstandarden i den nest-beste allokeringen er høyere enn i den første-beste allokeringen. Merk at den nest-beste allokeringen sammenfaller med Ramsey optimum så lenge den marginale forfatteres nytte fra publisering er større enn γ. Som nevnt tidligere går Ramsey-prising ut på hvilken pris en monopolist må sette for å dekke sine faste kostnader mest mulig effektivt.

5.2.3 Andre målsettinger enn velferdsmaksimering

I denne delen analyseres konsekvensene av overgangen fra "leser-betaler" til OA for en "non profit"-journal. Om hensikten er å maksimere samfunnsøkonomisk velferd vil det lede til at den nest-beste allokeringen er optimal. "Non-profit"-journaler kan ha andre målsettinger, og når det gjelder OA er målet å gjøre publikasjoner mer tilgjengelig for leserne. For å belyse dette ser Jeon og Rochet (2010) videre på overgangen fra "leser-betaler" til OA med hensyn på maksimering av den totale nytten til leserne, med utgangspunkt i en positiv analyse.

Før utfallene av "leser-betaler" og OA karakteriseres, utledes de gjennomførbare settene for hver av dem.

Størrelsen på leserantallet til en journal er bestemt av indifferensbetingelse til den marginale leseren:

$$U_R(n_R: n_A) \equiv [Q^n(n_A) - c(n_R)]n_R - p_R = 0$$

Under "leser-betaler"-modellen er avgiften for innsending for forfatterne null, og
budsjettbetingelsen (BB) for journalen er

\[p_R n_R \geq \gamma n_A \] (BB)

Når \(p_R \) elimineres i disse to betingelsene, får vi ulikheten som karakteriserer det gjennomførbare settet for journalen under "leser-betaler"-modellen:

\[Q^a(n_A) \geq c(n_R) + \frac{\gamma}{\pi_R} \] (2.14)

Merk at det gjennomførbare settet under OA (hvor \(p_R = 0 \)) korresponderer til den samme betingelsen, hvor \(\gamma \) er satt lik 0 (siden \(\gamma \) blir gjenvunnet i forfatteravgifter), og ulikheten blir byttet ut med likheten

\[Q^a(n_A) = c(n_R) \] (2.15)

Siden \(\gamma > 0 \) under "leser-betaler" ser vi at for å kunne tiltrekke samme antall lesere må en journalen tilby høyere kvalitet enn en open access-journal. "Leser-betaler" modellen stiller derfor høyere kvalitetskrav til artiklene som blir sendt inn og publisert.

Figur 10: Allokeringene under “leser-betaler” og open access (Jeon og Rochet, 2010)

58
(TUR), som er gitt ved:

\[
TUR = \int_{0}^{n_R} \left([Q^a(n_A) - c(y)] n_A - p_R \right) dy
\]

(2.16)

Siden \(n_R \) og \(p_R \) oppfyller indifferensbetingelsen til den marginale leseren, altså

\[
U_R(n_R; n_A) = [Q^a(n_A) - c(n_R)] n_A - p_R = 0,
\]

hvor vi kan erstatte \(p_R \) med \([Q^a(n_A) - c(n_R)] n_A \) i (2.16). Får vi:

\[
TUR(n_A, n_R) \equiv n_A \int_{0}^{n_R} [c(n_R) - c(y)] dy
\]

"Leser-betaler"

I det følgende vil utfallet av "leser-betaler" karakteriseres. Som vi så ovenfor, er det gjennomførbare settet for en "leser-betaler"-journal karakterisert ved

\[
c(n_R) + \frac{\gamma}{n_R} \leq Q^a(n_A)
\]

(2.17)

Venstresiden i (2.17) er u-formet i \(n_R \). Om bunnpunktet er høyere enn maksimumskvaliteten \(q_{\text{max}} \) er gjennomføringssettet tomt. Derfor må vi anta at \(q_{\text{max}} \) er stor nok slik at dette problemet blir unngått. For en gitt \(n_A \) vil det i dette tilfellet kunne være to verdier av \(n_R \) som tilfredsstiller det gjennomførbare settet, og da er det alltid optimalt å velge den høyeste verdien. Derfor vil "non-profit"-journalen maksimere \(TUR(n_A, n_R) \) med hensyn på \((n_A, n_R) \).

Vi definerer \(L^{RP} = TUR - \lambda_2 [n_A c(n_R) n_R + \gamma n_A - n_R \int_{0}^{n_A} q(x) dx] \) hvor \(\lambda_2 \) representerer Lagrangemultiplikatoren assosiert med (2.17). Med bakgrunn i denne får vi førsteordensbetingelsene med hensyn på \(n_A \) og \(n_R \):

\[
\int_{0}^{n_R} [c(c_R) - c(y)] dy = \lambda_2 [c(c_R) n_R + \gamma - n_R q(n_A)]
\]

(2.18)

og

\[
n_A n_R c'(n_R) = \lambda_2 [n_A c(n_R) + n_A c'(n_R) n_R - \int_{0}^{n_A} q(x) dx]
\]

(2.19)

siden (2.17) er bindende i optimum, har vi

\[
c(n_R) n_R + \gamma = n_R Q^a(n_A)
\]

("Leser-betaler")

Fra ("leser-betaler"), og førsteordensbetingelsene (2.18) og (2.19) får vi
La \((n_A^{RP}, n_R^{RP}) \) være “non-profit”-journalens optimale tilpasning under ”leser-betaler” modellen. Den er karakterisert ved (“leser-betaler”) og (2.20). Siden \(c'(n_R) > 0 \) og \(C^a(n_R) < c(n_R) \), indikerer (2.20) at \(C^a(n_R) < q(n_A) \). På samme måte indikerer (“leser-betaler”) at \(Q^a(n_A) > c(n_R) \).

Påstand 2.3: Under ”leser-betaler”-modellen vil “non-profit”-journalen som maksimerer den totale nytten til leserne velge en allokering \((n_A^{RP}, n_R^{RP}) \) som er karakterisert ved (“leser-betaler”) og (2.20). Med andre ord e er allokeringen karakterisert ved at:

1. gjennomsnittskvaliteten på de publiserte artiklene er høyere enn kostnaden til den marginale leseren, og
2. gjennomsnittskostnaden ved lesing er lavere enn kvaliteten på den marginale artikkelen

Open Access (OA)

I det følgende vil utfallet av OA karakteriseres. Siden journalen her vil maksimere lesernes nytte er det rimelig å anta at journalen vil foretrekke OA i forhold til ”leser-betaler” så lenge marginalnytten til den ekstra forfatteren er større enn den totale publikasjonskostnaden, \(\gamma \). Journalen kan minimum velge den samme kvalitetsstandarden som blir valgt under ”leser-betaler” modellen, og overgangen til OA vil øke antall lesere og dermed øke summen av lesernes totale nytte. Dette argumentet viser også at “non-profit”-journalen foretrekker OA til fordel for en hybridmodell hvor journalen kombinerer forfatteravgifter med en positiv abonnementspris.

Vi ser nå på OA \((p_R = 0) \). Dette sammen med \(U_R(n_R; n_A) = 0 \) indikerer:

\[
c(n_R)n_A = \int_0^{n_A} q(x)dx \quad \text{(OA)}
\]

Journalen maksimerer \(TUR(n_A, n_R) \) med hensyn på \((n_A, n_R, p_A) \) under OA. Budsjettbetingelsen for journalen \((BB) \) blir da:

\[
(p_A - \gamma)n_A \geq 0 \quad \text{(BB)}
\]

og forfatternes deltagelsesbetingelse, “participation constraint”, \((PC_A) \):
\[U_A(n_A; n_R) = \alpha_A q(n_A)n_R + u - p_A \geq 0 \]
(PC\textsubscript{A})

Merk at \(p_A \) ikke er tilstede i objektfunksjonen til journalen. Vi antar at journalen velger den laveste prisen som er forenelig med budsjettbetingelsen, henholdsvis \(p_A = \gamma \). Vi definerer \(L^{OA} = TUR - \lambda_3[c(n_R)n_A - \int_0^{n_R} q(x)dx] \) hvor \(\lambda_3 \) representerer Lagrangemultiplikatoren assosiert med OA. Med bakgrunn i denne får vi førsteordensbetingelsene med hensyn på \(n_A \) og \(n_R \), som er gitt ved:

\[
\int_0^{n_R} [c(n_R) - c(y)]dy = \lambda_3 [c(n_R) - q(n_A)]
\]
(2.21)

\[
n_A n_R c'(n_R) = \lambda_3 n_A c'(n_R)
\]
(2.22)

Fra (2.21) og (2.22) får vi

\[
q(n_A) = \frac{\int_0^{n_R} c(y)dy}{n_R} (\equiv C^a(n_R))
\]
(2.23)

La \((n_A^{OA}, n_R^{OA})\) være “non-profit”-journalens optimale tilpasning under OA. Den er karakterisert ved (OA) og (2.23). OA betyr at gjennomsnittskvaliteten er lik lesekostnaden til den marginale leseren. På en noe symmetrisk måte betyr betingelse (2.23) at den gjennomsnittlige lesekostnaden \(C^a(n_R) \) er lik kvaliteten på den marginale forfatters artikkel.

Påstand 2.4: Under OA vil “non-profit”-journalen som maksimerer lesernes totale nytte velge en allokering, \((n_A^{OA}, n_R^{OA})\), som er karakterisert ved to betingelser:

1) Gjennomsnittskvaliteten på de publiserte artiklene er lik lesekostnaden til den marginale leseren

2) Den gjennomsnittlige lesekostnaden er lik kvaliteten på den marginale artikken

5.2.4 Sammenligning av normativ og positiv analyse

I denne delen sammenligner vi alle fire scenarioene (første-best, nest-best, “non-profit”-journal med OA, og “non-profit”-journal med ”leser-betaler”) i forhold til gjennomsnittskvalitet på de publiserte artiklene i journalen og antall lesere. I tillegg sammenlignes “leser-betaler” og OA i forhold til samfunnsøkonomisk velferd når målet er å maksimere lesernes nytte. For å forenkle sammenligningen, velges en isoelastisk spesifikasjon:
\[q(n_A) = q_{max}[1 - (n_A)^{\epsilon_q}] \] og \[c(n_R) = c_{max}(n_R)^{\epsilon_c} \]

I den isoelastiske spesifikasjonen har vi gjennomsnittskvalitet, \(Q^a(n_A) \), og gjennomsnittlig lesekostnad, \(C^a(n_R) \):

\[Q^a(n_A) = \frac{\epsilon_q q_{max} + q(n_A)}{1 + \epsilon_q} \]

og

\[C^a(n_R) = \frac{c(n_R)}{1 + \epsilon_c} \]

Gjennomsnittskvalitet

Vi begynner med å sammenligne de fire scenarioene med utgangspunkt i gjennomsnittskvalitet.

Påstand 2.5: For en “non-profit”-journal som vil maksimere den totale nytten til leserne, har en i tilfellet med isoelastisk distribusjon:

\[Q^a(n_{A^{RP}}) > Q^a(n_{A^{SB}}) > Q^a(n_{A^{FB}}) > Q^a(n_{A^{OA}}) \]

Journalen velger for høy kvalitetsstandard under ”leser-betaler”-modellen og for lav kvalitetsstandard under OA.

Merk at \(Q^{a_{OA}} \) og \(Q^{a_{RP}} \) ikke avhenger av eksternalitetsparameteren \(\alpha \) eller av forfatternes faste nytte \(u \) siden “non-profit”-journalen ikke internaliserer dem. Videre, under OA har \(\gamma \) ingen innvirkning på valget om hvilket nivå kvalitetsstandarden skal ligge på, siden det finnes tilstrekkelig mange forfattere som er villig til å betale \(p_A = \gamma \) for å publisere artikkelen sin. Den velferdsmaksimerende planleggeren internaliserer netto publikasjonskostnad \(\gamma - u \). På grunn av manglende budsjettdisiplin og så lenge \(\gamma - u \) er positiv, vil journalen publisere for mange artikler under OA, \(Q^{a_{OA}} < Q^{a_{SB}} \). Under ”leser-betaler”-modellen må journalen dekke \(\gamma \) gjennom å kreve abonnementspriser fra hver leser. I kontrast til dette, er det \(\gamma - u \) som betyr noe for den velferdsmaksimerende planleggeren. Dette, sammen med det faktum at journalen ikke internaliserer forfatternes nytte, gjør at ”leser-betaler”-journalen publiserer for få artikler sammenlignet med i den nest-besté allokeringen, \(Q^{a_{RP}} < Q^{a_{SB}} \). Intuisjonen om hvorfor overgangen fra ”leser-betaler” til OA indikerer en kvalitetsnedgang som kan
illustreres i to trinn. Først, gitt kvalitetsstandarden i "leser-betaler"-modellen $q_{min} = q(n^{RP}_A)$, vil overgangen til OA øke antall lesere til n'_R bestemt av $c(n'_R) = Q^a(n^{RP}_A)$. Videre indikerer tilfellet med isoelastisk distribusjon hvor betingelsen $q(n^{RP}_A) > C^a(n'_R)$ holder, at journalen finner det optimalt å senke kvalitetsstandarden til fordel for å publisere flere artikler. I hovedsak vil "leser-betaler"-modellen pålegge for strenge krav til kvaliteten på grunn av behovet for å dekke γ, mens under OA-modellen er det for lave krav til kvaliteten siden γ er finansiert ved forfatteravgifter.

Lesermasse

Videre sammenlignes størrelsen på antall lesere for de fire forskjellige scenarioene. Først sammenlignes første-beste allokering med den nest-beste allokeringen:

$$c^{SB} < c^{FB}$$

noe som indikerer at $n^{FB}_R > n^{SB}_R$. Videre er den marginale leseren under OA bestemt av gjennomsnittskvaliteten på artiklene ($Q^a = q(n_R)$). Fra påstand 2.3 vet vi at gjennomsnittskvaliteten er høyere under den nest-beste allokeringen enn under OA, og antall lesere er større i den førstnevnte allokeringen enn i den sistnevnte. Derfor har vi:

$$n^{FB}_R > n^{SB}_R > n^{OA}_R.$$

Videre sammenlignes “leser-betaler” med OA. Sammenligningen gir

$$n^{OA}_R \geq n^{RP}_R \text{ om og kun om } \varepsilon_q \geq \frac{1}{1 + \varepsilon_c}$$

Om $\varepsilon_q > 1/(1 + \varepsilon_c)$ vil som forventet overgangen fra "leser-betaler"-modellen til OA-modellen øke antall lesere for journalen. Om $\varepsilon_q < 1/(1 + \varepsilon_c)$ blir antall lesere under OA redusert. Reduksjonen i antall lesere oppstår fordi, selv om lesere ikke betaler, vil gjennomsnittskvaliteten til journalen bli lavere under OA. Det er hovedsakelig en konflikt mellom lavkostnads-lesere og høykostnads-lesere når det kommer til valget om kvalitetsstandard. De førstnevnte foretrekker en lav standard mens de sistnevnte foretrekker høy standard. Når $\varepsilon_q < 1/(1 + \varepsilon_c)$ er konflikten kraftig og dermed vil løsningen av konflikten være å senke kvaliteten til fordel for lavkostnads-leserne. For eksempel vil en lav ε_c bety at en liten endring i c skape en stor endring i n_R. Dette vil føre til at mange høykostnads-lesere velger å ikke lese journalen. Oppsummert har vi:
Påstand 2.6 (Lesermasse): For en “non-profit”-journal som vil maksimere den totale nytten til leserne, har en i tilfellet med isoelastisk distribusjon:

\[n^{FB}_R > n^{SB}_R > n^{OA}_R \]

Journalen tiltrekker seg for få lesere under OA. Henholdsvis:

\[n^{OA}_R \gtrless n^{RP}_R om og kun om \varepsilon_q \gtrless \frac{1}{1 + \varepsilon_c} \]

Overgangen fra ”leser-betaler” til OA øker lesermassen til journalen dersom \(\varepsilon_q > 1/(1 + \varepsilon_c) \), og reduserer lesermassen dersom \(\varepsilon_q < 1/(1 + \varepsilon_c) \).

Samfunnsøkonomisk velferd

Videre sammenlignes “leser-betaler” med OA-modellen med hensyn på samfunnsøkonomisk velferd, når journalens formål er å maksimere nyttet til leserne. Det sees på tre mulige utfall for størrelsen på lesermassen: lesermassen er uendret, lesermassen er større under OA og lesermassen er mindre under OA.

Anta først at antall lesere er uendret ved overgangen fra “leser-betaler” til OA, altså \(n^{RP}_R = n^{OA}_R = n_R \). Det vil si når \(\varepsilon_q = 1/(1 + \varepsilon_c) \). Med bakgrunn i den første-beste allokeringen, har vi derfor førsteordensbetingelsen:

\[\frac{\partial W}{\partial n_A} = (1 + \alpha) n_R q(n_A) - (\gamma - u) - n_R c^a(n_R). \]

Under OA holder \(c^a(n_R) = q(n^{OA}_A) \). Videre, fra deltagelsesbetingelsen til den marginale forfatteren(\(PC_A \)), har vi \(u + \alpha n_R q(n^{OA}_A) \geq \gamma \). Ved å sette disse to betingelsene inn i førsteordensbetingelsen over ser en en at økning av antall aksepterte artikler vil øke samfunnsøkonomisk velferd. Dette indikerer at OA-modellen dominerer “leser-betaler”-modellen når det gjelder samfunnsøkonomisk velferd.

Anta deretter at antall lesere er større under OA enn under “leser-betaler”, altså når \(\varepsilon_q > 1/(1 + \varepsilon_c) \) holder. Da kan en også bevise at OA-modellen dominerer “leser-betaler”-modellen. Dette kan vises i to steg. Først anta at overgangen fra OA til "leser-betaler" ikke endrer antall lesere. Fra det tidligere argumentet vet vi at \(W(n^{OA}_A, n^{OA}_R) > W(n^{RP}_A, n^{RP}_R) \). Deretter, når kvalitetsstandarden holdes konstant ved \(q(n^{RP}_A) \), må \(W(n^{RP}_A, n^{OA}_R) > W(n^{RP}_A, n^{RP}_R) \) holde. Siden OA er den nest-beste allokeringen for enhver gitt kvalitetsstandard,
og antall lesere under OA er mindre når kvalitetsstandarden er \(q(n_{OA}^A) \) enn når den er \(q(n_{RP}^R) \), vil reduksjon i antall lesere fra \(n_{OA}^A \) til \(n_{RP}^R \), når kvalitetsstandarden er fast ved \(q(n_{RP}^R) \) redusere samfunnsøkonomisk velferd.

Anta til slutt at endringen fra “leser-betaler” til OA reduserer antall lesere, altså når \(\varepsilon_q < 1/(1 + \varepsilon_c) \) holder. I denne situasjonen er det vanskelig å komme frem til et generelt resultat, men Jeon og Rochet (2010) har på bakgrunn i analyser og simuleringer funnet at OA sannsynligvis vil dominere “leser-betaler” i forhold til samfunnsøkonomisk velferd så lenge den marginale forfatterens deltakelsesbetingelse ikke binder under OA. Oppsummert har vi følgende påstand:

Påstand 2.7: I tilfellet med isoelastiske distribusjoner når “non-profit”-journalen maksimerer lesernes totale nytte, vil OA-modellen føre til høyere samfunnsøkonomisk velferd enn “leser-betaler”, så lenge OA ikke fører til en betydelig reduksjon i lesermassen.
6. Oppsummerende diskusjon og avslutning

Fra innledningen i kapittel 1 har vi problemstillingen:

“Hva kan være en bærekraftig forretningsmodell for åpen publisering av vitenskapelige artikler i tosidige markeder?”

For å kunne undersøke problemstillingen utarbeidet vi innledningsvis også tre påstander som retter seg konkret mot problemstillingen. Disse utarbeidet vi for å ha et utgangspunkt for oppgaven, da “en bærekraftig forretningsmodell” kan oppfattes veldig generelt.

1) Skaper markedsmakt en barriere for implementering av åpen publisering?
2) Er åpen publisering av akademisk litteratur mer samfunnsøkonomisk effektiv?
3) Er en OA-journal det samme som en lavkvalitets-journal?

I teorien fra kapittel 2 om tosidige markede påpekes det at selv om plattformer uten konkurranse på noen av sidene kan eksistere i teorien, kan det være vanskelig å identifisere slike plattformer i virkeligheten. Likevel er det viktig å åpne for denne muligheten når vi undersøker hva som kan være bærekraftig for det markedet vi ser på.

6.1 Pris og prisstruktur

Fra analysen av et monopol ser vi fra påstand 1.1. at etterspørselen er svakt synkende i både innsendingsavgifter og abonnementsavgifter. Dette skyldes at forfatterne forventer at høyere abonnementsavgifter reduserer både antall lesere og dermed deres egen nytte ved å publisere i journalen. På samme måte forventer lesere at høyere innsendingsavgifter reduserer antall forfattere og dermed deres egen nytte ved å abonnere på journalen. Dette fanger opp det såkalte “chicken-and-egg”-problemet i tosidige markeder. For å få både forfattere og lesere til å tilknytte seg journalen må journalen sette priser som ikke er for høye. Om monopoljournalen setter priser som er for høye vil det kunne føre til at ingen velger å tilknytte seg og journalen ender dermed opp med null i profitt. Likevel indikerer analysen at monopoljournalen kan sette en pris som er over marginalkostnad for både forfatter og leser dersom deres nytte er symmetrisk, og på den måten hente ut overskudd. Det virker som at det for monopoljournalen handler om å finne en gylden middelvei med tanke på pris. I utgangspunktet skulle en kunne tenke seg at monopoljournalen kunne kreve hvilken som helst pris fordi de er den eneste i markedet, men på grunn av “chicken-and-egg”-problemet er det viktig at prisen settes slik at ingen av sidene avskrekkes fra å delta i markedet. Dersom forfattere og lesere er asymmetrisk må monopoljournalen kreve en høyere pris fra den siden som genererer høyest inntekt for å subsidiere den siden med lav inntekt.

Likevekten i påstand 1.2 innebærer at lesere og forfattere koordinerer om å tilknytte seg én av de to journalene i duopolsituasjonen, når begge journalene opererer med samme pris. Dette skyldes forfatternes og lesernes rasjonelle forventningslikevekter som fører til at de koordinerer om en Pareto-optimal likevekt. Selv om journalene har like priser og er identiske vil de fortsatt tilknytte seg kun én av journalene, fordi deres nytte øker av antall aktører på den andre siden. Under nullprofittbetingelsen i duopolspillet ser vi fra påstand 1.3 at likevektsprisene tilfredsstiller monopolprofitten om monopolletterspørselen er kontinuerlig med duopolprisene. Det vil si at i tilfeller som i påstand 1.2, hvor én av journalene betjener hele markedet til disse prisene, vil begge journalene tjene null i profitt. Det er åpenbart at hvis den ene journalen betjener hele markedet og får null i profitt, vil heller ikke den andre journalen tjene noe i profitt ettersom den ikke har noen aktører som deltar på plattformen.

Påstand 1.4 indikerer at det for duopol er en likevekt som tilfredsstiller nullprofittbetingelsen når journalene krever samme pris som i den nest-beste allokeringen. På grunn av eksternaliteten kan den ene siden ha høyere avgift enn den andre siden for å

For to duopoljournaler kan det altså være mange likevekter som tilfredsstiller nullprofittbetingelsen når de krever samme pris. Det er likevel naturlig å anta at de to journalene kan kreve ulike priser som også tilfredsstiller nullprofittbegrensningen. Dermed kan en anta at det eksisterer ytterligere likevekter når journalene har asymmetrisk pris.

6.1.1 Symmetrisk nytte

Fra McCabe og Snyders (2010) analyse av monopoljournaler, spesielt Lerner-indeksformel (1.15), ser vi at profittmaksimerende journaler ikke frivillig vil velge OA med mindre elastisitetene er i et perfekt forhold (uvanlig at dette skjer) eller med mindre forfatteres nytte er viktigere enn lesernes nytte. I de numeriske eksemplene så vi at OA aldri oppstår hos en monopoljournal når forfatter- og lesernytten er symmetrisk (eksempel 1-3). Grunnen til at OA aldri oppstår ved symmetrisk nytte, er fordi det ikke vil være rasjonelt for monopolisten å frasi seg monopolprofitt når nytten (betalingsvilligheten) er lik. Journalen er interessert i å hente ut så mye proft som mulig fra begge sidene når nytten er symmetrisk fordi journalen har markedsmakt. Dette reflekeres i at prisene er høyere enn marginalkostnaden. Jo mer markedsmakt journalen har jo større muligheter har journalen til å hente ut høyere avanse fra begge sidene av markedet.

For konkurrerende journaler med symmetrisk leser- og forfatternytte ser man fra tabell 3 at abonnementsprisen synker når fra $c^R=0,1$ (eksempel 1) til $c^R=0,0$ (eksempel 2-3). Dette skjer på grunn av at marginalkostnaden ved å betjene en ekstra leser faller ved en reduksjon i c, og lavere kostnader reflekteres i lavere abonnementspriser. Det kommer ikke som en overraskelse at likevektsprisene i den første-bestte allokeringen er lavere enn marginalkostnadene i disse eksemplene (1-3), fordi journalen kan bli subsidiert for å få dekket
kostnadene sine. Det er derimot overraskende at likevektsprisene til både forfatter og leser er lavere enn marginalkostnad også i den nest-besté allokeringen.

6.1.2 Asymmetrisk nytte – høy forfatternytte

Høy forfatternytte er forbundet med lave abonnementsavgifter fordi lave abonnementsavgifter øker antallet lesere, noe som igjen øker etterspørselen etter de beste forfatterne. For tilstrekkelig høy forfatternytte i forhold til lesernytte og tilstrekkelig lav marginalkostnad, er det situasjoner hvor til og med en monopoljournal vil innføre OA. Monopoljournalen innfører kun OA i eksempel 6, hvor leseres marginalkostnad er null og forfatternes nytte er høyere enn lesernes nytte. Dette kommer av at når forfatterne har høyere nytte, har de høyere betalingsvilje slik at journalen kan ta en høyere pris fra forfatterne når leserne slipper å betale. Dette illustrerer situasjonen med asymmetric prising i tosidige markeder. Under OA og monopoljourner vil asymmetric prising kun være gjeldende i tilfellet hvor forfatternytten er større enn lesernytten. OA oppstår oftere som en likevekt for konkurrierende journaler enn for en profit maksimerende monopoljournal. Dette skjer på grunn av at likevekten som maksimerer antall lesere flytter alle avgiftene over på forfattersiden. Alle eksemplene i tabell 4 (eksempler 4-6) hvor antall lesere maksimeres inkluderes OA i likevekten. Prisene er i modellen eksogent begrenset til å være positiv. Hvis ikke denne begrensningen eksisterte ville det oppstå ytterlige likevekter som inkluderer høyere leserpriser og utbetalinger (subsider) til forfattere, og vice versa. Alle disse eksemplene gir de samme resultatene som i den nest-besté allokeringen. Den nest-besté allokeringen inkluderer også OA i alle tre eksemplene, det samme gjør den første-besté allokeringen. Konkurrierende journaler vil derfor innføre OA for et større sett forfatter-/lesernytte og marginale leserkostnader.

6.1.3 Asymmetrisk nytte – høy lesernytte

Når lesernes nytte er høyere enn forfatternes nytte vil monopolisten vil kreve en høy avanse fra leserne i et forsøk på å ta ut inntekt fra alle mulige kilder. Hvis dette er tilfellet (eksempel 7-9) slik som i tabell 5, vil OA aldri oppstå. Det som er verdt å merke seg ved denne tabellen er at OA oppstår i alle tre likevektene hvor lesernes nytte maksimeres, men OA er ikke det nest-besté effektive i noen av dem. Den første-besté allokeringen involverer OA, men journalen tjener negativ profitt og dermed vil ikke en slik likevekt være mulig med mindre journalen blir subsidiert. En annen grunn for at OA ikke er nest-best effektiv kan være at journalen ønsker å maksimere nytten til forfattere og derfor flytter likevekten alle avgifter over på leserne, og med det oppstår ikke OA i noen av disse likevektene.
6.1.4 Oppsummering pris og prisstruktur

Oppsummert kan en si at hvis journalen er profitmaksimerende, vil det forventes at OA er mer sannsynlig å observeres desto lavere markedsmakt journalen har, desto høyere forfatternes nytte er i forhold til lesernes nytte og desto lavere marginkostnaden forbundet med å betjene leserne. At profitmaksimerende journaler med markedsmakt er mindre sannsynlig til å velge OA enn de uten markedsmakt må ikke tolkes som at markedsmakt motvirker OA fra å være levedyktig. Det må understrekes at dette kun gjelder for profitmaksimerende journaler. Økning i en journals markedsmakt vil kunne øke dens ressurser til å oppnå andre objektiver enn profitmaksimering. Om en “non-profit”-journal ønsker å innføre OA, vil en økning i dens markedsmakt styrke mulighetene til å oppnå dette. I alle eksemplene var det en stabil likevekt hvor begge bedriftene velger OA. Det kan også eksistere asymmetriske likevekter, hvor OA-journaler konkurrerer med en annen journal med andre priskonfigurasjoner. Den andre journalens priskonfigurasjoner kan derfor involvere positive leserpriser i likevekten som tilfredsstiller nullproftbetingelsen. OA-journaler kan med andre ord eksistere side om side med journaler som ikke er OA.

I alle de numeriske eksemplene for konkurrrerende journaler oppstår OA i likevekten som maksimerer antall leser, både ved symmetrisk og asymmetrisk nytte mellom forfattere og leser. Dette skjer på grunn av at likevekten som maksimerer antall leser flytter alle avgiftene over på forfattersiden.

Når det kommer til hvorvidt samfunnsøkonomisk velferd øker ved OA indikerer eksemplene at OA ikke er allment samfunnsøkonomisk effektivt. Hvis det er store kostnader forbundet med å betjene leser (eksempel 1-2) eller om lesernes nytte er stor i forhold til forfatteres nytte (eksempel 7-9), involverer den nest-beste allokeringen positive leserpriser. Men, om forfattere og leser har symmetrisk nytte og det ikke koster noe å betjene leser (eksempel 3) eller forfatteres nytte er mye større enn lesernes nytte (eksempel 4-6), er OA samfunnsøkonomisk effektivt. Antall situasjoner hvor OA er samfunnsøkonomisk optimalt er mindre enn antall situasjoner hvor OA fremtrer som en likevekt i konkurranse. OA virker å være ineffektivt når leserytten er større enn forfattorneytten og når marginal leserkostnad er høy. Altså er det ineffektivt å ha gratis lesetilgang om marginal leserkostnad er høy eller om de positive eksternalitetene forfatterne fører over på leserne er så høy at forfatteretterspørselen må subsidieres av positive leserkostnader.
6.2 Kvalitet og lesermasse

6.2.1 Normativ analyse

Det vises av resultatene til Jeon og Rochet (2010) at en elektronisk “non-profit”-journal som maksimerer samfunnsøkonomisk velferd vil velge OA gitt at abonnementsprisene ikke er negativ. I den første-beste allokeringen er abonnementsprisene negativ. Dette kommer av at leserne påfører samfunnet positive eksternaliteter, men siden leserne pådrar seg kostnader ved å lese journalen må journalen subsidiere leserne ved å sette en pris som er lavere enn marginal distribusjonskostnad. Siden marginal distribusjonskostnad for lesere ved elektronisk publisering er null, må journalen derfor sette en abonnementsavgift som er negativ. I den nest-besta allokeringen er det derimot ikke mulig å sette negative abonnementspriser og her vil OA være samfunnsøkonomisk optimalt, når den marginale distribusjonskostnaden for leser er lik gjenomsnittskvaliteten til de publiserte artiklene.

6.2.2 Positiv analyse

Når journalen maksimerer leserens totale nytte må den gjenvinne publikasjonskostnaden i abonnementsprisen under ”leser-betaler”-modellen ved å se på ”non-profit”-journaler som har andre hensikter enn å maksimere samfunnsøkonomisk velferd. De undersøker en ”non-profit”-journal som maksimerer leserens totale nytte.
artikkelen. For å tiltrekke seg like mange lesere som OA-modellen må journalen derfor stille et strengere krav til kvaliteten på artiklene.

6.2.3 Sammenligning av scenarioene

Dette kan forklares ved at en journal som maksimerer samfunnssøkonomisk velferd vil internalisere publikasjonskostnaden, $\gamma(<0)$, fratrukket forfatterens nytte ved publisering, u, altså $\gamma - u > 0$. Hvis den ikke gjør dette vil det være samfunnssøkonomisk optimalt å publisere alle artikler og journalen vil derfor ikke ha en sertifiseringsrolle. En ”non-profit”-journal som maksimerer lesernes totale nytte vil under ”leser-betaler”-modellen dekke hele publikasjonskostnaden gjennom abonnementspriser, men den vil ikke internalisere forfatterens nytte ved publisering. Dette fører til at den publiserer for få artikler under ”leser-betaler”-modellen. Dersom det publiseres for få artikler vil kun leserne med høy lesekostnad lese og man vil miste de leserne som har lav lesekostnad. På den andre siden vil en ”non-profit”-journal som maksimerer lesers totale nytte under OA-modellen verken internalisere publikasjonskostnaden (siden kostnadene er dekket av forfatteravgifter) eller forfatterens nytte ved publisering. Dette fører til at journalen publiserer for mange artikler under OA-modellen.

Fra analysen kan en også se at kvalitetsnedgangen under OA kan resultere i en reduksjon i antall lesere sammenlignet med under ”leser-betaler”-modellen hvis for mange artikkelpubliseringer fører til at mange høykostnadslesere slutter å lese journalen.

Likevel viser Jeon og Rochet (2010), under sammenligningen med utgangspunkt i samfunnssøkonomisk velferd, at så lenge antall lesere er høyere under OA-modellen enn under ”leser-betaler”-modellen vil overgangen fra ”leser-betaler”-modellen til OA-modellen entydig øke samfunnssøkonomisk velferd. Det som vil avgjøre hvorvidt leserantallet går opp eller ned, er et forhold mellom etterspørselselastisiteten med hensyn på kvaliteten på artiklene og etterspørselselastisiteten med hensyn på lesekostnaden. Hvis vi antar at resultatene indikerer at etterspørselselastisiteten med hensyn på kvaliteten er større enn etterspørselselastisiteten med hensyn på lesekostnaden, vil leserantallet øke. Den direkte konsekvensen av økt leserantall er større spredning, videre forskning og patentering. På et overordnet nivå betyr det...
mer tilgjengelighet, mer kunnskap i samfunnet og at artiklene har mulighet for større "impact"-faktor. Hvis vi antar at kvalitet og forfatteravgift holdes konstant er det rimelig å anta at åpen litteratur har større sannsynlighet for å spres enn "lukket" litteratur. Flere vil ha mulighet til å lese journaler dersom tilgangen er gratis. Ved at flere leser journalene vil det skapes positive eksternaliteter i større grad, som vil spres videre ut i samfunnet slik at samfunnsøkonomisk overskudd øker. Dette kan videre knyttes til insentiver for forfatterne til å forske og publisere artikler, fordi artikler med en stor "impact"-faktor kan være gunstig for forfatterens karriere.

For å sjekke hvor solid modellen deres er undersøker Jeon og Rochet (2010) om hovedresultatet i deres undersøkelse, kvalitetsnedgang under OA, også gjelder i den tosidige markedsmodellen når både forfattere og lesere betaler, når journalen maksimerer "impact" og når journalen er profitmaksimerende. Dette fremkommer ikke i analysekapitlet på grunn av at resultatene fra disse objektivene samsvarer med de resultatene vi har presentert. Likevel er de verdifulle å nevne.

Om "non-profit"-journalen ikke har mulighet til å dekke hele publikasjonskostnaden gjennom forfatteravgifter på grunn av forfatternes budsjettingelse, må journalen undersøke overgangen fra "leser-betaler" til en tosidig markedsmodell hvor "non-profit"-journalen komplementerer forfatteravgiften med positive abonnementsavgifter. Resultatet fra denne overgangen er at den tosidige markedsmodellen fører til en nedgang i artikkelkvalitet og at det også reduserer antall lesere om elastisiteten til artiklenes kvalitet er $\varepsilon_q < \frac{1}{1+\varepsilon_c}$.

Når Jeon og Rochet (2010) undersøker en "non-profit"-journal som maksimerer "impact" argumenterer de for at det i "leser-betaler"-modellen er fornuftig å maksimere lesernes totale nytte men at dette objektivet virker mindre fornuftig for en OA-journal. Når journalen maksimerer "impact" gjøres det med utgangspunkt i summen av alle lesernes nytte ved å lese journalen. Resultatet av endringen i objektiv fra maksimering av nytte til maksimering av "impact" er at journalen velger den samme kvalitetsstandarden (og dermed likt antall lesere) som en journal som maksimerer nytte. Derfor kan vi gå så langt som å si at OA mer økonomisk effektiv enn "leser-betaler" for en "non-profit"-journal så lenge leserantallet ikke blir påvirket.

Til slutt har Jeon og Rochet (2010) også sammenlignet overgangen fra "leser-betaler" til OA

6.3 Avslutning

Videre vil vi se på hvilken betydning diskusjonen som ble presentert over har å si for problemstillingen og forskningspåstandene.

Det er to grunner for at en undersøker betingelsene for når OA er nest-best effektivt. For det første er den nest-besté allokeringen en grei benchmark for når løsningen er samfunnsøkonomisk effektivt. Fra teorikapitlet vet vi at den første-besté allokeringen kun eksisterer teoretisk, og det vil derfor ikke være noen hensikt å bruke det som benchmark. Man kan også peke på tilfeller hvor forskningen resulterer i betydelig banebrytende artikler som overgår forfatterens nytte. En annen effekt som peker i samme retning er at siden det i virkeligheten kan antas at antall lesere er høyere enn antall forfattere (i stedet for like proporsjoner som modellene antar implisitt), bør lesernytte bli skalert opp i proporsjonen til det relative antallet lesere og forfattere. På den andre siden er det sannsynligvis et stort antall artikler som hjelper karriereaspektet til forfatteren mer enn de fremmer fagområdet artikkelen befinner seg i. Videre ligger det "virksomhetsstjelende” effekter i publikasjonen som øker forfatterens nytte men ikke den samfunnsøkonomiske nytten. Den marginale samfunnsøkonomiske nytten til en artikkel kan bli lav dersom en annen forfatter vil publisere en liknende artikkel i nær fremtid. For det andre korresponderer den nest-besté allokeringen med online-journaler, hvor det ikke koste noe på marginen å betjene lesere, altså situasjonen hvor OA har blitt argumentert for. Oppsummert kan vi si at resultatene indikerer at OA virker
å være samfunnsøkonomisk effektivt i et miljø hvor journaler er distribuert over internett og hvor lesernytten ikke overstiger forfatternytten.

Forfattersiden i modellen til McCabe og Snyder (2010) har en synkende etterspørsel ved høyere leserpriser, og vi kan tolke det som et forsøk for å fange opp utfordringen med avhengig nytte. Det kan derfor virke som at forfattere er innforstått med det faktum at høyere priser for leserne reduserer antall leserere, og godtar dermed en høyere pris for publisering. Forfattere får en forventet nytte basert på hvor mange leseres journalen har, fordi det øker

Som vi så i Jeon og Rochet (2010) kan kvalitetsnivået reduseres av overgangen til OA. Hensikten til journalen avgjør kvalitetsnivået, om målet er å maksimere samfunnsøkonomisk velferd vil OA være optimalt så lenge de positive eksternalitetene som genereres av journalens spredning overgår marginkostnaden ved distribusjon. Men, om journalen har som hensikt å maksimere den totale nytten til leserne(eller “impact”, eller profitt) virker den å velge en kvalitetsstandard som er lavere enn det som er samfunnsøkonomisk optimalt. Likevel er det ikke gitt at OA-journaler har lav kvalitet. Den kan ha lavere kvalitet enn “leser-betaler” og det som er samfunnsøkonomisk optimalt, men den er større enn q_{min} og blir dermed godkjent innenfor den gitte kvalitetsrammen. Samtidig settes det for strenge krav til kvaliteten under “leser-betaler”, noe som videre indikerer at en svak nedgang i kvaliteten når man går over til OA vil gjøre at artiklene fortsatt er av “god nok” kvalitet. Mye av kritikken mot OA går ut på at kvaliteten er for dårlig, det vil si dens “impact factor” er for lav. Problemet med argumentet om at få OA-journaler ligger på den internasjonale rangeringen over de største “impact factor”-journalene er at de fleste journalene på denne rangeringen har opparbeidet seg et renommé gjennom flere titalls år, mens OA-journaler er et såpass nytt fenomen at den ikke har hatt tid til å opparbeide seg et liknende renommé som de etablerte journalene. Det vil sannsynligvis gå mange år før flere av OA-journalene som finnes i markedet klarer å markere seg i slike rangeringer.

6.4 Begrensninger

Modellene tar heller ikke hensyn til hvordan forfatteravgiften finansieres. Dette er naturligvis også en begrensning for at modellene ikke skal bli for kompleks og spesifikk, men finansiering er et viktig spørsmål innen OA. Hvis forfatteren tilhører en institusjon med få
midler vil dette begrense muligheten til å publisere OA. Finansiering har også betydning for institusjonenes og forfatternes pengemessige insentiver til å publisere. For at OA-publisering skal være et lønnsomt valg for institusjonen er de avhengige av midler til å betale forfatteravgiftene og det må derfor legges til rette for å finne en effektiv løsning for finansiering.

I Jeon og Rochets (2010) analyse kommer det frem at enhver “non-profit”-journal som maksimerer lesernytten vil foretrekke OA til fordel for “leser-betalere” og andre hybridmodeller, så lenge den marginale forfatterens nytt er større enn \(\gamma \). Grunnen til at de foretrekker OA er at lesermassen øker og dermed også den totale lesernytten. Forfatternes budsjettbetingelse er ikke tatt hensyn til i denne vurderingen på grunn av forenkling av modellen. Derfor kan man ikke forvente at alle eksisterende journaler i den virkelige verden vil bytte ut OA med “leser-betalere”-modellen.

I McCabe og Snyders (2010) analyse har det videre vært sett bort fra en viktig teknologisk fordel ved OA. Modellen har antatt at kostnadene \(c_A, c^R \) og \(c \) er ekosgen og uavhengig av journalens prisstruktur. Spesielt, når \(c^R \) har vært antatt å være positiv, har den vært antatt å være positiv uansett om journalen var OA eller ikke. En av fordelene ved OA er at ved å publisere artiklene på internett med fri tilgang til leserne slipper en kostnaden forbundet med å administrere leserne. Denne nytten kan modelleres ved å anta at der er et diskontinuerlig fall i kostnaden ved å administrere leser-kontoer fra \(c^R > 0 \) for en journal som krever en abonnementsavgift, til \(c^R = 0 \) for en OA-journal. Å gjøre en slik antakelse om at kostnadene endres med prisstrukturen vil føre til at OA er samfunnsøkonomisk optimalt og mer sannsynlig å oppstå som en konkurranselikevekt for et bredere sett av parametrer. For eksempel vil nest-beste allokering i eksempel 1 fra tabell 3 gå fra en allokering med positiv innsendings- og abonnementsavgift til et OA-regime med en innsendingsavgift og ingen abonnementsavgift. Samfunnsøkonomisk velferd vil da stige.

McCabe og Snyder (2010) har også bevisst valgt symmetriske konkurrierende journaler i stedet for en nykommer som konkurrrerer mot en etablert aktør i sin analyse. Selv om de fleste journaler ikke er OA og utvikling av OA vil kreve etablering har forfatterne valgt å se bort fra prisingsproblemet med inngangsbarrierer. De er klar over at det kan være betydelige etableringsbarrierer i journalmarkedet. En journals rykte kan baseres på journalens beholdning.
av publikasjoner og kan kun utvikles over tid. Disse barrierene gjelder ikke bare for OA-journaler, men for alle journaler.

Et annet aspekt som ikke er tatt hensyn til er at endring i prismodellen påvirker konkurranse mellom journaler. En overgang fra “leser-betaler” til OA kan fremme konkurranse. Før en artikkel publiseres er journalene substitutter for forfatteren, men når en artikkel blir publisert har journalen monopolmakt på innholdet. Når da leserne under OA har tilgang til alle journaler er det et poeng for journalen å ha det riktige innholdet slik at leserne velger å lese akkurat den journalen. En kan undersøke dette for å forstå mekanismene bak forfattere og lesers valg av journal, og hvordan det påvirker konkurranse i markedet.

Siden modellene bare undersøker markedet under gitte betingelser, kan ikke resultatene generaliseres til å gjelde for hele markedet. Videre forskning bør derfor vurdere disse begrensningene for å bygge ytterligere intuition og for å skape et mer helhetlig bilde av situasjonen under OA.
Referanser

Cappelen, A. W. Og Tungodden, B. (2012) ”Insentiver og innsats”, *Magma*, No. 5, side: 38-44

Nettsider:

[6] Key facts, Springer:
http://www.springer.com/about+springer/company+information/key+facts?SGWID=0-175806-0-0-0#mainnav-Key%20Facts (hentet 22.04.2014)

http://www.bibsyskonferansen.no/files/2014/03/OA_Cristin.pdf (22.04.2014)

[23] Publiseringspoeng og finansieringssystemet, UiT:
p_menu=42374&p_lang=2 (hentet: 04.04.2014)

Hentet fra
http://www.regjeringen.no/pages/38251604/PDFS/STM201220130018000DDDPDFS.pdf
(hentet 25.11.2013)