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ABSTRACT 
 

 

The dual-specificity tyrosine phosphorylation-regulated kinase family (DYRKs) has recently 

emerged as new therapeutic targets for different kinds of cancer and neurodegenerative diseases. 

In the latest studies it was shown that DYRK1B plays a key role in cancer cell survival, and its 

inhibition induces apoptosis of cancer cells. This thesis is about the biophysical characterization of 

DYRK1B and its comparison to DYRK1A, the closest homologue. This includes establishment of 

an expression and purification protocol for large-scale protein production of DYRK1B. Buffer 

optimization by screening with thermofluor was employed to further improve the stability and 

solubility of the protein. Enzyme kinetics of DYRK1B were characterized by determination of the 

Michaelis-Menten constant. Fifty small molecular weight molecules were screened for their ability 

to inhibit DYRK1B. The results of the screening were compared with DYRK1A to determine a 

selectivity profile of these inhibitors. A point mutation of DYRK1B to mimic DYRK1A was 

introduced to further investigate the selectivity profile. Finally, the crystal structure of DYRK1A 

in complex with PKC412 was solved by molecular replacement to a resolution of 2.6 Å. The 

structure shows for the first time the formation of a disulfide bridge between the catalytic loop and 

activation loop and it is the first structure published with the staurosporine analog PKC412.  

 

 

 

 

 

 

 

 

 

 

 



6 
 

ACKNOWLEDGEMENTS 

 

 

I would like to thank Professor Richard A. Engh for the golden opportunity to do this master 

project in the kinase research group. I would like to express my sincere gratitude for the 

interesting ideas for my maser thesis, stimulating discussions, exiting kinase meetings and 

productive atmosphere in the kinase group.   

I would like to express my special thanks to my supervisor Dr. Ulli Rothweiler for the 

continuous support of my study and research, for his patience, enthusiasm, motivation and 

immense knowledge. His guidance helped me in all the time of research and discussion of this 

thesis. I could not have imagined having a better supervisor and mentor for my study.  

I kindly thank Espen Åberg for all his help in designing the DYRK1B construct and primers 

for site-directed mutagenesis. Thank you for teaching of advanced cloning technique and 

troubleshooting. I am delighted by your exhaustive knowledge and confirm that you are a living 

library. Thank you for the proofreading of the cloning chapter.  

Thank to Adele K. Williamson for the sleepless night at BESSY October 2013. Thank you for 

the proofreading and `polishing` of my master thesis.  

I would like to thank Valentina Burkow Vollan for all your kind help whenever I needed it.  

My sincere thanks also go to Dilip Narayanan for the help with docking programs and the 

fixing of my several computer crashes.  

I thank my fellow labmates in the Norwegian Structural Biology Centre: Gro Bjerga for 

sharing her equipment and chemicals with me, Kazi Alam, my brother in arms in the daily fight 

with the tricky kinases. Susann Skagseth, Bjarte Lund, Tor Olav Berg, Eva Bjørkeng, Marcin 

Pierechod, Kirsti Johannessen, Miriam Grgic, Man Kumari Gurung, Alexander Kashulin, Stefan 

Hauglid, Vibeke Os and all my other nice colleagues thank you for the help in the lab and nice and 

friendly atmosphere, some long nights in the lab and for all the fun we had in the last two years. 

I thank Helmholtz-Zentrum Berlin for the allocation of synchrotron radiation beamtime and 

for supporting my travel expenses.  

Last but not least, I would like to thank my family: parents Galina Valentinovna and Oleg 

Mihajlovich, grandmother Klavdia Alekseevna and my sister Helena for the support throughout 

my life. Thanks to my beloved husband Nikita for his infinite patience and love. Special thanks to 

my son Leonard, who always could find his special way to make me laugh. 

 



 

7 
  

ABBREVIATIONS  
 

 

β-ME β -mercaptoethanol 

   Extinction coefficient 

A Ampere 

Amp Ampicillin 

ATP  Adenosine triphosphate 

AU Absorbance Unit 

bp base pair 

Cam Chloramphenicol 

CV Column Volume 

Da Dalton 

DMSO Dimethyl sulfoxide 

dNTP Deoxyribonucleotide 

DTT Dithiothreitol 

DYRK Dual-specificity tyrosine phosphorylation-regulated kinases 

E. coli Escherichia coli 

EDTA Ethylenediaminetetraacetic acid 

FT Flowthrough 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

Kan Kanamycin 

Km Michaelis-Menten constant for enzyme-substrate complex 

LB Lysogeny Broth 

MPa Mega Pascal 

MES 2-(N-morpholino)ethanesulfonic acid 

MilliQ water Deionized water 

MOPS 3-(N-morpholino)propanesulfonic acid 

MST Microscale thermophoresis  

min Minutes 

OD Optical density 
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PCR Polymerase chain reaction 

PEG Polyethylene glycol 

rpm  rounds per minute 

SDS-PAGE Sodium dodecyl sulfate - polyacrylamide gel electrophoresis 

SEC Size exclusion chromatography 

si-RNAs Small interference RNA 

TAE Tris-acetate-EDTA 

TB Terrific broth 

TEV Tobacco Etch Virus 

Vmax Maximum velocity of catalytic reaction 

wt wild type 
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AIM OF STUDY 

 

 

The aim of the study is the biophysical characterization of kinases from the DYRK family. 

This family has five members and, based on the expression test which had been done prior to this 

thesis, DYRK1A and DYRK1B were chosen for more detailed characterization. Both DYRK1A 

and DYRK1B have emerged recently as novel targets for a variety of diseases. DYRK1A plays a 

critical role in neuronal development and in consequence is implicated in diseases like Alzheimer 

and Parkinson and it also plays a role in mental retardation in patients suffering from Down 

syndrome due to its gene location on the DSCR on chromosome 21. DYRK1B is associated with 

ovarian cancers, pancreatic cancers and osteosarcoma, and the inhibition of DYRK1B leads to the 

apoptosis of cancer cells. Finding selective ATP competitive inhibitors for kinase is in general a 

challenge; the close similarity between DYRK1A and DYRK1B makes it even harder to find 

selective inhibitors for these two kinases. The focus in this thesis is on DYRK1B which has the 

highest sequence similarity in the kinase domain to DYRK1A among all DYRKs, but no structural 

details have been published. The aim of the first part is to develop an expression and purification 

protocol for DYRK1B that allows the characterization of this protein in terms of stability, 

phosphorylation pattern and kinase activity. The second part includes the screening for small 

molecular weight inhibitors and a comparison of the inhibitory activity of these inhibitors with 

DYRK1A. The third part of the thesis is the cloning of DYRK1B mutants to study the inhibitor 

selectivity profile and the residues involve in the enzyme kinetics. The last part is the 

crystallization of DYRK1B and/or DYRK1A with a small molecular weight inhibitor. 
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1 INTRODUCTION 

 

1.1 Protein kinases 

 

The kinases are a large group of phosphotransferases, i.e., enzymes which catalyze the 

transfer of the γ-phosphate group from an adenosine-5‟-triphosphate (donor) to a hydroxyl-group 

(acceptor) of the specific substrates
1
. The divalent metal ions Mg

2+
 or Mn

2+
 are required for ATP 

binding and assistance of the phosphorylation reaction. Once phosphorylated, the kinase substrate 

may be functionally altered, and subsequently initiate the transmission of a biological signal to its 

own set of downstream targets.   

Human kinases are involved in almost every cellular process, and are essential for signal 

transduction cascades in the cell. For example, protein kinase A (PKA, or cyclic AMP-dependent 

kinase), belonging to the AGC kinase group, controls the expression of large number of genes via 

the phosphorylation of transcription factor CREB
2
, and, as a multiple substrate kinase, it is 

involved in the regulation of proliferation and differentiation of cells
3
.  

Human kinases have been extensively studied in the past, and are still an intensely 

investigated research field. Manning et al. in 2002 have classified the more than 500 human 

kinases, termed „the human kinome‟, into seven groups based on the sequence similarity in the 

kinase domain
4
. Based on their ability to phosphorylate serine/threonine or tyrosine residues the 

protein kinases are divided into the two subdivisions: serine/threonine kinases (phosphorylate 

alcohol groups on serine or threonine) and tyrosine kinases (transfer the phosphate to the phenol 

group of tyrosine)
5
. However, there is a group of protein kinases, termed as „dual-specificity‟ 

kinases, able to phosphorylate both serine/threonine and tyrosine residues on their targets
6
. 

 From this perspective it is evident that abnormal function of kinases can lead to numerous 

diseases. For instance, mutation of the genes encoding growth factor receptors (e.g. EGF-R, 

epidermal growth factor receptor; VEGF-R, vascular endothelial growth factor receptor), which 

contain a tyrosine kinase domain responsible for transduction of the signal from the growth factors 

to cytoplasm in the cell, causes the alteration of structure of kinase domain leading to a ligand-

independent activation of the growth factor receptor and dysregulation cell growth
7
. This type of 

dysregulation is often involved in tumor pathogenesis
8
.  

Protein kinases represent an interest for the pharmaceutical industry because they are 

considered as therapeutic targets for diseases including diabetes
9
, neurodegenerative diseases as 

Alzheimer disease
10

, Herpes simplex viral infection
11

, malaria
12

, and ischemic heart disease
13

. 
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1.2 Structure of kinase domain 

 

Kinases do not usually consist of the kinase domain alone, but have additional regulatory 

domains in the sequence required for their function, localization, and inter-protein interactions. 

Some kinases like CDKs need a second partner, cyclins, to be fully active
14

. Nevertheless, human 

kinases share a similar fold, the kinase domain, comprising an N-terminal lobe (N-lobe) with five 

antiparallel β-strands and a conserved regulatory αC-helix, and a larger C-terminal (C-lobe) 

consisting of α-helices
15

. The N-lobe and C-lobe are connected by a hinge region which is an 

important part of the ATP-pocket (Figure 1).  

 

 

 

Figure 1. Stereo image of the kinase domain with several of its key features. The major structural elements are labeled. The 

structure of DYRK1A (3ANQ16) was used to illustrate the overview of kinase domain. 

 

 

For most kinases, the αC-helix is located between β3 and β4. Kinases have in the activation 

loop one or more residues that can be phosphorylated. The activation loop is located at the C-lobe 

and starts from DFG-motif and ends with a conserved W/F/YRAPE motif (RFYRSPE in 

DYRKs)
17

. Depending on the kinase group and family, the phosphorylation is on a serine, 

threonine or tyrosine residue. This leads to an activation of kinase. In DYRK1A/B the 

phosphorylation occurs on the second tyrosine in the YQY motif during autoactivation 

immediately after translation by an intramolecular reaction
18-20

. The phosphorylated tyrosine of 



 

15 
  

the conserved YQY motif in DYRKs makes a contact with two arginines located at the end of the 

activation loop (R
325

FYR in DYRK1A and R
276

FYR in DYRK1B). In the DFG-motif the aspartate 

is the most conserved residue because it forms a contact with the phosphate groups of ATP either 

directly, or through magnesium. The phenylalanine in DFG is responsible for the hydrophobic 

interaction with the αC-helix and the correct orientation of aspartate in the DFG-motif
21

. In the 

literature, the active conformation of kinases is often referred to “DFG-in” conformation, while 

“DFG-out” corresponds to inactive state of protein kinases.   

The catalytic loop is involved in transfer of the γ-phosphate to the substrate. A typical, highly 

conserved, motif of the catalytic loop in the kinome is HRD; however in the DYRK family a HCD 

motif is highly conserved in the catalytic loop instead. Another important part of the kinase 

domain is a glycine-rich loop.  The glycine-rich loop comprises a GxGxxG motif (G
166

KGSFG in 

DYRK1A and G
118

KGSFG in DYRK1B). It is located between β1 and β2 and constitutes a part of 

ATP-pocket from the N-lobe. An important residue in the ATP-pocket is the “gatekeeper” which 

is responsible for the selectivity of inhibitors. DYRKs have a phenylalanine as a gatekeeper (F238 

in DYRK1A and F190 in DYRK1B) which is located at the beginning of the hinge region. 

 

1.2.1 Architecture of the ATP-pocket  

 

Crystal structures of protein kinases have revealed that ATP binds at a specific region, called 

the ATP-pocket or cleft, between the N- and C-lobes of the kinase domain, connected by a hinge 

region. Protein kinases evolved to bind ATP, and therefore many residues forming the ATP-

pocket are highly conserved among group and families of protein kinases. This makes it a 

challenge for the scientist to develop a selective inhibitor for a specific kinase, because the 

majority of the protein kinase inhibitors are ATP-competitive, i.e. the inhibitors have to mimic 

ATP and bind to the ATP-pocket. A. Vulpetti  and R. Bosotti have studied the key structural 

features of ATP-pocket, involved in the binding of ATP and inhibitors by multiple sequence 

alignment of 478 protein kinases, comprising the human kinome
22

. They established that in the 

ATP-pocket, five regions responsible for the binding of different chemical group on the ATP 

molecule can be distinguished. First, the adenine region: the adenine ring forms two hydrogen 

bonds with the backbone of the hinge region and adenine core interacts with the hydrophobic 

residues via non-polar interactions. Second, the sugar ring: the ribose forms one hydrogen bond 

with a lysine, histidine or other polar residues of the C-lobe of kinase domain. Third, the 

phosphate region: the triphosphate group forms one hydrogen bond with a highly conserved 
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lysine. Fourth and fifth, the buried region and solvent accessible region are not occupied by ATP, 

but comprise a set of residues which are the source of sequence divergence among the kinases. 

 

1.3 DYRK family 

 

The Dual-specificity tYrosine phosphorylation-Regulated Kinases (DYRKs) are called “dual-

specificity”  kinases because of their ability to become active by autophosphorylation of a tyrosine 

residue in the activation segment during translation, and after that, the members of DYRK family 

are capable of phosphorylate serine or threonine residues of exogenous substrates, losing a feature 

of a tyrosine kinase
18

. However, latest research showed that the tyrosine phosphorylation is not 

restricted to the autoactivation during translation but that the mature DYRK1A kinase remains 

some tyrosine phosphorylation activity
23

.   

 DYRKs are an evolutionary conserved family whose members are found in different 

branches of life. DYRKs are found in yeast, for example, Yak1p from Schizosaccharomyces 

pombe which was primarily characterized by Garret S. et al.
24

. In nematodes: particularly 

Caenorhabditis elegans, where there are two genes, mbk-1 and mbk-2 encoding the kinases, 

MBK-1 and MBK-2 (homologs of minibrain kinases), which were identified as members of 

DYRK family
25

. However, the characterization by Tejedor F. et al. of the mnb (minibrain) gene 

encoding for MNB (minibrain kinase) kinase found in Drosophila melanogaster attracted the 

attention of the scientific world to these kinases as their dysfunction leads to the reduction of the 

brain size in the optic lobes of adult flies, notably indicating the role of MNB neurogenesis
26

.  

 Human homologs of DYRKs belong to the CMGC group (according to the Manning G. et al. 

classification
4
) which also includes the cyclin-depended kinases (CDKs), mitogen-activated 

protein kinases (MAPKs), glycogen-synthase kinase-3 (GSK3) and CDK-like kinases. The human 

DYRK family includes five members: DYRK1A, DYRK1B, DYRK2, DYRK3 and DYRK4. 

DYRK kinases are further categorized as class I (DYRK1A and DYRK1B) and class II (DYRK2, 

DYRK3 and DYRK4)
27

. The comparison of the protein structure of human DYRKs is depicted in 

Figure 2. DYRK1A and DYRK1B have a DYRK homology (DH)-box typical for class I of 

DYRKs at the N-terminus, while the members of class II differ by the presence of an N-terminal 

autophosphorylation accessory region (NAPA) at the N-termini. Class I of DYRKs have a region 

rich in proline, glutamic acids, serine and threonine, called PEST (sequence common to rapidly 

degraded proteins), which in the DYRK1A is followed by a polyhistidine stretch (His) and then a 
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region enriched in serine and threonine residues (S/T). Members of the DYRK family are capable 

of phosphorylation of serine and threonine residues within the consensus sequence RXS/TP
28,29

.  

 

Figure 2. Protein structure scheme of the DYRKs. Kinase domain (green), N-terminus (blue) at the left of kinase domain, C-

terminus (blue) at the right of kinase domain; NLS, nuclear localization signal; DH, DYRK-homology box; NAPA, N-terminal 

autophosphorylation accessory region; Kinase domain; PEST, motif rich in proline, glutamic acid, serine, and threonine residues; 

His, polyhistidine stretch; and S/T, region enriched in serine and threonine residues. Black lines indicate protein regions affected by 

alternative splicing events. The figure is modified from Aranda et al.28 

 

 

1.3.1 DYRK1B 

 

Leder S. et al. has performed the cloning of DYRK1B by cDNA and has analyzed its tissue 

distribution in human
30

. The mirk gene (in some literature the DYRK1B kinase is also called 

MIRK, or minibrain-related kinase, and, thus, gene mirk encodes for MIRK or DYRK1B; 

however, in this thesis the DYRK1B name is used to avoid confusion) is located in the 19q13.1 

chromosome. S. Leder shows that DYRK1B has three splicing variants (629, 601, and 589 AA) 

and expresses at low levels in human tissues, except for the skeletal muscles where it is abundant. 

Later, a myogenesis (i.e. formation of muscular tissue) was exploited as a model system to 

investigate the functions of DYRK1B in myoblast differentiation by Lu J. et al.
31

, Deng X. et al.
32

 

and Mercer S. et al.
33

. It was shown that the level of DYRK1B protein is low in dividing 

myoblasts; however, when the myoblasts enter into a differentiation stage the expression of 

DYRK1B increases at least 10-fold and remains elevated in mature cells. Deng X. et al. have 

shown that induction of the mirk gene in myoblasts is induced by Rho proteins (family of 

GTPases) and inhibitors of MEK (mitogen-activated protein kinase)
32

. Moreover, DYRK1B 

controls the cell cycle by an arrest of cycling myoblasts in a G0/G1 state through the 

phosphorylation of cyclin D and p27
33

. 
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However, in spite of the low expression of mirk gene in normal tissues (except skeletal 

muscles), Lee K. et al. studies have found an elevated expression level of mirk in colon carcinoma 

cells, lung carcinoma cells, ovarian carcinoma cells, chronic myelogenous leukemia cells, 

lymphoblastic leukemia cells and melanoma cells
34

.  

Mercer S. studies have demonstrated that DYRK1B is also overexpressed in 

rhabdomyosarcoma cells (i.e. skeletal muscle-derived tumor), where the depletion of DYRK1B 

gene performed by small interference RNAs (siRNAs) leads to an induction of apoptosis of the 

cancer cells, indicating that DYRK1B functions as survival kinase for cancer cells under stress 

conditions
35

. 

Yang C. et al. have investigated the role of DYRK1B in osteosarcoma
36

. They have shown 

that the knockdown of the DYRK1B gene by siRNAs facilitates to the termination of the cancer 

cell growth and an increased number of cells entering to apoptosis. Yang C. et al. have also shown 

that that expression of DYRK1B is correlated with poor prognoses for patients and low survival, 

and noted that DYRK1B may serve as a biomarker for a prognosis
36

.  

Likewise, Gao J. et al. have studied the role of DYRK1B in non-small cell lung cancer cells 

(NSCLC) and found that DYRK1B is expressed at high levels in the majority of NSCLC. They 

have employed the similar siRNA knockdown of DYRK1B expression, and results have shown 

that NSCLC exhibited an inhibition of cell growth and induction of an apoptosis compared to non-

depleted DYRK1B cells. Moreover, knockdown of DYRK1B enhanced the sensitivity of NSCLC 

to cisplatin-induced apoptosis
37

. Increased sensitivity of cancer cells to cisplatin was also 

demonstrated by Hu J. and Friedman E. in the study of ovarian cancer cells where DYRK1B 

depletion leads to increasing of ROS (reactive oxygen species) assisting to further elevation of 

ROS by cisplatin that, finally, kills the cancer cell
38

.  

E. Friedman has given an excellent review about the role of DYRK1B in the ovarian cancer
39

 

and pancreatic cancer
40

.  This author has done a tremendous amount of work summarizing the role 

of mechanism of DYRK1B in tumor progression. The author explained that Mirk/DYRK1B, 

which is not mutated in cancer cells, sustains the quiescent state of the cancer cells through the 

phosphorylation-dependent destabilization of cyclin D1 at T288
41

, and stabilization of the CDK 

(cyclin-dependent kinase) inhibitor p27 at S10
42

. DYRK1B in the cancer cells is activated by the 

oncogenic K-ras signaling
43

. This mechanism enables halting of the cell cycle at G0 stage 

(quiescence or resting stage), however, the inhibition of DYRK1B, as was shown in the study of 

Hu J. et al. 
44

, was able to induce the apoptosis of cancer cells (Figure 3).  

Taken together, DYRK1B is a new emerging target for cancer therapy for osteocarcoma, lung 

cancer, pancreatic cancer, ovarian cancer etc. Therefore, the characterization of DYRK1B, and 
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investigation of binding features of this kinase with molecular weight inhibitors has become an 

urgent task.  

 

Figure 3. DYRK1B inhibition leads to the cell death. S (synthesis stage), M (mitosis), G1 (Gap 1), G2 (Gap 2), G0 (Gap0 or 

quiescent). The figure is adapted and modified from Friedman E. (2013)39. 

 
 

1.3.2 DYRK1A 

 

The DYRK1A gene is located in the Down syndrome critical region (DSCR) on chromosome 

21
45

 and the overexpression of DYRK1A in patient suffering from Down syndrome (DS) is 

coupled to mental retardation
46

. Patients with Down syndrome develop an Alzheimer-like 

dementia
47

 relatively early compared to the general population.  Besides its involvement in DS, 

DYRK1A has attracted attention due to potential involvement in other neurodegenerative diseases 

like Alzheimer
47
, Parkinson‟s disease

48
 and Huntington‟s disease

49
. Regarding to the Alzheimer 

disease, as reviewed by Smith B. et al, DYRK1A directly phosphorylates tau protein promoting a 

following multiple site phosphorylation of tau by GSK 3β kinase and aggregation of the 

hyperphosphorylated tau into neurofibrillary tangles. This facilitates neuronal death and dementia 

severity
50

. 
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1.3.3 Sequence alignment of DYRK1A and DYRK1B 

 

The closest homolog to DYRK1B is DYRK1A. The identity over the whole enzyme is 73.9% 

(89.4% similarity) and in the kinase domain it is 85.0% (95.6% similarity). The pairwise sequence 

alignment was performed by the on-line software LALIGN
51

. Within the ATP pocket there is only 

one residue M240 in DYRK1A, L192 in DYRK1B at the hinge region, which is different between 

these two kinases (Figure 4).  

 

 

 

Figure 4. Pairwise sequence alignment of the DYRK1A (125-490 AA) and DYRK1B (78-451 AA). The sequences were 

obtained from UniProt database (accession numbers: Q13627 for DYRK1A and Q9Y463 for DYRK1B)52. The DYRK1A sequence 

comprising the kinase domain residues 125-493 was aligned with the kinase domain of DYRK1B including the residues 78-451 of 

the designed construct. The secondary structure annotation corresponds to the crystal structure of DYRK1A (2WO653). Residues 

depicted in white and highlighted by red boxes are identical between the two sequences. Residues shown in red and highlighted by 

blue boxes are similar. The secondary structure elements are shown above the aligned sequences. Alpha helices are represented by 

spirals and beta strands by arrows.  The clustalW2 online software was used to compute the pairwise sequence alignment54.  The 

figure was made by using ESPript55. 
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1.4 Kinase inhibitors 

 

Since kinases are an important in processes such as cell cycle control and signaling pathways, 

they are an attractive target for drug development and inhibitor design
56

. Small molecular weight 

inhibitors (molecular weight range 200-600 Da) are able to effectively inhibit the kinases and 

prevent the development of diseases. One of the best examples among the kinase inhibitors is the 

Imatinib/Gleevec (Novartis, Switzerland) used in the therapy of patients with chronic 

myelogenous leukemia (CML) caused by formation of the so-called Philadelphia chromosome
57

 

(i.e. chromosomal defect leading to formation of BCR-Abl oncogene). Gleevec became a 

revolutionary drug, first, because it was a rationally designed inhibitor and, second, it is able to 

selectively inhibit the BCR-Abl kinase and effectively treat CML
58,59

.  

Inhibitors of protein kinases can be categorized into several types based on the interaction 

between kinase and inhibitor
60

: 

1. Type I kinase inhibitors. ATP-competitive, inhibitors can bind through hydrogen bonds 

with the residues of the hinge region. Inhibitors bind to the ATP-pocket at the active 

conformation of the kinase, i.e DFG-in form. 

2. Type II kinase inhibitors, non-ATP-competitive inhibitors, are able to bind to the ATP-

pocket through residues of hinge region and hydrophobic interactions. Inhibitors bind to a 

DFG-out form targeting the inactive kinase. 

3. Type III inhibitors, allosteric inhibitors, are able to bind to a binding site outside of ATP-

pocket.  

4. Type IV inhibitors, are able covalently bind to the active site of kinase domain, usually, 

through a cysteine residue. 

 

Inhibitors can also be classified based on the source of origin, for example natural or 

synthetic. 

Close attention has been given to the problem of development of a highly selective inhibition 

for kinases whose malfunction is a key factor in a pathogenesis of diseases. In order to distinguish 

a key structural feature responsible for the selectivity, a comprehensive analysis of kinase 

inhibition is required
61

. E. Åberg et al. studied the key residues which determine the inhibitor 

selectivity for the AGC kinase group (include PKA, PKC etc)
62

. E. Åberg et al. described that for 

the ATP-pocket binding, the important residue is the gatekeeper, the presence of a cysteine residue 

at or near the ATP-pocket (may serve as a target for formation of covalent bond with inhibitors) 
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and the second residue in the glycine-rich loop which is usually an aromatic residue and may 

influence on the hydrophobic interaction with inhibitor. The inhibitors for the kinase of interest 

may be designed with respect to the residues listed above.   

Ambit Bioscience Company (USA) have performed a profile for 72 known kinase inhibitors 

(at concentration of 10 µM) against 442 kinases to determine the dissociation constant Kd and 

provided an overview over the kinase selectivity
63

. The profiling demonstrated that the known 

inhibitors can bind to distinct related kinases. This makes it possible to change an application for 

particular inhibitors. Statistic handling in this research showed that among the selective inhibitors 

the fraction of type II inhibitors is higher compared to the fraction of type I inhibitors. However, it 

is not a fixed rule: some type I inhibitor shown higher selectivity across the kinome and some 

type II inhibitor demonstrated weak selectivity.  

In summary, the selectivity of kinases is a complicated field and vast numbers of factors are 

involved in rational inhibitor design. Development and design of selective inhibitors remains an 

urgent field in scientific and pharmaceutical research. 

 

1.4.1 DYRK inhibitors  

 

The DYRK1B inhibitor RO5454948 (Figure 5, a) has been shown to induce apoptosis of 

quiescent pancreatic cancer cells which are normally resistant to the conventional cancer 

chemotherapeutics
64

.  RO5454948 was identified by Roche generic kinase inhibitor library. Ewton 

D.Z. et al. have demonstrated that in Panc1 (a pancreatic cancer cell line) with an amplified 

DYRK1B, the treatment of the cell by RO545494 leads to a decreasing of the fraction of the 

cancer cells in the G0 stage by around 60%. This was examined by flow cytometry method
65

. Hu 

J. et al. have studied the inhibition of RO5454948 in ovarian cancer cells and demonstrated that 

Mirk/DYRK1B inhibition leads to an increasing of cyclin D levels and consequently induces the 

cell cycle
44

.    
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Figure 5.Chemical structure of some DYRKs inhibitors. a) RO5454948 is a known DYRK1B inhibitor64; b) D15 is a DYRK1A 

inhibitor; c) harmine is a DYRK1A/1B inhibitor16, d) INDY is DYRK1A inhibitor16. The structures of inhibitors were drawn in 

Maestro suit (Schrodinger)66. 

 

 Crystal structures in complex with inhibitors (Figure 5, b-d) have been solved for DYRK1A. 

The crystal structure of DYRK1A in complex with inhibitor INDY (3NAQ, Figure 5, d) has been 

published by Ogawa Y. et al.
16

. INDY is a type I inhibitor which binds with a Ki of 180 nM. This 

inhibitor binds to the hinge region and forms two hydrogen bonds. The first one is between the 

hydroxyl oxygen and backbone amide of Leu241 of the hinge and the second one is between the 

carbonyl oxygen and Lys188. Another structure by Ogawa Y. et al. is DYRK1A in complex with 

harmine (3NAR, Figure 5, c). Harmine binds to ATP-pocket (adenine region) via two hydrogen 

bonds: first one between the pyridine nitrogen and Lys188; second one between the methoxy 

group and backbone amide nitrogen of Leu241. Harmine has an IC50 of 350 nM. D15 inhibitor 

(2WO6, Figure 5, b) interacts with the hinge through a series of three hydrogen bonds between 

the backbone of Glu239, Met240 and Leu241. D15 also forms a salt bridge between a primary 

amide of inhibitor and carboxylate of Asp307
53

.   

 

 

 

 

a) b) 

c) 
d) 

RO5454948 

D15 

Harmine 
INDY 
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1.4.2 PKC412 

 

PKC412 (midostaurin, N-benzoyl-staurosporine), is an analog of the pan-kinase inhibitor 

staurosporine, an alkaloid isolated from Streptomyces staurosoreus
67

. PKC412 has a more 

selective inhibition profile compared to staurosporine and its main targets are the isoforms of 

protein kinase C (PKC)
68

, VEGFR2
69

 and FLT3
70

. PKC412 is currently under investigation as a 

treatment of acute myeloid leukemia
71,72

. The selectivity profile of PKC412 compared to the 

staurosporine is illustrated by the kinome interaction maps (Figure 6).  

 

 

 

 

 

Figure 6. Kinome interaction map. a) PKC412, b) Staurosporine. The kinase maps were kindly provided by R.A. Engh, adapted 

from Manning et al.4. 

 

 

 

 

a) b) 
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1.5 Enzyme Kinetics 

 

Enzymes are able to dramatically increase the rate of chemical reactions in the cell
73

. First 

order enzyme kinetics may be described by simple conversion of substrate S to the product P 

catalyzed by enzyme E: 

 

 

 

 

where enzyme E form a complex with the substrate S at the rate k1, while the reverse reaction, 

the dissociation of the complex ES  (  →    )  ccurs at the rate k-1. The second k2 rate 

(denoted also as kcat) describes the dissociation rate of ES complex and the product formation 

from the ES complex. The reverse reaction, forming the ES complex out of the product is assumed 

to be infinitesimally small for many enzymes
74

.  

The activity of enzymes is dependent on several factors like pH, salt, substrate and product 

concentration and temperature. Enzymes have in general a temperature and pH optimum where 

the activity is highest
75

.  The enzyme activity can also be influenced by the presence of inhibitors.  

Inhibitors decrease the activity of enzymes and, as used in this thesis, kinase inhibitors are able to 

decrease an efficiency of the kinase catalytic activity and thus, lead to a decreasing or even partial 

blockage the downstream mediation of cellular processes
76

.  

In this master thesis, a set of inhibitors was tested by the Cook assay
77

, a kinase activity assay 

that measures the NADH consumption while keeping the ATP concentration constant. In order to 

compare the inhibition efficiency for the tested inhibitors we need to determine the absolute 

inhibition constant Ki. Mathematically, the Ki value can be calculated using the Cheng-Prusoff 

equation
78

 (1): 

   
    

  
[ ]
  

       

 

where IC50 is the concentration of inhibitor causing 50% reduction of catalytic activity of the 

kinase, [ ] is the substrate concentration, i.e. ATP concentration, Km is a Michaelis-Menten 

constant that can approximate the affinity of substrate (ATP) to the enzyme. The Km value is equal 

to the substrate concentration at which the enzyme activity is half of the maximum activity.  

E + S 

k1 

k-1 

ES 

k2 

E + P 
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Leonor Michaelis and Maud Menten were the scientists who established the fundamental enzyme 

kinetics in 1913
79

 presented the equation (2) which was further developed by Briggs and Haldane 

in 1925
80

: 

   
     [ ]

    [ ]
       

 

where the Vo is initial velocity of the catalytic reaction, Vmax is a maximum velocity, [ ] is the 

substrate concentration and Km is a Michaelis-Menten constant. The equation (2) is a 

mathematical representation of Michaelis-Menten curve depicted on the Figure 7: 

 

                       

Figure 7. The Michaelis-Menten curve. The Michaelis-Menten kinetics shows that initial velocity at high substrate concentration 

cannot further increase and reaches a maximum velocity: Vmax.  Km is the Michaelis-Menten constant, Vmax is the maximum 

velocity, Vmax/2 is a half of the maximum velocity, [ ] is the substrate concentration. 

 

The Michaelis-Menten equation requires a steady-stay condition, i.e. the period when the 

concentration of ES complex remains constant with time
81

.  

Originally the Michaelis-Menten equation was used to describe kinetics of first order 

reactions, meaning that only one substrate is used in the reaction.  However, kinases are catalysts 

of a reaction involving two substrates
82

. As described by Alistair Rogers and Yves Gibon, there 

are three major classes of mechanisms of catalytic reaction with two substrates: random substrate 

binding, ordered substrate binding and the Ping-Pong mechanism
74

. For most kinases it is 

unknown which mechanism they follow but for some kinases a mechanism was described. For 

example, Szafranska, A.E. et al. have described the kinetic mechanism of p38 MAP kinase α, a 

kinase belonging to the same CMGC group as the DYRK family. The author found out that p38 

MAP kinase α exploits a partial rapid-equilibrium random order ternary-complex mechanism
83

.    

Despite on the complexity bisubstrate catalytic reaction the Michaelis–Menten equation 

typically remains valid for these complex reactions
81 
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2 MATERIALS AND METHODS 

 

2.1 Buffers and solutions 

 

The buffers and solutions used in this thesis are listed in the Table 1. Buffer C and Buffer G 

were filtered by 0.45 µl membrane filter prior to gel filtration.  

 
Table 1. Buffers and solutions used for cloning, expression and purification of DYRK1B and its mutants. 

Solution/buffer Contents 

Amp 100 mg/ml Ampicillin in MilliQ water 

Cam 34 mg/ml Chloramphenicol in 100% ethanol 

Kan 50 mg/ml Kanamycin in MilliQ water 

IPTG 1 M IPTG 

LB-agar 
1% (w/v) Bacto Tryptone, 0.5% (w/v) Yeast extract, 1% (w/v) NaCl, 1.5% (w/v) 

Agar-agar in MilliQ water 

LB media 
1% (w/v) Bacto Tryptone, 0.5% (w/v) Yeast extract, 1% (w/v)  NaCl in MilliQ 

water 

SOC media 
2% (w/v) Bacto Tryptone, 0.5% Yeast extract, 10 mM NaCl, 1 mM MgCl2, 2.5 

mM KCl, 10 mM MgSO4, 0.4 % (w/v) Glucose in MilliQ water 

TB media 
1.2% (w/v) Peptone, 2.4% (w/v) Yeast extract, 72 mM K2HPO4, 17 mM 

KH2PO4, 0.4% (v/v) Glycerol 

2YT media 1.6% (w/v)  Peptone, 1%  (w/v) Yeast extract, 86 mM NaCl in MilliQ water 

TAE buffer 40 mM Tris, 20 mM Acetic acid, 1 mM EDTA in MilliQ water 

TRIS-Glycine 

buffer 
0.25 M  Trizma Base, 1.95 M Glycine, 1% (w/v) SDS in MilliQ water  

Buffer A 50 mM Na2HPO4 pH 8.0, 500 mM NaCl in MilliQ water 

Buffer B 50 mM Na2HPO4 pH 8.0, 300 mM NaCl, 500 mM Imidazole in MilliQ water 

Buffer C 50 mM Tris-HCl pH 7.5, 200 mM NaCl, 2 mM β-ME in MilliQ water 

Buffer D 50 mM MOPS pH 6.8, 50 mM KCl, 2 mM β-ME in MilliQ H2O 

Buffer E 50 mM HEPES pH 8.0, 50 mM KCl, 250 mM NaCl in MilliQH2O 

Buffer F 
50 mM HEPES pH 8.0, 50 mM KCl, 250 mM NaCl, 500 mM Imidazole in 

MilliQH2O 

Buffer G 50 mM HEPES pH 8.0, 50 mM KCl, 250 mM NaCl, 2 mM β-ME in MilliQH2O 
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2.2 Cloning of DYRK1B wt 

 

The sequence of NM_004714 cDNA clone of DYRK1B (OriGene
84

) was used to design the 

DNA construct suitable for protein expression. The full length protein comprises 629 amino 

acids
27,30

. The length and the boundaries of the construct are based on the published crystal 

structure of the DYRK1A (3NAR
16

) protein including kinase domain and showing the highest 

level of sequence identity (85%) with DYRK1B. The full length amino acid sequence of 

DYRK1B and the chosen protein construct (residues 78-451, where 111-431 is the kinase domain) 

for cloning are shown in Figure 8. 

  

        10         20         30         40         50         60  

MAVPPGHGPF SGFPGPQEHT QVLPDVRLLP RRLPLAFRDA TSAPLRKLSV DLIKTYKHIN  

 

                     70       78           90        100        110        120  
EVYYAKKKRR AQQAPPQDSS NKKEKKVLNH GYDDDNHDYI VRSGERWLER YEIDSLIGKG  

 

       130        140        150        160        170        180  

SFGQVVKAYD HQTQELVAIK IIKNKKAFLN QAQIELRLLE LMNQHDTEMK YYIVHLKRHF  

 

       190        200        210        220        230        240  

MFRNHLCLVF ELLSYNLYDL LRNTHFRGVS LNLTRKLAQQ LCTALLFLAT PELSIIHCDL  

 

       250        260        270        280        290        300  

KPENILLCNP KRSAIKIVDF GSSCQLGQRI YQYIQSRFYR SPEVLLGTPY DLAIDMWSLG  

 

       310        320        330        340        350        360  

CILVEMHTGE PLFSGSNEVD QMNRIVEVLG IPPAAMLDQA PKARKYFERL PGGGWTLRRT  

 

       370        380        390        400        410        420  

KELRKDYQGP GTRRLQEVLG VQTGGPGGRR AGEPGHSPAD YLRFQDLVLR MLEYEPAARI  

 

       430        440          451      460        470        480  

SPLGALQHGF FRRTADEATN TGPAGSSAST SPAPLDTCPS SSTASSISSS GGSSGSSSDN  

 

       490        500        510        520        530        540  

RTYRYSNRYC GGPGPPITDC EMNSPQVPPS QPLRPWAGGD VPHKTHQAPA SASSLPGTGA  

 

       550        560        570        580        590        600  

QLPPQPRYLG RPPSPTSPPP PELMDVSLVG GPADCSPPHP APAPQHPAAS ALRTRMTGGR  

 

       610        620  

PPLPPPDDPA TLGPHLGLRG VPQSTAASS  

 

 

 

 

 

Figure 8. Amino acid sequence of DYRK1B. DYRK1B amino acid sequence was downloaded from Uniprot database:  code 

Q9Y46385. The UniProt database format is used to illustrate the amino acid sequence of DYRK1B. The kinase domain composed 

of amino acids from 111 to 431 (bold sequence). The amino acid sequence 78-451 (green) was chosen for cloning. The construct 

was designed together with the kind help of Dr. Espen Åberg. The plasmid and vector maps are shown in the appendix.     
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Gateway cloning strategy together with TOPO
®

 cloning was employed to create the 

expression clone of DYRK1B. The following steps are included in the TOPO
®

 and Gateway 

cloning strategies
86,87

:  

1. Amplification of blunt-end PCR product (selection of DNA template, primer design, PCR 

catalyzed by Phusion polymerase, agarose gel electrophoresis and extraction of blunt-end 

PCR product) 

2. Construction of  a Gateway entry clone by TOPO®
 cloning (reaction set-up, transformation 

in competent cells, analysis of colonies, plasmid isolation and purification, sequencing of 

selected clones) 

3. Gateway cloning (LR recombination reaction, transformation, analysis of colonies, 

amplification and purification). 

 

 

2.2.1 Cloning of PCR product encoding the DYRK1B kinase domain 

 

In the first step of creating the expression construct of the DYRK1B kinase domain a PCR 

product suitable for TOPO
®
 cloning was created. The TOPO

®
 cloning reaction creates a construct 

that acts as the entry clone for the following Gateway cloning reaction. The pENTR Directional 

TOPO
®
 cloning kit was purchased from Invitrogen (Life Technologies).  A detailed description of 

the TOPO
®
 cloning strategy can be found in the user manual for pENTR/D/TOPO cloning kit

88
.  

The TOPO
®
 cloning method exploits a topoisomerase which was originally discovered in the 

Vaccinia virus
89
. This enzyme has a high affinity for duplex DNA and it binds to the specific site 

CCCTT. After binding to DNA at the specific site the topoisomerase cleaves the phosphodiester 

backbone in one strand of the double-stranded DNA and covalently binds to this strand with a 

tyrosine residue via 3' phosphate. The second remaining strand, also called an overhang, has the 

sequence GTGG (specific for the pENTR Directional TOPO
®
 cloning kit), which can anneal to the 

sequence CACC at the 5' end of PCR product. Therefore, one of the parameters in the primer 

design is that the forward primer must begin from the sequence CACC to ensure perfect annealing 

to the TOPO
®
 vector and in addition to ensure the correct orientation of the PCR product within 

the TOPO
®
 vector. The forward primer also contains a sequence encoding a TEV recognition site 

for tag-cleavage and 6 triplets coding for amino acids 78-83 at the N-terminal end of DYRK1B. 

According to the user manual of TOPO
®
 cloning kit the reverse primer does not contain any 

sequence which is complementary to the overhang sequence GTGG
88
. This is a necessary 

requirement for a correct orientation of PCR product of interest. The reverse primer is 
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complementary to the nucleotide sequence encoding the last 8 amino acid residue at the C-

terminal end of designed construct and includes the stop codon TGA (Figure 9). The primers were 

designed by Dr. Espen Åberg in Vector NTI
®
 Express Designer Software

90
.    

                

a) FW 5’CACCGAAAACCTGTATTTTCAGGGAGCTTCAGATTCGAGCAACAAGAAG 3’ 

b) RV 5’TCACGAGGTGGAGGCACTGCTGC 3’ 

Figure 9. Primers for DYRK1B construct. a) Forward primer for the DYRK1B construct. Nucleotide sequence in bold is 

required for the annealing with the overhang of the TOPO® vector, underlined sequence encodes for the TEV recognition site, 

sequence in italic is complementary to the first amino acid residues. b) Reverse primer for the DYRK1B construct.  The reverse 

primer is complementary to the last 8 amino acid residues of the DYRK1B construct (italic). Stop codon is shown in bold.  

 

The primers for the DYRK1B construct were purchased from SigmaAldrich, and as a 

template the pDONR223-DYRK1B (Addgene plasmid 23761
91
 containing full length DYRK1B 

clone) was used for the PCR. The Addgene plasmid 23761 was amplified in DH5α E. coli 

(transformation was performed according to the protocol
92
) and purified by QIAprep spin 

Miniprep kit
93
 (QIAGEN). The concentration of the amplified DNA plasmid was measured by 

Nanodrop.  

The primers were dissolved in MilliQ water to a concentration of 100 pmol/µl.  The reaction 

mixture, composed of 200 pg of DNA template, 0.5 µM of forward and reverse primers, 200 µM 

of dNTPs and 1xHF buffer, was assembled on ice. The reaction was filled up with nuclease-free 

water to 20 µl. 0.04 U/µl of Phusion Polymerase (BioLabs) was added to the reaction mixture at 

the last step prior to the thermal cycling according to the protocol of the Phusion Polymerase
94
 .  

Dyad DNA Engine (BIO-RAD) thermal cycler was employed to run the following steps 

summarized in Table 2. Gradient setting was used to cover a broader range of annealing 

temperatures.  

 

Table 2. Thermocycling conditions for cloning by the Phusion Polymerase. Four temperatures 50  C, 55.5  C, 66  C, 70  C were 

chosen in the settings of the thermocycler program. 

Cycle Temp,  C Time Step 

1 98 30'' initial denaturation 

30 

98 10'' denaturation 

50-70 30'' annealing 

72 45'' extension 

1 72 10'' Final extension 

1 4 hold hold 
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The amplified PCR product was separated by agarose gel electrophoresis to check the size 

and the integrity of the designed PCR product. Agarose was dissolved by heating in 1xTAE buffer 

to a final concentration of 0.7% (v/w).  RedSafe nucleic acid staining solution (ChemBio) was 

added to the melted agarose after it had cooled down to about 60  C. The final concentration of 

RedSafe was 0.05% (v/v). The RedSafe /agarose solution was poured into the gel cassette with a 

comb to prepare a gel with 10 wells. The comb was removed after the gel had solidified. The gel 

was placed in a chamber for electrophoresis filled with 1xTAE buffer.  The PCR product was 

mixed with 6x Gel loading Dye Blue (BioLabs) and loaded into the agarose gel. 6 µl of 1kb DNA 

ladder (BioLab) was used as a marker to analyze the size of PCR product. A PowerPac Bacis 

machine (BIO-RAD) was used for the electrophoresis at a constant voltage of 90V for 30 min.  

After electrophoresis the agarose gel was examined in Gel Doc (BIO-RAD) with UV lights. The 

band with expected size was cut from the agarose gel and the PCR product was extracted using 

QIAquick Gel Extraction kit from QIAGEN according to the kit protocol
95
. The concentration of 

extracted PCR product was measured by Nanodrop.  

 

2.2.2 TOPO® cloning  

 

The TOPO
®
 cloning reaction (as described above) combines the pENTR vector with the gene 

of interest.  The pENTR contains an ttL1 and an attL2 site. The presence of the attL1 and attL2 

sites makes the recombination reaction of the entry clone with a Gateway destination vector (as 

pDEST17) possible. The TOPO
®
 cloning reaction was done by mixing the purified PCR product 

and the TOPO
®
 cloning vector in a ratio 2:1 (volume ratio) together with 1µl of salt solution and 

nuclease free water provided by kit (Table 3). The TOPO
®
 cloning mixture was kept at room 

temperature for approximately 5 min.  

   

Table 3. TOPO® cloning reaction mixture 

Reagent Volume 

Fresh PCR product 1 µl 

Salt solution 1 µl 

Sterile water 3.5 µl  

TOPO
®
 vector 0.5 µl 

Final volume 6 µl 
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2 µl of TOPO
®
 cloning reaction was added to One Shot

®
 Top10 chemically competent E. coli. 

(Life Technologies). Transformation was performed according to the transformation protocol
96
 

(Life Technologies). 200µl of each transformation were spread on prewarmed LB plate containing 

50 µg/ml kanamycin. Plates were incubated overnight at 37   C. Two colonies were picked from 

the plate and cultivated in 4 ml of LB media containing 50 µg/ml kanamycin. Plasmids were 

isolated and purified by QIAprep spin Miniprep kit
93
 (QIAGEN). 

The plasmids were sequenced with the Big.Dye Terminator v3.1 sequencing kit to verify the 

correctness of the entry vector. The  two sequencing reaction per isolated plasmid (one with M13 

forward primer, another with M13 reverse) were done to check the 5‟ and 3‟ ends of construct and 

to cover the whole length of DYRK1B kinase construct. Sequencing reaction were performed 

according to the protocol of Big.Dye Terminator v3.1 sequencing kit
97
. 

 

2.2.3 Gateway cloning 

 

The Gateway cloning strategy is based on the feature of the Bacteriophage lambda which is 

able to integrate into the E. coli chromosome
98
. In order to create the expression clone, Gateway 

cloning system exploits the recombination reaction between the attL sites in entry clone and attR 

sites in the destination vectors. The scheme of recombination reaction between entry and 

destination vectors is depicted in Figure 10. 

 
 

Figure 10. The DYRK1B gene is flanked by attL1 and attL2 recombination sites in the entry vector pENTR-hsDYRK1B-

KD-451. The destination vector possesses the ccdB gene flanked by attR1 and attR2 sites. These sites are the binding sites for 

proteins comprising LR Clonase enzyme mixture which mediates the recombination reaction. Recombination occurs between 

recombination sites and as result creates the expression clone pEXP-hsDYRK1B-KD-451 and a by-product. The figure is modified 

from the Gateway technology user guide (Life technology)99. 

 

 

 

 

 

 
pEXP17-hsDYRK1B-KD-451 
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The expression vector pEXP17-hsDYRK1B-KD-451 possesses the T7 promoter. T7 promoter 

is necessary to transcribe the gene during expression in E. coli. The expression construct has an N-

terminal 6XHis tag which allows purification of the protein of interest with immobilized metal ion 

affinity chromatography (IMAC) columns. An ampicillin resistance gene is present in the vector 

which is required for antibiotic specific selection in E. coli, thus, ampicillin has to be added to the 

media during transformation, growth and induction of bacteria.  

The recombination reaction between entry and destination vector was performed in a 1.5 ml 

Eppendorf tube at room temperature. As it is described in the user manual of the Gateway 

Technology kit
99
 (Life Technologies), the reaction mixture was composed of 200 ng pENTR-

hsDYRK1B-KD-451, 300 ng pDEST17 vector, 5x LR clonase reaction buffer and TE buffer (pH 

8.0) which was added to 16 µl.  Four µl of LR clonase enzyme mixture was added to the mixture 

and the reaction was incubated for 1 hour at room temperature. Afterwards, 2 µl of 2 µg/µl 

proteinase K was added into reaction mixture and incubated for additional 10 min at 37  C. The 

pEXP17-hsDYRK1B-KD-451 expression clone was transformed into DH5α competent E. coli. 

Transformation was performed according to the transformation protocol of DH5α competent 

E. coli provided by user manual of Gateway Technology kit (Life Technologies)
92
. 100 µl of the 

transformation mixture was spread on a prewarmed LB agar plate containing 100 µg/ml ampicillin 

and incubated overnight at 37  C. Two colonies were picked for propagation in mini cultures 

containing 4 ml of LB media with the same amount of antibiotic as described above. The mini 

cultures were incubated at 37  C overnight with 250 rpm shaking and the plasmids were isolated 

and purified by QIAprep spin Miniprep kit
93
 (QIAGEN). 

 

2.3 Site-directed mutagenesis DYRK1B 

 

Three point mutations L192M, Q164K and C238R were chosen to study different properties 

of DYRK1B with respect to role of these residues in activity, binding of small molecular 

inhibitors and crystallization. The L192M mutant changes the ATP binding site of DYRK1B to 

mimic the binding site in DYRK1A. The Q164K was chosen to improve crystallization ability of 

DYRK1B since this lysine residue forms intermolecular salt bridges in the crystal packing in 

DYRK1A crystal structures
16

. The C238R mutation aimed to study the influence of the HCD 

motif with a possible disulfide bridge formation and to compare it to the more conserved HRD 

motif in the catalytic loop found in the majority of the kinases in the kinome. The expression 

plasmid pEXP17-hsDYRK1B-KD-451 was used as a template for site-directed mutagenesis. The 
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primers for mutagenesis were designed with the help of the QuikChange Primer Design online 

software
100

. The designed primers were ordered from SigmaAldrich. The forward and reverse 

primers for each of the three point mutations are presented in Table 4. Codons depicted in red 

bold encode the substituted amino acid. The nucleotides underlined in red bold are the mutated 

ones.  

 

Table 4. Primers for site-directed mutagenesis. 

 

A similar strategy as described in the Quik-Change II site-directed mutagenesis protocol 

(Agilent Technologies) was used to produce the DYRK1B mutants
101

. The strategy of the site-

directed mutagenesis is depicted on the Figure 11.  

The PfuTurbo™ DNA Polymerase (Agilent Technologies) was employed for the site-directed 

mutagenesis
102

. The pEXP17-hsDYRK1B-KD-451 plasmid was used as a template. Reaction 

mixture was prepared according to the following scheme: 5 µl of 10x reaction buffer, 50 ng of 

template plasmid pEXP17-hsDYRK1B-KD-451, 1 µl 10 mM dNTPs, 1 µl 100-200 ng/µl reverse 

and forward primer. The mixture was filled up with nuclease-free water to 50 µl. 1 µl 2.5 U/µl  

PfuTurbo™ polymerase was added last and gently mixed
102

.  

 

 

 

 

Point 

mutation 
Fwd/Rv Nucleotide sequence 

 
Fwd 

Rv 
5‟-CCTGTGCCTGGTATTTGAGATGCTGTCCTACAACCTGTACG-3‟ 

5‟-CGTACAGGTTGTAGGACAGCATCTCAAATACCAGGCACAGG-3‟ L192M 

 

 
Fwd 

Rv 
5‟-GCTGGAGCTGATGAACAAGCATGACACGGAGATGA-3‟ 

5‟-TCATCTCCGTGTCATGCTTGTTCATCAGCTCCAGC-3‟ 
Q164K 

 

 
Fwd 

Rv 
5‟-GCTCAGCATCATTCACCGCGACCTCAAGCCCGAAAACATCTTGC-3‟ 

5‟- GCAAGATGTTTTCGGGCTTGAGGTCGCGGTGAATGATGCTGAGC-3‟ 
C238R 
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Figure 11. Strategy of the site-directed mutagenesis by QuikChange II  site-directed mutagenesis. The star    marks the site 

for the point mutation in the plasmid.   are the primers possessing the mutated codon. 1. Denaturation of the plasmid which is 

followed by annealing of specific primers. The process is executed by a temperature cycler. 2. Pfu Turbo™ DNA polymerase 

replicates the parental plasmid and incorporates the primers containing the desired mutation leading to a nicked plasmid. 3. DpnI 

digests the parental plasmid without the mutation. 4. Transformation of plasmid into competent cells where the bacteria ligate the 

nicked plasmids and amplify it. The figure is modified from QuikChange™ site-directed mutagenesis protocol (Agilent 

Technologies)101. 

 

The PCR tubes with the reaction mixture were placed in the Dyad DNA Engine (BIO-RAD) 

thermal cycler. The thermal cycling conditions for the mutagenesis reaction are listed in Table 5. 

 

Table 5. Thermal cycling condition for The PfuTurbo™ DNA Polymerase 

Cycle Temp,  C Time Step 

1 95 30'' initial denaturation 

16 95 30'' denaturation 

 

55 1' annealing 

68 1'/kb extension 

1 4 hold hold 

    

 

Afterwards, 1 µl 10 U/µl DpnI (BioLabs) was added to reaction mixture and incubated at 

37  C for 1 hour to digest parental plasmid. The plasmids containing the point mutation was 

transformed into XL10 Gold ultracompetent E. coli (Agilent Technologies). The transformation of 

the plasmids possessing the mutations was performed according to the transformation protocol
103

. 
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250 µl of each transformation reaction was plated on LB-agar plate containing 100 µg/ml 

ampicillin. Plates were incubated at 37  C o/n. Two colonies from each plate were inoculated in 4 

ml of LB-media containing the same amount of ampicillin and incubated at 37  C o/n with shaking 

at 220 rpm. 2 ml of the mini culture were used to isolate and purify the plasmid by QIAprep spin 

Miniprep kit (QIAGEN). The concentration of the plasmid was measured by Nanodrop. Each 

plasmid was analyzed by sequencing. Sequencing reaction was composed according the protocol 

of the Big.Dye Terminator v3.1 sequencing kit
97

. 

 

2.4 Expression of DYRK1B wt and mutants 

 

2.4.1 Transformation into expression strain 

 

BL21-CodonPlus(DE3)-RIL E. coli strain
104

 (Agilent Technologies) was used for the 

expression of DYRK1B wt, DYRK1B Q164K, DYRK1B L192M and DYRK1B C238R. 1 µl of 

the plasmid was transferred into 50 µl of competent cells and incubated for 20 min on ice. BL21 

E. coli competent cells were heat-shocked in water bath at 42  C for 45 sec followed by incubation 

on ice for 5 min. 500 µl of LB media containing 100 mM of glucose was added to the BL21 cells 

and the cells were incubated at 37   C for 1 hour with shaking at 220 rpm. In order to produce the 

starter culture for expression  250 µl LB media with BL21 cells were resuspended  in 50 ml 2YT 

media containing 100 µg/ml of ampicillin and 34 µg/ml of chloramphenicol for selection. The 

starter culture was incubated in sterile flasks at 37  C o/n with shaking at 220 rpm. 

 

2.4.2 Expression of DYRK1B wt and mutants 

 

For expression of the DYRK1B wt and the mutants a starter culture was prepared as described 

above. For large scale expression 2-4 L of TB (or 2YT) media were used for each of the 

constructs. 25 ml of starter culture was inoculated into 1 L of TB (or 2YT) media containing 100 

µg/ml of ampicillin and 34 µg/ml of chloramphenicol. The 2.5 L sterile baffled Erlenmeyer flasks 

with the expression media were incubated at 37  C to grow the bacteria. The optical density of the 

cultures was measured at a wavelength of 600 nm in a spectrometer to observe the growth rate of 

the bacteria. The cultures were incubated at 37  C until the OD600nm reached 1.6-1.8. (Cultures 

grown in 2YT media were induce at an OD600nm of ~0.7) The cultures were than induced by 1 mM 

IPTG and incubated at 17.8  C o/n with shaking. 
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2.5 Cell disruption 
 

The cell pellets from the 2-4 L TB media were resuspended in approximately 50-70 ml lysis 

buffer and transferred into a 100 ml glass beaker. The beaker with the resuspended cells was 

immediately placed in an ice/water mixture where it was kept during cell disruption. Cell 

disruption was performed by sonication with following settings: 5 sec pulse on, 4 sec pulse off, 

50% of amplitude and maximal temperature cut of 8  C to avoid overheating of the sample. The 

cells were sonicated by the Vibra-Cell sonicator (Sonics) for 15 min (total time 27 min). After 

sonication, the disrupted cells were transferred in centrifuge tubes, and spun down at 20000 rpm 

for 45 min at 4  C. The supernatant was collected and pellets discarded. The supernatant was 

further used in following protein purification steps.  

 

2.6 Protein purification 

 

The first step of the protein purification was an affinity chromatography purification by 

HisTrap HP 5 ml column
105

 (GE HealthCare). The next step was a TEV cleavage of the HisTag by 

TEV (Tobacco Etch Virus) protease. The TEV cleavage followed a second affinity 

chromatography via HisTrap HP 1ml to purify the target protein from the TEV protease, the 

HisTag peptide, uncut protein and other contaminant proteins. At last step gel filtration (size 

exclusion chromatography) was executed in order to produce the most pure protein as possible and 

also to change the buffer of the protein to one suitable for crystallization and/or the kinetic 

assays
106

.  

 

2.6.1 Affinity chromatography and TEV cleavage 

 

Affinity chromatography was executed by HisTrap HP 5 ml columns in first step of 

purification protocol. HisTrap columns are packed with Ni Sepharose HP (High Performance) 

beads that facilitates to formation of chelate complexes between Ni
2+

-ions and (His)6-tag protein 

of interest
105

. 

Routinely, HisTrap chromatography consists of consecutive steps as column equilibration, 

sample application including washing of unbound proteins, and, finally, sample elution. Äkta 

prime plus Fast Protein Liquid Chromatography (FPLC) system (GE Healthcare) and software 

Unicorn 5.0 (GE Healthcare) was used to perform and analyze the affinity chromatography. 
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HisTrap HP 5 ml column was connected to a peristaltic pump Pharmacia LKB (model Pump P-1) 

and washed by 3 CV by MilliQ water which was followed by column equilibration by 5 CV of 

binding buffer. Afterwards, the supernatant with the target protein, which has been obtained in the 

cell disruption step described previously, was applied by the pump into the column. The column 

was connect to the Äkta prime plus FPLC system and washed by 5 CV of binding buffer with a 

flow rate of 1 ml/min. The flowthrough was collected in fractions of 5 ml. The column was 

washed with 5% elution buffer, and the (His)6-DYRK1B wt and the mutants were eluted by an 

imidazole gradient (5-100% elution buffer corresponds to 10-500 mM of imidazole) with a 

gradient length of 8-10 CV. 1 ml fraction size was set during running of gradient to collect the 

eluted protein. Based on the chromatogram fractions were chosen to be analyzed by SDS-PAGE.  

In order to cut the (His)6-tag a TEV-protease cleavage step was employed. After the SDS-

PAGE the fraction containing the target protein were pooled and mixed with 500 µl of 2 mg/ml 

TEV. The mixture was transferred to a SnakeSkin Dialysis Tubing with 10kDa molecular weight 

cut-off membrane (Termo Scientific). The membrane tube was carefully closed by clips and 

placed into dialysis buffer with magnetic stirrer o/n at 4   C. After dialysis the sample was poured 

out from the dialysis membrane and placed on ice, meanwhile, a HisTrap HP 1 ml column was 

washed and equilibrated as described for the HisTrap HP 5 ml columns. Depending on the volume 

15 of 20 ml of loading tube were connected to the Äkta prime plus system and sample was loaded 

into the tube by a syringe. The sample was then further injected from the loading tube onto the 

column with a flow rate of 1 ml/min. The flowthrough was collected in 5 ml fractions. The 

proteins were eluted by an imidazole gradient (5-100% elution buffer corresponds to 10-500 mM 

of imidazole) with a gradient length of 35-50 CV. The fraction size during the gradient was 1 ml 

to collect the eluting proteins. Based on the chromatogram fractions were chosen to be prepared as 

samples for the SDS-PAGE. After the SDS-PADE fractions with the target protein were pooled 

and concentrated for gel filtration chromatography.  

 

2.6.2 Gel filtration 

 

HiLoad™ 16/60 Superdex™ 200 column
106

 (GE Healthcare) and the Äkta basic FPLC system 

were employed for gel filtration. The gel filtration was performed with a flow rate of 1 ml/min at 

4  C. The gel filtration column was washed by 1 CV of MilliQ and, after that, equilibrated by 1 CV 

of gel filtration buffer. With the help of syringe, the sample was loaded into a 5 ml loading tube 

connected to Äkta basic FPLC system. The sample was injected through 5 ml tube onto the 

column and eluted by 1.2 CV of gel filtration buffer. The eluted protein was collected in 2 ml 
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fractions. SDS-PAGE samples were selected based on the chromatogram. After the SDS-PAGE 

the fractions containing the protein of interest were pooled and the concentration of the protein 

was measured by Nanodrop.  

 

2.7 SDS-PAGE  

 

The protein was analyzed by Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis 

(SDS-PAGE) to verify the size, enrichment and the purity of the purified protein. A SDS-PAGE 

was run after each step of the protein purification. 10-, 12- and 15-well Mini-PROTEIN® TGX™ 

gels (BIO- RAD) were used for SDS-PAGE. Sample preparation included the following steps: 

choice of protein fraction based on the chromatogram, mixing of 15 µl of each fraction together 

with 5 µl of 4x NuPAGE LDS sample buffer (Life Technologies), and, finally, all samples were 

boiled at 95  C for 5 min to denature the protein. After denaturing the sample were ready to be 

loaded in the well of the gel. The Mini-PROTEIN
®

 TGX™ gel was vertically oriented in a holder 

and place between two electrodes in an electrophoresis cell. Inner and outer cambers of the 

electrophoresis cell were filled with Tris-Glycine running buffer.  

10 µl of Mark12 protein ladder (Life Technologies) was used as standard to compare the 

molecular weight and loaded into the first well. 15-20 µl of protein prepared as described above 

were loaded in the wells of the Mini gel. The electrophoresis cell was attached to a PowerPac 

Basic power supply (BIO-RAD) and the SDS-PAGE was run at 200 V, 90 mA for 35 min. The 

voltage was kept constant throughout the run. After the electrophoresis was completed the gel was 

rinsed by 100 ml of MilliQ water and boiled for 1-1.5 min. SimplyBlue™ SafeStain (Invitrogen) 

was added to the gel in the volume of 20 ml to cover the gel. The gel was boiled with 

SimplyBlue™ SafeStain for 1-1.5 min and placed on an orbital shaker for 1 hour. Afterwards, 

SimplyBlue™ SafeStain was discarded, and gel was rinse by MilliQ water and kept at room 

temperature with gentle shaking.  
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2.8 Nanodrop 

 

The concentration of proteins used in this thesis was measured by the Nanodrop 2000c 

spectrophotometer (Thermo Science)
107

. 2 µl of buffer was used as a blank and 2 µl of protein 

solution was used for measurement of its concentration. The extinction coefficient and molecular 

weight of the proteins used in this thesis were calculated by the on-line tool Protparam at the  

ExPasy webpage
100

 (Table 6).  

 

Table 6. Extinction coefficient and molecular weight of proteins DYRK1B wt and its mutants. 

Protein 
Extinction 

coefficient,    

Molecular weight 

(Da) 

DYRK1B wt 40 340 42 583.8 

DYRK1B L192M 40 340 42 601.8 

DYRK1B Q164K 40 340 42 601.9 

 

 

2.9 Thermoflour Assay for solubility and stability screen 

 

The thermoflour assay can be used as a stability and solubility optimization screens of 

proteins
108

. The principle of the thermoflour assay with a typical melting curve is depicted in 

Figure 12. The assay is based on the monitoring of the melting of protein in the presence of 

fluorescent dye. A gradual increase of the temperature leads to unfolding of the protein and the 

hydrophobic regions/core gets exposed. In this thesis Sypro orange was used as a fluorescent dye. 

The Sypro orange dye binds to internal hydrophobic regions of unfolded protein and this change 

the fluorescence signal which can be monitored. At high temperature the protein undergoes 

aggregation leading to a dissociation of the dye and a decrease of the fluorescence signal. The 

melting temperature is calculated from the slope of the melting curve. It is the point where 50% of 

the protein is denatured. The melting point of a protein can be influenced by different buffers, 

salts, ligands etc. This is used in the thermal shift experiment where the melting point is measured 

in the presence/absence of a ligand of interest or in the presence of different buffers. Higher 

melting temperature compared to the apo-protein indicates a stabilization effect that the ligand has 

to the protein which is connected to binding of the ligand. Lower temperature indicates a 

destabilization effect
109

. This method can also be used to screen for an optimize pH or buffer 
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condition
110

. Buffers that stabilize the protein most will have the highest melting points. The 

thermofluor method was used to determine optimal buffer condition for DYRK1B. 

 

 

Figure 12. Melting curve of a protein in the thermofluor assay. The figure was modified from the Argonne national laboratory 

web-site111. 

 

The Solubility and Stability buffer screens 1 for DYRK1B buffer optimization was design 

based on the available buffers, experimental data and features of DYRK1B. Concentrations of 

buffers and salts were calculated according to the protocol of the commercially available 

Solubility & Stability screen (Hampton Research)
112

. The Stability and Solubility buffer screen 2 

was designed based on the results of first screen to obtain higher melting temperatures of 

DYRK1B. Both buffer screens were dispensed by the liquid handling system Alchemist 2.6.2 

(Rigaku, Inc.) The reagents of the Stability and Solubility buffer screen 1 and 2 are listed in the 

appendix. The thermoflour assay includes the preparation of a kinase-Sypro orange dye solution 

by adding 1.2 µl of Sypro Orange dye (Sigma Aldrich) to 1.2 ml of DYRK1B wt in buffer A with 

the final kinase concentration kinase of  0.15 mg/ml. Afterwards, 10 µl of DYRK1B-Sypro orange 

dye solution was added to each well of a  48-well PCR microplate. On the next step, 10 µl of each 

condition of Stability and Solubility screen 1 or 2 were mixed with the DYRK1B-Sypro orange 

dye solution in the microplate. To determine the melting point of DYRK1B wt each condition 

from the screen was tested in duplex. The microplate was sealed with transparent sealing film. The 

thermoflour assay was performed by a temperature gradient from 10  C to 90  C (with increments of 

0.3  C) in a MJ Mini personal thermal cycler (BIO-RAD). The data was analyzed by Opticon 

Monitor 3 software.  
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2.10 Enzyme kinetics 
 

The activity of DYRK1B wt and its mutants as well as the inhibitor potency were measured 

by the ATP-regenerative and NADH-consuming assay described by Cook et al.
77

 The method was 

modified for DYRK kinases. In the Cook assay, DYRKtide is exploited as the substrate for DYRK 

kinases. The peptide RRRFRPASPLRGPPK (DYRKtide) contains a serine as a specific 

phosphorylation sites and is recognized by DYRK. The kinase activity assay was measured in a 

Molecular Device SpectraMax M2e plate reader at room temperature. The assay mixture contains 

the following ingredients: 100 mM MOPS (pH 6.8), 10 mM KCl, 10 mM MgCl2, 1 mM 

phosphoenolpyruvate (PEP), 1 mM DYRKtide, 1 mM β-ME, 15 units/ml lactate dehydrogenase, 

10 units/ml pyruvate kinase and 10,7 mM NADH. The Cook assay reaction was composed by 

adding 75 µl of assay mixture, 10 µl of DYRK kinase (concentration range 5-20 µM), 10 µL of 

2560 or 1280 µM ATP with total volume 95 µl. For the Km determination a serial of ATP 

concentration from 50 mM to 4 µM was used. The enzymatic velocity measured in the Cook assay 

is the consumption of NADH and in the loss of absorption at 340 nm. Therefore the velocity has a 

negative slope. As a standard for testing the inhibitors the concentrations of the kinase and ATP 

were adjusted to obtain an initial velocity of around -10 AU/sec. The measurements were done in 

triplex and each individual measurement over a time period of 300 sec. In the case of the Km 

determination shorter time periods were chosen, in particular for the higher ATP concentration, to 

obtain the initial velocity while the curve was still linear. For the screening, all inhibitors were 

tested at a concentration of 20 µM in the reaction mixture. In order to identify IC50 values a serial 

dilution of inhibitor concentrations were used in the range between 20 µM and 4 nM.  

 

2.11 Microscale thermophoresis 

 

Thermophoresis is a phenomenon describing the ability of molecules to move along a 

temperature gradient, which first was described in 1856 by Carl Ludwig
113

. Particularly in 

solutions molecules have the tendency to move away from the high temperature region with a 

dependency of the hydration shell and the solvation entropy of the molecules
114

. The depletion of 

molecules in the region of the elevated temperature compared to the initial thermal conditions 

(  ) can be quantified by the Soret coefficient ST described by following equation
115

 (3) 

    
     

⁄                   
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This principle was utilized to develop the microscale thermophoresis (MST) by NanoTemper 

Technologies GmbH (Germany). In the instrument Monolith NT.115 the NanoTemper technology 

employs fluorescence in combination with infrared-laser optics for local heating of the sample in a 

small capillary. The biomolecules are labeled by fluorescence dyes and the fluorescent signal is 

recorded before turning the laser on followed by the fast temperature dependent changes in 

fluorescent intensity when the laser is switch on, and finally the signal returns to the starting point 

in a back diffusion after switching off the laser
116

. The binding of a ligand to a biomolecule 

changes its hydration shell and affects the thermophoretic movement. This principle is used to 

determine binding affinities with high accuracy
117

.  

The interaction of DYRK1B wt with ATP was tested by MST. For detailed Kd analysis 16 

capillaries each with different ATP concentrations were employed in MST. DYRK1B in the 

concentration of 14 µM in buffer D was used for the MST. DYRK1B was labeled with the 

Monolith NT Labeling kit (Cat No. L001). A 2-fold dilution series of ATP was prepared and an 

equal amount of DYRK1B was added to each ATP concentration. Each sample was loaded into a 

MonolithTM hydrophilic capillary through capillary action and then analyzed with the Monolith 

NT.115 instrument.  

 

2.12 Crystallization trials of DYRK1B and DYRK1A 

 

Crystallization trials of DYRK1A and DYRK1B in gel filtration buffer were performed by 

vapor diffusion method
118

. After gel filtration the DYRK kinase was concentrated in an Amicon® 

Ultra-4 centrifugal filter (Merck Millipore) in order to reach the concentration of ~ 7-8 mg/ml 

(DYRK1A) or ~11-13 mg/ml (DYRK1B) (measured by Nanodrop). The apo-protein, and protein 

in the complex with inhibitor were used for the crystallization trials. Routinely, 100 µl of high 

concentrated DYRK kinase was gently mixed with 4 µl of 10 mM inhibitor in DMSO or water 

(final concentration of the inhibitor in the crystallization trials was 400 µM). The commercially 

available crystallization screen JCSG-plus™ (Molecular Dimensions)
119

, Wizard I and II (Emerald 

Bio)
120

 and the in house screen KCSG were used to screen for crystallization conditions. The 

screening was set up by Phoenix protein crystallization robot (Art Robbins Instruments) in 96-

wells sitting drop plates in ratio of 200 nl protein solution and 200 nl of crystallization 

condition
121

. Crystallization trials were performed at room temperature and at 4  C. The hits from 

the screen were selected for further optimization. The conditions from the screen were optimized 

by designing 24-well screens with gradients of precipitants and salts and dispensed by Alchemist 

2.6.2 (Rigaku, Inc.). The crystallization trials were set up by hanging drop method in 24-well 
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crystallization plates with the ratio of 2+2 µl and 2+4 µl of protein solution to reservoir solution 

containing optimized crystallization conditions.  

In the case of DYRK1A an Additive Screen (Hampton Research) was employed
122

. A 96-

deep well block was dispensed by Alchemist 2.6.2 with 900 µl of a crystallization condition found 

in the JCSG-plus™ screen and in each of the well of deep well block 100 µl of each additive 

solution was added and mixed. The 96-well sitting drop plate with new Additive Screen was set 

up by Phoenix protein crystallization robot with the same 200 nl +200 nl ratio of protein solution 

to crystallization condition. The plates were placed at 4  C and room temperature and the drops 

were examined every second day. The conditions with the additives which gave the best crystals 

were further selected to be set up in crystallization trials with 24-well hanging drop plates.  

Crystals were flash frozen with different cryoprotectants in liquid nitrogen in either 30% 

ethylene glycol, paratone, 30% glycerol, 30% PEG400 or 40% PEG3350. The crystals were sent 

to BESSY II at the Helmholtz Zentrum Berlin (Germany) for X-ray data collection. Diffraction 

data was integrated by XDSAPP program
123

 and the crystal structure was solved together with 

Dr. Ulli Rothweiler by molecular replacement with MolRep
124,125

 of the CCP4 software 

package
126,127

. The structure was refined in the Refmac5
128

 and Phenix
129

. 
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3 RESULTS 

 

3.1 Cloning and mutagenesis 

 

The human DYRK1B gene was originally cloned and characterized by Leder S. et al.
30

.  The 

DYRK1B gene encoding full length protein that was used in this thesis was the Addgene plasmid 

23761
130

 in the vector pDONR223-DYRK1B. 

The original expression clone of the DYRK1B containing amino acid sequence 78-442 was 

mostly expressed in inclusion bodies and had low yield and solubility. Therefore, it was decided to 

create a longer construct by adding several amino acids at the C-terminal end to improve the 

solubility of DYRK1B. The Gateway cloning strategy (Life Technologies) together with 

directional TOPO
®

 cloning (Life Technologies) were used to produce expression clone pEXP17-

hsDYRK1B-KD-451 comprising residues 78-451. The template DNA from plasmid pDONR223-

DYRK1B was amplified in DH5α E. coli, isolated and purified by QIAprep spin Miniprep kit 

(QIAGEN). The concentration of amplified DNA template was 276 ng/µl measured by absorbance 

at 260 nm on a Nanodrop spectrophotometer. To obtain the blunt-end PCR product containing 

desired DYRK1B gene, Phusion polymerase was employed and PCR was performed as described 

in the method section of this thesis.  

Electrophoresis on a 0.7% agarose gel was used to separate the PCR product. The successful 

amplification of DYRK1B construct which has the length of 1153 bp is shown in Figure 13. The 

PCR product was extracted from the 0.7% agarose gel by QIAquick Gel Extraction kit 

(QIAGEN). The concentration of the purified PCR products was measured by Nanodrop. The 

concentration of PCR-I product (lane 5, annealing temperature 70  C) and PCR-II product (lane 8, 

annealing temperature 55  C) were 11.3 ng/µl and 10.3 ng/µl, respectively. Two TOPO
®

 cloning 

reactions, one with each PCR-I product and PCR-II product, were performed to produce the entry 

clone as described in the methods chapter. 
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Figure 13. The results of PCR amplification separated by electrophoresis on a 0.7% agarose gel. Four different annealing 

temperatures were employed during amplification process. Each temperature was run in duplicate. Lanes 1 and 6 are the 1 kb DNA 

Ladder; Lanes 2 and 3 had 50  C annealing temperature;  4 and 5 had 70  C; 7 and 8 had 55  C, 9 and 10 had 67  C.  The thick bands 

between 1 kb and 1.5 kb are the successfully amplified DYRK1B wt PCR products obtained using the pDONR223-DYRK1B 

plasmid as a template. Bands in lanes 5 and 8 marked with a star were selected to proceed with cloning and cut out from the gel. (In 

the figure shown here these bands are already cut out). 

 

pENTR-DYRK1B-451-I and pENTR-DYRK1B-451-II were transformed into One Shot
®
 

Top10 chemically competent E. coli. The plate with the transformed construct containing PCR 

product from the annealing temperature at 70  C did not give any colonies, thus, the first entry 

vector  pENTR-DYRK1B-I  was used to continue the cloning. Three colonies from the plate with 

pENTR-DYRK1B-I plasmid were selected to be amplified. Plasmids were isolated and purified by 

QIAprep spin Miniprep kit (QIAGEN). Three plasmids were sequenced with M13 forward and 

reverse primer using the Big.Dye Terminator v3.1 sequencing kit. The results of sequencing 

showed that one plasmid had the correct insert with the correct N- and C-terminal ends. The 

concentration of the correct pENTR-DYRK1B-451-I vector was 158.7 ng/µl. In the next step, the 

recombination reaction as described in the methods section was performed to produce the 

expression clone: pEXP17-hsDYRK1B-KD-451. 

The recombined vector was transformed into One Shot
® 
Top10 competent E. coli (Life 

Technologies). Two colonies were selected for amplification followed by purification and 

sequencing with T7 forward and reverse primers. Results of the sequencing showed that one 

colony was a positive clone. This plasmid was used for large scale expression of DYRK1B wt and 

it was used as the template for the site-directed mutagenesis. 
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Site-directed mutagenesis was performed using a strategy similar to the QuikChange II site-

directed mutagenesis protocol (Agilent Technologies). The wild-type pEXP17-hsDYRK1B-KD-

451 plasmid was used as a template. Pfu Turbo DNA polymerase was used together with the 

specific primers, described in the section 2.3 p.34, to produce the desired mutants. After the PCR 

amplification the parental plasmids were digested by DpnI endonuclease followed by 

transformation of the new mutated plasmid into XL10 Gold ultracompetent E. coli (Agilent 

Technologies). Two colonies from each transformation were selected to be amplified in mini 

cultures. Plasmids with point-mutations were purified by QIAprep spin Miniprep kit (QIAGEN) 

and sequenced by Big.Dye Terminator v3.1 sequencing kit to verify the mutations. The three 

point-mutations were successfully confirmed by the sequencing results represented in Figure 14.  

 

 

 

Figure 14. Results of sequencing DYRK1B L192M, DYRK1B Q164K and DYRK1B C238R mutants. The sequencing 

chromatogram of DYRK1B wt is represented in the lower row. Sequencing chromatograms of DYRK1B L192M, DYRK1B 

Q164K and DYRK1B C238R are depicted on the upper row. The mutated nucleotides are highlighted by vertical black box. 

 

 

3.2 Purification of DYRK1B wt in original phosphate buffer 

 

The purification protocol of the DYRK1B wt was established based on the protocol of the 

close homolog DYRK1A. The kinase domain of DYRK1A was successfully expressed as a 

soluble protein with a good yield of more than 20 mg per liter. Since the two proteins DYRK1A 

and DYRK1B are so similar the same expression and purification protocol was used.  

The pEXP17-hsDYRK1B-KD-451 plasmid was transformed into BL21-CodonPlus(DE3)-

RIL E. coli strain (Agilent Technologies) and expressed in 4 L of TB media. Buffer A (Table 1, 

p.27) was used as binding buffer to resuspend the pellets containing the cells with DYRK1B wt 

wt 
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protein. After sonication followed by separation of soluble fraction of the cell lysate by 

centrifugation, the first step of purification was performed by HisTrap HP 5 ml column (GE 

Healthcare). Routinely, the column was washed, equilibrated and the supernatant was loaded into 

the column by a peristaltic pump. The flow rate of 1 ml/min and pressure limit 0.5 MPa was 

employed during the purification. DYYRK1B wt was eluted on a gradient of 5-100 % (25 -500 

mM Imidazole)  elution buffer B (Table 1, p.27) in 8 CV. The peak corresponding to DYRK1B wt 

had a average value of 200 mAU. DYRK1B wt elutes at aproximatly 50-70% of elution buffer B 

(250-350 mM imidazole), Figure 15, a. The fractions 19, 20, 22, 24, 26, 28, 30, 32, 35, 37 and 38 

were analysed by SDS-PAGE (Figure 15, b). The results of SDS-PAGE shown that fractions 30-

38 contains the DYRK1B wt. Based on the chromatogram and results of SDS-PAGE, the fractions 

32-40 were pooled to conduct the  TEV-cleavage by dialysis in buffer C o/n. 

In order to separate TEV protease, the (His)6-tag peptide, and contaminants from the 

DYRK1B wt protein, a second affinity chromatography by HisTrap HP  1 ml column was used 

(Figure 16, a). Flow rate was set to 1 ml/ min and max pressure was 0.5 MPa. Unbound materials 

are depicted as a flowthrough in the chtomatogram. DYRK1B was eluted by gradient of buffer 0 -

100%  (0-500 mM Imidazole). Fractions 2, 10, 11, 12, 14, 15, 18, 19  and 20 were selected for 

SDS-PAGE. Based on the results of SDS-PAGE (Figure 16, b) the main peak of around 250 

mAU and a concentration of 25% of Buffer B corespended to cleaved DYRK1B wt. The (His)6 -

tag  was successfully cleaved by the TEV protease. The TEV cleavage was confirmed by the 

difference in size of uncleaved band (uc on the Figure 16, b) and cleaved fractions (10, 11 and 

12). Fractions 10, 11 and 12 were pooled and futher used for gel filtration (size exclusion 

chromatography). 

A HiLoad™ 16/60 Superdex™ 200 column was employed for final purification to obtain pure 

protein suitable for kinetic assays and crystallization trails. The sample was eluted with a flow rate 

of 1 ml/min during 1.2 CV. The fractions were collected to 2 ml. The results of chromatography is 

represented in the Figure 17, a. The fractions 33-41 were selected for SDS-PAGE (Figure 17, b). 

The peak in the chromatogram around 60 mAU corresponded to DYRK1B wt. The fractions 36-

41 were pooled and the final concentration was 0.04 mg/ml in 12 ml measured by absorbance at 

280 nm on the Nanodrop which is a final yield of 0.6 mg protein (0.15 mg of protein per liter) 

based on the molar absorbance coefficient (Table 6, p.40). The estimated purity of DYRK1B wt 

was around 98%. The band from SDS-PAGE after gel filtration was cut out and sent to Mass 

Spectrometry. The results of the Mass Spectrometry confirmed that the purified protein is 

DYRK1B and that it is phosphorylated at the tyrosine in the activation loop Y273. 
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Figure 15.  Purification of (His)6 -DYRK1B wt. a) The chromatogram shows the affinity purification of DYRK1B wt by HisTrap 

HP 5ml column. The blue line is the absorbance at 280 nm, the green line is percentage of elution buffer B (0%-100% corresponds 

to 0-500 mM imidazole). The red line is the conductivity. Different peaks in the chromatogram are depicted by arrows. The sample 

was loaded by a peristaltic pump prior to the purification with Äkta prime thus the chromatogram begins with the column wash 

step. b) SDS page of the selected fractions of the chromatogram.  Mark12 in lane 1 was used as marker; the numbers above the 

lanes represent the fractions.  Fractions 30-38 contain DYRK1B wt. The bands located between 55.4 and 36.5 kDa corresponded to 

DYRK1B wt. 
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Figure 16. Purification of DYRK1B wt after TEV-cleavage. a) The chromatogram shows the affinity purification of DYRK1B 

wt by HisTrap HP 1ml column.The blue line is the absorbance at 280 nm, the green line is percentage of elution buffer B  (0%-

100% corresponds to 0-500 mM imidazole). Different peaks in the chromatogram are depicted by arrows. The red line is the 

conductometry. DYRK1Bwt elutes at an imidazole concentration of approximately 125 mM. b) SDS page of the selected fractions 

of the chromatogram. Mark12 in lane 1 was used as marker, the numbers above the lanes represent the fractions, uc (uncleaved) is 

a sample form the first HisTrap and contains  DYRK1B with a uncleaved (His)6-tag.  Fractions 10-12 contain DYRK1B wt. 
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Figure 17. Gel filtration of DYRK1B wt. a) Gel filtration (size-exclusion chromatography) was performed by HiLoad™ 16/60 

Superdex™ 200 column. Flow rate was 1 ml/min. Fraction size was 2 ml. Different peaks in the chromatogram are depicted by 

arrow. The Blue line is the absorbance at 280 nm. b) SDS page of the selected fractions of the chromatogram. Mark12 in lane 1 

was used as marker, the numbers above the lanes represent the fractions. Fractions 35-41 contain DYRK1B wt. 
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3.3 Thermofluor Assay for Solubility and Stability Screen 

 

The initial protocol, which employed phosphate buffer for the lysing of cells and affinity 

chromatography, showed that the protein had low solubility and the yield was low. The expression 

however was high, so the protein was mostly expressed in inclusion bodies. A fraction of protein 

in phosphate buffer did not bind to the column, probably, because it formed soluble aggregates in 

this buffer. The protein could be concentrated only to 6 mg/ml in gel filtration buffer (buffer D). 

The crystallization trials with commercial screens showed however that the vast majority of the 

drops stayed clear for more than 2 weeks after the crystallization setup. This fact indicates that a 

higher concentration has to be used for the crystallization of protein. Since it was impossible to 

concentrate the protein more than 6 mg/ml in the gel filtration buffer, and because the protein 

precipitated, it was decided to change the buffers for the purification. Thermoflour assay was 

employed to screen for an optimal buffer. The first screen was comprised of 96 conditions 

including five different buffers with a pH range between 5.5 and 8.5, a combination of three 

different salts, and CHAPS as a detergent. The second screen was designed based on the result of 

first one in order to establish the concentration of KCl which will give the highest melting point.  

 Results of the Stability and Solubility screen 1 are represented in the Figure 18. The best 

condition was MES pH 6.5 which improved the melting temperature compared with phosphate by 

10 degrees. In case of the HEPES pH 7.5 buffer, it was observed that the Tm of the protein in 

conditions containing KCl (light blue columns) gave increased melting temperatures compared to 

conditions with alternative alkali salts like LiCl (orange columns) or NaCl (green columns). In 

other cases it was also detected that the presence of KCl in the buffer stabilizes the protein better 

than NaCl or LiCl. In general no extra addition of salt (dark blue columns) was best, but it should 

be kept in mind that all samples contained 250 mM NaCl from the 1:1 mixing with the buffer the 

protein was purified with in the first place (50 mM Na2HPO4 pH 8.0, 500 mM NaCl). The first 

step in the purification of DYRK1B is via the HisTrap columns, therefore, a pH above 7.5 for an 

optimal interaction of the (His)6-tag with the column and high salt concentrations to avoid 

unspecific interactions was desired. Thus, it was decided to design a second screen, where we 

could determine the exact concentration of KCl that is beneficial for the stability. 
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Figure 18. Results of Stabilization and Solubility buffer screen 1. Red column is the starting condition with protein in phosphate 

buffer (50 mM Na2HPO4  pH 8.0, 500 mM NaCl). All samples contain 250 mM NaCl from the starting condition. 50 mM buffer 

without additional salts (dark blue), 50 mM buffer and 400 mM KCl (light blue), 50 mM buffer and 400 mM NaCl (green), 50 mM 

buffer and 400 mM LiCl (orange). Tm is the melting temperature of the protein. The graph shows a representative fraction of the 

96 tested conditions to illustrate the type of alkali salts dependence of the stability of the protein. 
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Stability and Solubility screen 2 was composed of 49 conditions (Appendix) including the 

buffers (50 mM) which gave the best scores in the first run and four different concentrations of 

KCl: 50, 10, 150 and 200 mM. The MES pH 6.0, pH 6.5 and MOPS pH 6.5 buffers showed no 

sensitivity to the KCl concentration. The Tris buffer pH 7.0 showed a decrease in stability with 

higher KCl concentrations. The best hits of Screen 2 were the HEPES buffers pH 7.5 and pH 8.0 

which showed an increase in stability with higher KCl concentrations compared to the buffer 

without KCl. The results are summarized in the Figure 19. The biggest improvement was seen for 

the HEPES buffer at pH 8.0 where the addition of 50 mM KCl improved the melting temperature 

by 6.7 degree from 38.8 to 45.5 compared to the KCl free buffer which was better than the MES 

buffer identified in the first screen (Figure 18). 

 

 

 

Figure 19. Results of the Stability and Solubility Screen 2 by thermoflour assay. The graph shows a representative fraction of 

the 49 condition in Stability and Solubility screen 2. The red column indicates the starting condition with the phosphate buffer (50 

mM Na2HPO4 pH 8.0, 500 mM NaCl). All samples contain 250 mM NaCl from the starting condition. The best stabilization effect 

by KCl is seen for HEPES buffer (dark green columns). The values of the KCl-free buffer conditions from Stability and Solubility 

screen 1 were added to the graph to illustrate the effect of KCl on the stability of DYRK1B.  
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The results of Thermofluor of Stability and Solubility Screen 2 shown also that the addition 

KCl salt to MES pH 6.5 did not increasing the melting point of DYRK1B. In contrast, HEPES 

buffer pH 8.0 with different KCl concentrations increased the melting point by about 12.5  C 

compared to the original phosphate buffer (Figure 20).  DYRK1B wt is significantly more stable 

in every tested buffer than the buffer used so far for the purification. Since the first step of the 

purification is affinity chromatography which requires the (His)6-tag to be charged the HEPES 

buffer at pH 8 was finally chosen over the equally good MES buffer at pH 6.5.   

 

 

 

 
Figure 20. Comparison of thermoflour assay results of phosphate buffer pH 8.0 and HEPES buffer pH 8.0 with 50 mM KCl 

of Screen 2. Fluorescence on the Y-axis. Temperature in  C on the X-axis. a) Melting point of protein in Phosphate buffer pH 8.0 is 

33  C. b) Melting point of DYRK1B wt  in condition containing 50 mM HEPES buffer pH 8.0 and 50 mM KCl is 46  C. The figures 

were taken from program Opticon Monitor 3. 

a) 

b) 

fluorescence curve 

fluorescence curve derivative of fluorescence curve 

derivative of fluorescence curve 



56 
 

3.4 Purification of DYRK1B Q164K using HEPES buffer  

 

The DYRK1B Q164K mutant was designed and produced for crystallization trials. DYRK1B 

Q164K was initially purified using the same protocol as for DYRK1B wt employing phosphate 

buffer. The use of phosphate buffer for purification of DYRK1B Q164K presented the same issues 

as for DYRK1B wt: low yield and solubility, weak binding to the HisTrap column and expression 

in inclusion bodies. The result of the Stability and Solubility screen 1 and 2 by thermofluor assay 

shows that the highest melting temperature for DYRK1B wt was a buffer containing 50 mM 

HEPES pH 8, 50 mM KCL and 250 mM NaCl. Large scale purification of DYRK1B Q164K was 

therefore tested in the new buffer because we were interested to produce this mutant at high yield, 

purity and solubility for crystallization trails.  

Following the procedure described in the methods section, DYRK1B Q164K was purified in a 

similar way to DYRK1B wt with phosphate buffer, and for comparison with the HEPES buffer. 

The chromatogram of DYRK1B Q164K (Figure 21, a) and the following SDS-PAGE (Figure 21, 

c) represents the results of the affinity chromatography performed by HisTrap HP 5 ml column in 

phosphate buffer. To show the positive impact of HEPES buffer and for direct comparison to the 

phosphate the chromatogram (Figure 21, b) and SDS-PAGE (Figure 21, d) of DYRK1B Q164K 

are shown for the purification in HEPES buffer.  

In the case of phosphate buffer, the flow-through and fractions 5, 15, 16, 18, 19, 21, 23, 24, 

25 and 26 were selected to be analyzed by SDS-PAGE. The result of SDS-PAGE shows that 

DYRK1B Q164K is present in the fractions 21-26. The peak on the chromatogram with 

absorption of around 200 mAU corresponds to the DYRK1B Q164K. DYRK1B Q164K was 

eluted at around 60% of Buffer B (300 mM imidazole).  

In the case of HEPES buffer, flow through and fractions 6, 19, 20, 22, 24, 25, 26, 27, 28 and 

29 were selected for SDS-PAGE. The result of SDS-PAGE shows that fractions 19-28 contain the 

DYRK1B Q164K. These fractions correspond to a peak about 825 mAU in chromatogram which 

is significantly higher compared to the one with phosphate buffer. The maximum of DYRK1B 

Q164K was eluted by 55 % of buffer G (275 mM imidazole). Although it is poorly visible on the 

SDS-PAGE (Figure 21, d), the flow-through does not contain DYRK1B Q164K indicating a good 

binding of the protein to the column, and later experiments confirms that the protein in HEPES 

buffer binds better to the column compared with the phosphate buffer.  

The comparison of the two chromatograms allows the conclusion that HEPES buffer has 

positive impact on the solubility, binding and yield of DYRK1B Q164K compared to phosphate 

buffer, which is in agreement with the thermofluor data.  
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In the case of the purification with phosphate buffer, fraction 22-30 were pooled together with 

TEV protease and dialyzed in buffer C to cleave the (His)6-tag o/n. In the case of HEPES buffer, 

fractions 22-34 were selected for TEV cleavage in buffer H o/n. 

The second affinity chromatography step was carried out after TEV cleavage similar to the 

protocol for DYRK1B wt. The chromatogram of DYRK1B Q164K in phosphate buffer is depicted 

in the Figure 22, a. Fractions 6, 10, 17, 18, 19, 20, 21, 22, 24 26 were selected for SDS-PAGE 

(Figure 22, c).  In the case with phosphate buffer, based on the SDS-PAGE the peak with the 

value around 280 mAU corresponds to the DYRK1B Q164K. The maximum of protein was eluted 

at 20% of elution buffer B (100 mM imidazole).  

The chromatogram of DYRK1B Q164K in HEPES buffer is represented in the Figure 22, b. 

The fractions 2, 9, 10, 11, 12, 13, 14, 15, 18 and 20 were selected for SDS-PAGE (Figure 22, d). 

Based on the results of SDS-PAGE the main peak with a value of around 725 mAU corresponds 

to the DYRK1B Q164K. Protein was mostly eluted at 16 % of buffer F (80 mM imidazole). In 

both cases TEV cleavage was successful which is confirmed the size difference of cleaved and 

uncleaved samples on the SDS-PAGE (uc in the Figure 22, c and d). 

In the last step of the purification, a gel filtration was performed using a HiLoad™ 16/60 

Superdex™ 200 column. Buffer D was used as a gel filtration buffer in the protocol prior to the 

buffer optimization. The chromatogram of the gel filtration with buffer D is shown in Figure 23, 

a. Fractions 21, 27, 32, 34, 36, 37, 38, 40, 44 and 49 were selected for SDS-PAGE. The result of 

the SDS-page (Figure 23, c) shows that fractions 34-40 contain DYRK1B Q164K, therefore, the 

peak in the chromatogram with the value of 20 mAU corresponds to the DYRK1B Q164K mutant. 

The fractions 34-39 were pooled and the final concentration was 0.04 mg/ml in 12 ml measured 

by Nanodrop which is a final yield of 0.6 mg protein (0.15 mg of the protein per liter of media).  

After buffer optimization, the gel filtration was performed using the buffer G as a gel 

filtration buffer. The chromatogram of the gel filtration is represented in the Figure 23, b. 

Fractions 30, 31, 33, 34, 35, 36, 37, 38, 39 and 40 were selected for SDS-PAGE. The results of 

SDS-PAGE are shown in the Figure 23, d. Fractions 30-40 contain DYRK1B Q164K. The peak 

in the chromatogram with the value of around 206 mAU corresponds to DYRK1B Q164K. The 

fractions 31-40 were pooled and final concentration was 0.43 mg/ml in 20 ml measured by 

Nanodrop which is a final yield of 8.6 mg protein (2.15 mg of the protein per liter of media).  

Thus, buffer change from phosphate buffer to the HEPES buffer improved the yield of 

DYRK1B Q164K by more than 10 fold. 
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a)                                                                b)  

 

c)                                                                                  d) 

 

 

Figure 21.  Purification of (His)6 - DYRK1B Q164K. a) The chromatogram shows the affinity purification of DYRK1B 

Q164K by HisTrap HP 5ml using phosphate buffer. b) The chromatogram shows the affinity purification of DYRK1B 

Q164K by HisTrap HP 5ml using HEPES buffer. The blue line is the absorbance at 280 nm, the green line is 

percentage of elution buffer B (0%-100% corresponds to 0-500 mM imidazole). Absorbance in mAU is shown on the 

Y-axis, min (blue) is shown under the X-axis. The number of fraction is shown above the X-axis. The red line is the 

conductivity. Different peaks in the chromatogram are depicted by arrows. The sample was loaded by a peristaltic 

pump prior to the purification with Äkta prime thus the chromatogram begins with the column wash step. b) SDS 

page of the selected fractions of DYRK1B Q164K in phosphate buffer. Fractions 21-26 contain DYRK1B Q164K. c) 

SDS page of the selected fractions of DYRK1B Q164K in phosphate buffer. Fractions 19-29 contain DYRK1B 

Q164K. Mark12 in lane 1 was used as marker; the numbers above the lanes represent the fractions. The bands located 

between 55.4 and 36.5 kDa corresponded to DYRK1B Q164K. 
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a)                                                                           b) 

 

c)                                                                            d) 

 

 

Figure 22. Purification of DYRK1B Q164K after TEV-cleavage. a) The chromatogram shows the affinity purification of 

DYRK1B Q164K by HisTrap HP 1ml column using phosphate buffer. b) The chromatogram shows the affinity purification of 

DYRK1B Q164K by HisTrap HP 1ml column using HEPES buffer. The blue line is the absorbance at 280 nm, the green line is 

percentage of elution buffer (0%-100% corresponds to 0-500 mM imidazole). Absorbance in mAU is shown on the Y-axis, min 

(blue) is shown under the X-axis. The number of fraction is shown above the X-axis. The red line is the conductivity. Different 

peaks in the chromatogram are depicted by arrows. The sample was loaded by a peristaltic pump prior to the purification with Äkta 

prime thus the chromatogram begins with the column wash step. b) SDS page of the selected fractions of DYRK1B Q164K in 

phosphate buffer. Fractions 18-22 contain DYRK1B Q164K. c) SDS page of the selected fractions of DYRK1B Q164K in HEPES 

buffer. Fractions 10-15 contain DYRK1B Q164K. Mark12 in lane 1 was used as marker; the numbers above the lanes represent the 

fractions. The bands located between 55.4 and 36.5 kDa corresponded to DYRK1B Q164K. 
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a)                                                                                   b) 

 

c)                                                                                     d) 

 

Figure 23. Gel filtration(size-exclusion chromatography) of DYRK1B Q164K. a) The chromatogram shows the purification of 

DYRK1B Q164K by HiLoad™ 16/60 Superdex™ 200 column using buffer D (before the buffer optimization). b) The 

chromatogram shows the purification of DYRK1B Q164K by HiLoad™ 16/60 Superdex™ 200 column using buffer G (optimized 

buffer). Flow rate was 1 ml/min. Fraction size was 2 ml. DYRK1B Q164K peak in the chromatogram are depicted by arrow. The 

Blue line is the absorbance at 280 nm. b) SDS page of the selected DYRK1B Q164K fractions of the chromatogram in the buffer 

D. Fractions 34-40 contain DYRK1B Q164K. c) SDS page of the selected  DYRK1B Q164K fractions of the chromatogram in the 

buffer G. Fractions 31-40 contain DYRK1B Q164K. Mark12 in lane 1 was used as marker, the numbers above the lanes represent 

the fractions,  Fraction 35-41 contain DYRK1B Q164K. 
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3.5 Purification of DYRK1B L192M 

 

The transformation, expression and purification protocol of DYRK1B L192M mutants was 

similar to those described for DYRK1B wt and DYRK1B Q164K. DYRK1B L192M mutant was 

expressed in 2l of TB media. Äkta prime plus FPLC system was employed to perform the affinity 

chromatography with HisTrap HP 5ml column.  Buffer E was used as a binding buffer and protein 

was eluted by gradient of elution buffer G with the length of 8 CV and target concentration of 

buffer F 500 mM imidazole. The chromatogram of DYRK1B L192M purification is represented in 

Figure 24, a. Flow through and fractions 14, 16, 17, 18, 20, 22, 25, 26, 27, 28, 29, 30 and 32 were 

selected for SDS-PAGE. The result of SDS-PAGE gel is shown in the Figure 24, b. Fractions 25-

32 contain DYRK1B L192M. DYRK1B L192M had a peak with the value of 250 mAU and 

eluted at 65 % of buffer F corresponding to the 325 mM of imidazole. Based on the chromatogram 

and SDS-page the fractions 25-34 were pooled, mixed with TEV protease dialyzed in the buffer G 

o/n. The TEV cleavage was followed by a second affinity chromatography step using a HisTrap 

HP 1 ml column. The chromatogram is shown in Figure 25, a. Buffer E and buffer F were used as 

binding and elution buffers, respectively. Flow through and fractions 12, 13, 14, 15, 16, 17, 18, 19, 

20 and 21 were run on SDS-PAGE, represented in Figure 25, b. The peak on the chromatogram 

around 146 mAU and 34% of buffer F (170 mM imidazole) corresponds to the DYRK1B L192M 

confirmed by SDS-PAGE.  The TEV cleavage was successfully executed since the bands from 

uncleaved fraction (uc on the SDS-PAGE figure) and band with cleaved DYRK1B L192M have 

different sizes that can be clearly seen on the SDS-PAGE figure. Fractions 11-15 were pooled 

together to continue the purification of the kinase by gel filtration. Gel filtration was the last step 

in purification protocol of DYRK1B L192M. The gel filtration was performed as previously 

described for DYRK1B wt and Q164K mutant. β-ME has a short half-life of 8.5 h
131

  and has to 

be added fresh to the gel filtration buffer. However, the fresh β-ME was not added to the gel 

filtration buffer G while performing the last purification step of L192M. The chromatogram of gel 

filtration of DYRK1B L192M is shown in the Figure 26, a. There are three peaks in the 

chromatogram. The SDS-PAGE (Figure 26, b) shows that the first peak does not contain L192M 

mutant, but two other peaks contain the L192M mutant. Comparison with a molecular weight 

standard for the gel filtration column identifies these two peaks as a monomer and dimer of 

DYRK1B. This was further verified by mass spectrometry were samples from both peaks were 

identified as DYRK1B. The fractions 34-44 were pooled and the final concentration was 0.06 

mg/ml in 22 ml measured by Nanodrop which is a final yield of 1.32 mg protein.  
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a)

 

      b) 

 

 

Figure 24. Purification of (His)6 -DYRK1B L192M. a) The chromatogram shows the affinity purification of DYRK1B L192M 

by HisTrap HP 5ml column. The blue line is the absorbance at 280 nm, the green line is percentage of elution buffer F (0%-100% 

corresponds to 0-500 mM imidazole). The red line is the conductivity. Different peaks in the chromatogram are depicted by arrows. 

The sample was loaded by a peristaltic pump prior to the purification with Äkta prime thus the chromatogram begins with the 

column wash step. b) SDS page of the selected fractions of the chromatogram.  Mark12 in lane 1 was used as marker; the numbers 

above the lanes represent the fractions.  Fractions 30-38 contain DYRK1B L192M. The bands located between 55.4 and 36.5 kDa 

corresponded to DYRK1B L192M. 
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a) 

 

b) 

 

Figure 25. Purification of DYRK1B L192M after TEV-cleavage. a) The chromatogram shows the affinity purification of 

DYRK1B L192M by HisTrap HP 1ml column. The blue line is the absorbance at 280 nm, the green line is percentage of elution 

buffer F (0%-100% corresponds to 0-500 mM imidazole). Different peaks in the chromatogram are depicted by arrows. The red 

line is the conductometry. DYRK1B L192M elutes at imidazole concentration of approximately 170 mM. b) SDS page of the 

selected fractions of the chromatogram. Mark12 in lane 1 was used as marker, the numbers above the lanes represent the fractions, 

uc (uncleaved) is a sample form the first HisTrap and contains  DYRK1B with a uncleaved (His)6-tag.  Fractions 12-15 contain 

DYRK1B L192M. 
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a) 

 

 

b)

 

Figure 26. Gel filtration of DYRK1B L192M. a) Gel filtration (size-exclusion chromatography) was performed by HiLoad™ 

16/60 Superdex™ 200 column. Flow rate was 1 ml/min. Fraction size was 2 ml. DYRK1B L192M peakes in the chromatogram are 

depicted by arrow. The blue line is the absorbance at 280 nm. b) SDS page of the selected fractions of the chromatogram. Mark12 

in lane 1 was used as marker, the numbers above the lanes represent the fractions. Fraction 32-44 contain DYRK1B L192M. 
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3.6 DYRK1B C238R purification 

 

DYRK1Q C238R possesses the mutation in the catalytic motif HCD. The transformation of 

the plasmid was performed following the protocol of DYRK1B wt. Buffer A was used as a 

binding buffer and buffer B was used as elution buffer because expression of C238R mutant was 

done before buffer optimization. The C238R mutant was expressed in 2 L of TB media. HisTrap 

HP 5 ml column was used for affinity chromatography. The chromatogram of the first purification 

step is shown on the Figure 27, a. Fractions 1, 5, 20, 25, 28, 30, 32, 34, 35, 37 and 40 were 

selected for SDS-PAGE. Based on the SDS PAGE picture the fractions 28-40 contain C238R 

mutant (Figure 27, b). DYRK1B C238R peak in the chromatogram corresponds to the value of 65 

mAU and 66% of elution buffer B (330 mM imidazole). Fractions 30-40 were pooled together.  

Unfortunately the low yield of protein after purification made it impossible to further purify this 

mutant. The band was cut out from the gel and sent to the mass spectrometry facilities for 

verification. 

Mass spectrometry indicates that majority of protein is not phosphorylated at YQY motif. The 

kinase was tested for an activity by the Cook assay. The C238R mutant was not active. However, 

the amount of the kinase might have been too low and the presence of imidazole in the elution 

buffer the kinase was in might have also inhibited its activity.  
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a) 

 

 

     b) 

 

Figure 27. Purification of (His)6 -DYRK1B C238R. a) The chromatogram shows the affinity purification of DYRK1B C238R by 

HisTrap HP 5ml column. The blue line is the absorbance at 280 nm, the green line is percentage of elution buffer B (0%-100% 

corresponds to 0-500 mM imidazole). The red line is the conductivity. Different peaks in the chromatogram are depicted by arrows. 

The sample was loaded by a peristaltic pump prior to the purification with Äkta prime thus the chromatogram begins with the 

column wash step. b) SDS page of the selected fractions of the chromatogram. Mark12 in lane 1 was used as marker; the numbers 

above the lanes represent the fractions. Fractions 32-40 contain DYRk1B C238R. The bands located between 55.4 and 36.5 kDa 

corresponded to DYRK1B C238R. 
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3.7 Inhibitor screen by the Cook assay 

 

Harmine and 49 inhibitors provided by a private pharmaceutical company were tested for 

DYRK1A and DYRK1B wt. The inhibitor screen was performed by an activity-based ATP-

regenerative NADH-consuming assay (Cook assay
77

). Routinely, a “quick” screen for the best 

inhibitors was performed by testing the inhibitors at concentration of 20 µM in the reaction 

mixture with 256 µM of ATP. In the screen the inhibitors were compared according to the 

remaining activity of the kinases. The remaining activity was calculated in percentage by dividing 

the value of the negative slope of the kinase with inhibitor by the negative slope of kinase without 

inhibitor. The results of the inhibitor screen for the 50 inhibitors sorted by their rank for 

DYRK1A wt and DYRK1B wt are summarized in Table 7 (a bar chart of the 50 inhibitors sorted 

by remaining activity of DYRK1B is shown in the Appendix).  
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Table 7. Comparison of inhibitors for DYRK1A wt, DYRK1B wt. *Data for DYRK1A were kindly provided by Dr. Ulli 

Rothweiler.   

DYRK1A wt* Dyrk1B wt 

Rank 
Inhibitor 

number 

Remaining 

activity, % 
Rank 

Inhibitor 

number 

Remaining 

activity, % 

1 harmine 0 1 Inh 47 6.0 

2 Inh 07 0 2 harmine 12.4 

3 Inh 14 0 3 Inh 04 13.9 

4 Inh 31 1.6 4 Inh 41 17.0 

5 Inh 12 2.9 5 Inh 27 19.9 

6 Inh 47 9.3 6 Inh 45 20.1 

7 Inh 32 9.9 7 Inh 31 21.9 

8 Inh 45 13.9 8 Inh 07 25.2 

9 Inh 04 14.9 9 Inh 12 25.8 

10 Inh 02 16.2 10 Inh 48 25.9 

11 Inh 09 19.6 11 Inh 14 30.6 

12 Inh 08 20.3 12 Inh 08 33.9 

13 Inh 27 23.8 13 Inh 02 36.2 

14 Inh 41 24.6 14 Inh 25 38.2 

15 Inh 42 31.3 15 Inh 32 40.2 

16 Inh 03 34.2 16 Inh 33 42.3 

17 Inh 30 34.5 17 Inh 26 48.7 

18 Inh 21 34.5 18 Inh 42 49.5 

19 Inh 33 37.5 19 Inh 39 51.9 

20 Inh 25 41.9 20 Inh 49 52.6 

21 Inh 22 42.9 21 Inh 22 56.5 

22 Inh 01 45.5 22 Inh 03 59.9 

23 Inh 48 46.9 23 Inh 15 60.8 

24 Inh 35 52.0 24 Inh 44 61.3 

25 Inh 50 52.1 25 Inh 50 67.3 

26 Inh 39 55.0 26 Inh 09 68.4 

27 Inh 29 57.0 27 Inh 36 68.7 

28 Inh 49 57.7 28 Inh 13 69.4 

29 Inh 24 61.9 29 Inh 11 73.1 

30 Inh 10 64.5 30 Inh 43 74.7 

31 Inh 17 65.6 31 Inh 01 76.3 

32 Inh 13 66.1 32 Inh 23 75.1 

33 Inh 36 66.3 33 Inh 40 79.0 

34 Inh 44 67.2 34 Inh 20 81.1 

35 Inh 26 70.4 35 Inh 37 81.3 

36 Inh 28 73.2 36 Inh 35 81.9 

37 Inh 11 74.9 37 Inh 38 83,3 

38 Inh 43 75.2 38 Inh 06 85.5 

39 Inh 20 76.2 39 Inh 34 88.1 

40 Inh 06 76.9 40 Inh 30 88.2 

41 Inh 18 79.1 41 Inh 05 89.7 

42 Inh 15 79.9 42 Inh 21 91.0 

43 Inh 23 80.0 43 Inh 18 93.8 

44 Inh 38 82.1 44 Inh 19 94.2 

45 Inh 40 83.0 45 Inh 24 97.1 

46 Inh 19 84.0 46 Inh 28 97.3 

47 Inh 37 85.4 47 Inh 17 97.9 

48 Inh 34 90.0 48 Inh 29 99.0 

49 Inh 05 92.5 49 Inh 46 100.0 

50 Inh 46 94.3 50 Inh 10 100.0 
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In order to investigate the effect of mutation in the hinge region to the binding with inhibitors 

the DYRK1B L192M mutant was tested with the 5 best inhibitors of DYRK1A wt and DYRK1B 

wt at the same assay conditions (Table 8). 

Table 8. Result of testing the inhibitors for DYRK1B L192M. 

DYRK1B L192M 

Rank 
Inhibitor 

number 

Remaining 

activity,% 

1 harmine 3.6 

2 Inh 7 6.4 

3 Inh 47 8.4 

4 Inh 31 10.3 

5 Inh 14 14.6 

6 Inh 4 14.6 

7 Inh 12 15.0 

8 Inh 27 15.3 

9 Inh 41 30.3 

 

The results comparing the effects of inhibitors on mutant of DYRK1B are summarized in 

Table 9  and Figure 28. Most of the inhibitors (5 out of 9) inhibit DYRK1A wt better than 

DYRK1B wt with the L192M mutant in between. Two inhibitors follow no clear trend. Two 

inhibitors did not distinguish between the three DYRKs and showed the same inhibition towards 

the kinases.  
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Table 9. Comparison of remaining activity for DYRK1B wt and L192M mutant with DYRK1A wt. (Values in % of 

remaining activity). 

Inhibitor 

number 

Remaining 

activity of 

DYRK1A, % 

Remaining 

activity of 

DYRK1B 

L192M, % 

Remaining 

activity 

DYRK1B 

wt, % 

Inhibitors better for DYRK1A wt 

Harmine 0 3.8 6 

Inh 07 0 6.4 25.2 

Inh 14 0 14.6 30.6 

Inh 31 1.8 10.3 21 

Inh 12 2.9 15.3 25.8 

Inhibitors without any trends 

Inh 41 24.6 30.3 17 

Inh 27 23.8 15.3 19.9 

Inhibitor that does not distinguish between the DYRKs 

Inh 04 14.9 13.9 14.6 

Inh 47 9.3 8.4 6.0 

       

 

                   

Figure 28. The comparison of remaining activity of inhibitors between DYRK1A (blue), DYRK1B wt (green) and DYRK1B 

L192M (red). 
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3.8 Enzyme kinetics of DYRK1B wt, DYRK1B L192M and DYRK1A. 

 

The inhibitors tested are designed to be ATP-competitive. In order to calculate the Ki value 

(equation (1)) for the inhibitors we need to study enzyme kinetics and determine Km value, i.e. 

Michaelis-Menten constant for ATP, for each kinase of interest. The Km value describes how 

strongly the ATP binds to the kinases. To determine the Km value, a serial of ATP concentrations 

were used in the Cook assay to measure the reaction velocity.  The experiments were performed in 

triplicate with each dilution of ATP in the range from 50 mM to 4 µM. The data were analyzed by 

GraphPad software (Figure 29) and summarized in the Table 10. 

 

 

Figure 29. Michaelis-Menten plots. a)  DYRK 1B  wt,  b) DYRK1A wt, c) DYRK1B L192M 

 

Table 10. Km values for DYRK A wt, DYRK1B wt and DYRK1B L192M 

 

 

 

Kinase Km, µM Vmax, AU/sec 

DYRK1A wt 118.5 ± 7.8 µM 51.5 ± 1.0 

DYRK1B wt 80.7 ± 2.7 µM 100.7 ± 0.9 

DYRK1B L192M 1400 ± 300 µM 95.5 ± 3.4 

a) 
b) 

c) 
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The experimental data allow the conclusion that all three kinases have different affinities for 

ATP. To be exact, DYRK1B wt has highest affinity to ATP based on the lowest value of Km 

compared to DYRK1A wt and DYRK1B L192M. DYRK1B L192M mutant has a significantly 

higher Km value compared to the wt kinases. If correct, it may indicate that other factors in spite of 

the mutation in the hinge region have a greater influence to the binding affinity of ATP than the 

simple sequence alignment of DYRK1A and DYRK1B would have suggested. 

 

3.9 Ki determination for kinase inhibitors. 

 

The screening of inhibitors was performed to determine the strongest inhibitors from the set 

of 50 inhibitors at a fixed concentration. Based on the results of the screening, inhibitors which 

showed the lowest remaining activity were selected for a more precise determination of the 

inhibition potency. For this purpose the Cook assay was employed for some selected inhibitors in 

serial dilutions (concentration in a range from 20 µM to 4 nM) enabling IC50 value determination 

followed by a Ki calculation using the Cheng-Prusoff equation (1). Routinely, assay trials with all 

kinases were performed at ATP concentrations of 128 or 256 µM and kinase concentrations in a 

range between 0.05 and 0.2 µM in order to obtain a negative slope value of around -10 AU/s. 

Measurements were performed in triplicate for each of the inhibitor concentrations. It was decided 

to select Inh 04, Inh 07, Inh 14, Inh 47 and harmine for IC50 determination and Ki calculation 

(Figure 30).   
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Figure 30. Dose-response curve of IC50 determination. DYRK1B wt. a) Inh 47, b) harmine, c) Inh 04, d) Inh 07, e) Inh 14. 

 

 

 

a) 

IC50= 1,7 µM 

b) 

IC50= 0,88 µM 

c) 

IC50= 1,6 µM 

d) 

IC50= 4,1 µM 

e) 

IC50= 5,5µM 
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In order to compare the effect of mutation on the binding with the inhibitor harmine was 

selected for DYRK1B L192M to determine the IC50 value (Figure 31). 

 

Figure 31. Dose-response curve of IC50 determination for DYRK1B L192M with harmine. 

The inhibitor PKC412 was discovered from the crystallization trial for DYRK1A wt with 

commercially available inhibitors. The binding strength of PKC412 was determined for DYRK1A 

wt, DYRK1B wt and DYRK1B L192M mutant. The dose-response curves for PKC412 for all 

three targets are represented on the Figure 32. 

 

 Figure 32. Dose-response curve for PKC412 inhibitor, a) DYRK1A wt, b) DYRK1B wt, c) DYRK1B L192M. Data for 

DYRK1A was kindly provided by Dr. Ulli Rothweiler. 

b) 

IC50= 66 nM 

a) 

IC50= 59 nM 

c) 

IC50= 163 nM 

IC50= 656 nM 



 

75 
  

The Ki value was calculating using the equation (1) using ATP concentrarion and Km value. 

The IC50 value and calculated Ki for inhibitors and DYRKs were summurized in the Table 11. 

 

 

Table 11. IC50 value and Ki for inhibitors and kinases DYRK1A wt,  DYRK1B wt and L192M mutant. 

 

 

 

 

 

 

 

 

 

 

 

The Ki values are indicators for the potency of an inhibitor. A smaller value of Ki indicates a 

stronger inhibition. The Ki calculation shows that the best inhibitor for DYRK1B wt was the 

commercial inhibitor PKC412. On the second place is the inhibitor harmine. The inhibitors from 

the private pharmaceutical company, Inh 04 and 47, were the best from the set of 50 inhibitors, 

however, they are two times weaker than harmine and 25 times weaker than PKC412. The 

DYRK1B L192M has around 6 time higher Ki value for PKC412 compared to DYRK1B wt and 

DYRK1A wt. The comparison of the Ki value for harmine between the DYRK1B wt and 

DYRK1B L192M shows that the Ki value of DYRK1B L192M is also two times higher than for 

DYRK1B wt. If correct, this is mainly due to the significant higher Km value for DYRK1B 

L192M compared to DYRK1A and DYRK1B wt. The IC50 values for the inhibitor harmine are 

with 876 nM (DYRK1B) and 656 nM (DYRK1B L192M) in the same magnitude with a slight 

advantage for DYRK1B L192M. 

 

 

 

 

   Kinase Inhibitor ATP, µM IC50, nM Ki, nM 

DYRK1A wt PKC412 128 59 28.4 

DYRK1B wt PKC412 128 66 25.4 

DYRK1B L192M PKC412 128 163 149.4 

DYRK1B wt harmine 128 876 337.2 

DYRK1B L192M harmine 128 656 601.1 

DYRK1B wt Inh 4 128 1624 624.6 

DYRK1B wt Inh 7 256 4108 978.1 

DYRK1B wt Inh 14 256 5549 1321.2 

DYRK1B wt Inh 47 128 1780 684.6 
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3.10 Microscale thermophoresis  

 

The microscale thermophoresis was used to determine a Kd value of ATP towards the 

DYRK1B wt. 16 capillaries with the serial twofold dilutions of ATP, constant buffer 

concentration and concentration of DYRK1B were employed during the experiment. An affinity 

of 78 μM could be derived (Figure 33). 

 

 

Figure 33. Microscale thermophoresis traces and back diffusion analysis of the interaction between DYRK1B wt and 

ATP.  

 

3.11 Crystallization of DYRK1B wt and DYRK1B Q164K 

 

DYRK1B wt and DYRK1B Q164K were obtained in large enough amounts to proceed with 

crystallization trials either as apo-proteins, or in complex with inhibitors selected from the 

inhibitor kinase activity screen: either commercially available inhibitors, or inhibitors from the 

company. The commercially available crystallization screens (e.g. JCSG plus, Wizard) were 

employed to screen for crystallization conditions at different concentrations of protein, 

temperatures and ratios of protein solution to reservoir solution. The promising hits from the 

crystallizations screen were chosen for further optimizations but, unfortunately, the control tests, 

(when the protein solution was excluded from the crystallization experiment), showed that the 

inhibitors themselves crystallized under these selected conditions, even at low concentration 

(around 400 µM), and therefore gave false positive hits. One condition from the in-house KCSG 

crystallization screen (comprising 2 M ammonium sulfate, 0.1 M sodium cacodylate pH 6.5 and 

0.2 M sodium chloride) gave small plates of crystals. These crystals were sent to the synchrotron 
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for data collection but the first diffraction image contained only a few strong diffraction spots that 

indicate the crystallization of a small molecule, most probably the inhibitor. Unfortunately neither 

DYRK1B wt nor DYRK1B Q164K obtained for the crystallization trials crystallized - neither as 

an apo-protein nor in the complex with inhibitors (commercial available or from the kinase 

inhibitor screen).  

 

3.12 Crystallization of DYRK1A 

 

Repeating the published crystallization conditions for DYRK1A did not give crystals with the 

company‟s inhibitor. Therefore a JCSG-plus™ screen was used in a co-crystallization trial with 

DYRK1A and inhibitor 4. The screen gave a hit containing 0.2 M NaSCN and 20% PEG 3350. 

This condition was used for optimization with gradient of 16-25% PEG 3350 and 0.1-0.3 M 

KSCN or NaSCN. The condition with 16% PEG 3350 with 0.1 M KSCN gave the best hits and 

was chosen to run an additive screen, which gave hits with 0.1 M NaCl, 0.1 M KCl, 0.1 M LiCl 

and to minor extent with other salts of alkali halide. 

The hits from additives were added to the crystallization screens. The trials were performed at 

room temperature and 4  C. However, it was observed that at room temperature the crystal grows 

larger, so it was decided to continue to crystallize the protein at the room temperature. The final 

crystallization condition for DYRK1A with PKC412 that gave the best crystal, was 100 mM 

KSCN, 50 mM LiCl, 10-16 % PEG3350. For the crystallization by hanging drop, the 

protein/inhibitor mixture was then mixed 1:1 with the crystallization solution. Octahedral crystals 

appeared within 5 days at the room temperature (Figure 34). The data collection showed that a 

suitable cryoprotectant was 30% ethylene glycol, while N-paratone did not cryoprotect the crystals 

and the crystals did not diffract. 

 

 

 

 

 

 

 

 

 

 



78 
 

   a)                                                                        b) 

         
 

Figure 34. Crystal of DYRK1A in complex with PKC412. a) octahedral form of crystal, b) bundle of parallel twisted crystals. 

      
 
 

First two diffraction images were taken at 90 degree apart to determine the space group and 

strategy of data collection (Figure 35). The crystal diffracted to 2.6 Å and the diffraction data was 

integrated by XDSapp to calculate the structural factors and convert them in a *.mtz file. The 

structure was solved by molecular replacement method in Molrep, refined by Refmac5 (CCP4 

package) and Phenix. The crystallographic data and model statistics are summarized in the Table 

12. 

 

     a)                                                                              b) 

 
Figure 35. Diffraction images of DYRK1A in complex with the inhibitor PKC412. a)   is 0 ,1  oscillation, b)   is  90 , 1  

oscillation. 
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The crystal structure contains one DYRK1A tetramer as an asymmetric unit with the four 

individual DYRK1A molecules related to each other by three perpendicular twofold rotation axes, 

as it was previously described in the DYRK1A structures 3ANQ and 3ANR
16

 (Figure 36).  

 

Figure 36. The asymmetric unit comprising of four individual DYRK1A molecules at 2.6 Å resolution 
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Table 12. Crystallographic data and model statistics. 

DATA COLLECTION  

Synchrotron radiation BESSY II 14.1 

Detector Pilatus 6M 

Wavelength, Å 0.918409 

Number of crystals used 1 

Number of frames 360 

Oscillation range / frame 0.5  

DIFFRACTION DATA  

Space group P212121   (19) 

Unit cell parameters, Å 87.76, 87.90, 229.92 

Protein molecules in asymmetric unit 4 

Number of measurements 359740 

Unique reflections 55625 

Resolution Range, Å (final shell) 48.251-2.597 (2.664-2.597) 

Completeness (final shell) 99.6 (98.6) 

Mosaicity 

I/σ (final shell)      
 

0.236  

9.10 (1.89) 

REFINEMENT  

Resolution limits, Å (final shell) 48.251-2.597 (2.664-2.597) 

Number of used reflections 52841 

Percentage observed 99.7 % 

Percentage of free reflections 5.0 % 

Number of protein atoms 11036 

Number of heterogen atoms 176 

Number of water 223 

R factor overall/free  20.76 % / 24.76 % 

Overall figure of merit 0.871 

RMS bonds/angles 0.0064 Å / 1.292  

Ramachandran (favored / allowed / outliers) 94.86 % / 5.14 % / 0 % 
(*)

 

 
(*)

calculated by Molprobity: www.molprobity.biochem.duke.edu/index.phd 
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The DYRK1A kinase domain follows the same structural arrangement as the other known 

DYRK1A structures
16,53,132

 with the typical kinase fold and the tyrosine Y321 is phosphorylated in 

the structure (Figure 37).  

 
a)                                                                                                       b) 

 

 
 

Figure 37. The overview of DYRK1A in the complex with PKC412. a) Overview over the structural elements b) key motifs and 

residues of the kinase. 

 

PKC412 is clearly visible in the electron density map and with an exception of the phenyl 

ring, the coverage is nearly complete (Figure 38). PKC412 is bound to the ATP pocket via two 

hydrogen bonds made by the amine and ketone group in the 2-one-3-pyrroline head group of 

PKC412 to the hinge amino acids E239 and L241. Due to a lack of any hydrogen acceptor or 

donor on the other side of the PKC412, there is no interference with the catalytic lysine K188 as 

described in previous DYRK1A/inhibitor structures
16

 and the main binding of PKC412 is via 

hydrophobic interaction (Figure 39). 
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Figure 38. Binding of PKC412 to DYRK1A. The omit map (without PKC412) calculated shows the electron density coverage for 

PKC412. The DYRK1A and PKC412 molecule represented in stick are after final refinement. 

 

 
Figure 39. Stereo image of PKC412 bound to DYRK1A. Hydrogen bonds are made to the backbone atoms of E239 and L241. 

However most of the interactions are via hydrophobic residues. The catalytic Lysine K188 does not participate in the binding of 

PKC412.   

 

 

The four individual chains in the asymmetric unit are not identical and differ slightly from 

each other. In all, chain A has the best density fit and is the most complete chain. The three other 

chains have a lower density fit, especially in the CMGC insert. The chain A has no density in the 

loop AA 409-412, chain B has missing residues AA 213-218 and AA 407-414. Chain C has a gap 

between AA 408-412 and chain D has missing residues AA 408-414 and AA 437-444. One 

feature of the structure described here that distinguishes it from the previous DYRK1A crystal 

structures is the existence of disulfide bridges formed between cysteine C286 of the HCD motive 

in the catalytic loop and cysteine C312 in the activation segment. These disulfide bridges are 

present in all the four monomers in the asymmetric unit. The distances between the two cysteines 
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after refinement in chain A, B, C and D are with ~2.06 Å in an ideal distance for disulfide bridges. 

The previously published structure 2VX3
53

 with an open conformation has a cysteine-cysteine 

distance of ~4.3Å. The formation of the disulfide bridge does not have an obvious visible major 

impact on the structure. A superposition of chain A of our structure with chain A from 2VX3 does 

not show any large changes in the structure caused by the disulfide bridge, nor does the disulfide 

bridge interfere with the binding of PKC412. However, it locks the activation segment making the 

loop more rigid (Figure 40) by pulling residue C312 towards the catalytic motif HCD. The 

activation loop is differently folded after the C312, however this part of the DYRK1A kinase is 

flexible and the activation segment adopts different conformations based on the crystal packing. In 

comparison of 4NCT with 2VX3 the loop differs due to a difference in crystal packing (C2 

symmetry). The structures with INDY and harmine 3ANQ and 3ANR have the same crystal 

packing (P212121) and have identical loop conformation like 4NCT. Since the disulfide bridge is 

also missing in these two structures, the local folding around C312 differs too compared to 4NCT. 

The HCD motive is rather rigid and does not move upon the disulfide bridge formation.  

 

           

Figure 40. Structure of DYRK1A in the complex with PKC412 (green) is superimposed with DYRK1A (2VX3, grey). In the 

box is shown a close up picture; the disulfide bridge is formed between C286 and C312 in the DYRK1A in complex with PKC412 

(green), but is absent in the 2VX3 structure (grey). 

 

The formation of the disulfide bridge has however a local effect on the hydrogen network 

between the catalytic loop residues I
283

IHCD
287

 and the activation segment D
307

FGSSCQ
313

. The 

hydrogen bond between the backbone carbonyl of I284 and the backbone amid C312 keeps the 
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same length (so the angle changes, Figure 41), however the hydrogen bond between the backbone 

amide I284 to backbone carbonyl C312 gets stretched by ~18% from 2.8 Å to 3.3 Å and in the 

case of the hydrogen bond between the backbone carbonyl H285 and the backbone amide S311 

the distance increase is ~20% from 3.5 Å to 4.2 Å indicating that this hydrogen bond is practically 

non-existent in the structure with the disulfide bridge.   

 
Figure 41.  Superposition of chain A (4NCT, green) with chain A (2VX3, gray) showing the hydrogen bond network 

between the catalytic loop and the activation segment. The formation of the disulfide bridge weakens the hydrogen interactions. 

 

One final feature of the 4NCT structure that further distinguishes it from the previously published 

DYRK1A structures is chain C has a phosphoserine at position S301. This phosphorylation is 

unique to chain C and it is not observed in the other three chains. It is so far not known in the 

literature that S301 can be phosphorylated by DYRK1A and the fact that it is only present in one 

chain indicates that this phosphorylation occurs in only 25% of the protein and might be a rare 

event (Figure 42).  

 

Figure 42. Omit map for serine S301 of chain C (4NCT). The map clearly shows an electron rich group next to the serine that 

can be interpreted as a phosphorylation. A phosphorylation of DYRK1A on serine S301 is so far not known in the literature. 
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4. DISCUSSION 

 

4.1 Comparison of DYRK1A and DYRK1B 

 

4.1.1 Expression and purification 

 

DYRK1A and DYRK1B are the closest related kinases in the DYRK family. The sequence 

identity of the kinase domain is 85% and in the ATP pocket there is just one amino acid 

difference: a methionine to leucine exchange. Besides the high similarity, the two proteins behave 

differently when expressed in E. coli. Overexpressed DYRK1B accumulated mostly in inclusion 

bodies and phosphate based buffers have a highly destabilizing effect on DYRK1B, while 

DYRK1A was expressed in high quantities as soluble protein and is less sensitive to different 

buffers.  The overall amount of DYRK1A after purification was on average 20 mg per liter culture 

while DYRK1B had a much lower yield of 2 mg per liter of bacterial culture. It should be 

mentioned that the expression of DYRK1B was high, but the solubility of the protein itself was 

low, causing inclusion body formation, leading to the overall lower amount of purified protein. 

DYRK1B is sensitive to different buffers. Surprisingly it is not the pH that causes the differences, 

but rather the buffering compound and the presence of alkali salts like KCl. The effect of this was 

clearly seen in the thermal shift experiment where the protein had an around 10 degrees lower 

melting temperature in phosphate buffer compared to a HEPES buffer at the same pH. Besides 

these differences, both proteins are expressed as active kinases. The mass spectrometry analysis 

shows that they are phosphorylated on the second tyrosine of the YQY motif in the activation 

segment. This was also true for the DYRK1B L192M and Q164K mutant. The third mutant 

C238R was however not phosphorylated in the activation segment.  

The expression of the mutants followed the protocol for DYRK1B wt. The Q164K mutant 

expressed in a more soluble form and the yield was on average higher compared to the wild type 

DYRK1B. The L192M mutant could be only obtained in a lower yield compared to the wild type 

and Q164K mutant. However it might be possible to optimize the expression of L192M mutant by 

optimizing expression time, temperature and media and using parameters optimal for this mutant. 

Due to the limited time the expression protocol was kept identical for all the mutants.  

Interestingly, DYRK1B L192M elutes as dimer and monomer in the gel filtration in the 

absence of reducing agents. This was also the case for the Q164K mutant in absence of reducing 

agents. DYRK1B has six cysteines in the expression construct. Three of them are buried within 
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the hydrophobic core of the kinase and are not accessible. Besides C238 and C264 that are 

accessible but rather would form an intramolecular disulfide bridge between them, as seen in the 

crystal structure 4NCT, the most likely candidate for an intermolecular disulfide bridge formation 

is C248. It was observed that the lack of reducing agent destabilizes DYRK1B and the mutants 

and they are more likely to precipitate and cannot be concentrated higher than 5 mg/ml. It was 

therefore important to purify DYRK1B in the presence of reducing agents; however, a point 

mutation of C248S might be beneficial for future work. 

The mutant C238R did not express very well and the purification that was done before the 

buffer optimization showed that this kinase is not active. Since the mutant was not phosphorylated 

and the phosphorylation is a posttranslational step during the translation it can be speculated that 

the formation of the disulfide bridge might be essential for this step and proper folding of the 

protein and the lack of activity can be due to a miss-folding in addition to the inactive activation 

segment. Literature data shows that DYRK mutants with phenylalanine instead of tyrosine in the 

activation segment can still be active
18,19

, however with a lower activity. The Cook assay used in 

this thesis might be not sensitive enough to detect very low levels of kinase activity. The C238R 

mutant has, beside its inactivity, interesting properties and offers a way to study the mechanism of 

autoactivation and the necessity of the disulfide bridge for stability and kinase activity. 

 

4.1.2 Enzyme kinetics 

 

The kinetic studies were performed by the Cook assay. One primary observation was that 

DYRK1B phosphorylates DYRKtide faster than DYRK1A. The Km value is with 80 µM 

compared to 118µM in DYRK1A lower which means that DYRK1B has a higher affinity to ATP. 

The Km value for DYRK1B correlates strongly with the Kd value for ATP obtained by microscale 

thermophoresis (NanoTemper). Our observation with the kinase activity assay indicates that 

DYRK1B is more active than DYRK1A which is shown in the Km values, however since our 

assays were performed at room temperature the kinases were most probably not operating at a 

their temperature optima. The Km values measured in this thesis for DYRK1A differ from the Km 

value reported in the literature which was 35 µM
29

; i.e., four times lower. A direct comparison 

might be so not valid since the Km values were determined with different assays and at different 

temperatures. The higher temperature of 30 degree used in the radiometric assay by Himpel et al.
29

 

might be closer to a temperature optimum. This higher activity of the kinases at higher 

temperatures could explain the difference in the Km value.     
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The only difference in the ATP pocket between DYRK1A and DYRK1B is the more bulky 

but unbranched methionine in DYRK1A compared to the smaller leucine in DYRK1B in the hinge 

region. (P+2 from gatekeeper residue)  The methionine in the crystal structure points away from 

the binding pocket and it does not give the impression that methionine could block the ATP 

pocket. It is however possible that since the amino acid is flexible it causes some steric hindrance 

in the path for ATP to the pocket which could explain the lower activity of DYRK1A compared 

with DYRK1B.  However, a mutant of DYRK1B where the leucine in the hinge is replaced by a 

methionine has a reduced activity even lower than DYRK1A. The Km value for the L192M mutant 

was 1400 nM, ten times weaker than DYRK1A. There is no obvious explanation for this 

unexpected weaker Km value. If correct, an additional mechanism that influences the kinase 

activity must exist. Since there are not many other residues close by that are different between 

DYRK1A and DYRK1B that could be responsible for this effect it could be a simple problem of 

stability of the L192M mutant in the assay conditions. However, neither DYRK1A nor DYRK1B 

wt have stability problems in the activity assay. One other possibility is a tryptophan (W184) at 

the beginning at β-sheet 3 in DYRK1A that could hold the methionine residue away from the ATP 

pocket via hydrophobic interactions. In DYRK1B this residue is a leucine, a small hydrophobic 

residue that might not be able to do so. It needs however more investigation whether this is a 

possible mechanism. The distance (in the structure of DYRK1A (4NTC)) between W184 and 

L240 is, with around 5-8 Å, large for hydrophobic interactions. A double mutant of DYRK1B 

with L192M and L137W might be needed to investigate the potential role of the tryptophan. The 

IC50 value of PKC412 for DYRK1B L192M is 2.5 times weaker compared to the wild type kinases 

DYRK1A and DYRK1B which also would indicate that additional factors are involved in the 

selectivity for ATP and inhibitor interaction with these kinases. 

 

4.1.3 Comparison in inhibitor screen 

 

The inhibitors, provided by a private pharmaceutical company, were originally designed for 

the inhibition of DYRK1A. However the close relation between DYRK1A and DYRK1B makes it 

obvious to test these inhibitors also for DYRK1B and derive a selectivity profile. The 

experimental results demonstrate that the potency of inhibitors is, in general, higher for DYRK1A 

than for DYRK1B; however exceptions exist. The graphical representation of the Table 7 and 

Figure 48 (appendix) shows that there are three inhibitors (15, 26 and 48) that are significant 

better for DYRK1B compared to DYRK1A. An additional ten inhibitors (23, 25, 27, 37, 39, 40, 

41, 44, 47 and 49) have a preference for DYRK1B, however the difference is less significant. On 
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the other hand, 21 inhibitors are significantly more selective for DYRK1A and the remaining 16 

inhibitors have a minor preference for DYRK1A or do not distinguish between the two kinases.  

The screening assay for the 50 inhibitors was performed at a fixed concentration of inhibitor 

(20 µM). For a more detailed analysis of inhibitor potency, the determination of IC50 followed by 

Ki calculation was performed for some inhibitors using the Cook assay and a serial dilution of 

inhibitor concentrations. In the case of harmine, the IC50 determination for DYRK1B wt and the 

L192M mutant show similar IC50 values, however if the L192M mutant has lower affinity for ATP 

(Km is 1,4 mM) compared to DYRK1B wt (Km is 80 µM), then for L192M a lower concentration 

of inhibitor is required to reduce the kinase activity to 50%. The calculation of Ki for harmine 

shows that harmine binds stronger to DYRK1B wt by a factor of two (Ki is 337 nM) compared to 

the L192M mutant (Ki is 601 nM). We would expect that harmine binds stronger to the L192M 

mutant since it mimics DYRK1A and in the scientific literature a stronger affinity of harmine 

towards DYRK1A over DYRK1B was shown
133

. Nevertheless the ~10 fold lower Km of L192M 

compared to DYRK1A and almost ~20 times lower Km towards DYRK1B would result in a 

decrease in Ki value for this mutant. The fact that the order for the binding strength is reversed 

when comparing IC50 values to Ki values makes it important in competitive inhibitor assays to not 

only determine the binding strength of the inhibitor but also to take into consideration the binding 

strength of the substrate that has to be replaced. The IC50 determination gives the inhibitor 

concentration at which 50% of the protein is inactive, but to compare actual binding strength of 

inhibitors the Ki values might be more suitable and independent of the ATP substrate 

concentration. The difference in IC50 values and Ki values are most prominent in cases where the 

Km values for ATP are significantly different. The closer similarity of the Km values between 

DYRK1A and DYRK1B wt do not influence the Ki determination that much and the IC50 values 

are more comparable with the Ki values meaning that the affinity arose from the IC50 is direct 

proportional to the affinities determined by the Ki values. This is seen in the PKC412 titration for 

DYRK1A and DYRK1B which have similar affinities by comparing IC50 values or Ki values.    

In addition to harmine, four inhibitors synthesized and provided by the company were 

selected for IC50 determination and Ki calculation for DYRK1B. A more precise determination of 

inhibitor potency by Ki calculation revealed that the most potent inhibitor, among the inhibitors 

synthesized and provided by the private company, was inhibitor 4 (Ki is 625 nM) which was in the 

third place in the rank of inhibitors, based on the initial screen at a fixed inhibitor concentration, 

after inhibitor 47 and harmine. Inhibitor 47, based on the result of the inhibitor screen, was the 

best one, but in the ranking according to the Ki values it binds weaker (685 nM) than harmine 

(337 nM) and inhibitor 4 (625 nM). The difference in Ki between inhibitor 4 and 47 is however 
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only 9%. This shows, in conclusion, that the testing of inhibitors with one particular inhibitor 

concentration is efficient for fast screening for the strongest inhibitors, but ranking inhibitors 

solely based on one inhibitor concentration can only be a preliminary step. For full verification a 

more precise analysis of inhibitor binding or determination of Ki value is required. Nevertheless is 

an inhibitor screen based on one inhibitor concentration is practical and useful to rapidly eliminate 

inhibitors that do not, or only marginally, inhibit the target enzyme. In this way the more time 

consuming IC50 determinations can be avoided for non-binders and weak inhibitors.   

 

4.2 Crystallography 

 

4.2.1 Structure of DYRK1A 

 

It was unfortunately not possible to crystalize DYRK1B, however due to the close similarity 

between DYRK1A and DYRK1B, the structure of DYRK1A in complex with PKC412 

crystallized and solved in this thesis offers a good model for DYRK1B. The kinetic data for 

PKC412 show that both kinases are inhibited equally well by PKC412 and it can be assumed that 

the binding of PKC412 is identical in both kinases. DYRK1A crystallized with disulfide bridges 

formed which is a novel finding since the previously published DYRK1A structures do not have 

disulfide bridges. It was speculated so that the formation of disulfide bridges is involved in 

tweaking the activity of the kinase. The structure with the disulfide bridge does not show any 

major structural rearrangements. As discussed in the results section, it weakens the hydrogen bond 

network between the activation segment and the catalytic loop and replaces it with a stronger 

covalent S-S-bond. Our observation from the expression of the C238R mutant which is not 

phosphorylated at tyrosine Y273 might suggest that the disulfide bridge formation is essential 

during the autophosphorylation in the translation step. It needs however more research to settle 

this problem. Another finding in the DYRK1A structure was a phosphoserine S301. This 

phosphorylation site was previously not described in the literature. It is only present on chain C in 

the asymmetric unit. One of the tested crystals of DYRK1A/PKC412 solved by us diffracted to 3Å 

and, had a high twinning fraction of 0.6 to 0.4 (H, K, L/ K, H, -L) while there was no twinning in 

the 4NCT structure. The two crystals came from different protein batches, and it might be possible 

that the phosphorylation on S301 in 25% of the protein helped to orientate the asymmetric unit in 

the crystal packing and by that avoiding the twinning.  
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4.2.2 Disulfide bridge 
 

The HCD motif in the catalytic loop in DYRK kinases is rare in the human kinome (Figure 

43). Besides the DYRK family it is only found in a few other kinases like the PKD family (protein 

kinase D faimily), the Tyrosine-protein kinase SgK269 (sugen kinase 269), ULK4 (uridine kinase-

like protein 4) and LRRK1 (Leucine-rich repeat serine/threonine-protein kinase 1) that have a 

cysteine at this position. (ULK4 and LRRK1 have a FCD motif). Among these, only UKL4 has a 

second cysteine in the activation segment between the DFG and APE motifs that could act like a 

partner for disulfide bridge formation as in DYRK1A. The PKD kinases have no cysteine in the 

activation segment between the residues DFG and APE however they have a cysteine right in 

front of the DFG, and the CDFG motif is conserved among the three PKD kinases. Whether these 

kinases are able to form disulfide bridges to the cysteine in the extended activation segment or to 

other cysteines in the kinase domain can only be speculated upon due to the lack of structural 

information.  Preliminary observations of the DYRK1B mutant with the HCD motif mutated to 

HRD (C238R) show that the E. coli expressed protein was not enzymatically active in the kinase 

assay. However as discussed above the Cook assay might not be sensitive enough to detect low 

activity, and a radiometric assay might be more accurate in this respect. It needs further studies to 

investigate whether the HCD and the disulfide bridge are mandatory for tyrosine phosphorylation 

and autoactivation, or whether the disulfide bridge plays a role in the kinase activity. 

 

Figure 43. Distribution of the second residue of the HRD catalytic motif in human kinome. Cysteine residue is in yellow. 

Figure from R. Engh, including kinome representation from Manning G. et al.4 
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4.2.3 PKC412 

 

The DYRK1A structure 4NCT is the first kinase in the protein data bank which has a PKC412 

molecule bound to the ATP pocket. There exists however several kinase structures with 

staurosporine the original isolated natural compound from which PKC412 was derived. Like 

staurosporine PKC412 inhibits many kinases in the kinome, however its inhibitory profile is more 

selective. The structure of DYRK1A with PKC412 might help to understand this profile and can 

serve as a starting point to develop more selective inhibitors for DYRK kinases. Some 

modification that might lead to a stronger binder would be to introduce a hydrogen acceptor 

opposite of the hinge to bind to K188 as it is seen in the inhibitors INDY and harmine
16

. Another 

modification could be an extension of the “tail” to anchor the inhibitor via hydrogen bonds to 

E291 or N244 (Figure 44). Additional extensions to introduce hydrogen bonds to D305 from the 

DFG motive are possible.  

  

 

Figure 44. The PKC412 (purple) bound to the ATP-pocket of DYRK1A (4NCT). The green residues are involved in hydrogen 

bond formation, the black residues are amino acids in close proximity that could serve as hydrogen bond partners. 

 

 PKC412 is widely used in clinical trials to treat acute myeloid leukemia and other cancers 

and it is currently in clinical trials as an inhibitor for FLT3
71

. A possible application in 

neurological disease is not established. Since DYRK1A is a kinase involved in neurological 

disease it may be possible to expand the clinical trials to neurological diseases. 
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5. FUTURE WORK 

 

Many questions could be answered by obtaining a crystal structure of DYRK1B. For this 

purpose it would be necessary to try new constructs with different lengths compared to the 

construct used in this master project. The different constructs could contain the point mutations at 

the position of the possible crystal contact like Q164K used, but also include new point mutations 

like C248S, a residue most probably involved in dimerization in the absence of reducing agent. 

For each mutant and construct it would be necessary to optimize the buffers in order to obtain the 

most stable protein. Another option would be to focus on the inclusion bodies. DYRK1B is highly 

expressed but most of the protein stays in the insoluble fraction after lysis. Finding a protocol for 

refolding would overcome the shortage of protein and would allow for more numerous and 

extensive crystallization screens.   

For the kinetics it would be interesting to further study the inhibitor selectivity profile. It is 

necessary to make DYRK1A mutants that mimic DYRK1B like a DYRK1A M240L where the 

hinge methionine in DYRK1A is replaced by a leucine found in DYRK1B at this position. It 

would be the reverse mutation to the DYRK1B L192M used in this thesis. Also, the potential role 

of W184 (L137 in DYRK1B) could be investigated by a point mutation. 

Finally, the HCD could be investigated in more detail. Point mutation of the HCD motif to 

HSD or mutagenesis of the cysteine binding partner C264 (C312 in DYRK1A) could be 

performed.     

In addition to the Cook assay, a second binding assay should be established. Since most of the 

company‟s provided inhibitors are poorly water soluble and the Biacore did not work due to 

instability of the protein on the chip, the microthermophoresis technology could be an alternative 

and a supplement to the kinetic assay.  

And finally, it can be proposed to continue the research on PKC412 as a drug candidate for 

neurological diseases (e.g. Alzheimer disease) and maybe expand the ongoing clinical trials for 

PKC412. 
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SUMMARY 

 

The research within this thesis describes the biophysical characterization of DYRK1B, a 

member of the dual-specificity tyrosine phosphorylation-regulated kinase family (DYRKs) which 

have recently emerged as new therapeutic targets for various kinds of cancer and 

neurodegenerative diseases.  DYRK1B plays a key role for cancer cell survival, and its inhibition 

induces apoptosis of cancer cells. This thesis describes the cloning of the kinase domain of 

DYRK1B. The construct contains a (His)6-tag, TEV protease cleavage site and the kinase domain 

(AA 78-451).  DYRK1B was expressed and purified by affinity chromatography (HisTrap Ni-

NTA columns) followed by a TEV cleavage - to remove the Histag - during dialysis and a second 

HisTrap purification. For the crystallization trails a size exclusion chromatography (SEC) was 

used as last step resulting in production of to 98% pure protein. 

 To study the stability and solubility of DYRK1B two buffer screens were designed. The 

buffer screens, carried out by Thermofluor, showed that HEPES buffer increased the melting 

temperature by 12   compared to initially used phosphate buffer. The buffer optimization 

improved the yield of DYRK1B by 10 fold.  In the absence of reducing agent, DYRK1B 

dimerizes and these dimers could be separated from the monomers via SEC.  Three mutants of 

DYRK1B were cloned in this master project to investigate different aspects of enzymatic activity 

(C238R), selectivity (L192M) and crystallisability (Q164K).  DYRK1B C238R was not 

autophosphorylated at Y273 and did not show activity in the cook assay; however this mutant 

needs to be further investigated with a more sensitive assay. DYRK1B L192M and DYRK1B 

Q164K were expressed as active enzymes and were used for their designed purposes: inhibitor 

selectivity profiling and crystallization trials, respectively.  

50 inhibitors were screened to determine the selectivity of DYRK1B versus DYRK1A. The 

best inhibitors were chosen for IC50 determination and Ki calculation. The point mutation 

DYRK1B L192M that mimics DYRK1A in the ATP pocket was used to study the influence of 

methionine in the hinge region on the selectivity profile of the inhibitors. The Michaelis-Menten 

constant Km was determined by Cook assay for DYRK1A, DYRK1B wt and DYRK1B L192M. 

DYRK1B has the highest affinity for ATP with a Km of 81 µM, DYRK1A has a weaker affinity of 

Km = 119 µM. In contrast to the two wild type kinases, the Km value for DYRK1B L192M drops 

by almost 20 times to 1400 µM. This significantly weaker Km, if correct, leads to the conclusion 

that DYRK1A probably has additional residues close to the ATP pocket that could compensate for 
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a weaker ATP affinity. As a possible candidate, a tryptophan W184, was identified that is close to 

M240 and probably interacts with methionine. In DYRK1B this residue is L137.    

Crystallization trials with DYRK1B wt, DYRK1B Q164K and DYRK1A were performed 

with commercially available inhibitors. Unfortunately, DYRK1B did not crystallize but DYRK1A 

was crystallized in complex with inhibitor PKC412. The diffraction data were collected at BESSY 

II beamline 14.1 (Helmholz Zentrum Berlin). The crystal diffracted at resolution 2.6 Å. The 

structure was solved by molecular replacement in Molrep (CCP4) and refined by Refmac5 and 

Phenix. The crystal structure demonstrates a formation of the disulfide bridge between C286 in the 

catalytic motif HCD and C312 in the activation segment. This crystal structure is the first 

DYRK1A structure with a disulfide bridge and it is the first kinase with the staurosporine analog 

PKC412.   
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APPENDIX  
 

 

Figure 45. Expression plasmid of DYRK1B wt 

 

 

 

Figure 46. Scheme of the DYRK1B wt protein construct  
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Figure 47. Gateway destination vector pDEST17.  
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Table 13. Stability and Solubility Screen 1. 

well Buffer Salt Additive 

# name mM pH name mM name mM 

A01 TricCl 100 7 

    A02 

  

7 NaCl 800 

  A03 

  

7 KCl 800 

  A04 
  

7 LiCl 800 
  A05 TricCl 100 8 

    A06 

   

NaCl 800 

  A07 

   

KCl 800 

  A08 

   

LiCl 800 

  A09 MOPS 100 6,5 

    A10 
   

NaCl 800 
  A11 

   
KCl 800 

  A12 

   

LiCl 800 

  B01 MOPS 100 7 

    B02 

   

NaCl 800 

  B03 
   

KCl 800 
  B04 

   
LiCl 800 

  B05 MOPS 100 7,5 

    B06 

   

NaCl 800 

  B07 

   

KCl 800 

  B08 

   

LiCl 800 

  B09 MOPS 100 8 
    B10 

   
NaCl 800 

  B11 

   

KCl 800 

  B12 

   

LiCl 800 

  C01 Tris 100 7,5 

    C02 

   

NaCl 800 

  C03 
   

KCl 800 
  C04 

   
LiCl 800 

  C05 Tris 100 8,5 

    C06 

   

NaCl 800 

  C07 

   

KCl 800 

  C08 

   

LiCl 800 

  C09 HEPES 100 6,5 
    C10 

   

NaCl 800 

  C11 

   

KCl 800 

  C12 

   

LiCl 800 

  D01 HEPES 100 7 

    D02 
   

NaCl 800 
  D03 

   
KCl 800 

  D04 

   

LiCl 800 

  D05 HEPES 100 7,5 

    D06 

   

NaCl 800 

  D07 

   

KCl 800 

  D08 
   

LiCl 800 
  D09 HEPES 100 8 

    D10 

   

NaCl 800 

  D11 

   

KCl 800 

  D12 

   

LiCl 800 

  E01 MES 100 5,5 

    E02 
   

NaCl 800 
  E03 

   
KCl 800 

  E04 

   

LiCl 800 

  E05 MES 100 6 

    E06 

   

NaCl 800 

  E07 

   

KCl 800 

  E08 
   

LiCl 800 
  E09 MES 100 6,5 

    E10 

   

NaCl 800 

  E11 

   

KCl 800 

  E12 

   

LiCl 800 

  F01 Bistris 100 5,5 

    F02 
   

NaCl 800 
  F03 

   
KCl 800 

  F04 

   

LiCl 800 
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F05 Bistris 100 6 

    F06 

   

NaCl 800 

  F07 
   

KCl 800 
  F08 

   

LiCl 800 

  F09 Bistris 100 6,5 

    F10 

   

NaCl 800 

  F11 

   

KCl 800 

  F12 
   

LiCl 800 
  G01 Bistris 100 7 

    G02 

   

NaCl 800 

  G03 

   

KCl 800 

  G04 

   

LiCl 800 

  G05 TricCl 100 7 NaCl 800 Chaps 20 

G06 TricCl 100 8 NaCl 800 Chaps 20 

G07 MOPS 100 6,5 NaCl 800 Chaps 20 

G08 MOPS 100 7 NaCl 800 Chaps 20 

G09 MOPS 100 7,5 NaCl 800 Chaps 20 

G10 MOPS 100 8 NaCl 800 Chaps 20 

G11 Tris 100 7,5 NaCl 800 Chaps 20 

G12 Tris 100 8,5 NaCl 800 Chaps 20 

H01 HEPES 100 6,5 NaCl 800 Chaps 20 

H02 HEPES 100 7 NaCl 800 Chaps 20 

H03 HEPES 100 7,5 NaCl 800 Chaps 20 

H04 HEPES 100 8 NaCl 800 Chaps 20 

H05 MES 100 5,5 NaCl 800 Chaps 20 

H06 MES 100 6 NaCl 800 Chaps 20 

H07 MES 100 6,5 NaCl 800 Chaps 20 

H08 Bistris 100 5,5 NaCl 800 Chaps 20 

H09 Bistris 100 6 NaCl 800 Chaps 20 

H10 Bistris 100 6,5 NaCl 800 Chaps 20 

H11 Bistris 100 7 NaCl 800 Chaps 20 

H12 H2O 
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Table 14. Stability and Solubility Screen 2 

well Buffer Salt 

# name mM pH name mM 

A01 TricCl 100 7 +KCl 100 

A02 
   

+KCl 200 

A03 
   

+KCl 300 

A04 
   

+KCl 400 

A05 TricCl 100 8 +KCl 100 

A06 
   

+KCl 200 

A07 
   

+KCl 300 

A08 
   

+KCl 400 

A09 MOPS 100 6,5 +KCl 100 

A10 
   

+KCl 200 

A11 
   

+KCl 300 

A12 
   

+KCl 400 

B01 MOPS 100 7 +KCl 100 

B02 
   

+KCl 200 

B03 
   

+KCl 300 

B04 
   

+KCl 400 

B05 HEPES 100 6,5 +KCl 100 

B06 
   

+KCl 200 

B07 
   

+KCl 300 

B08 
   

+KCl 400 

B09 HEPES 100 7 +KCl 100 

B10 
   

+KCl 200 

B11 
   

+KCl 300 

B12 
   

+KCl 400 

C01 HEPES 100 7,5 +KCl 100 

C02 
   

+KCl 200 

C03 
   

+KCl 300 

C04 
   

+KCl 400 

C05 HEPES 100 8 +KCl 100 

C06 
   

+KCl 200 

C07 
   

+KCl 300 

C08 
   

+KCl 400 

C09 MES 100 5,5 +KCl 100 

C10 
   

+KCl 200 

C11 
   

+KCl 300 

C12 
   

+KCl 400 

D01 MES 100 6 +KCl 100 

D02 
   

+KCl 200 

D03 
   

+KCl 300 

D04 
   

+KCl 400 

D05 MES 100 6,5 +KCl 100 

D06 
   

+KCl 200 

D07 
   

+KCl 300 

D08 
   

+KCl 400 

D09 Bistris 100 5,5 +KCl 100 

D10 
   

+KCl 200 

D11 
   

+KCl 300 

D12 
   

+KCl 400 

E01 Bistris 100 6 +KCl 100 

E02 
   

+KCl 200 

E03 
   

+KCl 300 

E04 
   

+KCl 400 

E05 Bistris 100 6,5 +KCl 100 

E06 
   

+KCl 200 

E07 
   

+KCl 300 

E08 
   

+KCl 400 

E09 PBS 100 7 +KCl 100 

E10 
   

+KCl 200 

E11 
   

+KCl 300 

E12 
   

+KCl 400 

F01 
   

+KCl 800 
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Figure 48. The comparison of remaining activity (%) of 50 inhibitors between DYRK1A 

(red) and DYRK1B (Blue) 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

DYRK1A

DYRK1B

R
em

ei
n
in
g
 A
ct
iv
it
y,
 %

 



 

101 
  

REFERENCES  
 

1  l bl, B , M ll  ,              , M  Protein kinases as drug targets.  (Wiley-VCH, 2011). 
2 Montminy, M. Transcriptional regulation by cyclic AMP. Annual review of biochemistry 66, 807-

822, doi:10.1146/annurev.biochem.66.1.807 (1997). 
3 Tasken, K. et al. Structure, function, and regulation of human cAMP-dependent protein kinases. 

Advances in second messenger and phosphoprotein research 31, 191-204 (1997). 
4 Manning, G., Plowman, G. D., Hunter, T. & Sudarsanam, S. Evolution of protein kinase signaling 

from yeast to man. Trends in biochemical sciences 27, 514-520 (2002). 
5 Hanks, S. K. & Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase 

(catalytic) domain structure and classification. FASEB journal : official publication of the Federation 
of American Societies for Experimental Biology 9, 576-596 (1995). 

6 Lindberg, R. A., Quinn, A. M. & Hunter, T. Dual-specificity protein kinases: will any hydroxyl do? 
Trends in biochemical sciences 17, 114-119 (1992). 

7 Weinberg, R. A. The biology of cancer. Second edition. edn. 
8 Alberts, B. Molecular biology of the cell. 4th edn,  (Garland Science, 2002). 
9 Cohen, P. The Croonian Lecture 1998. Identification of a protein kinase cascade of major 

importance in insulin signal transduction. Philosophical transactions of the Royal Society of 
London. Series B, Biological sciences 354, 485-495, doi:10.1098/rstb.1999.0399 (1999). 

10 Monaco, E. A., 3rd & Vallano, M. L. Role of protein kinases in neurodegenerative disease: cyclin-
dependent kinases in Alzheimer's disease. Frontiers in bioscience : a journal and virtual library 10, 
143-159 (2005). 

11 Cheshenko, N. et al. HSV activates Akt to trigger calcium release and promote viral entry: novel 
candidate target for treatment and suppression. FASEB journal : official publication of the 
Federation of American Societies for Experimental Biology 27, 2584-2599, doi:10.1096/fj.12-
220285 (2013). 

12 Noble, M. E., Endicott, J. A. & Johnson, L. N. Protein kinase inhibitors: insights into drug design 
from structure. Science 303, 1800-1805, doi:10.1126/science.1095920 (2004). 

13 Martin, E. D., De Nicola, G. F. & Marber, M. S. New therapeutic targets in cardiology: p38 alpha 
mitogen-activated protein kinase for ischemic heart disease. Circulation 126, 357-368, 
doi:10.1161/CIRCULATIONAHA.111.071886 (2012). 

14 Endicott, J. A. & Noble, M. E. Structural characterization of the cyclin-dependent protein kinase 
family. Biochemical Society transactions 41, 1008-1016, doi:10.1042/BST20130097 (2013). 

15 Eswaran, J. & Knapp, S. Insights into protein kinase regulation and inhibition by large scale 
structural comparison. Biochimica et biophysica acta 1804, 429-432, 
doi:10.1016/j.bbapap.2009.10.013 (2010). 

16 Ogawa, Y. et al. Development of a novel selective inhibitor of the Down syndrome-related kinase 
Dyrk1A. Nature communications 1, 86, doi:10.1038/ncomms1090 (2010). 

17 Johnson, L. N., Noble, M. E. & Owen, D. J. Active and inactive protein kinases: structural basis for 
regulation. Cell 85, 149-158 (1996). 

18 Becker, W. & Sippl, W. Activation, regulation, and inhibition of DYRK1A. The FEBS journal 278, 
246-256, doi:10.1111/j.1742-4658.2010.07956.x (2011). 

19 Lochhead, P. A., Sibbet, G., Morrice, N. & Cleghon, V. Activation-loop autophosphorylation is 
mediated by a novel transitional intermediate form of DYRKs. Cell 121, 925-936, 
doi:10.1016/j.cell.2005.03.034 (2005). 

20 Lochhead, P. A. et al. A chaperone-dependent GSK3beta transitional intermediate mediates 
activation-loop autophosphorylation. Molecular cell 24, 627-633, 
doi:10.1016/j.molcel.2006.10.009 (2006). 

21 Kornev, A. P., Haste, N. M., Taylor, S. S. & Eyck, L. F. Surface comparison of active and inactive 
protein kinases identifies a conserved activation mechanism. Proceedings of the National 



102 
 

Academy of Sciences of the United States of America 103, 17783-17788, 
doi:10.1073/pnas.0607656103 (2006). 

22 Vulpetti, A. & Bosotti, R. Sequence and structural analysis of kinase ATP pocket residues. Farmaco 
59, 759-765, doi:10.1016/j.farmac.2004.05.010 (2004). 

23 Walte, A. et al. Mechanism of dual specificity kinase activity of DYRK1A. The FEBS journal 280, 
4495-4511, doi:10.1111/febs.12411 (2013). 

24 Garrett, S. & Broach, J. Loss of Ras activity in Saccharomyces cerevisiae is suppressed by 
disruptions of a new kinase gene, YAKI, whose product may act downstream of the cAMP-
dependent protein kinase. Genes & development 3, 1336-1348 (1989). 

25 Raich, W. B. et al. Characterization of Caenorhabditis elegans homologs of the Down syndrome 
candidate gene DYRK1A. Genetics 163, 571-580 (2003). 

26 Tejedor, F. et al. minibrain: a new protein kinase family involved in postembryonic neurogenesis 
in Drosophila. Neuron 14, 287-301 (1995). 

27 Becker, W. et al. Sequence characteristics, subcellular localization, and substrate specificity of 
DYRK-related kinases, a novel family of dual specificity protein kinases. The Journal of biological 
chemistry 273, 25893-25902 (1998). 

28 Aranda, S., Laguna, A. & de la Luna, S. DYRK family of protein kinases: evolutionary relationships, 
biochemical properties, and functional roles. FASEB journal : official publication of the Federation 
of American Societies for Experimental Biology 25, 449-462, doi:10.1096/fj.10-165837 (2011). 

29 Himpel, S. et al. Specificity determinants of substrate recognition by the protein kinase DYRK1A. 
The Journal of biological chemistry 275, 2431-2438 (2000). 

30 Leder, S. et al. Cloning and characterization of DYRK1B, a novel member of the DYRK family of 
protein kinases. Biochemical and biophysical research communications 254, 474-479, 
doi:10.1006/bbrc.1998.9967 (1999). 

31 Lu, J., McKinsey, T. A., Zhang, C. L. & Olson, E. N. Regulation of skeletal myogenesis by association 
of the MEF2 transcription factor with class II histone deacetylases. Molecular cell 6, 233-244 
(2000). 

32 Deng, X., Ewton, D. Z., Pawlikowski, B., Maimone, M. & Friedman, E. Mirk/dyrk1B is a Rho-induced 
kinase active in skeletal muscle differentiation. The Journal of biological chemistry 278, 41347-
41354, doi:10.1074/jbc.M306780200 (2003). 

33 Mercer, S. E. et al. Mirk/Dyrk1B mediates survival during the differentiation of C2C12 myoblasts. 
The Journal of biological chemistry 280, 25788-25801, doi:10.1074/jbc.M413594200 (2005). 

34 Lee, K., Deng, X. & Friedman, E. Mirk protein kinase is a mitogen-activated protein kinase 
substrate that mediates survival of colon cancer cells. Cancer research 60, 3631-3637 (2000). 

35 Mercer, S. E., Ewton, D. Z., Shah, S., Naqvi, A. & Friedman, E. Mirk/Dyrk1b mediates cell survival in 
rhabdomyosarcomas. Cancer research 66, 5143-5150, doi:10.1158/0008-5472.CAN-05-1539 
(2006). 

36 Yang, C. et al. The kinase Mirk is a potential therapeutic target in osteosarcoma. Carcinogenesis 
31, 552-558, doi:10.1093/carcin/bgp330 (2010). 

37 Gao, J. et al. Mirk/Dyrk1B, a novel therapeutic target, mediates cell survival in non-small cell lung 
cancer cells. Cancer biology & therapy 8, 1671-1679 (2009). 

38 Hu, J. & Friedman, E. Depleting Mirk Kinase Increases Cisplatin Toxicity in Ovarian Cancer Cells. 
Genes & cancer 1, 803-811, doi:10.1177/1947601910377644 (2010). 

39 Friedman, E. Mirk/dyrk1B Kinase in Ovarian Cancer. International journal of molecular sciences 14, 
5560-5575, doi:10.3390/ijms14035560 (2013). 

40 Friedman, E. The Kinase Mirk/dyrk1B: A Possible Therapeutic Target in Pancreatic Cancer. Cancers 
2, 1492-1512 (2010). 

41 Zou, Y., Ewton, D. Z., Deng, X., Mercer, S. E. & Friedman, E. Mirk/dyrk1B kinase destabilizes cyclin 
D1 by phosphorylation at threonine 288. The Journal of biological chemistry 279, 27790-27798, 
doi:10.1074/jbc.M403042200 (2004). 



 

103 
  

42 Deng, X., Mercer, S. E., Shah, S., Ewton, D. Z. & Friedman, E. The cyclin-dependent kinase inhibitor 
p27Kip1 is stabilized in G(0) by Mirk/dyrk1B kinase. The Journal of biological chemistry 279, 
22498-22504, doi:10.1074/jbc.M400479200 (2004). 

43 Jin, K., Park, S., Ewton, D. Z. & Friedman, E. The survival kinase Mirk/Dyrk1B is a downstream 
effector of oncogenic K-ras in pancreatic cancer. Cancer research 67, 7247-7255, 
doi:10.1158/0008-5472.CAN-06-4099 (2007). 

44 Hu, J., Deng, H. & Friedman, E. A. Ovarian cancer cells, not normal cells, are damaged by 
Mirk/Dyrk1B kinase inhibition. International journal of cancer. Journal international du cancer 
132, 2258-2269, doi:10.1002/ijc.27917 (2013). 

45 Guimera, J. et al. A human homologue of Drosophila minibrain (MNB) is expressed in the neuronal 
regions affected in Down syndrome and maps to the critical region. Human molecular genetics 5, 
1305-1310 (1996). 

46 Park, J., Song, W. J. & Chung, K. C. Function and regulation of Dyrk1A: towards understanding 
Down syndrome. Cellular and molecular life sciences : CMLS 66, 3235-3240, doi:10.1007/s00018-
009-0123-2 (2009). 

47 Teipel, S. J. & Hampel, H. Neuroanatomy of Down syndrome in vivo: a model of preclinical 
Alzheimer's disease. Behavior genetics 36, 405-415, doi:10.1007/s10519-006-9047-x (2006). 

48 Kim, E. J. et al. Dyrk1A phosphorylates alpha-synuclein and enhances intracellular inclusion 
formation. The Journal of biological chemistry 281, 33250-33257, doi:10.1074/jbc.M606147200 
(2006). 

49 Kang, J. E., Choi, S. A., Park, J. B. & Chung, K. C. Regulation of the proapoptotic activity of 
huntingtin interacting protein 1 by Dyrk1 and caspase-3 in hippocampal neuroprogenitor cells. 
Journal of neuroscience research 81, 62-72, doi:10.1002/jnr.20534 (2005). 

50 Smith, B., Medda, F., Gokhale, V., Dunckley, T. & Hulme, C. Recent advances in the design, 
synthesis, and biological evaluation of selective DYRK1A inhibitors: a new avenue for a disease 
modifying treatment of Alzheimer's? ACS chemical neuroscience 3, 857-872, 
doi:10.1021/cn300094k (2012). 

51 LALIGN pairwise sequence alignment software, <http://www.ebi.ac.uk/Tools/psa/lalign/>  
52 Uniprot, <http://www.uniprot.org>  
53 Soundararajan, M. et al. Structures of Down syndrome kinases, DYRKs, reveal mechanisms of 

kinase activation and substrate recognition. Structure 21, 986-996, doi:10.1016/j.str.2013.03.012 
(2013). 

54 ClustalW2. <http://www.ebi.ac.uk/Tools/msa/clustalw2/>  
55 ESPript, <http://espript.ibcp.fr/ESPript/ESPript/>  
56 Cohen, P. Protein kinases--the major drug targets of the twenty-first century? Nature reviews. 

Drug discovery 1, 309-315, doi:10.1038/nrd773 (2002). 
57 Kurzrock, R., Kantarjian, H. M., Druker, B. J. & Talpaz, M. Philadelphia chromosome-positive 

leukemias: from basic mechanisms to molecular therapeutics. Annals of internal medicine 138, 
819-830 (2003). 

58 Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-
phenylaminopyrimidine derivative. Cancer research 56, 100-104 (1996). 

59 Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally 
developed, targeted anticancer drug. Nature reviews. Drug discovery 1, 493-502, 
doi:10.1038/nrd839 (2002). 

60 Li, R. & Stafford, J. A. Kinase inhibitor drugs.  (John Wiley & Sons, Inc, 2009). 
61 Eswaran, J. & Knapp, S. Insights into protein kinase regulation and inhibition by large scale 

structural comparison. Biochimica et biophysica acta 1804, 429-432, 
doi:10.1016/j.bbapap.2009.10.013 (2010). 

62 Aberg, E. et al. Structural origins of AGC protein kinase inhibitor selectivities: PKA as a drug 
discovery tool. Biological chemistry 393, 1121-1129, doi:10.1515/hsz-2012-0248 (2012). 

63 Davis, M. I. et al. Comprehensive analysis of kinase inhibitor selectivity. Nature biotechnology 29, 
1046-1051, doi:10.1038/nbt.1990 (2011). 

http://www.ebi.ac.uk/Tools/psa/lalign/
http://www.uniprot.org/
http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://espript.ibcp.fr/ESPript/ESPript/


104 
 

64 Ewton, D. Z. et al. Inactivation of mirk/dyrk1b kinase targets quiescent pancreatic cancer cells. 
Molecular cancer therapeutics 10, 2104-2114, doi:10.1158/1535-7163.MCT-11-0498 (2011). 

65 Ormerod, M. G. Flow cytometry : a practical approach. 3rd edn,  (Oxford University Press, 2000). 
66 Maestro, version 9.3, Schrödinger, LLC, New York, NY, 2012., 

<http://www.schrodinger.com/productpage/14/12/>  
67 Omura, S. et al. A new alkaloid AM-2282 OF Streptomyces origin. Taxonomy, fermentation, 

isolation and preliminary characterization. The Journal of antibiotics 30, 275-282 (1977). 
68 Podar, K., Raab, M. S., Chauhan, D. & Anderson, K. C. The therapeutic role of targeting protein 

kinase C in solid and hematologic malignancies. Expert opinion on investigational drugs 16, 1693-
1707, doi:10.1517/13543784.16.10.1693 (2007). 

69 Millward, M. J. et al. The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic 
melanoma: a phase IIA clinical and biologic study. British journal of cancer 95, 829-834, 
doi:10.1038/sj.bjc.6603331 (2006). 

70 Weisberg, E. et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule 
tyrosine kinase inhibitor PKC412. Cancer cell 1, 433-443 (2002). 

71 Fischer, T. et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 
receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and 
high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. Journal of clinical 
oncology : official journal of the American Society of Clinical Oncology 28, 4339-4345, 
doi:10.1200/JCO.2010.28.9678 (2010). 

72 Stone, R. M. et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in 
younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia 26, 2061-2068, 
doi:10.1038/leu.2012.115 (2012). 

73 Berg J.M. & J.L., T. Biochemistry, 5th edition.  (W. H. Freeman and Company, 2002). 
74 Schwender, J. r. Plant metabolic networks.  (Springer, 2009). 
75 Bisswanger, H. Enzyme kinetics : principles and methods. 2nd. rev. and updated edn,  (Wiley-VCH, 

2008). 
76 Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nature 

reviews. Cancer 9, 28-39, doi:10.1038/nrc2559 (2009). 
77 Cook, P. F., Neville, M. E., Jr., Vrana, K. E., Hartl, F. T. & Roskoski, R., Jr. Adenosine cyclic 3',5'-

monophosphate dependent protein kinase: kinetic mechanism for the bovine skeletal muscle 
catalytic subunit. Biochemistry 21, 5794-5799 (1982). 

78 Cheng, Y. & Prusoff, W. H. Relationship between the inhibition constant (K1) and the 
concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. 
Biochemical pharmacology 22, 3099-3108 (1973). 

79 Michaelis, L. & Menten, M. L. Die Kinetik der Invertinwirkung. Biochemische Zeitschrift 49, 333-
369 (1913). 

80 Briggs, G. E. & Haldane, J. B. S. A note on the kinetics of enzyme action. Biochem J 19, 338-339 
(1925). 

81 Segel, I. H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme 
Systems.  (Wiley Classics Library, 1993). 

82 Adams, J. A. Kinetic and catalytic mechanisms of protein kinases. Chemical reviews 101, 2271-
2290 (2001). 

83 Szafranska, A. E. & Dalby, K. N. Kinetic mechanism for p38 MAP kinase alpha. A partial rapid-
equilibrium random-order ternary-complex mechanism for the phosphorylation of a protein 
substrate. The FEBS journal 272, 4631-4645, doi:10.1111/j.1742-4658.2005.04827.x (2005). 

84 DYRK1B (NM_004714) Human cDNA Clone (OriGene), <http://www.origene.com/1/1/158040-
dyrk1b-nm-004714-human-cdna-clone-dyrk1b-clone-trueclone-np-004705.html>  

85 Uniprot database:  DYRK1B, code Q9Y463., <http://www.uniprot.org/uniprot/Q9Y463>  
86 Gateway® Cloning Technology, <http://www.lifetechnologies.com/no/en/home/life-

science/cloning/gateway-cloning.html>  

http://www.schrodinger.com/productpage/14/12/
http://www.uniprot.org/uniprot/Q9Y463


 

105 
  

87 Directional Topo® Cloning, 
<http://www.lifetechnologies.com/no/en/home/references/protocols/nucleic-acid-amplification-
and-expression-profiling/pcr-protocol/directional-topo-cloning.html>  

88 pENTR™ Directional TOPO® Cloning Kits, 
<http://tools.lifetechnologies.com/content/sfs/manuals/pentr_dtopo_man.pdf>  

89 Shuman, S. Recombination mediated by vaccinia virus DNA topoisomerase I in Escherichia coli is 
sequence specific. Proceedings of the National Academy of Sciences of the United States of 
America 88, 10104-10108 (1991). 

90 Vector NTI® Express Designer Software, 
<http://tools.lifetechnologies.com/content/sfs/manuals/VectorNTIExpress_Designer_UG.pdf>  

91 Plasmid 23761: pDONR223-DYRK1B, <http://www.addgene.org/23761/>  
92 DH5α™ Competent Cells user guide, 

<http://tools.lifetechnologies.com/content/sfs/manuals/subcloningefficiencydh5alpha_man.pdf>  
93 QIAprep Spin Miniprep Kit, <http://www.qiagen.com/products/catalog/sample-technologies/dna-

sample-technologies/plasmid-dna/qiaprep-spin-miniprep-kit#resources>  
94 PCR Protocol for Phusion® High-Fidelity DNA Polymerase, 

<https://www.neb.com/protocols/1/01/01/pcr-protocol-m0530>  
95 QIAquick® Gel Extraction Kit user guide  
96 One Shot® TOP10 Chemically Competent E. coli, 

<http://www.lifetechnologies.com/order/catalog/product/C404010>  
97 BigDye® Terminator v3.1 Cycle Sequencing Kit, 

<http://www.lifetechnologies.com/order/catalog/product/4337455>  
98 Katzen, F. Gateway((R)) recombinational cloning: a biological operating system. Expert opinion on 

drug discovery 2, 571-589, doi:10.1517/17460441.2.4.571 (2007). 
99 Gateway® Recombination Cloning Technology, 

<http://www.lifetechnologies.com/no/en/home/life-science/cloning/gateway-cloning/gateway-
technology.html>  

100 QuikChange Primer Design online software by Agilent Technologies. 
101 QuikChange II Site-Directed Mutagenesis Kit (Agilent Technologies), Instruction manual 

<http://www.chem.agilent.com/library/usermanuals/Public/200555.pdf>  
102 PfuTurbo DNA Polymerase (Agilent Technologies), Instruction manual, 

<http://www.chem.agilent.com/library/usermanuals/Public/600250.pdf>  
103 XL10-Gold Ultracompetent Cells (Agilent Technologies), 

<http://www.chem.agilent.com/library/usermanuals/Public/200315.pdf>  
104 BL21-CodonPlus Expression Competent Cells - Details & Specifications, 

<http://www.genomics.agilent.com/article.jsp?pageId=484>  
105 Affinity Chromatography Principals and Methods, Handbook from GE Healthcare.  (2007). 
106 Gelfiltration Principal and Method, Handbook by GE Healthcare.  (2010). 
107 Nanodrop 2000c, <http://www.nanodrop.com/productnd2000coverview.aspx>  
108 Ericsson, U. B., Hallberg, B. M., Detitta, G. T., Dekker, N. & Nordlund, P. Thermofluor-based high-

throughput stability optimization of proteins for structural studies. Analytical biochemistry 357, 
289-298, doi:10.1016/j.ab.2006.07.027 (2006). 

109 Pantoliano, M. W. et al. High-density miniaturized thermal shift assays as a general strategy for 
drug discovery. Journal of biomolecular screening 6, 429-440, doi:10.1089/108705701753364922 
(2001). 

110 Dupeux, F., Rower, M., Seroul, G., Blot, D. & Marquez, J. A. A thermal stability assay can help to 
estimate the crystallization likelihood of biological samples. Acta crystallographica. Section D, 
Biological crystallography 67, 915-919, doi:10.1107/S0907444911036225 (2011). 

111 Thermal Shift (FTS) Assay, A. N. L. 
112 (HR2-072), S. S. S. u. g. b. H. r. <http://hamptonresearch.com/documents/product/hr003755_2-

072_user_guide.pdf>  

http://www.lifetechnologies.com/no/en/home/references/protocols/nucleic-acid-amplification-and-expression-profiling/pcr-protocol/directional-topo-cloning.html
http://www.lifetechnologies.com/no/en/home/references/protocols/nucleic-acid-amplification-and-expression-profiling/pcr-protocol/directional-topo-cloning.html
http://tools.lifetechnologies.com/content/sfs/manuals/pentr_dtopo_man.pdf
http://tools.lifetechnologies.com/content/sfs/manuals/VectorNTIExpress_Designer_UG.pdf
http://www.addgene.org/23761/
http://tools.lifetechnologies.com/content/sfs/manuals/subcloningefficiencydh5alpha_man.pdf
http://www.neb.com/protocols/1/01/01/pcr-protocol-m0530
http://www.lifetechnologies.com/order/catalog/product/C404010
http://www.lifetechnologies.com/order/catalog/product/4337455
http://www.lifetechnologies.com/no/en/home/life-science/cloning/gateway-cloning/gateway-technology.html
http://www.lifetechnologies.com/no/en/home/life-science/cloning/gateway-cloning/gateway-technology.html
http://www.chem.agilent.com/library/usermanuals/Public/200555.pdf
http://www.chem.agilent.com/library/usermanuals/Public/600250.pdf
http://www.chem.agilent.com/library/usermanuals/Public/200315.pdf
http://www.genomics.agilent.com/article.jsp?pageId=484
http://www.nanodrop.com/productnd2000coverview.aspx


106 
 

113 Ludwig, C. Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösungen. 
Sitzungsbericht. Kaiser. Akad. Wiss. (Mathem.-Naturwiss. Cl.), Wien 65 (1856). 

114 Baaske, P., Wienken, C. J., Reineck, P., Duhr, S. & Braun, D. Optical thermophoresis for quantifying 
the buffer dependence of aptamer binding. Angewandte Chemie 49, 2238-2241, 
doi:10.1002/anie.200903998 (2010). 

115 Wienken, C. J., Baaske, P., Rothbauer, U., Braun, D. & Duhr, S. Protein-binding assays in biological 
liquids using microscale thermophoresis. Nature communications 1, 100, 
doi:10.1038/ncomms1093 (2010). 

116 MicroScale Thermophoresis (MST), <http://www.nanotemper-
technologies.com/technology/microscale-thermophoresis/article/background/>  

117 Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P. & Duhr, S. Molecular interaction 
studies using microscale thermophoresis. Assay and drug development technologies 9, 342-353, 
doi:10.1089/adt.2011.0380 (2011). 

118 Rhodes, G. Crystallography made crystal clear : a guide for users of macromolecular models. 3rd 
edn,  (Elsevier/Academic Press, 2006). 

119 JCSG-plus™ initial crystallization screen 
<http://www.moleculardimensions.com/shopexd.asp?id=2541>  

120 Wizard I and II Crystallization screen ( Emerald Bio) instruction sheet, 
<http://www.rigakureagents.com/UploadDocuments/Wizard%20Classic%20Screen_Instruction_S
heet_Rigaku.pdf>  

121 Hui, R. & Edwards, A. High-throughput protein crystallization. Journal of structural biology 142, 
154-161 (2003). 

122 Hampton Reasearch. Additive Screen HT (HR2-428) User Guide 
<http://hamptonresearch.com/documents/product/hr003789_binder1.pdf>  

123 Krug, M., Weiss, M. S., Heinemannb, U. & Muellera, U. XDSAPP: a graphical user interface for the 
convenient processing of diffraction data using XDS. Applied Crystallography, 568-572 (2012). 

124 Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. 
Cryst. 30, 1022-1025 (1997). 

125 Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta 
crystallographica. Section D, Biological crystallography 56, 1622-1624 (2000). 

126 Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta crystallographica. 
Section D, Biological crystallography 67, 235-242, doi:10.1107/S0907444910045749 (2011). 

127 Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 
program suite. Acta crystallographica. Section D, Biological crystallography 59, 1131-1137 (2003). 

128 Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the 
maximum-likelihood method. Acta crystallographica. Section D, Biological crystallography 53, 
240-255, doi:10.1107/S0907444996012255 (1997). 

129 Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure 
solution. Acta crystallographica. Section D, Biological crystallography 66, 213-221, 
doi:10.1107/S0907444909052925 (2010). 

130 Li, J. et al. [Research on the selective kinetics of HIV-1 nucleoside reverse transcriptase inhibitor 
drug resistance-associated mutations among 4 AIDS patients receiving highly active antiretroviral 
therapy]. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi 29, 794-800 (2008). 

131 Mercaptoethanol - compound Summary (Pubchem), 
<http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=1567>  

132 Tahtouh, T. et al. Selectivity, cocrystal structures, and neuroprotective properties of leucettines, a 
family of protein kinase inhibitors derived from the marine sponge alkaloid leucettamine B. 
Journal of medicinal chemistry 55, 9312-9330, doi:10.1021/jm301034u (2012). 

133 Gockler, N. et al. Harmine specifically inhibits protein kinase DYRK1A and interferes with neurite   
formation. The FEBS journal 276, 6324-6337, doi:10.1111/j.1742-4658.2009.07346.x (2009). 

 
 

http://www.moleculardimensions.com/shopexd.asp?id=2541
http://www.rigakureagents.com/UploadDocuments/Wizard%20Classic%20Screen_Instruction_Sheet_Rigaku.pdf
http://www.rigakureagents.com/UploadDocuments/Wizard%20Classic%20Screen_Instruction_Sheet_Rigaku.pdf
http://hamptonresearch.com/documents/product/hr003789_binder1.pdf
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=1567


 

107 
  

 
 
 


