UiT

THE ARCTIC UNIVERSITY OF NORWAY

Mapping ecosystem services in the Arctic by cross-cultural mapping

Vera Helene Hausner Jen Schmidt Dorothee Ehrich

Arctic coastal tundra: mostly small resource dependent communities on vast territories

- 7 mill. km²
- Green = < 500 population size
- ~75% indigenous
- Ice-free areas higher population densities and accessibility

Data sources: Official Statistics from each country

Changes in Arctic communities affecting spatial land use

Industrial development

Demographic changes

OVERALL QUESTION IN TUNDRA:

How does governance and access to cash income influence spatial use and locally important ecosystem services?

High

Quasi experimental design

- 26 communities with contrasts in:
 - Governance
 - Access to cash income

This presentation:

Methodological challenges of cross-cultural mapping

Did we do PPGIS or PGIS, or just cross-cultural mapping of ecosystem services?

Characteristics of the mapping ecosystem services according to Brown and Kyttä (2014)						
Characteristics	Mapping in our case	PPGIS	PGIS			
Process emphasis	Causal, but desire to inform land use	Inform land use	Empowerment			
Sponsors	Research Council	Government	NGO			
Global context	Arctic region	Developed	Developing			
Place context	Multiscale	Urban and regional	Rural			
Data quality	Comparability	Primary	Secondary			
Sampling	Key-informant, heterogenity	Probability	Purposive			
Data collection	Individual followed by workshops	Individual	Collective			
Data ownership	Research consortium and community	Sponsors Community				
Mapping	Paper mapping, three scales	Digital	Non-digital			

Key informants and cross-cultural mapping

Demography		Leaders	Active	Total
Male	Younger	2	2	4
	Elders	2	2	4
Female	Younger	2	2	4
	Elders	2	2	4
Total		8	8	16

Quota sampling (2 weeks)

Sampled to maximise heterogenity among participants

Community involvement

- Avoid helicopter research
- Visited key local leaders first
- Community workshops for feedback

Inductive, but comparative approach to mapping

- 1. <u>Started</u> with places visited and activities the last year to make it comparable across cultures?
- 2. <u>Next</u> we mapped important places, that were not visited last year.
- 3. <u>Finally participants ranked the</u> importance of 5 places explaining why they were important for them.

Those participating in designing interviews were field leaders to ensure comparability

<u>Challenge 1</u> Extensiveness: Use areas for just four small subsistence communities in Canada is almost the size of Germany

Harvest vs non-harvest show that Churchill in Manitoba has more non-harvest activities going on due to tourism.

<u>Challenge 2:</u> Few key informants could change the harvest/non-harvest ratio substantially

Challenge 3:

In Norway we have much higher diversity of recreational use and large overlap among users.

Challenge 4:

Most people included less than 3 places on the priority list, and especially in North America people don't see the point of prioritising among areas

Categories of ecosystem services identified as important in the top places

Harvest, social and cultural values are interconnected:

Visiting friends and family in tundra, camps often for several week, while participating in harvest activities is important for people

No sharp border between nature use and social activities

Challenge 5: interconnectedness among ecosystem services

Nvivo – qualitative coding of why top places are important, including heterogenity among individual users

THANK YOU!

TUNDRA TEAM - DESIGN

- Else Grethe Broderstad (Centre for Sami Studies, UiT)
- Dorothee Ehrich (UiT)
- Jen Schmidt, Terry Chapin (University of Alaska, Fairbanks)
- Douglas Clark, Nils Lokken (Univerity of Saskachewan)
- Konstantin Klokov (St Petersburg State University)
- Per Fauchald (Norwegian Institute for Nature Research)

ALL FIELD WORKERS AND CONTRIBUTORS

