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Determining maternal concentrations of per- and polyfluoroalkyl substances (PFASs) and the relative impact of
various demographic and dietary predictors is important for assessing fetal exposure and for developing proper
lifestyle advisories for pregnant women.
This study was conducted to investigate maternal PFAS concentrations and their predictors in years when the
production and use of several PFASs declined, and to assess the relative importance of significant predictors.
Blood from 391 pregnant women participating in The Northern Norway Mother-and-Child Contaminant Cohort
Study (MISA) was collected in the period 2007–2009 and serum analyses of 26 PFASs were conducted. Associa-
tions between PFAS concentrations, sampling date, and demographic and dietary variables were evaluated by
multivariate analyses and linear models including relevant covariates.
Parity was the strongest significant predictor for all the investigated PFASs, and nulliparous women had higher
concentrations compared to multiparous women (10 ng/mL versus 4.5 ng/mL in median PFOS, respectively).
Serum concentrations of PFOS and PFOA of women recruited day 1–100 were 25% and 26% higher, respectively,
compared to those women recruited in the last 167 days of the study (day 601–867), and the concentrations of
PFNA, PFDA and PFUnDA increased with age. Dietary predictors explained 0–17% of the variation in concentra-
tions for the different PFASs. Significantly elevated concentrations of PFOS, PFNA, PFDA and PFUnDA were
found among high consumers ofmarine food. The concentrations of PFHxS, PFHpS and PFNAwere also increased
in high consumers of game and elevated concentrations of PFHpS and PFOS were detected in high consumers
of white meat. Study subjects with a high intake of salty snacks and beef had significantly higher concentrations
of PFOA.
The present study demonstrates that parity, sampling date and birth year are the most important predictors for
maternal PFAS concentrations in years following a decrease in production and use of several PFASs. Further,
dietary predictors of PFAS concentrations were identified and varied in importance according to compound.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Per- and polyfluoroalkyl substances (PFASs) are fluorinated aliphatic
substances, widely used in consumer products like textiles, paper prod-
ucts and lubricants (Lehmler, 2005). The most studied compounds to
date are perfluoroalkyl carboxylic acids (PFCAs), like perfluorooctanoate
(PFOA) and perfluoroalkyl sulfonic acids (PFSAs), like perfluorooctane
sulfonate (PFOS) (D'eon andMabury, 2011; Martin et al., 2010). Several
PFASs are persistent substances that have been directly emitted to the
environment during their production and use (Prevedouros et al.,
2006). PFASs have been produced since the 1950s with increasing
intensities from 1966 to the 1990s. The production remained constant
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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from 1990 to 2000 until a phase-out was announced in 2000, resulting
in a rapid drop of PFOS related compounds from the year 2002 (Paul
et al., 2009).

Concerns about the persistence of PFASs in the environment, bioac-
cumulation potential and risk for toxicological effects in animals
and humans have classified PFOS as a persistent organic pollutant
(POP) (Stockholm convention, 2009). Restricted use of PFOSwas imple-
mented in Europe from June 2008 (European Parliament, 2006) and
in the US in 2001 (Paul et al., 2009). In addition, the US launched
the “PFOA Stewardship Program” (US EPA, 2006) where eight of the
major PFOA-producing companies committed to reduce emissions
of PFOA and related chemicals by 95% by 2010. In Norway, the ban of
PFOA in Norwegian consumer products by 1st of June 2014was recently
announced (Miljøverndepartementet, 2013).

Following the regulatory initiatives, a decrease in PFOS and PFOAhas
been observed in humans in later years (Calafat et al., 2007; Glynn et al.,
2012; Haug et al., 2009; Schroter-Kermani et al., 2012). Conversely,
a decreasing time trend has not been observed for longer chained
PFCAs (Buck et al., 2011). Still, there are concerns about potential
human health effects of PFASs such as hormonal changes, hepato-
toxicity, developmental toxicity and immunotoxicity (Grandjean and
Budtz-Jorgensen, 2013; Grandjean et al., 2012; Lau et al., 2007). PFASs
are transferred from the mother to the fetus via the placenta during
pregnancy and frommothersmilk postpartum (Liu et al., 2011). Fetuses
and infants are thereby exposed to these compounds at critical develop-
mental stages.

Diet is currently suspected to be the major on-going exposure
route of PFASs for humans (Fromme et al., 2009; Haug et al., 2011a;
Vestergren and Cousins, 2009). In addition, these chemicals are passed
to humans through air, house dust, drinking water and water based
beverages (Eschauzier et al., 2013; Haug et al., 2011a, 2011b; Ullah
et al., 2011). Elevated concentrations of PFASs have been associated
with consumption of marine food (Berger et al., 2009; Haug et al.,
2010b; Rylander et al., 2009; Vestergren et al., 2012), but also to con-
sumption of red meat, animal fat and snacks (Halldorsson et al., 2008;
Haug et al., 2010a; Noorlander et al., 2011; Ostertag et al., 2009;
Vestergren et al., 2012).

Cross-sectional population studies of polychlorinated biphenyls
have demonstrated increasing concentrations with age that reflect
birth year dependent past exposures due to time-variant emission
(Alcock et al., 2000; Moser and McLachlan, 2002; Nost et al., 2013;
Ritter et al., 2009). Similar relationship of individual exposures and to
historic production and use could be expected for PFAS concentrations
in the general population. We hypothesize that individual maternal
PFAS exposures are largely influenced by variables such as sampling
date, dietary habits, birth year, parity and breastfeeding. Further, con-
centrations of PFASs in maternal blood during pregnancy are relevant
as indicator of the exposure experienced by the fetus (Verner et al.,
2009). Therefore, the aims of the study were to investigate maternal
PFAS concentrations and their predictors in years when production
and use of several PFASs declined, and to assess the relative importance
of significant predictors.

2. Materials and methods

2.1. Study participants and collection of blood samples

The selected subjects in the present study represent the 391women
who completed The Northern Norway Mother-and-Child Contaminant
Cohort Study (MISA) which consists of 515 enrolled pregnant women,
recruited from June 2007 to October 2009 (recruitment period;
867 days). All participants answered a detailed questionnaire about
diet and lifestyle at enrolment, and donated a blood sample at three
time points (around gestational week 20, 3 days after delivery and
6 weeks after delivery). Detailed information about the study group
characteristics, ethical approvals, the food frequency questionnaire
(FFQ), dietary calculations and the blood collection procedures have
been reported elsewhere (Hansen et al., 2010; Veyhe et al., 2012).
Blood samples donated at mean gestational week 18.6 (9–36) were an-
alyzed for a variety of PFASs. Thirteenwomen did not complete the food
frequency questionnaire adequately, thus the total number included in
the statistical analyses was 378.

2.2. Chemical analyses

A total of 26 PFASs, thirteen PFCAs (C4-C14, C16, C18), six PFSAs
(C4-C8, C10), three phosphonic acids (C6, C8, C10), three fluortelomer
sulfonates (4:2, 6:2, 8:2) and one perfluroalkyl sulfonamide (C8),
were initially screened for in a sub-group of 50 serum samples.
PFASs detected (NLOD) in more than 20% of the samples were further
quantified in the remaining serum samples (N = 391). Analytes were
determined in serum samples using sonication-facilitated liquid–liquid
extraction, activated ENVI-carb clean-up (Powley et al., 2005) and ana-
lyzed by ultrahigh pressure liquid chromatography triple–quadrupole
mass-spectrometry (UHPLC-MS/MS). The sample preparation, treat-
ment and extraction were performed as described by Hanssen et al.
(2013) except for the volumes used; 25 μL of an 0.1 ng/μL internal stan-
dard mixture was added to 0.25 mL serum before the addition of 1 mL
methanol. 20 μL of a 0.1 ng/μL branched PFDA solution was added as
the recovery standard. Prior to analysis, an aliquot of 100 μL extract
was transferred to a vial and mixed with an equal amount of 2 mM
aqueous ammoniumacetate (NH4OAc, ≥99%, Sigma-Aldrich, St. Louis,
MO, USA). The analytical method, reagents and instrumentation are
described in detail by Hanssen et al. Briefly, 10 μL was injected on a
Acquity UPLC HSS T3 column (2.1 × 100mm, 1.8 μm) (Waters Corpora-
tion, Milford, MA, USA) coupled to an Acella 1250 UHPLC pump and a
TSQ Vantage (Thermo Fisher Scientific Inc., Waltham,MA, USA). Details
on compounds analyzed, analytical conditions, the parent ions, moni-
tored transitions, collision energies and S-lens settings are provided in
the supplemental material Table S1. Quantification was conducted
using the LCQuan software from Thermo Scientific (Thermo Fisher Sci-
entific Inc., Waltham, MA, USA; Version 2.6).

2.3. Quality control

Quantification of the contaminants was performed by the internal-
standard addition method with isotope-labeled PFASs (Hanssen et al.,
2013). Concentrations of PFASs in all samples were within the linear
range of the instrument and the calibration curve. For each compound
in the mass spectrometry analyses, a second mass transition served to
confirm compound specificity. The quality of the analysis was assured
through repetitive analysis of blank samples and reference samples.
One standard reference material (SRM1957® from the National Insti-
tute of Standards and Technology, Gaithersburg, MD, USA; N = 31),
one bovine serum blank and one water blank were prepared for
each batch of 30 samples. Validation data (recoveries, LODs and linear
regression values for the calibration curves) and analytical uncer-
tainties for certified concentrations in SRMs are available in the sup-
plemental material Tables S2, S3 and S4. Additionally, our laboratory
participates in the Artic Monitoring and Assessment Programme ring
test for POPs in human serum, an international comparison program,
organized by Institut National de Santé Publique du Québec, Canada
(Institut national de santé publique du Québec, 2014). Interlaboratory
comparisons indicate that the uncertainties of our analysis are within
±15–20% of the assigned values. The linear PFOS isomers was chro-
matographically separated from the branched isomers and quantified
separately. The coelution of branched isomers (quantified as one
peak) was not structurally elucidated but rather identified as eluting
earlier than the linear PFOS as described elsewhere (Rylander et al.,
2009). The internal standard for linear PFOS was used for quantifica-
tion of the branched isomers as well (Arsenault et al., 2008). When
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discussing PFOS results, it is the sum of linear and branched isomers
unless otherwise is specified.

2.4. Statistical analyses

Statistical analyses were performed using SPSS statistic software,
version 19 (IBM SPSS Inc. Chicago, IL, USA) with the partial least square
(PLS) extension module (integration plug-in for Python). In statistical
analyses, concentrations below LODs were replaced by LOD/√2 (Anda
et al., 2007) and only compounds with detection frequencies above
80% were evaluated in statistical models. Different lifestyle variables
(demographic, dietary and date of blood sampling) were evaluated as
possible predictors of PFAS concentrations. Parity and total months of
breastfeeding were highly correlated (r = 0.92, p b 0.0001) and as in-
formation about nursing was missing for 24 participants, only parity
was selected in the statistical models, representing the number of
child births (live born) and breastfeeding. The impact of breastfeeding
on PFAS concentrations was studied in multiple linear regressions,
adjusting for time passed since last breastfeeding period. Partial least
square (PLS) regressions were used for data reduction and for selecting
variables of specific interest, which were further studied using analysis
of covariance (ANCOVA). For the latter analyses, the study group was
divided into three or four groups (percentiles) according to their con-
sumption of the selected dietary variables. Details on the statistical
analyses, lifestyle variables and consumption groups are provided in
the supplemental material, page 5 and Table S5. We conducted a sensi-
tivity analysis by removing six potential outliers and applied the same
statistical methods on the reduced data set; however, overall results
did not change substantially, and hence all samples were included in
the final models.

3. Results

Study population characteristics and dietary intake for the MISA
study group are presented in the supplemental material Table S5.

3.1. PFAS concentrations in the study population

Serum concentrations of 10 PFASs with detection frequencies
N16% are presented in Table 1. PFOS was the dominating compound
followed by PFOA, PFNA, PFHxS, PFUnDA, PFDA and PFHpS. A total
of 26 compounds were targeted in a sub-group of 50 samples, but
Table 1
Serum concentrations of PFASs (ng/mL) in the study group (N = 391).

Concentration (ng/mL) Median AM Range LOD % N LOD

PFHxS 0.44 0.61 bLOD–14.8 0.06 99
PFHpS 0.10 0.12 bLOD–1.10 0.06 80
∑PFOS 8.03 8.81 0.30–35.8 0.31
PFOS Linear 4.66 5.10 bLOD–19.1 0.31 100
PFOS Branched 3.37 3.71 bLOD–18.2 0.14 100
% linear PFOS 59.0 59.1 36.0–80.0 N/A
FOSA N/A N/A bLOD–0.38 0.01 42
PFHpA N/A N/A bLOD–0.45 0.03 16
PFOA 1.53 1.70 0.28–11.0 0.07 100
PFNA 0.56 0.67 0.15–4.36 0.04 100
PFDA 0.23 0.26 0.05–2.34 0.03 100
PFUnDA 0.26 0.30 0.03–1.46 0.02 100
PFDoDA 0.03 0.04 bLOD–0.20 0.03 50

AM, arithmetic mean; LOD, method detection limit; % N LOD, percentage of samples
in which the analyte was detected; N/A, not available; PFHxS, pefluorohexane
sulfonate; PFHpS, perfluoroheptane sulfonate; ΣPFOS, sum of branched and linear
perfluorooctane sulfonate; % linear PFOS, percentage linear PFOS related to PFOS; FOSA,
perfluorooctane sulfonamide; PFHpA, perfluoroheptanoate; PFOA, perfluorooctanoate;
PFNA, perfluorononanoate; PFDA, perfluorodecanoate; PFUnDA, perfluoroundecanoate;
PFDoDA, perfluorododecanoate.
the shortest chained PFSAs (C4-C5) and PFCAs (C4-C7), as well as the
phosphonic acids and fluortelomer sulfonates, were not detected
above LODs (supplemental material, Table S2) and therefore not calcu-
lated in the remaining 341 samples.
3.2. Parity, breastfeeding and time related predictors

In the PLS regressions PFHxS, PFHpS, PFOS and PFOA co-varied and
were associated with parity and sampling date, whereas PFNA, PFDA
and PFUnDA co-varied and were associated with parity, age and body
mass index (BMI). For further details on the PLS regressions, see supple-
mental material Figs. S1 and S2. Parity was the strongest significant
predictor for all the investigated PFASs, demonstrating decreasing
concentrations with increasing parity in ANCOVA models (Table 2
and Fig. 1). Additionally, investigating the association between the
duration of breastfeeding and PFAS concentrations in multiple linear
regressions demonstrated that total months of breastfeeding (exclu-
sively and mixed breastfeeding) were significantly associated with
serum concentrations of PFHpS, PFOS and PFOA, across parity groups.
Indeed, concentrations decreased by 1.1% for PFHpS (p = 0.006), 0.9%
for PFOS (p = 0.005) and 1.0% for PFOA (p = 0.000), per month of
breastfeeding. The date of sampling was significantly associated with
concentrations of PFHxS, PFHpS, PFOS, PFOA and PFNA. The mean
decrease in PFOS and PFOA concentrations were 0.5 and 0.1 ng/mL
per 100 days from the study start, respectively. The corresponding de-
creases for PFHxS, PFHpS and PFNA were 0.03, 0.003 and 0.01 ng/mL,
respectively (Table 2). The investigation of the impact of recruitment
date on PFAS concentrations included all women, yet conducting sepa-
rate analyses for nulliparous and parous women (adjusted for time
passed since last pregnancy) resulted in the same significant results
(not presented). Age was significantly associated with concentrations
of PFNA, PFDA and PFUnDA, and the increase for each year was 2%,
5% and 4%, respectively (Table 2). BMI was significantly associated
with PFDA and PFUnDA and concentrations decreased by 1% and 4%
for each unit increase in BMI, respectively (Table 2).
3.3. Dietary predictors

Based on the PLS results the following dietary variables were identi-
fied as relevant predictors of interest for PFAS: (i) A cluster of marine
food and meat variables, salty snacks and berries for PFHxS, PFHpS
and PFOS (supplemental material, Fig. S1); (ii) salty snacks and beef
for PFOA (Fig. S1); and (iii) a cluster of marine food and meat variables,
tea, berries and coffee for PFNA, PFDA and PFUnDA (supplemental
material, Fig. S2). Including dietary variables while adjusting for signif-
icant demographic predictors and sampling date, in ANCOVA models
(Table 3), increased the explained variation (0–17% R2 change) for
most compounds, compared to the initial models including only demo-
graphic predictors and sampling date (Table 2). The largest increase
in explained variation by the models was observed for PFNA followed
by PFUnDA N PFDA N PFHxS N PFHpS N PFOS and PFOA. The adjusted
values demonstrated that high consumers ofmarine foodhad significant-
ly elevated concentrations of PFOS (23% difference between the highest
and the lowest intake groups, Table 3), PFNA (11%), PFDA (29%) and
PFUnDA (41%). Also, high consumers of game had elevated concentra-
tions of PFHxS (20%difference between the highest and the lowest intake
groups), PFHpS (21%), and PFNA (16%), and for whitemeat, PFHpS (14%)
and PFOS (15%). Further, high consumers of beef and salty snacks had
13% and 19% higher PFOA concentrations compared to low consumers,
respectively. Although the PLS regressions indicated a significant positive
association between salty snacks, vegetables, berries, tea and coffee, with
several of the PFASs, the concentrations in the respective intake groups
were not significantly different after adjusting for significant demograph-
ic predictors in ANCOVA models (results not presented).



Table 2
The effect of significant predictors on the concentration of selected PFASs. Parameter estimatesa, group differences, 95 % confidence intervals (CI) and p values.

PFHxSc PFHpSc PFOSc PFOAc

Predictor N Ŷ Diff 95 % CI p Ŷ Diff 95 % CI p Ŷ Diff 95 % CI p Ŷ Diff 95 % CI p

Number of children (Parity)b

0 150 0.59 - - - 0.11 - - - 10.1 - - - 2.42 - - -
1 135 0.37 −0.22 (−0.27, −0.15) 0.00 0.09 −0.02 (−0.03, −0.05) 0.00 7.30 −2.84 (−3.58, −2.00) 0.00 1.33 −1.01 (−1.13, −0.88) 0.00
2 69 0.34 −0.25 (−0.31, −0.18) 0.00 0.08 −0.03 (−0.05, −0.02) 0.00 6.18 −3.92 (−4.69, −3.05) 0.00 1.31 −1.22 (−1.34, −1.09) 0.00
3–4 24 0.24 −0.35 (−0.41, −0.27) 0.00 0.06 −0.05 (−0.06, -0.03) 0.00 4.53 −5.57 (−6.39, −4.57) 0.00 0.86 −1.47 (−1.59, −1.29) 0.00
Sampling date (per 100 days) 0.56 −0.03 (−0.05, −0.01) 0.00 0.11 −0.003 (−0.006, −0.001) 0.01 9.61 −0.49 (−1.91, −0.25) 0.00 2.30 −0.10 (−0.13, −0.03) 0.00
R2 (%) 15 11 21 44

PFNAd PFDAe PFUnDAe

Predictor N Ŷ Diff 95% CI p Ŷ Diff 95 % CI p Ŷ Diff 95% CI p

Number of children (Parity)b

0 150 0.47 - - - 0.20 - - - 0.25 - - -
1 135 0.36 −0.11 (−0.17, −0.08) 0.00 0.16 −0.04 (−0.06, −0.02) 0.00 0.19 −0.06 (−0.08, −0.03) 0.00
2 69 0.34 −0.13 (−0.17, −0.08) 0.00 0.15 −0.05 (−0.07, −0.02) 0.00 0.20 −0.05 (−0.08, −0.02) 0.00
3–4 24 0.27 −0.20 (−0.24, −0.14) 0.00 0.13 −0.07 (−0.09, −0.04) 0.00 0.14 −0.11 (−0.14, −0.07) 0.00
Sampling date (per 100 days) 0.46 −0.01 (−0.02, −0.003) 0.02
Age (Per year) 0.48 0.01 (0.001, 0.01) 0.03 0.21 0.01 (0.006, 0.01) 0.00 0.26 0.01 (0.01, 0.02) 0.00
BMI (Per unit) 0.20 −0.001 (−0.005, −0.001) 0.03 0.24 −0.01 (−0.01, −0.003) 0.00
fR2 (%) 12 11 15

a Predicted PFAS concentrations (Ŷ) from the respective ANCOVA models. Predicted concentrations are back-transformed from log estimates and are expressed in units of ng/mL.
b The estimated change in PFASs in ng/mL across the number of previous born children with 0 previous births as reference group.
c Sampling date is included as a covariate in the model. Parity is included as a fixed factor.
d Sampling date and age are included as covariates in the model. Parity is included as a fixed factor.
e Age and BMI are included as a covariates in the model. Parity is included as a fixed factor.
f R2 = The proportion of variation in the concentrations of the contaminant which is explained by the model.
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Fig. 1. Concentrations of the two most prevalent PFASs in serum of pregnant women ac-
cording to parity: 0 (N= 150); 1 (N= 135); 2 (N= 69); 3–4 (N= 24). Asterisk denotes
significant difference betweenparity groups (p b 0.05, pairwise comparisons: Bonferroni).
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4. Discussion

This study investigates a wide range of PFASs and their lifestyle
predictors in a cohort of pregnant women from Northern Norway
enrolled in the period 2007–2009. Considering the decline observed
in human serum since the early 2000s (Glynn et al., 2012; Haug et al.,
2009; Kato et al., 2011; Okada et al., 2013; Olsen et al., 2012;
Schroter-Kermani et al., 2012), the measured concentrations in the
present study are low. Mean serum concentrations of PFOS, PFOA,
PFNA, PFDA and PFUnDA in primiparous women in the present study
were in the same range as those measured in primiparous women in
Sweden in the years 2006–2008 (Glynn et al., 2012). Concentrations
of PFHxS, PFOS and PFOA were lower compared to those in plasma
from Norwegian pregnant women sampled in 2003–2004 (medians:
8.03 ng/mL versus 13.0 ng/mL for PFOS, respectively), whereas the
PFNA concentrationswere higher (Brantsaeter et al., 2013). The internal
validity of the dietary information is considered good based on previous
validation of the FFQ (Hjartaker et al., 2007) and intake of total energy
and micronutrients are comparable to those in similar age groups in
the Norwegian population (Helsedirektoratet, 2013; Veyhe et al.,
2012). Overall results indicated that parity explained variation in
concentrations for all PFASs,while other lifestyle variableswere of vary-
ing importance according to compound.

4.1. Parity and breastfeeding

Our results underline that information on the number of child births
and breastfeeding is important in the evaluation of PFAS concentrations
in women. In the current study, nulliparous women had higher concen-
trations of all PFASs, compared to multiparous women. Similar results
were observed in another study in Norway, where parity was the
determinant with the largest influence on maternal PFAS concentra-
tions (Brantsaeter et al., 2013). Serum concentrations decreased
(range 1.1–2.8 ng/mL for PFOS) with increasing parity for all PFASs. In
this study we could not separate the effect of breastfeeding from parity
as a predictor of PFASs. Still, elimination through breast milk is believed
to be greater than the transference to the fetus prenatally, based on the
properties of the placenta barrier (Kim et al., 2011). Indeed, infant
serum concentrations of PFHxS, PFOS and PFOA increased during
breastfeeding and those of PFOA were 4.6-fold higher compared to ma-
ternal serum 6 months after birth (Fromme et al., 2010).

As several PFASs declined rapidly from the year 2002 (Glynn et al.,
2012), women giving birth before the year 2002 would transfer more
PFAS to their child in the gestational period and through lactation, com-
pared towomen giving birth in e.g. 2007. Harmoniously, the decrease in
maternal serum PFOA concentrations per month of breastfeeding in the
present study was 1%, while a corresponding decrease of 2.5% was re-
ported in a different population of pregnant women fromNorway sam-
pled in 2003–2004 (Brantsaeter et al., 2013). These observations are in
accordance with studies on the time trend of the internal exposure in
general populations, which show a decrease in PFOS and PFOA blood
concentrations after 2003 (Harada et al., 2004, 2005; Inoue et al.,
2004; Olsen et al., 2003, 2005). This means that the relative importance
of parity as predictor likely differs in pre- and post-ban periods, which is
in linewith observationsdonebyOde et al. (2013)where paritywas not
identified as a predictor of PFOS and PFNA concentrations in the time
period 1978–2001.

4.2. Date of sampling

The date of sampling was a significant predictor of PFHxS, PFHpS,
PFOS, PFOA and PFNA concentrations in the present study, where
concentrations declined throughout a recruitment period of 867 days.
For PFOS and PFOA, the concentrations of women recruited day 1–100
were 25% and 26% higher, respectively, compared to those women re-
cruited in the last days of the study (601–867 days from study start).
Corresponding decrease in PFHxS, PFHpS and PFNA concentrations
were less pronounced. The decrease in concentrations during the
study period are in linewith reported temporal trends of the subsequent
compounds (Haug et al., 2009; Kato et al., 2011; Schroter-Kermani et al.,
2012), while for PFNA, concentrations have been demonstrated to in-
crease in studies from the same time period (Glynn et al., 2012; Okada
et al., 2013; Olsen et al., 2012). Further, association with sampling date
was not observed for PFDAand PFUnDA andmay reflect different histor-
ical production and use, environmental pathways and longer half-lives
of these PFASs (Glynn et al., 2012; Kato et al., 2011). Considering the
short study period and inconsistent decline in PFNA concentrations be-
tween the 100 days interval groups, caution has to bemade in deducing
PFNA temporal trends. Still, the present observations underline the
importance of considering extended recruitment periods when investi-
gating predictors of PFAS concentrations.

4.3. Birth year

The range in birth years for the participating women were
1964–1990, thus they were all born during the period of large-scale
PFAS productions and before the phase-out of PFOS related compounds.



Table 3
Parameter estimatesa, group differences, 95 % confidence intervals (CI) and p values of significant dietary predictors in the best fitted ANCOVA models of selected PFASs.

PFHxSc PFHpSd PFOSe

Predictor N Ŷ Diff 95 % CI p Ŷ Diff 95 % CI p Ŷ Diff 95 % CI p

Intake of marine foodb

0–24 g/day 94 0.55 - - - 8.71 - - -
24.1–37.8 g/day 95 0.57 0.02 (−0.08, 0.14) 0.74 9.46 1.36 (−0.43, 2.1) 0.22
37.9–59 g/day 95 0.66 0.11 (−0.003, 0.25) 0.07 11.0 2.33 (0.97, 3.88) 0.00
59.1–184 g/day 94 0.67 0.12 (−0.002, 0.26) 0.06 11.4 2.64 (1.22, 4.26) 0.00

Intake of gameb

0 g/day 188 0.58 - - - 0.11 - - -
0–3 g/day 62 0.53 −0.05 (−0.15, 0.007) 0.33 0.11 0.004 (−0.01, 0.03) 0.69
3.1–82 g/day 128 0.73 0.15 (0.04, 0.27) 0.01 0.14 0.03 (0.009, 0.05) 0.00

Intake of white meatb

0–18 g/day 106 0.12 - - - 8.87 - - -
18.1–28 g/day 95 0.12 0.001 (−0.02, 0.03) 0.92 9.95 1.08 (−0.2, 2.6) 0.11
28.1–33 g/day 82 0.15 0.03 (0.005, 0.06) 0.02 10.3 1.43 (0.15, 2.9) 0.03
33.1–79 g/day 95 0.14 0.02 (−0.002, 0.04) 0.07 10.5 1.58 (0.29, 3.02) 0.01

Intake of salty snacksb

0–4.7 g/day 92
4.8–9.4 g/day 98
9.5–13 g/day 79
13.1–55 g/day 109

Intake of beefb

0 g/day 125
0–4 g/day 173
4.1–37.2 g/day 80

Intake of chocolateb

0–4.7 g/day 88
4.8–9.7 g/day 99
9.8–16.5 g/day 90
16.6–138 g/day 101
iR2 (%) 25 17 25

PFOAf PFNAg PFDAh PFUnDAh
a Predicted PFAS concentrations (Ŷ) from the respective ANCOVA models. Predicted concentrations are back-transformed from log estimates and are expressed in units of ng/mL.
b The estimated change in PFASs in ng/mL across intake groups with the low intake group as reference.
c Parity and sampling date are included as covariates in the model. Intake of game and marine food are included as fixed factors.
d Parity and sampling date are included as covariates in the model. Intake of game and white meat are included as fixed factors.
e Parity and sampling date are included as covariates in the model. Intake of marine food and white meat are included as fixed factors.
f Parity and sampling date are included as covariates in the model. Intake of salty snacks and beef is included as a fixed factor.
g Parity, sampling date and age are included as covariates in the model. Intake of game and marine food are included as fixed factors.
h Parity, age and BMI are included as covariates in the model. Intake of marine food and chocolate are included as fixed factors.
i R2 = The proportion of variation in concentrations of the contaminant which is explained by the model.
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Table 3 (continued)

PFOAf PFNAg PFDAh PFUnDAh

Predictor Ŷ Diff 95 % CI p Ŷ Diff 95 % CI p Ŷ Diff 95 % CI p Ŷ Diff 95 % CI p

Predictor Ŷ Diff 95 % CI p Ŷ Diff 95 % CI p Ŷ Diff 95 % CI p Ŷ Diff 95 % CI p

Intake of marine foodb

0–24 g/day 0.47 - - - 0.12 - - - 0.10 - - -
24.1–37.8 g/day 0.47 −0.003 (−0.06, 0.05) 0.89 0.15 0.03 (0.008, 0.04) 0.01 0.13 0.03 (0.008, 0.005) 0.01
37.9–59 g/day 0.53 0.06 (0.001, 0.13) 0.05 0.17 0.05 (0.03, 0.07) 0.00 0.14 0.04 (0.02, 0.07) 0.00
59.1–184 g/day 0.53 0.06 (0.004, 0.13) 0.04 0.17 0.05 (0.03, 0.07) 0.00 0.17 0.07 (0.05, 0.11) 0.00

Intake of gameb

0 g/day 0.43 - - -
0–3 g/day 0.43 −0.001 (−0.05, 0.06) 0.86
3.1–82 g/day 0.51 0.080 (0.03, 0.14) 0.00

Intake of white meatb

0–18 g/day
18.1–28 g/day
28.1–33 g/day
33.1–79 g/day

Intake of salty snacksb

0–4.7 g/day 2.04 - - -
4.8–9.4 g/day 2.25 0.21 (−0.06, 0.51) 0.13
9.5–13 g/day 2.34 0.30 (0.03, 0.60) 0.03
13.1–55 g/day 2.54 0.50 (0.20, 0.83) 0.00

Intake of beefb

0 g/day 2.04 - - -
0–4 g/day 2.13 0.10 (−0.11, 0.33) 0.44
4.1–37.2 g/day 2.33 0.30 (0.001, 0.60) 0.05

Intake of chocolateb

0–4.7 g/day 0.13 - - - 0.10 - - -
4.8–9.7 g/day 0.12 −0.01 (−0.03, 0.005) 0.25 0.09 −0.01 (−0.02, 0.01) 0.81
9.8–16.5 g/day 0.11 −0.02 (−0.04, −0.008) 0.01 0.09 −0.01 (−0.02, 0.01) 0.68
16.6–138 g/day 0.10 −0.03 (−0.04, −0.01) 0.00 0.08 −0.02 (−0.03, −0.01) 0.00
iR2 (%) 44 29 20 31
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The exposure period after the phase out is expected to be similar for all
women. No association to agewas observed for PFHxS, PFHpS, PFOS and
PFOA concentrations, while agewas positively associated to PFNA, PFDA
and PFUnDA concentrations. These observations are in accordance
with compound differences in half-lives, bioaccumulation potentials
and continued production for some years after 2002 for PFNA, PFDA
and PFUnDA (Armitage et al., 2009; Zhang et al., 2013). Our results are
further supported by another Norwegian study, where increasing con-
centrations of longer-chained PFCAswith increasing agewere described
in pooled samples from 2007 (Haug et al., 2009).

4.4. Understanding the importance of diet for PFAS concentrations

Associations with one or several PFASs for food items from all major
food groups indicate an overall exposure to PFASs from the diet. In
agreement with several studies (Berger et al., 2009; Rylander et al.,
2009; Vestergren et al., 2012), marine food was indicated as the main
predictor of dietary exposure to PFOS, PFNA, PFDA and PFUnDA. Fur-
thermore, white meat was a predictor of PFHpS and PFOS concentra-
tions, while beef was significantly associated with PFOA and these
associations are in accordance with other studies (Halldorsson et al.,
2008; Haug et al., 2010a; Noorlander et al., 2011; Vestergren et al.,
2012). A significant association with game (reindeer, moose and
grouse) was detected for PFHxS, PFHpS and PFNA and is in agreement
with findings in Ostertag et al. (2009), although their study explored
different type of game, corresponding to regional differences and
hunting patterns in different parts of the world.

As the overall PFASs exposure has been and is decreasing, the
relative importance of diet is likely increasing caused by the gradual
elimination of direct exposure (intentionally produced compounds) as
exposure pathway, and continued foodweb accumulation of PFASs cur-
rently residing in environmental compartments like water and air. In
the present study, the relative importance of diet seems more apparent
for the longer chained PFASs, as the largest increase in explained vari-
ance was observed for these compounds when including the diet in
the statistical models as compared to the shorter chained PFASs. These
observations are in harmony with the PFNA N PFOA pattern in biota
and increasing biomagnification with PFCA chain length (Vestergren
and Cousins, 2009). Exposure studies like the present investigate
which dietary items explain the relative differences in PFAS concen-
trations within the population, as opposed to food basket studies de-
scribing the contribution of absolute intake of individual food items to
the PFASs body burden. Therefore, the dietary predictors identified in
this study are food items with high concentrations and/or food items
with a large difference in intake between individuals. Indeed, the asso-
ciations observed in the present study are in line with studies on PFAS
concentrations in different food groups which demonstrate that marine
food and meat generally have the highest PFAS concentrations as well
as a large variation in intake (Cornelis et al., 2012; Domingo et al.,
2012; Haug et al., 2010a; Herzke et al., 2013; Hlouskova et al., 2013;
Noorlander et al., 2011; Tittlemier et al., 2007; Trudel et al., 2008;
Vestergren et al., 2012). Conversely, no association between PFAS con-
centrations and high consumption food categories (vegetables, cereal
products and dairy products) were observed in the present study.
These food groups have been reported to contribute considerably to
the total daily intake of PFASs (Haug et al., 2010a; Noorlander et al.,
2011); however, the small differences in intake in the population
and/or their relative low concentrations of PFASs might explain the
discrepancies in observations (Vestergren et al., 2012). Evidently, the
identified dietary sources of PFAS exposure will vary not only according
to the concentration in food and intake rates but also according to study
design. Consistently, consumption of fish and shellfish was a major de-
terminant of serum PFAS concentrations in a subpopulation with a high
intake of seafood (Haug et al., 2010b) whereas red meat and animal fat
were predictors of PFOS and PFOA concentrations in a population with
high intake of meat (Halldorsson et al., 2008).
5. Conclusions

The present study demonstrates that parity, sampling date and birth
year are the strongest predictors for maternal PFAS concentrations
in years following a decrease in production and use of several PFASs.
Further, dietary predictors of PFAS concentrations were identified and
varied in importance according to compound. The identification of
dietary predictors of PFASs depends on variations in intake among
the participants, concentrations in food of the specific compounds and
study design.
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