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Abstract

In this thesis leading order asymptotic equations describing the propagation
of approximately paraxial pulses in a weakly nonlinear and weakly dispersive
medium are derived using the method of multiple scales, and the formation
of optical shocks in the nondispersive, purely paraxial case is investigated.
How the state of polarization influences the shock have in particularly been
looked in to.
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Introduction

Linear and nonlinear optics play a fundamental role in todays technology
driven society.

From the ability to probe ever deeper into the cosmos using large tele-
scopes filled with the latest adaptive optics systems, to the ubiquitous use
of microscopic highly efficient lasers and near perfectly transparent opti-
cal fibers in the global Internet, optics and optical technology is front and
center.

This technology dream world has been made possible by an ever more
refined insight into the way light and matter interact, and the development
of computational algorithms to capitalize on this insight.

In this thesis we are first going to use the method of multiple scales [1]
to derive leading order asymptotic equations describing the propagation of
approximately paraxial pulses in a weakly dispersive and weakly nonlinear
medium. This method is a perturbation method that uses the presence
of a small dimensionless parameter to reduce a nonlinear problem into an
infinite series of linear problems. It uses the presence of breakdown for a
direct perturbation expansion, and turns them into solvability conditions.
These solvability conditions are enforced by making them into the differential
equations called amplitude equations. These equations are a key component
in our fast numerical method of solving optical propagation problems.

To build up the competence to derive the asymptotic equations we are
going to first use the method of multiple scales on a scalar equation, before
using the method on TE vector equations up to second order ε, and then to
the fourth order in ε. This will then give us the skills to be able to use the
method to derive amplitude equations from the full Maxwell’s equations.

These equations are going to be simplified by looking at the nondisper-
sive, purely paraxial case. By using numerical methods [2],these equations
will be investigated. We are particularly interested in the influence of po-
larization on the formation of optical shocks..

Earlier work that have been done on this subject are for example work
done by K. Glasner, M. Kolesik, J. V. Moloney and A. C. Newell [4], where a
scalar equation for the electric field as a model for optical shock formation is
introduced. Their equation also includes the effect of dispersion, diffraction
and nonlinearity. But unlike in this thesis the equation is not derived using
a systematic perturbation expansion, and doesn’t include effects from non-
linear terms that occur after order ε4. And since it’s not a scalar equation
can it not be used to investigate the effect of polarization.

Another earlier work is done by A. A. Balakin, A. G. Litvak, V. A.
Mironov and S. A. Skobelev [5]. This work also take into account dispersion,
diffraction, nonlinearity and polarization. And like [4], and unlike this thesis,
are the equations not derived using a systematic perturbation expansion. It
only includes a specific dispersion model and doesn’t include nonlinear - or
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polarization effects that occur at order ε4.
In chapter one we will introduce the Maxwell’s equations and simplify

them into a scalar equation.
In chapter two we will introduce linear and nonlinear polarization into

the scalar equation found in chapter one, and explain the effect which is
assumed in this case to be the source of the nonlinear polarization, which is
called the Kerr effect.

Chapter three takes into account the presence of temporal dispersion
in Maxwell’s equations, which makes it impossible to solve them as an ini-
tial value problem, and introduces a change of variables to turn it into a
boundary value problem.

Chapter four uses the method of multiple scales to derive the leading
order asymptotic equations, starting with the TE scalar equation. Then we
are moving on to derive the TE vector equations to order ε2, before finally
deriving the vector Maxwell equations to the fourth order of ε. Starting
with the scalar equations and deriving vector equations to second order of
ε makes it possible for us to develop our skills before deriving our vector
Maxwell’s equations.

In chapter 5 we look at our perturbation equations in the non-dispersive,
purely paraxial case without polarization up to secont order of ε, and use
numerical methods to investigate the optical shock.

And in chapter 6 we reintroduce the contribution from the fourth order of
ε without polarization, and use numerical methods to investigate the optical
shock to see how big of a contribution this will have.

In chapter 7 we go back to the equations to the second order of ε, and
introduce polarization, and use numerical methods to investigate how this
influences the optical shock.

And then in chapter 8 and 9 we discuss our results and summarize.
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Figure 1: Coordinate system

1 Maxwell’s equations

The derivation of the leading order asymptotic equations describing the
propagation of approximately paraxial pulses in a weakly nonlinear an weakly
dispersive media start with Maxwell’s equations.

∇×E + ∂tB = 0, (1)

∇×B = ε0µ0∂tE + µ0∂tP, (2)

∇ ·B = 0, (3)

∇ ·E = − 1

ε0
∇ ·P. (4)

We introduce a cartesian coordinate system where i, j and k unity vectors
for three directions whose coordinates are x, y and z. In this first part of the
derivation the electric field and the polarization will only have contributions
in the y-direction, while the magnetic field will have a contributions in the
x- and z-direction. These are called transverse electric fields(TE).

B = Bx(x, z, t)i +Bz(x, z, t)k, (5)

E = E(x, z, t)j, (6)

P = P (x, z, t)j. (7)

Start by inserting (5)-(7) into the Maxwell’s equations (1)-(4).
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For equation (1) will this give:

∇×E =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
0 E 0

∣∣∣∣∣∣ = −∂E
∂z

i + 0 +
∂E

∂x
k, (8)

=⇒ −∂zEi + ∂xEk + ∂tBxi + ∂tBzk = 0. (9)

Which implies

−∂zE + ∂tBx = 0, (10)

∂xE + ∂tBz = 0. (11)

And for equation (2) of Maxwell’s equation inserting (5)-(7) gives:

∇×B =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
Bx 0 Bz

∣∣∣∣∣∣ (12)

= 0 + (∂zBx − ∂xBz)j + 0. (13)

Using (13) on equation (2) turns into

(∂zBx − ∂xBz)j− ε0µ0∂tEj = µ0∂tP j, (14)

Thus

∂zBx − ∂xBz − ε0µ0∂tE = µ0∂tP. (15)

Inserting (5) - (7) into equation (3) we get

∇ ·B = ∂xBx + ∂zBz = 0, (16)

and thus we have

∂xBx + ∂zBz = 0. (17)

The last of Maxwell’s equations is automatically satisfied because

∇ ·E = ∂yEj = 0, (18)
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and

∇ ·P = ∂yP j = 0. (19)

The system (1) - (4) has thus been simplified into

−∂zE + ∂tBx = 0, (20)

∂xE + ∂tBz = 0, (21)

∂zBx − ∂xBz − ε0µ0∂tE = µ0∂tP, (22)

∂xBx + ∂zBz = 0. (23)

We will use equations (20)- (22) to eliminate Bx and By and will end up
with equations for E and P only. This is done by taking cross derivatives
of these equations such that equations (22) and (23) can be inserted into
equations (24).

The derivative of equation(22) with respect to t is

∂ztBx − ∂xtBz − ε0µ0∂ttE = µ0∂ttP. (24)

The derivative of equation (20) with respect to z is

− ∂zzE + ∂tzBx = 0,

or solving with respect to Bx

∂ztBx = ∂zzE. (25)

And the derivative of equation (21) with respect to x is

∂xxE + ∂xtBz = 0,

which give us

∂txBz = −∂xxE. (26)

Inserting equations (20) and (21) into equation (22) gives the following equa-
tion involving only E and P.

∂zzE + ∂xxE − ε0µ0∂ttE = µ0∂ttP. (27)
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2 Polarization

The polarization is generally a sum of terms that are linear in E and that
are nonlinear in E,

P = PL + PNL, (28)

2.1 The Kerr effect

Generally the nonlinear polarization can come from any source, but when
doing concrete calculations will we for simplicity assume that the nonlinear
polarization comes from the Kerr effect [3]. This is a phenomenon where
the refractive index changes because of a sufficiently strong electrical field,
and arises because of the off-resonance electronic response of the atoms
and molecules that are exposed to this field. For materials with inversion
symmetry the nonlinear polarization will be given by PNL = ε0ηE

3, where
η is the Kerr coefficient[3].

2.2 Linear Polarization

The linear polarization has the general form

PL = ε0

∫ t

−∞
dt′χ(t− t′)E(t′). (29)

This means that the polarization at time t is dependent on the electric field
at all times before t. This is called temporal dispersion. The presence of
this in Maxwell’s equations makes it impossible to solve them as a standard
initial value problem.

A more convenient representation of the temporal dispersion is found by
rewriting the linear polarization using the convolution theorem.

PL = ε0

∫ ∞
−∞

dωχ̂(ω)Ê(ω)e−iωt. (30)

Using the Taylor expansion of χ(ω) around ω = 0 we have
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PL = ε0

∫ ∞
−∞

dω

∞∑
n=0

χ̂(n)(0)

n!
ωnÊ(ω)e−iωt

= ε0

∞∑
n=0

χ̂(n)(0)

n!

∫ ∞
−∞

dω · ωnÊ(ω)e−iωt

= ε0

∞∑
n=0

χ̂(n)(0)

n!

∫ ∞
−∞

dω(i∂t)
nÊ(ω)e−iωt

= ε0

∞∑
n=0

χ̂(n)(0)

n!
(i∂t)

n

∫ ∞
−∞

dωÊ(ω)e−iωt.

(31)

Where

∫ ∞
−∞

dωÊ(ω)e−iωt = E(t), (32)

Thus

PL = ε0χ̂(i∂t)E(t). (33)

Inserting equation (28) into equation (27) will give

∂ttE − c2∂zzE = c2∂xxE − ∂ttχ̂(i∂t)E − ε0η∂ttE3. (34)

Applications of equation (34) usually starts by doing some sort of scaling.
This means that one choose some relevant scales for space, time and the
electrical field E such as to render the equation dimensionless. In this thesis
we will only consider scales where the terms representing diffraction, disper-
sion and nonlinearity are small and of the same order. For our calculations
we will introduce a formal perturbation parameter, ε2, in the dispersive and
nonlinear terms and use the space scale x = εx1

∂ttE − c2∂zzE = c2∂xxE − ε2∂ttχ̂(i∂t)E − ε2ε0η∂ttE3. (35)

where ε << 1
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3 Change of variables

Because of the presence of temporal dispersion in Maxwell’s equations it will
be impossible to solve the equations as a standard initial value problem. We
will avoid this problem by rather solving the equations as a boundary value
problem. This is the way experiments in nonlinear optics are usually done,
where a laser pulse is launched into a medium through a boundary.This is
thus natural way of solving problems in optics. The way to change the initial
value problem into a boundary value problem is to use a change of variables.

For the lowest order of ε equation (35) will look like this:

∂ttE − c2∂zzE = 0. (36)

This is a homogeneous one- dimensional wave equation, and will have a
general solution that is the sum of waves that are propagating both left and
right along the z-axis, E(z − ct) and E(z + ct).

We introduce the change of variables:

θ = z − ct, (37)

τ = z. (38)

Using the chain rule to find the partial derivatives will give:

∂z =
∂τ

∂z

∂

∂τ
+
∂θ

∂z

∂

∂θ
= ∂τ + ∂θ, (39)

∂t =
∂τ

∂t

∂

∂τ
+
∂θ

∂t

∂

∂θ
= 0 + (−c)∂θ = −c∂θ. (40)

From these equations we get

∂zz = ∂ττ + 2∂τθ + ∂θθ, (41)

and

∂tt = c2∂θθ. (42)

Inserting these change of variables into equation (35) give us the equation

2∂θτE = −∂xxE + ε2∂θθχ̂(−ic∂θ)E + ε2η∂θθE
3 − ∂ττE. (43)

Because of the fact that e2iτ · e−iθ = e2iz · e−i(z−ct) = ei(2z−z+ct) = ei(z+ct),
we still haven’t made any assumptions about the solution, equation (43) and
(34) are equivalent.
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Note that through the change of variables from equation (37) and (38),
the line (θ, 0) in the (θ, τ) plane corresponds to the line (0, t) in the (z, t)
plane. This means that the optical propagation problem is now a boundary
value problem. For this type of problem it is necessary to make sure that the
pulse traveling to the right into the medium does not create a significant
pulse that is traveling to the left. If that happens the problem will not
make sense mathematically. This is because the pulse traveling to the left
will eventually hit the boundary at z=0. When that happens, the field at
z=0 will not only consist of the initial pulse, but also have contributions
from the left traveling pulse. The left traveling pulse is unknown until the
equation is solved, and that means that the propagation problem will not be
well posed mathematically as a boundary value problem if this left traveling
pulse is of any significant size. We will therefore look for solutions of the
form E = E(z−ct, εz) that is a small perturbation on a purely right traveling
wave.
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4 The Method of multiple scales

4.1 TE scalar equation

We will now use the multiple scale method [1] to find the approximation
solution to equation (43). Introduce the function e(θ, x1, τ1, τ2, ...) where
x1 = εx and τj = εjτ and make the expansions:

∂τ = ε∂τ1 + ε2∂τ2 + ..., (44)

∂x = ε∂x1 , (45)

e = e0 + εe1 + ε2e2 + ... (46)

Inserting the expansions (44)-(46) into equation (43) gives us the equation

2∂θ(ε∂θ1e0 + ε2∂θ1e1 + ε2∂θ2e0) = −ε2∂x1x1e0
+ε2ε0∂θθχ̂(−ic∂θ)e0 + ε2ε0η∂θθe

3
0 − ε2∂τ1τ1e0.

(47)

And this equation gives us the following perturbation hierarchy to second
order in ε

ε1 : 2∂τ1θe0 = 0, (48)

ε2 : 2∂θτ1e1 = −2∂θτ2e0 − ∂x1x1e0 + ε0∂θθχ̂(−ic∂θ)e0
+ ε0η∂θθe

3
0 − ∂τ1τ1e0.

(49)

The general solution to (48) is

e0 = e0(x1, θ, τ2, ..). (50)

Where we have disregarded an arbitrary function of the form

α = α(x1, τ1, τ2...). (51)

The solution (51) implies that

∂τ1τ1e0 = 0. (52)

Since the right hand side of (49) does not depend on τ1, we will get a secular
growth and breakdown of our perturbation expansion (46) when

τ1 ∼
1

ε
. (53)
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In order to avoid this we must impose the solvability condition

−2∂τ2θe0 − ∂x1x1e0 + ε0∂θθχ̂(−ic∂θ)e0 + ε0η∂θθe
3
0 = 0. (54)

Using (52) our order ε2 equation simplifies into

2∂θτ1e1 = 0. (55)

According to the rules of the game [2], we choose the special solution

e1 = 0. (56)

This will give us the equation

2∂τ2θe0 = −∂x1x1e0 + ε0∂θθχ̂(−ic∂θ)e0 + ε0η∂θθe
3
0. (57)

Define

E0(θ, x, τ) = e0(θ, x, τ2, ..)|x1=εx,τj=εjτ . (58)

Then multiplying (57) with ε2, using (58) we get the amplitude equation

2∂θτE0 = −∂xxE0 + ε2ε0∂θθχ̂(−ic∂θ)E0 + ε2ε0η∂θθE
3
0 . (59)

4.2 TE vector equations order ε2

We are now moving on with building up a competence to do the derivations
on chapter 4.4. This is why we are using the change of (37) and (38) on
Maxwell’s equations instead of the scalar equation (27). So, doing a change
of variables from equations (37) to (42) on Maxwell’s equations will give us
the system of equations

∂τE + ∂θE + c∂θBx = 0, (60)

∂xE − c∂θBz = 0, (61)

∂τBx + ∂θBx − ∂xBz +
1

c
∂θE = −µ0c∂θP, (62)

∂xBx + ∂τBz + ∂θBz = 0. (63)

We solve this system of equations by the multiple scale method, and start
by introducing the functions

10



e = e(θ, x1, τ1, τ2, ..), (64)

bx = bx(θ, x1, τ1, τ2, ..), (65)

bz = bz(θ, x1, τ1, τ2, ..), (66)

p = p(θ, x1, τ1τ2, ...). (67)

Introduce the expansions up to the second order of ε:

e = e0 + εe1 + ε2e2 + ..., (68)

bx = bx0 + εbx1 + ε2bx2 , (69)

bz = bz0 + εbz1 + ε2bz2 , (70)

p = εp1 + ε2p2, (71)

∂τ = ε∂τ1 + ε2∂τ2 , (72)

∂x = ε∂x1 , (73)

where τ j = εjτ . When we insert the expansions (68)-(73) into the equations
(60)-(63) we end up with four perturbation hierarchies. The perturbation
hierarchy for equation (60) is

ε0 : ∂θe0 + c∂θbx0 = 0, (74)

ε1 : ∂θe1 + c∂θbx1 = −∂τ1e0, (75)

ε2 : ∂θe2 + c∂θbx2 = −∂τ1e1 − ∂τ2e0. (76)

The perturbation hierarchy for equation (61) is

ε0 : c∂θbz0 = 0, (77)

ε1 : c∂θbz1 = ∂x1e0, (78)

ε3 : c∂θbz2 = ∂x1e1. (79)

The perturbation hierarchy for equation (62) is

ε0 : ∂θbx0 +
1

c
∂θe0 = 0, (80)

ε1 : ∂θbx1 +
1

c
∂θe1 = −∂τ1bx0 + ∂x1bz0 − µ0c∂θp1, (81)

ε2 : ∂θbx2 +
1

c
∂θe2 = −∂τ1bx1 − ∂τ2bx0 + ∂x1bz1 − µ0c∂θp2. (82)

And the perturbation hierarchy for equation (63) is
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ε0 : ∂θbz0 = 0, (83)

ε1 : ∂θbz1 = −∂x1bx0 − ∂τ1bz0 , (84)

ε2 : ∂θbz2 = −∂x1bx1 − ∂τ1bz1 − ∂τ2bz0 . (85)

The solution to these system of equations will be found separately order by
order in ε. At order ε0 we have equations (74), (77), (80) and (83) which we
will write as the system

∂θe0 + c∂θbx0 = 0, (86)

c∂θbz0 = 0, (87)

∂θbx0 +
1

c
∂θe0 = 0, (88)

∂θbz0 = 0. (89)

Equation (87) has the general solution

bz0 = α(x1, τ1, τ2, ...). (90)

Since these solutions doesn’t depend on θ we will disregard them and choose

bz0 = 0. (91)

Equation (86) has the general solution

e0 + cbx0 = β(x1, τ1, τ2, ...). (92)

As before we disregard β because it doesn’t depend on θ, and we get the
following expression for bx0

bx0 = −1

c
e0. (93)

We observe that (88) and (89) are automatically satisfied, which means that
there are no solvability conditions at this order.

The equations from ε1, equations (75), (78), (81) and (84) are written
as the system:

∂θe1 + c∂θbx1 = −∂τ1e0, (94)

c∂θbz1 = ∂x1e0, (95)

∂θbx1 +
1

c
∂θe1 = −∂τ1bx0 + ∂x1bz0 − µ0c∂θp1, (96)

∂θbz1 = −∂x1bx0 − ∂τ1bz0 . (97)
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Starting with equation (96) and (94). In order have a solution we have to
impose the solvability condition

−∂τ1e0 = −c∂τ1bx0 + c∂x1bz0 − µ0c2∂θp1. (98)

And for equation (95) and (97) we get the solvability condition

∂x1e0 = −c∂x1bx0 − c∂τ1bz0 . (99)

When the solvability conditions are imposed, the equations (86) and (94)
becomes under-determined, and it is possible to choose the special solution

e1 = 0. (100)

Which give us the equation

c∂θbx1 = −∂τ1e0. (101)

And the solvability condition for (87) and (89) gives us the equation

∂θbz1 =
1

c
∂x1e0. (102)

The equations from ε2, (76), (79), (82) and (85), can be written as the
system:

∂θe2 + c∂θbx2 = −∂τ1e1 − ∂τ2e0, (103)

c∂θbz2 = ∂x1e1, (104)

∂θbx2 +
1

c
∂θe2 = −∂τ1bx1 − ∂τ2bx0 + ∂x1bz1 − µ0c∂θp2, (105)

∂θbz2 = −∂x1bx1 − ∂τ1bz1 − ∂τ2bz0 . (106)

For the pair of equations (103) and (105) we get the solvability condition

−∂τ1e1 − ∂τ2e0 = −c∂τ1bx1 − c∂τ2bx0 + c∂x1bz1 − µ0c2∂θp2. (107)

And the solvability condition from (104) and (106) is

∂x1e1 = −c∂x1bx1 − ∂τ1bz1 − ∂τ2bz0 . (108)
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When the solvability condition (107) is imposed, (103) will become under-
determined, and it’s possible to choose without loss of generality the value

e2 = 0. (109)

By choosing e2 = 0 will we get

c∂θbx2 = −∂τ2e0. (110)

So far we have found equations

bz0 = 0,

bx0 = −1

c
e0,

c∂θbz1 = ∂x1e0,

c∂θbx1 = −∂τ1e0,
e1 = 0,

e2 = 0.

Inserting these into the solvability condition (98) give the equation

2∂τ1e0 = µ0c
2∂θp1, (111)

and inserting them into equation (107) give the equation

2∂θτ1e0 = −∂τ1τ1e0 + ∂x1x1e0 + µ0c
2∂θθp2. (112)

Equation (99) becomes

∂x1e0 = −c∂x1bx0 , (113)

which is automatically satisfied. We consider the special case when

P = ε2
(
ε0χ̂(−ic∂θ)e0 + ε0ηe

3
0

)
, (114)

=⇒ p1 = 0, (115)

p2 =
(
ε0χ̂(−ic∂θ)e0 + ε0ηe

3
0

)
. (116)

From this we get
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2∂θτ1e0 = 0, (117)

2∂θτ1e0 = −∂x1x1e0 + µ0c
2ε0∂θθχ̂(−ic∂θ)e0 + µ0ε0c

2η∂θθ(e0)
3. (118)

Introduce

E0(θ, x, τ) = e0(θ.x1, τ1, τ2, ...)|x1=εx,τj=εjτ . (119)

Multiplying (117) by ε and (118) by ε2, adding and using (119) and using
the expansions

∂x = ε∂x1 , (120)

∂τ = ε∂τ1 + ε2∂τ2 , (121)

we get

2∂θτE0 = −∂xxE0 + ε2ε0∂θθ(−ic∂θ)E0 + ε2ε0η∂θθE
3
0 . (122)

Which is the same equation as the one we got by applying the multiple scale
method to the scalar equation (43).

4.3 TE vector equations order ε4

Moving on with the last example before the derivation of our equations.
This time are we starting with equations (60)-(63)

∂τE + ∂θE + c∂θBx = 0,

∂xE − c∂θBz = 0,

∂τBx + ∂θBx − ∂xBz +
1

c
∂θE = −µ0c∂θP,

∂xBx + ∂τBz + ∂θBz = 0.

Introducing the functions (64)-(67)

e = e(θ, x1, τ1, τ2, ..),

bx = bx(θ, x1, τ1, τ2, ..),

bz = bz(θ, x1, τ1, τ2, ..),

p = p(θ, x1, τ1τ2, ...).

And introducing the expansions, that this time is going to go up to the
fourth order of ε
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e = e0 + εe1 + ε2e2 + ε3e3 + ε4e4, (123)

bx = bx0 + εbx1 + ε2bx2 + ε3bx3 + ε4bx4 , (124)

bz = bz0 + εbz1 + ε2bz2 + ε3bz3 + ε4bz4 + ..., (125)

p = εp1 + ε2p2 + ε3p3 + ε4p4 + ...., (126)

∂τ = ε∂τ1 + ε2∂τ2 + ε3∂τ3 + ε4∂τ4 + ..., (127)

∂x = ε∂x1 . (128)

Inserting the expansions (123)-(128) into the equations (60)-(63) and ex-
panding will give us the perturbation hierarchy to order four in ε

ε0 : ∂θe0 + c∂θbx0 = 0, (129)

ε1 : ∂θe1 + c∂θbx1 = −∂τ1e0, (130)

ε2 : ∂θe2 + c∂θbx2 = −∂τ1e1 − ∂τ2e0, (131)

ε3 : ∂θe3 + c∂θbx3 = −∂τ1e2 − ∂τ2e1 − ∂τ3e0, (132)

ε4 : ∂θe4 + c∂θbx4 = −∂τ1e3 − ∂τ2e2 − ∂τ3e1 − ∂τ4e0. (133)

The perturbation hierarchy for equation (61) is

ε0 : c∂θbz0 = 0, (134)

ε1 : c∂θbz1 = ∂x1e0, (135)

ε2 : c∂θbz2 = ∂x1e1, (136)

ε3 : c∂θbz3 = ∂x1e2, (137)

ε4 : c∂θbz4 = ∂x1e3. (138)

The perturbation hierarchy for equation (62) is

ε0 : ∂θbx0 +
1

c
∂θe0 = 0, (139)

ε1 : ∂θbx1 +
1

c
∂θe1 = −µ0c∂θp1 − ∂τ1bx0 + ∂x1bz0 , (140)

ε2 : ∂θbx2 +
1

c
∂θe2 = −µ0c∂θp2 − ∂τ2bx0 − ∂τ1bx1 + ∂x1bz1 , (141)

ε3 : ∂θbx3 +
1

c
∂θe3 = −µ0c∂θp3 − ∂τ1bx2 − ∂τ2bx1 − ∂τ3bx0 + ∂x1bz2 , (142)

ε4 : ∂θbx4 +
1

c
∂θe4 = −µ0c∂θp4 − ∂τ1bx3 − ∂τ2bx2 − ∂τ3bx1 − ∂τ4bx0

+ ∂x1bz3 .
(143)
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And the perturbation hierarchy for equation (63) is

ε0 : ∂θbz0 = 0, (144)

ε1 : ∂θbz1 = −∂x1bx0 − ∂τ1bz0 , (145)

ε2 : ∂θbz2 = −∂x1bx1 − ∂τ1bz1 − ∂τ2bz0 , (146)

ε3 : ∂θbz3 = −∂x1bx2 − ∂τ1bz2 − ∂τ2bz1 − ∂τ3bz0 , (147)

ε4 : ∂θbz4 = −∂x1bx3 − ∂τ1bz3 − ∂τ2bz2 − ∂τ3bz1 − ∂τ4bz4 . (148)

The solutions will again be found separately order by order in ε. The equa-
tions for ε0, equations (129), (134), (139) and (144), which we write as the
system

∂θe0 + c∂θbx0 = 0, (149)

c∂θbz0 = 0, (150)

∂θbx0 +
1

c
∂θe0 = 0, (151)

∂θbz0 = 0. (152)

It’s easy to see that equations (150) and (152) are equivalent, which will
give us

∂θbz0 = 0. (153)

The general solution to (153) is

bz0 = β(x1, τ1, τ2, ....). (154)

Equation (154) doesn’t depend on θ, and therefore will we disregard it and
choose

bz0 = 0. (155)

It’s also easy to see that equation (149) equals to c multiplied by (151). This
will in the same way give us the general solution

cbx0 + e0 = α(x1, τ1, τ2, ...). (156)

This will also be disregarded to give the equation
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bx0 = −1

c
e0. (157)

Moving on to the equations for ε1, which are equations (130), (135), (140)
and (145).

∂θe1 + c∂θbx1 = −∂τ1e0, (158)

c∂θbz1 = ∂x1e0, (159)

∂θbx1 +
1

c
∂θe1 = −∂τ1bx0 − ∂x1bz0 − µ0c∂θp1, (160)

∂θbz1 = −∂x1bx0 − ∂τ1bz0 . (161)

In order for (158) and (160) to have a solution, we have to impose the
solvability condition

−∂τ1e0 = −c∂τ1bx0 − c∂x1bz0 − µ0c2∂θp1. (162)

And in order for (159) and (161) to have a solution, we have to impose the
solvability condition

∂x1e0 = −c∂x1bx0 − c∂τ1bz0 . (163)

When the solution condition (162) is imposed, equation (158) becomes mul-
tivalued. This makes it possible to choose without loss of generality

e1 = 0. (164)

When e1 = 0,equation (158) will become

∂θbx1 = −1

c
∂τ1e0. (165)

When the solution condition (163) is imposed, we get the equation

∂θbz1 =
1

c
∂x1e0. (166)

The equations for ε2, (131), (136), (141) and (146), can be written as the
system
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∂θe2 + c∂θbx2 = −∂τ1e1 − ∂τ2e0, (167)

c∂θbz2 = ∂x1e1, (168)

∂θbx2 +
1

c
∂θe2 = −µ0c∂θp2 − ∂τ1bx1 − ∂τ2bx0 + ∂x1bz1 , (169)

∂θbz2 = −∂x1bx1 − ∂τ1bz1 − ∂τ2bz0 . (170)

It’s easy to see that the left side of equation (167) is equivalent to equation
(169) multiplied by c. This means that in order for equation (167) and (169)
to have a solution we have to impose the solvability condition

−∂τ1e1 − ∂τ2e0 = −µ0c2∂θp2 − c∂τ1bx1 − c∂τ2bx0 + c∂x1bz1 . (171)

In the same way is it for (168) and (170) to have a solution we have to
impose the solvability condition

∂x1e1 = −c∂x1bx1 − c∂τ1bz1 − c∂τ2bz0 . (172)

When the solution condition (171) is imposed, equation (167) becomes
under-determined. This makes it possible to choose, without loss of gen-
erality

e2 = 0. (173)

Because we choose e1 = 0 and e2 = 0, equation (167) becomes

c∂θbx2 = −∂τ2e0. (174)

And because of the solution condition (171) and that e1 = 0, we get from
equation (168) that

∂θbz2 = 0. (175)

The equations for ε3, (132), (137), (142) and (147), can be written as
the system

∂θe3 + c∂θbx3 = −∂τ1e2 − ∂τ2e1 − ∂τ3e0, (176)

c∂θbz3 = ∂x1e2, (177)

∂θbx3 +
1

c
∂θe3 = −µ0c∂θp3 − ∂τ1bx2 − ∂τ2bx1 − ∂τ3bx0 + ∂x1bz2 , (178)

∂θbz3 = −∂x1bx2 − ∂τ1bz2 − ∂τ2bz1 − ∂τ3bz0 . (179)
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We can see that the left side of equation (176) is the same as the left side
of equation (178). This means that in order for (176) and (178) to have a
solution, we have to impose the solvability condition

−∂τ1e2 − ∂τ2e1 − ∂τ3e0 = −µ0c2∂θp3 − ∂τ1bx2 − ∂τ2bx1
−∂τ3bx0 + ∂x1bz2 .

(180)

In the same way as above it is necessary for (177) and (179) to have a
solution, to impose the solvability condition

∂x1e2 = −c∂x1bx2 − c∂τ1bz2 − c∂τ2bz1 − ∂τ3bz0 . (181)

When the solvability equation (180) is imposed (176) will become under-
determined. This makes it possible without loss of generality to choose

e3 = 0. (182)

Because we have chosen e1 = 0, e2 = 0 and e3 = 0, equation (176) will
become

c∂θbx3 = −∂τ3e0. (183)

Because of the solvability condition (181), and because we have chosen e2 =
0, equation (177) becomes

∂θbz3 = 0. (184)

The equations for ε4, (133), (138), (143) and (148), can be written as this
system

∂θe4 + c∂θbx4 = −∂τ1e3 − ∂τ2e2 − ∂τ3e1 − ∂τ4e0, (185)

c∂θbz4 = ∂x1e3, (186)

∂θbx4 +
1

c
∂θe4 = −∂τ1bx3 − ∂τ2bx2 − ∂τ3bx1

− ∂τ4bx0 + ∂x1bz3 − µ0c∂θp4,
(187)

∂θbz4 = −∂x1bx3 − ∂τ1bz3 − ∂τ2bz2 − ∂τ3bz1 − ∂τ4bz0 . (188)

We can easily see that equation (185) is the same as the left side of equation
(187) under-determined by c. This means that in order for (185) and (187)
to have a solution, we impose the solvability condition

20



−∂τ1e3 − ∂τ2e2 − ∂τ3e1 − ∂τ4e0 = −∂τ1bx3
−∂τ2bx2 − ∂τ3bx1 − ∂τ4bx0 + ∂x1bz3 − µ0c∂θp4.

(189)

In the same way as above we will have to impose the solvability condition

∂x1e3 = −c∂x1bx3 − c∂τ1bz3 − ∂τ2bz2 − ∂τ3bz1 − ∂τ4bz0 . (190)

When the solvability condition (189) is imposed, equation (185) will become
multivalued. This makes it possible to choose without loss of generality

e4 = 0. (191)

Because we have chosen e1 = 0, e2 = 0, e3 = 0 and e4 = 0, equation (185)
becomes

c∂θbx4 = −∂τ4e0. (192)

When the solvability condition (190) is imposed, and because e3 = 0, we get
from equation (186)

∂θbz4 = 0. (193)

As a summary we’re now ending up with the equations (157), (155), (166),
(165),(175), (174), (184), (183), (193), (192), and the solvability conditions
(162), (163), (171), (172), (180), (181), (189) and (190). They are written
as the system of equations

bz0 = 0, (194)

∂θbz1 =
1

c
∂x1e0. (195)

∂θbz2 = 0, (196)

∂θbz3 = 0, (197)

∂θbz4 = 0, (198)

bx0 = −1

c
e0, (199)

∂θbx1 = −1

c
∂τ1e0, (200)

c∂θbx2 = −∂τ2e0, (201)

c∂θbx3 = −∂τ3e0, (202)

c∂θbx4 = −∂τ4e0, (203)
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and the solvability conditions

− ∂τ1e0 = −c∂τ1bx0 − c∂x1bz0 − µ0c2∂θp1., (204)

∂x1e0 = −c∂x1bx0 − c∂τ1bz0 , (205)

− ∂τ2e0 = −µ0c2∂θp2 − c∂τ1bx1 − c∂τ2bx0
+ c∂x1bz1 ,

(206)

0 = −∂x1bx1 − ∂τ1bz1 − ∂τ2bz0 , . (207)

− ∂τ3e0 = −µ0c2∂θp3 − ∂τ1bx2 − ∂τ2bx1
− ∂τ3bx0 + ∂x1bz2 ,

(208)

0 = −c∂x1bx2 − c∂τ1bz2 − c∂τ2bz1 − ∂τ3bz0 , (209)

− ∂τ4e0 = −∂τ1bx3 − ∂τ2bx2
− ∂τ3bx1 − ∂τ4bx0 + ∂x1bz3 − µ0c∂θp4,

(210)

Using equations (194) and (195) on (205) gives the equation

∂x1e0 = ∂x1e0, (211)

which is true. Using equation (200), (195) and (194) on (207) give us 0 = 0.
The same happens by doing the substitutions for (209), which means that
the equations are automatically satisfied. Now, inserting equations (194)
and (199) into equation (204) give the equation

2∂τ1e0 = µ0c
2∂θp1. (212)

Finding the derivative on θ of equation (206), and inserting (200), (199) and
(195) give the equation

2∂θτ2e0 =
(
µ0c

2∂θθp2 − ∂x1x1e0
)
. (213)

Finding the derivative on θ of equation (208) and inserting (200), (195) and
(199) give the equation

2∂θτ3e0 = µ0c
2∂θθp3. (214)

And finding the derivative on θ of (210), and inserting equations (202),
(201), (200), (199) and (197) give us the equation

2∂θτ4 =
(
µ0c

2∂θθp4 − ∂τ2τ2e0
)
. (215)
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Consider the special case when

P = ε2
(
ε0χ̂(−ic∂θ)e0 + ε0ηe

3
0

)
,

which implies that

p1 = 0,

p2 =
(
ε0χ̂(−ic∂θ)e0 + ε0ηe

3
0

)
,

p3 = 0,

p4 = 0.

Introduce

E0(θ, x, τ1, τ2, ...)x1=εx,τj=εjτ . (216)

Multiplying (212) by ε, (213) by ε2, (214) by ε3 and (215) by ε4, adding and
using the expansions

∂x = ε∂x1 , (217)

∂τ = ε∂τ1 + ε2∂τ2 + ε3∂τ3 + ε4∂τ4 , (218)

we get

2∂θτE0 = ε2µ0c
2∂θθ

(
ε0χ̂(−ic∂θ)E0 + ε0ηE

3
0

)
− ∂xxE0 − ∂ττE0. (219)

4.4 Vector Maxwell’s equations order ε4

Then let us finally start on the derivation of the perturbation equations.
Starting all over again with Maxwell’s equations

∇×E + ∂tB = 0,

∇×B = ε0µ0∂tE + µ0∂tP,

∇ ·B = 0,

∇ ·E = − 1

ε0
∇ ·P.

This time are no assumptions made of the directions the polarization and
the electric and magnetic fields have.
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B = Bxi +Byj +Bzk, (220)

E = Exi + Eyj + Ezk, (221)

P = Pxi + Pyj + Pzk. (222)

Inserting (220)-(222) into Maxwell’s equations, starting with equation (1)

∇×E =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
Ex Ey Ez

∣∣∣∣∣∣
= (∂yEz − ∂zEy) i + (∂zEx − ∂xEz) j + (∂xEy − ∂yEx)k,

(223)

∇×E + ∂tB = (∂yEz − ∂zEy) i + (∂zEx − ∂xEz) j
+ (∂xEy − ∂yEx)k + ∂tBxi + ∂tByj + ∂tBzk = 0.

(224)

Then dividing this equation into vector components give the equations:

∂yEz − ∂zEy + ∂tBx = 0, (225)

∂zEx − ∂xEz + ∂tBy = 0, (226)

∂xEy − ∂yEx + ∂tBz = 0. (227)

Moving on to equation (2)

∇×B =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
Bx By Bz

∣∣∣∣∣∣
= (∂yBz + ∂zBy) i + (∂zBx − ∂xBz) j + (∂xBy − ∂yBx)k.

(228)

(∂yBz + ∂zBy) i + (∂zBx − ∂xBz) j + (∂xBy − ∂yBx)k

= ε0µ0 (∂tExi + ∂tEyj + ∂tEzk) + µ0 (∂tPxi + ∂tPyj + ∂tPzk) .
(229)

Dividing equation (229) into vector components give the equations:

∂yBz − ∂zBy = ε0µ0∂tEx + µ0∂tPx, (230)

∂zBx − ∂xBz = ε0µ0∂tEy + µ0∂tPy, (231)

∂xBy − ∂yBx = ε0µ0∂tEz + µ0∂tPz. (232)

Equation (3) becomes
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∇ ·B = 0,

=⇒ ∂xBx + ∂yBy + ∂zBz = 0, (233)

and equation (4) becomes

∇ ·E = − 1

ε0
∇ ·P,

=⇒ ∂xEx + ∂yEy + ∂zEz = − 1

ε0
(∂xPx + ∂yPy + ∂zPz) . (234)

Ending up with a new set of equations, (225)-(227), (230)-(232), (233) and
(234)

∂yEz − ∂zEy + ∂tBx = 0,

∂zEx − ∂xEz + ∂tBy = 0,

∂xEy − ∂yEx + ∂tBz = 0,

∂yBz − ∂zBy = ε0µ0∂tEx + µ0∂tPx,

∂zBx − ∂xBz = ε0µ0∂tEy + µ0∂tPy,

∂xBy − ∂yBx = ε0µ0∂tEz + µ0∂tPz,

∂xBx + ∂yBy + ∂zBz = 0,

∂xEx + ∂yEy + ∂zEz = − 1

ε0
(∂xPx + ∂yPy + ∂zPz) .

Introducing the change of variables (37)-(40)

θ = z − ct,
τ = z,

∂z =
∂τ

∂z

∂

∂τ
+
∂θ

∂z

∂

∂θ
= ∂τ + ∂θ,

∂t =
∂τ

∂t

∂

∂τ
+
∂θ

∂t

∂

∂θ
= 0 + ∂θ· = −c∂θ.

Using these changes of variables on Maxwell’s equations will give a new set
of equations:
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∂yEz − ∂τEy − ∂θEy − c∂θBx = 0, (235)

∂τEx + ∂θEx − ∂xEz − c∂θBy = 0, (236)

∂xEy − ∂yEx − c∂θBz = 0, (237)

∂yBz − ∂τBy − ∂θBy = −1

c
∂θEx − µ0c∂θPx, (238)

∂τBx + ∂θBx − ∂xBz = −1

c
∂θEy − µ0c∂θPy, (239)

∂xBy − ∂yBx = −1

c
∂θEz − µ0c∂θPz, (240)

∂xBx + ∂yBy + ∂τBz + ∂θBz = 0, (241)

∂xEx + ∂yEy + ∂τEz + ∂θEz = − 1

ε0
(∂xPx + ∂yPy + ∂zPz) . (242)

4.4.1 The Multiple scale method

Introducing the equations

ex = ex(θ, x1, y1, τ1, τ2), (243)

ey = ey(θ, x1, y1, τ1, τ2), (244)

ez = ez(θ, x1, y1, τ1, τ2), (245)

bx = bx(θ, x1, y1, τ1, τ2), (246)

by = by(θ, x1, y1, τ1, τ2), (247)

bz = bz(θ, x1, y1, τ1, τ2), (248)

px = px(θ, x1, y1, τ1, τ2), (249)

py = py(θ, x1, y1, τ1, τ2), (250)

pz = pz(θ, x1, y1, τ1, τ2). (251)

where

x1 = εx, (252)

y1 = εy, (253)

τj = εjτ. (254)
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Introducing the expansions

ex = ex0 + εex1 + ε2ex2 + ε3ex3 + ε4ex4 + ..., (255)

ey = ey0 + εey1 + ε2ey2 + ε3ey3 + ε4ey4 + ..., (256)

ez = ez0 + εez1 + ε2ez2 + ε3ez3 + ε4ez4 + ..., (257)

bx = bx0 + εbx1 + ε2bx2 + ε3bx3 + ε4bx4 + ..., (258)

by = by0 + εby1 + ε2by2 + ε3by3 + ε4by4 + ..., (259)

bz = bz0 + εbz1 + ε2bz2 + ε3bz3 + ε4bz4 + ..., (260)

px = εpx1 + ε2px2 + ε3px3 + ε4px4 + ..., (261)

py = εpy1 + ε2py2 + ε3py3 + ε4py4 + ..., (262)

pz = εpz1 + ε2py2 + ε3pz3 + ε4pz4 + ..., (263)

∂τ = ε∂τ1 + ε2∂τ2 + ε3∂τ3 + ε4 ∂τ4 + ..., (264)

∂x = ε∂x1 , (265)

∂y = ε∂y1 . (266)

Inserting these expansions into equations (235)-(242), will make perturba-
tion equations f(ε). Dividing these equations into parts that are multiplied
with each order of ε, will make perturbation hierarchies. Starting with the
perturbation hierarchy for equation (235):

ε0 : c∂θbx0 + ∂θey0 = 0, (267)

ε1 : c∂θbx1 + ∂θey1 = ∂y1ez0 − ∂τ1ey0 , (268)

ε2 : c∂θbx2 + ∂θey2 = ∂y1ez1 − ∂τ1ey1 − ∂τ2ey0 , (269)

ε3 : c∂θbx3 + ∂θey3 = ∂y1ez2 − ∂τ1ey2 − ∂τ2ey1 − ∂τ3ey0 , (270)

ε4 : c∂θbx4 + ∂θey4 = ∂y1ez3 − ∂τ1ey3 − ∂τ2ey2 − ∂τ3ey1 − ∂τ4ey0 . (271)

The perturbation hierarchy for equation (236) is

ε0 : ∂θex0 − c∂θby0 = 0, (272)

ε1 : ∂θex1 − c∂θby1 = ∂x1ez0 − ∂τ1ex0 , (273)

ε2 : ∂θex2 − c∂θby2 = ∂x1ez1 − ∂τ1ex1 − ∂τ2ex0 , (274)

ε3 : ∂θex3 − c∂θby3 = ∂x1ez2 − ∂τ1ex2 − ∂τ2ex1 − ∂τ3ex0 , (275)

ε4 : ∂θex4 − c∂θby3 = ∂x1ez3 − ∂τ1ex3 − ∂τ2ex2 − ∂τ3ex1
− ∂τ4ex0 .

(276)

The perturbation hierarchy for equation (237) is
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ε0 : c∂θbz0 = 0, (277)

ε1 : c∂θbz1 = ∂x1ey0 − ∂y1ex0 , (278)

ε2 : c∂θbz2 = ∂x1ey1 − ∂y1ex1 , (279)

ε3 : c∂θbz3 = ∂x1ey2 − ∂y1ex2 , (280)

ε4 : c∂θbz4 = ∂x1ey3 − ∂y1ex3 . (281)

The perturbation hierarchy for equation (238) is

ε0 : ∂θby0 −
1

c
∂θex0 = 0, (282)

ε1 : ∂θby1 −
1

c
∂θex1 = ∂y1bz0 − ∂τ1by0 + µ0c∂θpx1 , (283)

ε2 : ∂θby2 −
1

c
∂θex2 = ∂y1bz1 − ∂τ1by1 − ∂τ2by0 + µ0c∂θpx2 , (284)

ε3 : ∂θby3 −
1

c
∂θex3 = ∂y1bz2 − ∂τ1by2 − ∂τ2by1 − ∂τ3by0 + µ0c∂θpx3 , (285)

ε4 : ∂θby4 −
1

c
∂θex4 = ∂y1bz3 − ∂τ1by3 − ∂τ2by2 − ∂τ3by1 − ∂τ4by0

+ µ0c∂θpx4 .
(286)

The perturbation hierarchy for equation (239) is

ε0 : ∂θbx0 +
1

c
∂θey0 = 0, (287)

ε1 : ∂θbx1 +
1

c
∂θey1 = ∂x1bz0 − ∂τ1bx0 − µ0c∂θpy1 , (288)

ε2 : ∂θbx2 +
1

c
∂θey2 = ∂x1bz1 − ∂τ1bx1 − ∂τ2bx0 − µ0c∂θpy2 , (289)

ε3 : ∂θbx3 +
1

c
∂θey3 = ∂x1bz2 − ∂τ1bx2 − ∂τ2bx1 − ∂τ3bx0 − µ0c∂θpy3 , (290)

ε4 : ∂θbx4 +
1

c
∂θey4 = ∂x1bz3 − ∂τ1bx3 − ∂τ2bx2 − ∂τ3bx1 − ∂τ4bx0

− µ0c∂θpy4 .
(291)

The perturbation hierarchy for equation (240) is
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ε0 :
1

c
∂θez0 = 0, (292)

ε1 :
1

c
∂θez1 = ∂y1bx0 − ∂x1by0 − µ0c∂θpz1 , (293)

ε2 :
1

c
∂θez2 = ∂y1bx1 − ∂x1by1 − µ0c∂θpz2 , (294)

ε3 :
1

c
∂θez3 = ∂y1bx2 − ∂x1by2 − µ0c∂θpz3 , (295)

ε4 :
1

c
∂θez4 = ∂y1bx3 − ∂x1by3 − µ0c∂θpz4 . (296)

The perturbation hierarchy for equation (241) is

ε0 : ∂θbz0 = 0, (297)

ε1 : ∂θbz1 = −∂x1bx0 − ∂y1by0 − ∂τ1bz0 , (298)

ε2 : ∂θbz2 = −∂x1bx1 − ∂y1by1 − ∂τ1bz1 − ∂τ2bz0 , (299)

ε3 : ∂θbz3 = −∂x1bx2 − ∂y1by2 − ∂τ1bz2 − ∂τ2bz1 − ∂τ3bz0 , (300)

ε4 : ∂θbz4 = −∂x1bx3 − ∂y1by3 − ∂τ1bz3 − ∂τ2bz2 − ∂τ3bz1 − ∂τ4bz0 . (301)

And the perturbation hierarchy for equation (242) is

ε0 : ∂θez0 = 0, (302)

ε1 : ∂θez1 = −∂x1ex0 − ∂y1ey0 − ∂τ1ez0 −
1

ε0
∂θpz1 , (303)

ε2 : ∂θez2 = −∂x1ex1 − ∂y1ey1 − ∂τ1ez1 − ∂τ2ez0 −
1

ε0
∂x1px1

− 1

ε0
∂y1py1 −

1

ε0
∂τ1pz1 −

1

ε0
∂θpz2 ,

(304)

ε3 : ∂θez3 = −∂x1ex2 − ∂y1ey2 − ∂τ1ez2 − ∂τ2ez1 − ∂τ3ez0

− 1

ε0
∂x1px2 −

1

ε0
∂y1py2 −

1

ε0
∂τ2pz1 −

1

ε0
∂τ1pz2 −

1

ε0
∂θpz3 ,

(305)

ε4 : ∂θez4 = −∂x1ex3 − ∂y1ey3 − ∂τ1ez3 − ∂τ2ez2 − ∂τ3ez1

− ∂τ4ez0 −
1

ε0
∂x1px3 −

1

ε0
∂y1py3 −

1

ε0
∂τ3pz1 −

1

ε0
∂τ2pz2 −

1

ε0
∂τ1pz3

− 1

ε0
∂θpz4 .

(306)

The way to solve these equations is to divide them into groups from what
order of ε they belong to, and then solve them like that. Starting with ε0,
(267), (272), (277), (282), (287), (292), (297) and (302), and writing them
as the system
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c∂θbx0 + ∂θey0 = 0, (307)

∂θex0 − c∂θby0 = 0, (308)

c∂θbz0 = 0, (309)

∂θby0 −
1

c
∂θex0 = 0, (310)

∂θbx0 +
1

c
∂θey0 = 0, (311)

1

c
∂θez0 = 0, (312)

∂θbz0 = 0, (313)

∂θez0 = 0. (314)

Two and two of these equations are equal, so it’s actually four equations,
(307), (308), (313) and (314):

c∂θbx0 + ∂θey0 = 0,

∂θex0 − c∂θby0 = 0,

∂θbz0 = 0,

∂θez0 = 0.

Equation (304) has the general solution

cbx0 + ey0 = a(x1, y1, τ1, τ2, ...). (315)

Since a doesn’t depend on θ can it be disregarded, and we choose a = 0

cbx0 + ey0 = 0,

=⇒ bx0 = −1

c
ey0 . (316)

Equation (308) has the general solution

ex0 − cby0 = d(x1, y1, τ1, τ2, ...). (317)

Because d doesn’t depend on θ, can we as before choose d = 0, and equation
(308) has the solution

by0 =
1

c
ex0 . (318)
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Equation (309) has the general solution

bz0 = f(x1, y1, τ1, τ2, ....). (319)

Because f does not depend on θ, can we choose f = 0, and

bz0 = 0. (320)

The general solution to equation (310) is

ez0 = g(x1, y1, τ1, τ2, ...). (321)

Since g doesn’t depend on θ, will the solution to (310) be

ez0 = 0. (322)

And then moving on to the equations for ε1, (268), (273), (278), (283), (288),
(293), (298) and (303), which can be written as the system

c∂θbx1 + ∂θey1 = ∂y1ez0 − ∂τ1ey0 , (323)

∂θex1 − c∂θby1 = ∂x1ez0 − ∂τ1ex0 , (324)

c∂θbz1 = ∂x1ey0 − ∂y1ex0 , (325)

∂θby1 −
1

c
∂θex1 = ∂y1bz0 − ∂τ1by0 + µ0c∂θpx1 , (326)

∂θbx1 +
1

c
∂θey1 = ∂x1bz0 − ∂τ1bx0 − µ0c∂θpy1 , (327)

1

c
∂θez1 = ∂y1bx0 − ∂x1by0 − µ0c∂θpz1 , (328)

∂θbz1 = −∂x1bx0 − ∂y1by0 − ∂τ1bz0 , (329)

∂θez1 = −∂x1ex0 − ∂y1ey0 − ∂τ1ez0 −
1

ε0
∂θpz1 . (330)

Let us start with looking at equations (323) and (327). It’s easy to see that
the left side of equation (323) is equal to the left side of (327) multiplied by
c. In order for (323) and (327) to have a solution, we have to impose the
solvability condition

∂y1ez0 − ∂τ1ey0 = c(∂x1bz0 − ∂τ1bx0 − µ0c∂θpy1). (331)

In the same way as above equation (324) and (326) will only have a
solution when we impose the solvability condition
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∂x1ez0 − ∂τ1ex0 = c(∂y1bz0 − ∂τ1by0 + µ0c∂θpx1). (332)

Moving on to equation (325) and (329). They will only have a solution if
we impose the solvability condition

∂x1ey0 − ∂y1ex0 = c(−∂x1bx0 − ∂y1by0 − ∂τ1bz0). (333)

And equations (328) and equation (330) only have a solution if we impose
the solvability condition

−∂x1ex0 − ∂y1ey0 − ∂τ1ez0 −
1

ε0
∂θpz1 = c(∂y1bx0 − ∂x1by0 − µ0c∂θpz1).

(334)

Because of the solvability condition (331) equation (323) will become under-
determined. This makes it possible to choose without loss of generality

ey1 = 0. (335)

When ey1 = 0, equation (323) becomes

c∂θbx1 = ∂y1ez0 − ∂τ1ey0 . (336)

The solvability condition (332) makes equation (324) become multivalued.
This means that we can choose without loss of generality

ex1 = 0. (337)

When ex1 = 0 equation (324) becomes

−c∂θby1 = ∂x1ez0 − ∂τ1ex0 . (338)

Imposing the solvability conditions (333) and (333) give us

c∂θbz1 = ∂x1ey0 − ∂y1ex0 , (339)

and

∂θez1 = −∂x1ex0 − ∂y1ey0 − ∂τ1ez0 −
1

ε0
∂θpz1 . (340)
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Moving on to solve the equations for ε2, (269), (274), (279), (284), (289),
(294), (299) and (304), which can be written as the system

c∂θbx2 + ∂θey2 = ∂y1ez1 − ∂τ1ey1 − ∂τ2ey0 (341)

∂θex2 − c∂θby2 = ∂x1ez1 − ∂τ1ex1 − ∂τ2ex0 , (342)

c∂θbz2 = ∂x1ey1 − ∂y1ex1 , (343)

∂θby2 −
1

c
∂θex2 = ∂y1bz1 − ∂τ1by1 − ∂τ2by0 + µ0c∂θpx2 , (344)

∂θbx2 +
1

c
∂θey2 = ∂x1bz1 − ∂τ1bx1 − ∂τ2bx0 + µ0c∂θpy2 , (345)

1

c
∂θez2 = ∂y1bx1 − ∂x1by1 − µ0c∂θpz2 , (346)

∂θbz2 = −∂x1bx1 − ∂y1by1 − ∂τ1bz1 − ∂τ2bz0 , (347)

∂θez2 = −∂x1ex1 − ∂y1ey1 − ∂τ2ez0 − ∂τ1ez1 −
1

ε0
∂x1px1

− 1

ε0
∂y1py1 −

1

ε0
∂τ1pz1 −

1

ε0
∂θpz2 .

(348)

It’s easy to see that equation (341) is (345) multiplied by c. So in order
for equation (341) and (345) to have a solution we impose the solvability
condition

∂y1ez1 − ∂τ1ey1 − ∂τ2ey0 = c(∂x1bz1 − ∂τ1bx1 − ∂τ2bx0 + µ0c∂θpy2). (349)

In the same way as above will equation (342) and (344) only have a solution
if we impose the solvability condition

∂x1ez1 − ∂τ1ex1 − ∂τ2ex0 = c(∂y1bz1 − ∂τ1by1 − ∂τ2by0 + µ0c∂θpx2). (350)

In the same way will also equation (343) and (347) only have a solution if
we impose the solvability condition

∂x1ey1 − ∂y1ex1 = c(−∂x1bx1 − ∂y1by1 − ∂τ1bz1 − ∂τ2bz0), (351)

And equation (346) and (348) needs the solvability condition

∂x1ex1 − ∂y1ey1 − ∂τ2ez0 − ∂τ1ez1

− 1

ε0
∂x1px1 −

1

ε0
∂y1py1 −

1

ε0
∂τ1pz1 −

1

ε0
∂θpz2

= c(∂y1bx1 − ∂x1by1 − µ0c∂θpz2).

(352)
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When the solvability condition (349) is imposed, equation (341) becomes
under-determied. This means that it is possible without loss of generality
to choose

ey2 = 0. (353)

When ey2 = 0, equation (341) becomes

c∂θbx2 = ∂y1ez1 − ∂τ1ey1 − ∂τ2ey0 . (354)

When the solvability condition (350) is imposed, equation (342) becomes
under-determined. This means that it is possible to choose without loss of
generality

ex2 = 0. (355)

When ex2 = 0 equation (342) becomes

−c∂θby2 = ∂x1ez1 − ∂τ1ex1 − ∂τ2ex0 . (356)

When the solvability conditions (351) and (352) are imposed we will get the
equations

c∂θbz2 = ∂x1ey1 − ∂y1ex1 , (357)

and

∂θez2 = −∂x1ex1 − ∂y1ey1 − ∂τ2ez0 − ∂τ1ez1 −
1

ε0
∂x1px1

− 1

ε0
∂y1py1 −

1

ε0
∂τ1pz1 −

1

ε0
∂θpz2 .

(358)

The equations for when ε3, (270), (275), (280), (285), (290), (295), (300)
and (305) can be written as the system
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c∂θbx3 + ∂θey3 = ∂y1ez2 − ∂τ1ey2 − ∂τ2ey1 − ∂τ3ey0 , (359)

∂θex3 − c∂θby3 = ∂x1ez2 − ∂τ1ex2 − ∂τ2ex1 − ∂τ3ex0 , (360)

c∂θbz3 = ∂x1ey2 − ∂y1ex2 , (361)

∂θby3 −
1

c
∂θex3 = ∂y1bz2 − ∂τ1by2 − ∂τ2by1 − ∂τ3by0 + µ0c∂θpx3 , (362)

∂θbx3 +
1

c
∂θey3 = ∂x1bz2 − ∂τ1bx2 − ∂τ2bx1 − ∂τ3bx0 − µ0c∂θpy3 , (363)

1

c
∂θez3 = ∂y1bx2 − ∂x1by2 − µ0c∂θpz3 , (364)

∂θbz3 = −∂x1bx2 − ∂y1by2 − ∂τ1bz2 − ∂τ2bz1 − ∂τ3bz0 , (365)

∂θez3 = −∂x1ex2 − ∂y1ey2 − ∂τ3ez0 − ∂τ2ez1 − ∂τ1ez2

− 1

ε0
∂x1px2 −

1

ε0
∂y1py2 −

1

ε0
∂τ2pz1 −

1

ε0
∂τ1pz2

− 1

ε0
∂θpz3 .

(366)

In order for (359) and (363) to have a solution we will impose the solvability
condition

∂y1ez2 − ∂τ1ey2 − ∂τ2ey1 − ∂τ3ey0
= c(∂x1bz2 − ∂τ1bx2 − ∂τ2bx1 − ∂τ3bx0 − µ0c∂θpy3).

(367)

In order for (360) and (362) to have a solution we impose the solvability
condition

∂x1ez2 − ∂τ1ex2 − ∂τ2ex1 − ∂τ3ex0
= ∂y1bz2 − ∂τ1by2 − ∂τ2by1 − ∂τ3by0 + µ0c∂θpx3 .

(368)

In order for (361) and (365) to have a solution we impose the solvability
condition

∂x1ey2 − ∂y1ex2 = c(−∂x1bx2 − ∂y1by2 − ∂τ1bz2 − ∂τ2bz1 − ∂τ3bz0). (369)

And in order for (364) and (366) to have a solution we impose the solvability
condition

− ∂x1ex2 − ∂y1ey2 − ∂τ3ez0 − ∂τ2ez1 − ∂τ1ez2

− 1

ε0
∂x1px2 −

1

ε0
∂y1py2 −

1

ε0
∂τ2pz1 −

1

ε0
∂τ1pz2

− 1

ε0
∂θpz3 = c(∂y1bx2 − ∂x1by2 − µ0c∂θpz3).

(370)
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When the solvability condition (367) is imposed, equation (359) becomes
under-determined, and it’s possible without loss of generality to choose

ey3 = 0. (371)

When ey3 = 0 equation (359) becomes

c∂θbx3 = ∂y1ez2 − ∂τ1ey2 − ∂τ2ey1 − ∂τ3ey0 . (372)

When the solvability condition (368) is imposed equation (360) becomes
under-determined, and it is possible to choose without loss of generality

ex3 = 0. (373)

When ex3 = 0, equation (360) becomes

−c∂θby3 = ∂x1ez2 − ∂τ1ex2 − ∂τ2ex1 − ∂τ3ex0 . (374)

And when the solvability conditions (369) and (370) are imposed, we get
the equations

c∂θbz3 = ∂x1ey2 − ∂y1ex2 , (375)

and

∂θez3 = −∂x1ex2 − ∂y1ey2 − ∂τ3ez0 − ∂τ2ez1 − ∂τ1ez2

− 1

ε0
∂x1px2 −

1

ε0
∂y1py2 −

1

ε0
∂τ2pz1 −

1

ε0
∂τ1pz2

− 1

ε0
∂θpz3 .

(376)

And then the last set of equations for ε4, (271), (276), (281), (286), (291),
(296), (301) and (306), which can be written as this following system:
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c∂θbx4 + ∂θey4 = ∂y1ez3 − ∂τ1ey3 − ∂τ2ey2 − ∂τ3ey1 − ∂τ4ey0 , (377)

∂θex4 − c∂θby4 = ∂x1ez3 − ∂τ1ex3 − ∂τ2ex2 − ∂τ3ex1 − ∂τ4ex0 , (378)

c∂θbz4 = ∂x1ey3 − ∂y1ex3 , (379)

∂θby4 −
1

c
∂θex4 = ∂y1bz3 − ∂τ1by3 − ∂τ2by2 − ∂τ3by1

− ∂τ4by0 + µ0c∂θpx4 ,
(380)

∂θbx4 +
1

c
∂θey4 = ∂x1bz3 − ∂τ1bx3 − ∂τ2bx2 − ∂τ3bx1

− ∂τ4bx0 − µ0c∂θpy4 ,
(381)

1

c
∂θez4 = ∂y1bx3 − ∂x1by3 − µ0c∂θpz4 , (382)

∂θbz4 = −∂x1bx3 − ∂y1by3 − ∂τ1bz3 − ∂τ2bz2
− ∂τ3bz1 − ∂τ4bz0 ,

(383)

∂θez4 = −∂x1ex3 − ∂y1ey3 − ∂τ4ez0 − ∂τ3ez1

− ∂τ2ez2 − ∂τ1ez3 −
1

ε0
∂x1px3

− 1

ε0
∂y1py3 −

1

ε0
∂τ3pz1

− 1

ε0
∂τ2pz2 −

1

ε0
∂τ1pz3 −

1

ε0
∂θpz4 .

(384)

In order for (377) and (381) to have a solution we impose the solvability
condition

∂y1ez3 − ∂τ1ey3 − ∂τ2ey2 − ∂τ3ey1 − ∂τ4ey0
= c(∂x1bz3 − ∂τ1bx3 − ∂τ2bx2 − ∂τ3bx1 − ∂τ4bx0 − µ0c∂θpy4).

(385)

In order for (378) and (380) to have a solution we impose the solvability
condition

∂x1ez3 − ∂τ1ex3 − ∂τ2ex2 − ∂τ3ex1 − ∂τ4ex0
= c(∂y1bz3 − ∂τ1by3 − ∂τ2by2 − ∂τ3by1
− ∂τ4by0 + µ0c∂θpx4).

(386)

In order for (379) and (383) to have a solution we impose the solvability
condition

∂x1ey3 − ∂y1ex3
= c(−∂x1bx3 − ∂y1by3 − ∂τ1bz3 − ∂τ2bz2 − ∂τ3bz1 − ∂τ4bz0).

(387)
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And in order for (382) and (384) to have a solution we impose the solvability
condition

− ∂x1ex3 − ∂y1ey3 − ∂τ4ez0 − ∂τ3ez1

− ∂τ2ez2 − ∂τ1ez3 −
1

ε0
∂x1px3

− 1

ε0
∂y1py3 −

1

ε0
∂τ3pz1

− 1

ε0
∂τ2pz2 −

1

ε0
∂τ1pz3 −

1

ε0
∂θpz4

= c(∂y1bx3 − ∂x1by3 − µ0c∂θpz4).

(388)

When the solvability condition (385) is imposed, equation (377) becomes
under-determined. This makes it possible to without loss of generality
choose

ey4 = 0. (389)

When ey4 = 0 equation (377) becomes

c∂θbx4 = ∂y1ez3 − ∂τ1ey3 − ∂τ2ey2 − ∂τ3ey1 − ∂τ4ey0 . (390)

When the solvability condition (386) is imposed, equation (378) becomes
under-determined and we can choose without loss of generality

ex4 = 0. (391)

When ex4 = 0 equation (378) becomes

−c∂θby4 = ∂x1ez3 − ∂τ1ex3 − ∂τ2ex2 − ∂τ3ex1 − ∂τ4ex0 . (392)

And when the solvability conditions (387) and (388) are imposed, we get
the equations

c∂θbz4 = ∂x1ey3 − ∂y1ex3 , (393)

and
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∂θez4 = −∂x1ex3 − ∂y1ey3 − ∂τ4ez0 − ∂τ3ez1

− ∂τ2ez2 − ∂τ1ez3 −
1

ε0
∂x1px3

− 1

ε0
∂y1py3 −

1

ε0
∂τ3pz1

− 1

ε0
∂τ2pz2 −

1

ε0
∂τ1pz3 −

1

ε0
∂θpz4 .

(394)

Now let’s summarize what we have. We have the values (320), (322),
(337), (355), (373), (391), (335), (353), (371) (389), the equations (340),
(358), (376), (394), (316), (318), (336), (338), (354), (356), (372), (374),
(390), (392), (339), (357), (375), (393), and the solvability conditions (331),
(332), (333), (334), (349), (350), (351), (352), (367), (368), (369), (370),
(385), (386), (387) and (388). They become the system of equations

bz0 = 0, (395)

ez0 = 0, (396)

ex1 = 0, (397)

ey1 = 0, (398)

ex2 = 0, (399)

ey2 = 0, (400)

ex3 = 0, (401)

ex4 = 0, (402)

the equations
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bx0 = −1

c
ey0 , (403)

by0 =
1

c
ex0 , (404)

c∂θbx1 = ∂y1ez0 − ∂τ1ey0 , (405)

− c∂θby1 = ∂x1ez0 − ∂τ1ex0 , (406)

c∂θbz1 = ∂x1ey0 − ∂y1ex0 , (407)

∂θez1 = −∂x1ex0 − ∂y1ey0 − ∂τ1ez0 −
1

ε0
∂θpz1 , (408)

c∂θbx2 = ∂y1ez1 − ∂τ1ey1 − ∂τ2ey0 , (409)

− c∂θby2 = ∂x1ez1 − ∂τ1ex1 − ∂τ2ex0 , (410)

c∂θbz2 = ∂x1ey1 − ∂y1ex1 , (411)

∂θez2 = −∂x1ex1 − ∂y1ey1 − ∂τ2ez0 − ∂τ1ez1 −
1

ε0
∂x1px1

− 1

ε0
∂y1py1 −

1

ε0
∂τ1pz1 −

1

ε0
∂θpz2 .

(412)

c∂θbx3 = ∂y1ez2 − ∂τ1ey2 − ∂τ2ey1 − ∂τ3ey0 , (413)

− c∂θby3 = ∂x1ez2 − ∂τ1ex2 − ∂τ2ex1 − ∂τ3ex0 , (414)

c∂θbz3 = ∂x1ey2 − ∂y1ex2 , (415)

∂θez3 = −∂x1ex2 − ∂y1ey2 − ∂τ3ez0 − ∂τ2ez1 − ∂τ1ez2

− 1

ε0
∂x1px2 −

1

ε0
∂y1py2 −

1

ε0
∂τ2pz1 −

1

ε0
∂τ1pz2

− 1

ε0
∂θpz3 ,

(416)

c∂θbx4 = ∂y1ez3 − ∂τ1ey3 − ∂τ2ey2 − ∂τ3ey1 − ∂τ4ey0 , (417)

− c∂θby4 = ∂x1ez3 − ∂τ1ex3 − ∂τ2ex2 − ∂τ3ex1 − ∂τ4ex0 , (418)

c∂θbz4 = ∂x1ey3 − ∂y1ex3 , (419)

∂θez4 = −∂x1ex3 − ∂y1ey3 − ∂τ4ez0 − ∂τ3ez1

− ∂τ2ez2 − ∂τ1ez3 −
1

ε0
∂x1px3

− 1

ε0
∂y1py3 −

1

ε0
∂τ3pz1

− 1

ε0
∂τ2pz2 −

1

ε0
∂τ1pz3 −

1

ε0
∂θpz4 ,

(420)

and the solvability conditions
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∂y1ez0 − ∂τ1ey0 = c(∂x1bz0 − ∂τ1bx0 − µ0c∂θpy1), (421)

∂x1ez0 − ∂τ1ex0 = c(∂y1bz0 − ∂τ1by0 + µ0c∂θpx1), (422)

∂x1ey0 − ∂y1ex0 = c(−∂x1bx0 − ∂y1by0 − ∂τ1bz0), (423)

− ∂x1ex0 − ∂y1ey0 − ∂τ1ez0 −
1

ε0
∂θpz1 = c(∂y1bx0 − ∂x1by0

− µ0c∂θpz1),

(424)

∂y1ez1 − ∂τ1ey1 − ∂τ2ey0 = c(∂x1bz1 − ∂τ1bx1 − ∂τ2bx0 + µ0c∂θpy2), (425)

∂x1ey1 − ∂y1ex1 = c(−∂x1bx1 − ∂y1by1 − ∂τ1bz1 − ∂τ2bz0), (426)

∂x1ex1 − ∂y1ey1 − ∂τ2ez0 − ∂τ1ez1

− 1

ε0
∂x1px1 −

1

ε0
∂y1py1 −

1

ε0
∂τ1pz1 −

1

ε0
∂θpz2

= c(∂y1bx1 − ∂x1by1 − µ0c∂θpz2).

(427)

∂x1ez1 − ∂τ1ex1 − ∂τ2ex0 = c(∂y1bz1 − ∂τ1by1 − ∂τ2by0 + µ0c∂θpx2), (428)

∂y1ez2 − ∂τ1ey2 − ∂τ2ey1 − ∂τ3ey0
= c(∂x1bz2 − ∂τ1bx2 − ∂τ2bx1 − ∂τ3bx0 − µ0c∂θpy3),

(429)

∂x1ez2 − ∂τ1ex2 − ∂τ2ex1 − ∂τ3ex0
= ∂y1bz2 − ∂τ1by2 − ∂τ2by1 − ∂τ3by0 + µ0c∂θpx3 ,

(430)

∂x1ey2 − ∂y1ex2 = c(−∂x1bx2 − ∂y1by2 − ∂τ1bz2 − ∂τ2bz1 − ∂τ3bz0), (431)

− ∂x1ex2 − ∂y1ey2 − ∂τ3ez0 − ∂τ2ez1 − ∂τ1ez2

− 1

ε0
∂x1px2 −

1

ε0
∂y1py2 −

1

ε0
∂τ2pz1 −

1

ε0
∂τ1pz2

− 1

ε0
∂θpz3 = c(∂y1bx2 − ∂x1by2 − µ0c∂θpz3),

(432)

∂y1ez3 − ∂τ1ey3 − ∂τ2ey2 − ∂τ3ey1 − ∂τ4ey0
= c(∂x1bz3 − ∂τ1bx3 − ∂τ2bx2 − ∂τ3bx1 − ∂τ4bx0 − µ0c∂θpy4),

(433)

∂x1ez3 − ∂τ1ex3 − ∂τ2ex2 − ∂τ3ex1 − ∂τ4ex0
= c(∂y1bz3 − ∂τ1by3 − ∂τ2by2 − ∂τ3by1
− ∂τ4by0 + µ0c∂θpx4),

(434)

∂x1ey3 − ∂y1ex3
= c(−∂x1bx3 − ∂y1by3 − ∂τ1bz3 − ∂τ2bz2 − ∂τ3bz1 − ∂τ4bz0),

(435)

− ∂x1ex3 − ∂y1ey3 − ∂τ4ez0 − ∂τ3ez1

− ∂τ2ez2 − ∂τ1ez3 −
1

ε0
∂x1px3

− 1

ε0
∂y1py3 −

1

ε0
∂τ3pz1

− 1

ε0
∂τ2pz2 −

1

ε0
∂τ1pz3 −

1

ε0
∂θpz4

= c(∂y1bx3 − ∂x1by3 − µ0c∂θpz4).

(436)
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We are now going to use the equations (395) - (420) on the solution con-
ditions. When finding the derivative on θ and simplify using (395)-(418)
on the solution conditions (423), (424), (426), (427), (431), (432), (435)
and (436). Simplifying them in this way shows that they are automatically
satisfied.

Using (395)-(420) on the rest of the solvability conditions in the same
way as in the previous chapters let us end up with the equations

2∂τ1θex0 = µ0c
2∂θθpx1 , (437)

2∂τ1θey0 = µ0c
2∂θθpy1 , (438)

2∂τ2θey0 = −∂y1y1ey0 −
1

ε0
∂θy1pz1 − ∂x1x1ey0

− ∂τ1τ1ey0 + µ0c
2∂θθpy2 ,

(439)

2∂τ2θex0 = −∂y1y1ex0 − ∂τ1τ1ex0 − ∂x1x1ex0

− 1

ε0
∂x1θpz1 + µ0c

2∂θθpx2 ,
(440)

2∂τ3θey0 = −2∂τ1τ2ey0 −
1

ε0
(∂y1x1px1 + ∂y1y1py1 + ∂y1τ1pz1

+ ∂y1θpz2) + µ0c
2∂θθpy3 ,

(441)

2∂τ3θex0 = −2∂τ1τ2ex0 + µ0c
2∂θθpx3

− 1

ε0
(∂x1x1px1 + ∂x1y1py1 + ∂x1τ1pz1 + ∂x1θpz2),

(442)

2∂τ4θey0 = − 1

ε0
(∂y1x1px2 + ∂y1y1py2 + ∂τ2y1pz1 + ∂y1τ1pz2

+ ∂y1θpz3)− 2∂τ1τ3ey0 − ∂τ2τ2ey0 + µ0c
2∂θθpy4 ,

(443)

2∂τ4θex0 = − 1

ε0
(∂x1x1px2 + ∂x1y1py2 + ∂x1τ2pz1

+ ∂x1τ1pz2 + ∂x1θpz3)− 2∂τ1τ3ex0 − 2∂τ2τ2ey0 + µ0c
2∂θθpx4 .

(444)

Consider the special case when

P = ε2
(
ε0χ̂(−ic∂θ)e0 + ε0ηe

3
0

)
,

which implies that

p1 = 0,

p2 =
(
ε0χ̂(−ic∂θ)e0 + ε0ηe

3
0

)
,

p3 = 0,

p4 = 0.
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Introduce

Ex0(θ, x, τ1, τ2, ...)x1=εx,τj=εjτ . (445)

Ey0(θ, x, τ1, τ2, ...)x1=εx,τj=εjτ (446)

Multiplying (437) and (438) by ε, (439) and (440) by ε2, (441) and (442)
by ε3 and (443) and (444) by ε4, and using the expansions

∂x = ε∂x1 , (447)

∂τ = ε∂τ1 + ε2∂τ2 + ε3∂τ3 + ε4∂τ4 , (448)

we get

2∂τθEx0 = −∂yyEx0 − ∂xxEx0 − ∂ττEx0
− (ε2∂xx(χ̂(−ic∂θ)Ex0 + η(E3

x0 + E2
y0Ex0))

+ ε2∂xy(ε0χ̂(−ic∂θ)Ey0 + ε0η(E2
x0Ey0 + E3

y0))+

ε3∂xθε0η(E2
x0 + E2

y0)Ez1)

+ µ0ε
2c2∂θθ(ε0χ̂(−ic∂θ)Ex0 + ε0η(E3

x0 + E2
y0Ex0)),

(449)

2∂τθEy0 = −∂yyEy0 − ∂xxEy0 − ∂ττEy0
− (ε2∂xy(χ̂(−ic∂θ)Ex0 + η(E3

x0 + E2
y0Ex0))+

ε2∂yy(ε0χ̂(−ic∂θ)Ey0 + ηε0(E
2
x0Ey0 + E3

y0))

+ ε3∂yθε0η(E2
x0 + E2

y0)Ez1) + µ0ε0c
2ε2∂θθ(χ̂(−ic∂θ)Ey0

+ η(E2
x0Ey0 + E3

y0)).

(450)
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5 Perturbation equations to order ε2 without po-
larization

We now have equations (449) and (450)

2∂τθEx0 = −∂yyEx0 − ∂xxEx0 − ∂ττEx0
− (ε2∂xx(χ̂(−ic∂θ)Ex0 + η(E3

x0 + E2
y0Ex0))

+ ε2∂xy(ε0χ̂(−ic∂θ)Ey0 + ε0η(E2
x0Ey0 + E3

y0))+

ε3∂xθε0η(E2
x0 + E2

y0)Ez1)

+ µ0ε
2c2∂θθ(ε0χ̂(−ic∂θ)Ex0 + ε0η(E3

x0 + E2
y0Ex0)),

2∂τθEy0 = −∂yyEy0 − ∂xxEy0 − ∂ττEy0
− (ε2∂xy(χ̂(−ic∂θ)Ex0 + η(E3

x0 + E2
y0Ex0))+

ε2∂yy(ε0χ̂(−ic∂θ)Ey0 + ηε0(E
2
x0Ey0 + E3

y0))

+ ε3∂yθε0η(E2
x0 + E2

y0)Ez1) + µ0ε0c
2ε2∂θθ(χ̂(−ic∂θ)Ey0

+ η(E2
x0Ey0 + E3

y0)).

Taking away the dispersion and the diffraction from (449) and (450) and
dropping all terms of order ε3 or higher we get

2∂θτEx0 = µ0ε0c
2ε2∂θθη(E3

x0 + Ex0E
2
y0), (451)

2∂θτEy0 = µ0ε0c
2ε2∂θθη(E2

x0Ey0 + E3
y0). (452)

Integrating over θ on both sides will give:

2∂τEx = µ0ε0c
2ε2∂θη(E3

x0 + Ex0E
2
y0) + f(τ), (453)

2∂τEy = µ0ε0c
2ε2∂θη(E2

x0ey0 + E3
y0) + g(τ). (454)

We are choosing to disregard f(τ) and g(τ) . Doing a change of variables
where τ = τ0τ

′ and θ = θ0θ
′ and choosing θ0 = µ0ε0c

2ε2ητ0 will give the
equations:

2∂τEx0 = ∂θ(E
3
x0 + ex0E

2
y0), (455)

2∂τEy0 = ∂θ(E
2
x0ey0 + E3

y0). (456)

Where we have returned to unprimed quantities the case of linear polariza-
tion where Ey0 = 0. Equation (456) will then disappear and equation (455)
will become:
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2∂τEx0 = ∂θ(E
3
x0) = 3E2

x0∂Ex0 . (457)

This is now a quasilinear first order partial differential equation. This is
because it is linear in the derivative terms, but has a nonlinear expression
3E2

x0∂θEx0 .

2∂τEx0 − 3E2
x0∂θEx0 = 0. (458)

With an initial value Ex0(θ, 0) = f(θ). It can be solved using the method
of characteristics[6]. First parameterize the initial curve

θ = t τ = 0 Ex0 = f(t), (459)

and find the value of

J =
∂τ

∂t
(−3E2

x0)− ∂θ

∂t
(2) = −2 6= 0. (460)

This means that there exists one and only one solution to this equation. It’s
necessary to find the motion of the wave, and that means finding the velocity
of ∂θ

∂τ of each point of the wave. The first two parts of the characteristic
equations (423) means that, the bigger the amplitude |Ex0(θ, τ)| of the wave
is, the bigger is the speed of the corresponding point of the wave θ.

∂θ

∂s
= −3E2

x0

∂τ

∂s
= 2

∂Ex0
∂s

= 0. (461)

with the initial condition s = 0.

∂θ

∂s
= −3E2

x0 ,

=⇒ θ = −3E2
x0s+ t = −3f(t)2s+ t, (462)

∂τ

∂s
= 2,

=⇒ τ = 2s+ c = 2s. (463)

∂Ex0
∂s = 0 means that Ex0(s, t) is constant along the characteristic curves

such that Ex0(s, t) = Ex0(0, t) = f(t).
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θ = −3

2
f(t)2τ + t, (464)

=⇒ t = θ +
3

2
f(t)2τ, (465)

= θ +
3

2
E2
x0τ, (466)

Ex0 = f(t(θ, τ)). (467)

The implicit solution is

Ex0 = f(θ +
3

2
E2
x0τ). (468)

5.1 Breaking Time

If Ex0 > 0 the point θ will move to the right, if Ex0 = 0 θ will be fixed, and
if Ex0 < 0 will θ move to the left. But if Ex0(θ, τ) takes on both positive and
negative values, different parts of the wave will move with different speeds
to the right or to the left. In this case the wave will move to the left. That
means that the points θ where Ex0 has higher values will move faster to the
left than the points where Ex0 has smaller values. If the higher parts of the
wave form initially are to the right or the rear of the of lower parts, then will
the higher parts eventually pass the lower parts. The first time this happens
is when the wave breaks, and Ex0 becomes multivalued and is no longer a
valid solution. This means that equation (458) no longer is an acceptable
model for the physical process, and the neglected parts of the quasilinear
equation (458) are significant. It’s possible to use implicit derivation to find
both the time τ and the point θ where the wave breaks:

∂θEx0 = f ′(θ +
3

2
E2
x0τ)(1 +

3

2
τ · 2Ex0∂θEx0), (469)

= f ′(θ +
3

2
E2
x0τ)(1 + 3τEx0∂θEx0), (470)

= f ′(θ
3

2
E2
x0τ) + 3τEx0∂θEx0f

′(θ +
3

2
E2
x0τ), (471)

=⇒ ∂θEx0(1− 3τEx0f
′(θ +

3

2
E2
x0τ)) = f ′(θ +

3

2
E2
x0τ), (472)

=⇒ ∂θEx0 =
f ′(θ + 3

2E
2
x0τ)

1− 3τEx0f
′(θ + 3

2E
2
x0τ)

, (473)

=
f ′(t)

1− 3τf(t)f ′(t)
. (474)

The equation breaks down when 1− 3τf(t)f ′(t) = 0:
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3τf(t)f ′(t) = 1, (475)

=⇒ τ =
1

3f(t)f ′(t)
. (476)

The breakdown time will then be:

τ∗ = min
t

(
1

3f(t)f ′(t)

)
. (477)

5.2 Numerical solution

The finite difference method[2] is a numerical method that is used to find
the numerical solution of ordinary and partial differential equations. The
method solves equations by discretization of the equations on the space-time
grid in figure 3

That means that the equation Ex0(θ, τ) becomes Ex0(θi, τn). The fi-
nite difference method use Taylors theorem to find an approximation to the
derivatives of the equations expressed by the points on the space- time grid.
Using this gives the forward difference

(
∂Ex0
∂τ

)n
i

≈
(Ex0)n+1

i − (Ex0)ni
dτ

, (478)

backward difference

(
∂Ex0
∂τ

)n
i

≈
(Ex0)n−1i − (Ex0)ni

dτ
, (479)

and center difference

(
∂Ex0
∂τ

)n
i

≈
(Ex0)n+1

i − (Ex0)n−1i

2dτ
. (480)

Center difference has an approximate error of dτ2, while forward and back-
ward difference has an approximate error of dτ . This means that center
difference has a more accurate approximation, something that makes it the
best choice in this case to use to find the numerical solution to equation
(458). Choosing in this case to use periodic boundary conditions, which
means that the first point and the last point on each line in the space- time
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grid have the same value. This is something that is going to be used when
finding the equations that’s used in the code.

The first line for when n=0 is given as a Gaussian function. The equa-
tions for center difference uses points from the two last lines to find a point
on the next line. It is therefore impossible to use center difference to find
the points for n=1, and we have to use forward difference for the derivative
on τ , and the equation to find the points (not the end points) when n=1 is

(Ex0)1i = (Ex0)0i +
3

4
s((Ex0)0i )

2((Ex0)0i+1 − (Ex0)0i−1), (481)

where s = dτ
dθ . Because of the boundary conditions will the equation for the

boundary points need to be different from equation (433) with the derivative
on θ. The equation of i=0 is

(Ex0)10 = (Ex0)00 +
3

4
s((Ex0)00)

2((Ex0)01 − (Ex0)0N−2), (482)

and the equation for the last point when i=N-2 is

(Ex0)1N−2 = (Ex0)0N−2 +
3

4
s((Ex0)0N−2)

2((Ex0)00 − (Ex0)0N−3), (483)

where s = dτ
dθ . The center difference equation in general except the boundary

points is

(Ex0)n+1
i = (Ex0)n−1i +

3

2
s((Ex0)ni )2((Ex0)ni+1 − (Ex0)ni−1). (484)

The center difference equation for the boundary point i=0 is

(Ex0)n+1
0 = (Ex0)n−10 +

3

2
s((Ex0)n0 )2((Ex0)n1 − (Ex0)nN−2), (485)

and the center difference equation for the boundary point i=N-2 is

(Ex0)n+1
N−2 = (Ex0)n−1N−2 +

3

2
s((Ex0)nN−2)

2((Ex0)n0 − (Ex0)nN−3). (486)

5.2.1 Initial function

The numerical solution uses an initial function, which in this case is the
initial laser pulse. This laser pulse has the form
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Ex0(0, t) = f(t) cos(ω0t). (487)

Where f(t) is the pulse shape function, which can also be called an envelope
function. The common choice for this type of function is a Gaussian, which
has the form

f(t) = a exp(−bx2), (488)

which is a function symmetrical around t =0. A typical shape for this is
shown in figure 4, where the period is

T =
2π

ω0
. (489)

The oscillating part of Ex0(0, t) is called the ”carrier” wave. Introducing
the change of variables (37) and (38) to equation (496) will give the initial
function in the(θ, τ) plane

A(θ, 0) = f

(
−θ
c

)
cos

(
−ω0

θ

c

)
. (490)

Inserting (526) into (528) and using the scaling

A = α0A
′ (491)

θ = θ0θ
′ (492)

will give the function

A′(θ′, 0) =
a

α
exp

(
− b

c2
θ20θ
′2
)

cos

(
ω0θ0
c

θ′
)
. (493)

Choosing a = α so the amplitude is normalized to one, and choosing the
scaling of θ0 such that the carrier wave as a period of 2π is

ω0θ0
c

= 1. (494)

Equation (493) now becomes

A′(θ′, 0) = exp(−γθ′2) cos(θ′), (495)

where γ = b
ω2
0
.

Since b is free,then γ is a free dimensionless number, and by varying the
number γ can we get as few or as many oscillations in the carrier wave under
the envelope wave as we want.
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5.2.2 Stability

The numerical solution, with in this case a chosen Gaussian initial function,
can look like shown in figure 5.

This is because of a numerical instability in our finite difference method.
To find the stability condition let’s look at the linear case of equation (458),
which is

∂τEx0 + c∂θEx0 = 0. (496)

It’s now possible to use this equation to find a stability condition using
separation of variables on the center difference equation for equation (496)

(Ex0)nj = (Ex0)(xj , tn), (497)

and the center difference equation for (496) is

(Ex0)n+1
j − (Ex0)n−1j

2dt
+ c

(Ex0)nj+1 − (Ex0)nj−1
2dx

= 0,

=⇒ (Ex0)n+1
j − (Ex0)n−1j + cs((Ex0)nj+1 − (Ex0)nj−1) = 0, (498)

where s = c dtdx . Now let’s assume that

(Ex0)nj = ξnηj (499)

Inserting (528) into equation (528) will give

ξn+1ηj = ξn−1ηj + s(ξnηj+1 − ξnηj−1, (500)

=⇒ ξn+1 = ξn−1 + sξn(η1 − η−1). (501)

Still assuming periodic boundary conditions

η0 = ηN−1, (502)

such that

(Ex0)nj = ξn exp(i
2πj

N − 1
) = ξn exp(iθ). (503)
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Where for large N θj is approximated by a continuous variable θ. This
means that equation (501) becomes

ξn+1 = ξn−1 + ξns(exp(iθ)− exp(−iθ)). (504)

Using the fact that

(exp(iθ)− exp(−iθ)) = 2i sin(θ) (505)

equation (504) will become

ξ1 = ξ−1 + 2si sin(θ). (506)

This becomes the second order polynomial equation

ξ2 − 2is sin(θ)ξ − 1 = 0. (507)

Equation (507) has the solution

ξ =
1

2

(
2si sin(θ)±

√
−4s2 sin2(θ) + 4

)
. (508)

when assuming that s < 1 the norm of ξ will be

|ξ|2 = s2 sin2(θ) + 1− sin2(θ) = 1. (509)

Since the requirement of stability is that

|ξ| ≤ 1 (510)

can we say that the numerical scheme (498) is stable for s < 1.
When s > 1

s2 sin2(θ)− 1 > 0, (511)

which means that

|ξ|2 > 1, (512)

and the numerical scheme (498) is not stable for s > 1.
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This is for the linear case, but the quasilinear case that we have

c = c(Ex0) =
3

2
E2
x0 , (513)

the requirement for stability is conjectured to be, based on the arguments
given on the previous page

c(Ex0)s < 1, (514)

=⇒ 3

2
E2
x0s < 1 (515)

which means that the numerical solution for equation (458) is stable if

s <
2

3(Ex0)2max
. (516)

This makes sense since in light of figure 5 the instability appears on the top
of the graph.

5.2.3 Testing

When choosing a Gaussian function as the initial function for the numerical
solution is it possible to use equation (439) to test the implementation. This
is done by finding the breaking time by inserting the initial function into
equation (439), and then see if the time fits with the breaking time of the
numerical solution. The starting function has the form

f(x) = a exp(−γx2), (517)

which has the derivative

f ′(x) = −2γx exp(−γx2). (518)

Inserting this into equation (438) defines the function g(x)

g(x) = −exp(2γx2)

6γx
. (519)

The minimum value of x is found by setting the derivative of g(x)equaltozero.
We have

g′(x) = (−2

3
+

1

6γx
) exp(2γx2) = 0. (520)
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The solution to this equation is

x = ± 1

2γ1/2
. (521)

The value of x that will give a positive time τ∗ is

x = − 1

2γ1/2
(522)

Inserting this into equation (519) give the equation

τ∗ =
exp(1/2)

3γ1/2
. (523)

Choosing a function where γ = 0.01 will give a breaking time

τ∗ = 5, 4957 ≈ 5, 5. (524)

This corresponds to the numerical implementation, because we can see in
figure 6 that the graph starts to break when τ = 5.5.

5.3 Results

For the case when γ = 0.01 will the initial wave look like in figure 7.
Over time when the graph starts to lean to the left, because of the

nonlinearity of function (458). This is shown in figure 8.
When it leans so much to the left that the graph has a vertical line, it

will break. In this case it will break after 0.59 seconds.
When iterating a little bit more from the breaking point, it is shown in

figure 10 that the function will no longer give valid solutions to the physical
process.
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6 Perturbation equations to order ε4 without po-
larization

2∂τθEx0 = −∂yyEx0 − ∂xxEx0 − ∂ττEx0
− (ε2∂xx(χ̂(−ic∂θ)Ex0 + η(E3

x0 + E2
y0Ex0))

+ ε2∂xy(ε0χ̂(−ic∂θ)Ey0 + ε0η(E2
x0Ey0 + E3

y0))+

ε3∂xθε0η(E2
x0 + E2

y0)Ez1)

+ µ0ε
2c2∂θθ(ε0χ̂(−ic∂θ)Ex0 + ε0η(E3

x0 + E2
y0Ex0)),

2∂τθEy0 = −∂yyEy0 − ∂xxEy0 − ∂ττEy0
− (ε2∂xy(χ̂(−ic∂θ)Ex0 + η(E3

x0 + E2
y0Ex0))+

ε2∂yy(ε0χ̂(−ic∂θ)Ey0 + ηε0(E
2
x0Ey0 + E3

y0))

+ ε3∂yθε0η(E2
x0 + E2

y0)Ez1) + µ0ε0c
2ε2∂θθ(χ̂(−ic∂θ)Ey0

+ η(E2
x0Ey0 + E3

y0)).

Removing the dispersion and the diffraction, but now retaining terms at
order ε4, we get the equations (410) and (411):

2∂θτEx = −∂ττEx0 + µ0ε0c
2ε2∂θθη(E3

x0 + Ex0E
2
y0),

2∂θτEy = −∂ττEy0 + µ0ε0c
2ε2∂θθη(E2

x0Ey0 + E3
y0).

In this case will ∂ττ not be disregarded, and the case of Ey0 = 0 is still valid.
This makes the equation

2∂θτEx0 = −∂ττEx0 + µ0c
2ε2∂θθE

3
x0 . (525)

Doing a change of variables where τ = τ0τ
′ and θ = θ0 + θ′ and choosing

θ0 = µ0ε0c
2ε2ητ0 will give the equation:

2∂τθEx0 = −∂ττEx0 + ∂θθE
3
x0 . (526)

Without the ∂ττ will equation (526) become

2∂τθEx0 = ∂θθE
3
x0 , (527)

=⇒ 2∂τEx0 = ∂θE
3
x0 +O(ε2), (528)

(529)
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The reason why our iteration procedure is expected to work is because
∂ττEx0 is a small correction in (526). From (528) we get by taking the
derivative with respect to τ

2∂ττEx0 = ∂τ (∂θE
3
x0), (530)

= ∂θ(∂τE
3
x0), (531)

= ∂θ(3E
2
x0∂τEx0), (532)

and inserting (528) will make the equation

2∂ττEx0 = ∂θ

(
1

2
E2
x0∂θE

3
x0

)
, (533)

= ∂θ

(
9

2
E4
x0∂θEx0

)
. (534)

Inserting (534) into equation (526) will give

2∂τθEx0 = −∂θ
(

9

4
E4
x0∂θEx0

)
+ ∂θθE

3
x0 . (535)

This will give the equation

2∂τEx0 = −9

4
E4
x0∂θEx0 + ∂θE

3
x0 + f(τ), (536)

We disregard f(τ), and end up with the equation

=⇒ ∂τEx0 =
3

2
E2
x0

(
1− 3

4
E2
x0

)
∂θEx0 . (537)

This is also a quasilinear first order partial differential equation with the
initial value Ex0(θ, 0) = f(θ). It can therefore be solved using the method
of characteristics [6]. First parameterize the initial curve:

θ = t τ = 0 Ex0 = f(t), (538)

and find the value of

J =
∂τ

∂t
(−3

2
E2
x0(1− 3

4
E2
x0))− ∂θ

∂t
(1) = 0− 1 = −1 6= 0. (539)
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This means that there exists one and only one solution to this equation.
The characteristic equations are

∂θ

∂s
= −3

2
E2
x0(1− 3

4
E2
x0)

∂τ

∂s
= 1

∂Ex0
∂s

= 0, (540)

with the initial condition s = 0.
Here will

∂θ

∂s
= −3

2
E2
x0(1− 3

4
E2
x0)

become

θ = −3

2
E2
x0

(
1− 3

4
E2
x0

)
s+ t. (541)

∂τ

∂s
= 1

will become

τ = s+ c. (542)

Because of the initial condition s = 0 will c = 0 and

τ = s. (543)

∂Ex0
∂s

= 0 (544)

means that Ex0(s, t) is constant along the characteristic curves such that

Ex0(s, t) = Ex0(0, t) = f(t). (545)

Inserting (541) and (543) will give the equation

θ = −3

2
f(t)2

(
1− 3

4
f(t)2

)
τ + t, (546)

=⇒ t = θ +
3

2
f(t)2

(
1− 3

4
f(t)2

)
τ, (547)

= θ +
3

2
E2
x0

(
1− 3

4
E2
x0

)
τ. (548)

This will give the implicit solution

Ex0 = f(θ +
3

2
E2
x0

(
1− 3

4
E2
x0

)
τ). (549)
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6.1 Breaking Time

Start with equation (549) :

Ex0 = f(θ +
3

2
E2
x0

(
1− 3

4
E2
x0

)
τ).

∂θEx0 − 3Ex0τ∂θEx0f
′(t) +

9

2
E3
x0∂θEx0f

′(t) = f ′(t), (550)

∂θEx0

(
1− 3Ex0τf

′(t) +
9

2
E3
x0τf

′(t)

)
= f ′(t), (551)

∂θEx0 = f ′
(
θ +

3

2
E2
x0τ −

9

8
E4
x0τ

)(
1 +

3

2
2Ex0τ∂θEx0 −

9

8
4E3

x0τ∂θEx0

)
,

(552)

= f ′
(
θ +

3

2
E2
x0τ −

9

8
E4
x0τ

)
+ 3Ex0τ∂θEx0f

′(t)− 9

2
E3
x0τ∂θEx0f

′(t),

(553)

=⇒ ∂Ex0 =
f ′(t)

1− 3f(t)f ′(t)τ + 9
2f(t)3f ′(t)τ

. (554)

Breakdown when

f ′(t)1− 3f(t)f ′(t)τ +
9

2
f(t)3f ′(t)τ = 0, (555)

=⇒ τ

(
3f(t)f ′(t)− 9

2
f(t)3f ′(t)

)
= 1, (556)

=⇒ τ =
1

3f(t)f ′(t)− 9
2f(t)3f ′(t)

, (557)

so it’s breakdown time when

τ∗ = min
t

(
1

3f(t)f ′(t)− 9
2f(t)3f ′(t)

)
. (558)

6.2 Numerical Solution

The finite difference method [2] is a numerical method that is used to find
the numerical solution of ordinary differential equation. The method solves
the ordinary differential equation by first discretization of the equations on
a space- time grid, that is shown in figure 3.
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The first line is given. Center difference uses points from the two prior
lines to find the next point, and therefore is it impossible to use center dif-
ference to find the second line. That’s why we have to use forward difference
for the derivative on τ . This makes the equation for the second line on the
space-time grid (without the boundary points)

(Ex0)1i = (Ex0)0i +
3

4
s((Ex0)0i )

2((Ex0)0i+1 − (Ex0)
)
i−1(1−

3

4
((Ex0)0i )

2),

(559)

where s = ∂τ
∂θ , which it is all the time.

Because of the boundary conditions will the equation for the boundary
points need to be different from (559) with the derivative on θ. So the
equation for the second line and i=0 is

(Ex0)10 = (Ex0)00 +
3

4
s((Ex0)00)

2((Ex0)01 − (Ex0)0N−2)(1−
3

4
((Ex0)00)

2).

(560)

And the equation for the second line and i = N-2

(Ex0)1N−2 = (Ex0)0N−2 +
3

4
s((Ex0)0N−2)

2((Ex0)00 − (Ex0)0N−3)(1−
3

4
((Ex0)0N−2)

2).

(561)

Now do we have the second equation. Then is it possible to use central
difference for the rest of the lines, so the equation for the rest of the lines
(except from the boundary points) is

(Ex0)n+1
i = (Ex0)n−1i +

3

2
s((Ex0)ni )2((Ex0)ni+1 − (Ex0)ni−1)(1−

3

4
((Ex0)ni )2).

(562)

The boundary points still need their own equations because of the boundary
conditions. The center difference equation for the boundary point i=0 is

(Ex0)n+1
0 = (Ex0)n−10 +

3

2
s((Ex0)n0 )2((Ex0)n1 − (Ex0)nN−3)(1−

3

4
((Ex0)nN−2)

2),

(563)

. and the center difference boundary point i=N-2 is

(Ex0)n+1
N−2 = (Ex0)n−1N−2 +

3

2
s((Ex0)nN−2)

2((Ex0)n0 − (Ex0)nN−3)(1−
3

4
((Ex0)nN−2)

2).

(564)
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6.2.1 Stability

The numerical solution can have an instability. This can be avoided by
finding a stability condition.

To find the stability condition let’s look at the linear case of equation
(537)

∂τEx0 + c∂θEx0 = 0, (565)

where

c = c(Ex0) =
3

2
E2
x0

(
1− 3

4
E2
x0

)
. (566)

Equation (565) is now the same as (496), and the stability analysis will be
the same as for equations (526) to (512). There do we find out that finite
difference method is stable if s < 1 for the linear case. In the quasilinear
case of equation (537) will we have

s <
1

max c(Ex0)
=

1

max
(
3
2E

2
x0

(
1− 3

4E
2
x0

)) (567)

6.2.2 Testing

Choosing the Gaussian function as a starting function to the numerical
solution

f(x) = exp(−γx2). (568)

The derivative is

f ′(x) = −2γx exp(−γx2). (569)

Inserting (568) and (569) into equation (558) give us the equation g(x),

g(x) =
exp(2γx2)

9γx exp(−2γx2)− 6γx
. (570)

The value of x where g(x) has it’s minimum value is found by solving the
equation where

g′(x) = 0. (571)

Equation (571) become
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exp(2γx2) =
72γ2x2 − 9γ

24γ2x2 − 6γ
. (572)

Now we are using Mathematica to find the solution (572). This is done
by using the Mathematica function FindRoot. But this function needs an
approximate value to start from when looking for the root. To do this we
simply plot the right side and the left side of equation (572)to see where
they intersect. To be able to do a plot we need to choose a value for γ, and
in this case we choose

γ = 0.001. (573)

By trial and error we find that the value of x that will give the smallest value
for τ∗ lies somewhere inside the domain x ∈ [−30,−22], as shown in figure
11. In this figure we can see that the intersection point is close to x = −26.
Using x = −26 as the starting point we find the value of x where g(x) has
its minimum value is x = −26.03. Inserting this into equation (558) give
the breaking point

τ∗ = 40.49 (574)

Comparing this to the numerical breaking time will then test that the
numerical implementation is correct. Figure 12 shows the wave at time
τ = 40.5. The vertical line at the left shows that the graph breaks at this
time, which means that the numerical implementation is correct.

6.3 Results

When γ = 0.01 the initial wave will look the same as in figure 7. And in the
same way as in figure 8 the wave will start to lean to the left. For this case
is the movement of the wave before breaking point shown in figure 13.

The breaking time for this case is

τ∗ = 1.27, (575)

which is shown in figure 14. The vertical line in the graph of figure 14
show that there is no longer possible to find a valid solution to equation
(537).After the breaking point the wave will continue to get worse, as shown
in equation 15.
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7 Perturbation equations to order ε2 with polar-
ization

Starting again with equations (449) and (450):

2∂τθEx0 = −∂yyEx0 − ∂xxEx0 − ∂ττEx0
− (ε2∂xx(χ̂(−ic∂θ)Ex0 + η(E3

x0 + E2
y0Ex0))

+ ε2∂xy(ε0χ̂(−ic∂θ)Ey0 + ε0η(E2
x0Ey0 + E3

y0))+

ε3∂xθε0η(E2
x0 + E2

y0)Ez1)

+ µ0ε
2c2∂θθ(ε0χ̂(−ic∂θ)Ex0 + ε0η(E3

x0 + E2
y0Ex0)),

2∂τθEy0 = −∂yyEy0 − ∂xxEy0 − ∂ττEy0
− (ε2∂xy(χ̂(−ic∂θ)Ex0 + η(E3

x0 + E2
y0Ex0))+

ε2∂yy(ε0χ̂(−ic∂θ)Ey0 + ηε0(E
2
x0Ey0 + E3

y0))

+ ε3∂yθε0η(E2
x0 + E2

y0)Ez1) + µ0ε0c
2ε2∂θθ(χ̂(−ic∂θ)Ey0

+ η(E2
x0Ey0 + E3

y0)).

Removing the dispersion and the diffraction and retaining only terms at
order ε2 will give the equations:

2∂θτEx = µ0ε0c
2ε2∂θθη(E3

x0 + Ex0E
2
y0), (576)

2∂θτEy = µ0ε0c
2ε2∂θθη(E2

x0Ey0 + E3
y0). (577)

Integrating over θ on both sides will give:

2∂τEx = µ0ε0c
2ε2∂θη(E3

x0 + Ex0E
2
y0) + f(τ), (578)

2∂τEy = µ0c
2ε0ε

2∂θη(E2
x0Ey0 + E3

y0) + g(τ). (579)

This time are we going to disregard f(τ) and g(τ). Saying that µ0ε0ηc
2ε2 =

α:

2∂τEx = α∂θ(E
3
x0 + Ex0E

2
y0), (580)

2∂τEy = α∂θ(E
2
x0Ey0 + E3

y0). (581)

This time will Ey0 = 0, so we’re ending up with a system of equations.
Doing a change of variables
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θ = θ0θ
′, (582)

τ = τ0τ
′. (583)

The chain rule will then give

∂

∂θ
=

1

θ0

∂

∂θ′
, (584)

∂

∂τ
=

1

τ0

∂

∂τ ′
. (585)

Inserting (584) and (585) into equations (580) and (581) will give

2
1

θ0τ0

∂

∂θ′∂τ ′
Ex0 = α

1

θ20

∂

∂θ′∂θ′
(E3

x0 + Ex0E
2
y0), (586)

2
1

θ0τ0

∂

∂θ′∂τ ′
Ey0 = α

1

θ20

∂

∂θ′∂θ′
(E3

y0 + Ey0E
2
x0). (587)

Multiplying equation (586) and (587) by τ0θ0 will give the equations

2∂τ ′Ex0 =
ατ0
θ0

∂θ′(E
3
x0 + Ex0E

2
y0), (588)

2∂τ ′Ey0 =
ατ0
θ0

∂θ′(E
3
y0 + Ey0E

2
x0). (589)

And then choosing

ατ0
θ0

= 1

will give the system of equations

2∂τ ′Ex0 = ∂θ′(E
3
x0 + Ex0E

2
y0), (590)

2∂τ ′Ey0 = ∂θ′(E
3
y0 + Ey0E

2
x0). (591)

Equation (590) becomes

2∂τ ′Ex0 = ∂θ′E
3
x0 + ∂θ(Ex0E

2
y0)), (592)

=⇒ 2∂τ ′Ex0 = 3Ex0∂θ′Ex0 + E2
y0∂θ′Ex0 + 2Ex0Ey0∂θ′Ey0 , (593)

=⇒ 2∂τ ′Ex0 = (3E2
x0 + E2

y0)∂θ′Ex0 + 2Ex0Ey0∂θ′Ey0 . (594)

64



And equation (591) becomes

2∂τ ′Ey0 = ∂θ′E
3
y0 + ∂θ(Ey0E

2
x0)), (595)

=⇒ 2∂τ ′Ey0 = 3Ey0∂θ′Ey0 + E2
x0∂θ′Ey0 + 2Ey0Ex0∂θ′Ex0 , (596)

=⇒ 2∂τ ′Ey0 = (3E2
y0 + E2

x0)∂θ′Ey0 + 2Ey0Ex0∂θ′Ex0 . (597)

7.1 Numerical Solution

The finite difference method [2] solves the ordinary differential equation by
first discretization of the equations on the space- time grid shown in figure
3. That means that the equation Ex0(θ, τ) becomes Ex0(θi, τn).

The two equations will be solved by the same way as before, where they
are solved separately by finite differences. It’s just important to find all the
points in each variable before moving on to the points in the next line. The
first line for each variable is given. Center difference uses points from the
two prior lines to find the next point, and therefore is it impossible to use
center difference to find the second lines. That’s why it’s necessary to use
forward difference on the derivative of τ . This makes the equations for the
second lines on the space- time grids (without the boundary points). First
for (594):

(Ex0)1i = (Ex0)0i +
1

4
s(3((Ex0)0i )

2 + ((Ey0)0i )
2)((Ex0)0i+1 − (Ex0)0i−1)

+
1

2
s(Ex0)0i (Ey0)0i ((Ey0)0i+1 − (Ey0)0i−1),

(598)

and for equation (597)

(Ey0)1i = (Ey0)0i +
1

4
s(3((Ey0)0i )

2 + ((Ex0)0i )
2)((Ey0)0i+1 − (Ey0)0i−1)

+
1

2
s(Ex0)0i (Ey0)0i ((Ex0)0i+1 − (Ex0)0i−1).

(599)

where s = ∂τ
∂θ , which it is always. Because of the boundary conditions

will the equations for the boundary points need to be different from (598)
and (599). First for the boundary points i=0 on the second line. First for
equation (594)

(Ex0)10 = (Ex0)00 +
1

4
s(3((Ex0)00)

2 + ((Ey0)00)
2)((Ex0)01 − (Ex0)0N−2)

+
1

2
s(Ex0)00(Ey0)00((Ey0)01 − (Ey0)0N−2),

(600)

and for equation (597)
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(Ey0)10 = (Ey0)00 +
1

4
s(3((Ey0)00)

2 + ((Ex0)00)
2)((Ey0)01 − (Ey0)0N−2)

+
1

2
s(Ex0)00(Ey0)00((Ex0)01 − (Ex0)N−1).

(601)

And then for the boundary point i=N-2 for the second line. For equation
(594) is it

(Ex0)1N−2 = (Ex0)0N−2 +
1

4
s(3((Ex0)0N−2)

2 + ((Ey0)0N−2)
2)((Ex0)00 − (Ex0)0N−3)

+
1

2
s(Ex0)0N−2(Ey0)0N−2((Ey0)00 − (Ey0)0N−3),

(602)

and for equation (597) is it

(Ey0)0N−2 = (Ey0)0N−2 +
1

4
s(3((Ex0)0N−2)

2 + ((Ey0)0N−2)
2)((Ey0)00 − (Ey0)0N−3)

+
1

2
s(Ex0)0N−2(Ey0)0N−2((Ex0)00 − (Ex0)0N−3).

(603)

Now do we have the whole second line, and it is then possible to use center
difference to find the general equation for the rest of the lines on the space-
time grids (except of the boundary points). Starting with equation (594)

(Ex0)n+1
i = (Ex0)n−1i +

1

2
s(3((Ex0)ni )2 + ((Ey0)ni )2)((Ex0)ni+1 − (Ex0)ni−1)

+s(Ex0)ni (Ey0)ni ((Ey0)ni+1 − (Ey0)ni−1),

(604)

and for equation (597):

(Ey0)n+1
i = (Ey0)n−1i +

1

2
s(3((Ey0)ni )2 + ((Ex0)ni )2)((Ey0)ni+1 − (Ey0)ni−1)

+s(Ey0)ni (Ex0)ni ((Ex0)ni+1 − (Ex0)ni−1).

(605)

The general center difference equation for the boundary point i=0 for equa-
tion (594)

(Ex0)n+1
0 = (Ex0)n−10 +

1

2
s(3((Ex0)n0 )2 + ((Ey0)n0 )2)((Ex0)n1 − (Ex0)nN−2)

+s(Ex0)n0 (Ey0)n0 ((Ey0)n1 − (Ey0)nN−2),

(606)
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and the equation for the boundary point i=0 for equation (597)

(Ey0)n+1
0 = (Ey0)n−10 +

1

2
s(3((Ey0)n0 )2 + ((Ex0)n0 )2)((Ey0)n1 − (Ey0)nN−2)

+s(Ex0)n0 (Ey0)n0 ((Ex0)n1 − (Ex0)nN−2).

(607)

The general center difference equation for the boundary point i=N-2 for
equation (594)

(Ex0)n+1
N−2 = (Ex0)n−1N−2 +

1

2
s(3((Ex0)nN−2)

2 + ((Ey0)nN−2)
2)((Ex0)n0 − (Ex0)nN−3)

+s(Ex0)nN−2(Ey0)nN−2((Ey0)n0 − (Ey0)nN−3),

(608)

and the equation for the boundary point i= N-2 for equation (597) is

(Ey0)n+1
N−2 = (Ey0)n−1N−2 +

1

2
s(3((Ey0)nN−2)

2 + ((Ex0)nN−2)
2)((Ey0)n0 − (Ey0)nN−3)

+s(Ex0)nN−2(Ey0)nN−2((Ex0)n0 − (Ey0)nN−3).

(609)

7.1.1 Initial functions

The initial incoming laser pulse is a polarized wave packet of the form

Ex0 = f(t) cos(ω0t), (610)

Ey0 = f(t) cos(ω0t+ ϕ), (611)

where

0 ≤ ϕ ≤ 2π. (612)

The variable ϕ takes into account polarization. For the case when f(t) =
const, the components ex and ey will be periodic and define an ellipse in
the (ex, ey) plane, as the example of figure 16. Using the change of variables
(37)-(38) to equation (610)-(611) give the equations

A(θ, 0) = f

(
−θ
c

)
cos

(
−ω0

θ

c

)
, (613)

B(θ, 0) = f

(
−θ
c

)
cos

(
−ω0

θ

c
+ ϕ

)
. (614)

67



We will use a Gaussian envelope equation that is symmetric around t=0.

f(t) = a exp(−bt2). (615)

Introducing the scales

τ = τ0τ
′, (616)

θ = θ0θ
′, (617)

A = α0A
′, (618)

B = α0B
′, (619)

will give the equations

A′(θ′, 0) =
a

α0
exp

(
− b

c2
θ20θ
′2
)

cos

(
ω0θ0
c

θ′
)
, (620)

B′(θ′, 0) =
a

α0
exp

(
− b

c2
θ20θ
′2
)

cos

(
ω0θ0
c

θ′ + ϕ

)
. (621)

Choosing α = a will normalize the amplitude to one, and choosing the
scaling θ0 in such a way that the carrier wave is of period 2π gives

ω0θ0
c

= 1, (622)

θ0 =
c

ω0
. (623)

These choices give us the equations

A′(θ′, 0) = exp(−γθ′2) cos(θ′), (624)

B′(θ′, 0) = exp(−γθ′2) cos(θ′ + ϕ), (625)

where γ = b
ω2
0
. Since b is free can γ be a free dimensionless number.

7.1.2 Stability

Equations (594) and (597) are a system of equations on the form

∂tU = a∂xU + b∂xV, (626)

∂tV = a∂xv + b∂xU. (627)

Equation (626) and (627) can be written on the form
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∂t

(
U

V

)
=

(
a b
b a

)
∂x

(
U

V

)
, (628)

where matrix A is

A =

(
a b
b a

)
.

The eigenvalues of our system will be

det

(
a− λ b
b a− λ

)
= 0, (629)

(λ− a)2 − b2 = 0, (630)

=⇒ λ = a± b. (631)

For a Gaussian choice for the starting function will the value of λ that means
stability be the largest value λ = a+b. Because of the fact that in equations

(594) and (597) is a =
3E2

x0
+E2

y0
2 and b = Ex0Ey0 the stability condition will

be

λ = a+ b =
3E2

x0 + E2
y0

2
+ Ex0Ey0 . (632)

Because we have chosen a Gaussian initial function with amplitude 1, will
the stability condition be

λ =
3 + 1

2
+ 1 =

6

2
= 3. (633)

So the stability value for s is

λs < 1, (634)

s <
1

λ
(635)

=⇒ s <
1

3
. (636)

7.2 Results

For the case when γ = 0.1 will the starting function look like shown in figure
17. And the starting function when γ = 0.01 is as shown in figure 18.

The breaking times depending on the value of ϕ are shown in figure 18.
The red line show the breaking time when γ = 0.1, and the blue line show
the breaking times when γ = 0.01.
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8 Discussion

In chapter 5 it is shown that the quasilinear equation will break at a time
τ∗. The example shown in chapter 5.3 show that the equation will break at
τ∗ = 0.59 when γ = 0.01. When reintroducing ∂ττ the equations will also
break.

The example shown in chapter 6.3 is also when γ = 0.01, and that the
breaking time then is τ∗ = 1.27. This show that reintroducing ∂ττ in the
non dispersive, purely paraxial case of chapter 5 will not remove breakdown.

We can also see that reintroducing ∂ττ to equation (458) will get the
breakdown to come later than the breakdown in (458). However, the equa-
tion will still break at an early time. This means that the contribution ∂ττ
has to the breakdown is small.

In chapter 7 is it looked into how polarization influences the breaking
time. In figure 19 is it shown that when γ gets smaller, the polarization
will have a smaller effect on the breaking time. Remembering that γ = b

ω2
0
,

where b is a small dimensionless number.
This means that the dependence of the breaking time on the angle ϕ

will increase when ω0 increase for a fixed envelope shape. Thus the effect of
polarization on breakdown increase when there are more carrier oscillations
within the envelope.
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9 Summary

We have been using the method of multiple scales to derive leading order
asymptotic equations describing the propagation of approximately paraxial
pulses in a weakly nonlinear and weakly dispersive media. When doing this
we have first been looking at scalar equations, before moving on to vector
equations, first to order ε2 and then to order ε4. This to build up the
competence to be able to be able to do the final derivations.

After that we simplified the equations to look at the non-dispersive and
purely paraxial case. These were investigated both of the leading order ε2

and at order ε4. The results there shows that in the case of ε2, after a specific
time our model will break down. Perturbing to the order ε4 will make the
breakdown time come later. But when perturbing to order ε4 there will only
be a small contribution, and the breakdown time only comes a little later.

In particular we have looked into how the polarization influences the
shock. This is done in the case of leading order ε2. The results from this
shows that in that case the breaking time will depend more on polarization
when there are more carrier oscillations within the envelope.

Further work that could be done after this is investigating through nu-
merical simulations of the asymptotic equations in order to see how diffrac-
tion modify the optical shocks. It is also possible to find corrections to
the leading order asymptotic equations by continuing the method of mul-
tiple scales to even higher order, and then investigating how these terms
adding to the leading order equations modify the optical shocks in the non-
dispersive purely paraxial case. Another thing that can be done further is
to investigate how the presence of dispersion modify the optical shocks by
numerical solution of the asymptotic equations, and use the Kerr coefficient
and dispersion to for example the noble gas Xenon.
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Figure 2: Coordinate system

Figure 3: Space-time grid for (θi, τn), where i = 0,...,N-1, and n=0,...M-1.
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Figure 4: Shape of the initial laser pulse.
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Figure 5: Graph that shows instability in the numerical method.
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Figure 6: Graph for τ = 5.5. The front of the graph is vertical, which means
that the graph has broken.
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Figure 7: The initial incoming laser pulse
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Figure 8: The nonlinearity of equation (458) makes the graph start to lean
to the left.
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Figure 9: The graph in the breaking point. The vertical line shows that it
has broken.
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Figure 10: Graph of function after breaking point. This shows that it is now
impossible to find a numerical solution.

Figure 11: Graph of intersection of right and left side of (572) in the domain
(-30,-22).
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Figure 12: Graph of wave when τ = 40.5.The front of the wave is vertical,
which means that the wave has broken.
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Figure 13: Graph for case 2 that shows how the wave moves before it reaches
the breaking point.
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Figure 14: Graph that shows how the breaking point at case 2. The breaking
point is shown by the vertical line in the graph.
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Figure 15: Graph at a time beyond the breaking point for case 2.

Figure 16: Example of an ellipse in the (ex, ey) plane
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Figure 17: Initial wave packet when γ = 0.1.
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Figure 18: Initial wave packet when γ = 0.01.
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Figure 19: Figure showing the breaking times depending on the value of the
polarization φ ∈ [0, 2π]. The red line is when γ = 0.1, and the blue line is
when γ = 0.01.
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