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Abstract

In this thesis leading order asymptotic equations describing the propagation
of approximately paraxial pulses in a weakly nonlinear and weakly dispersive
medium are derived using the method of multiple scales, and the formation
of optical shocks in the nondispersive, purely paraxial case is investigated.
How the state of polarization influences the shock have in particularly been
looked in to.
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Introduction

Linear and nonlinear optics play a fundamental role in todays technology
driven society.

From the ability to probe ever deeper into the cosmos using large tele-
scopes filled with the latest adaptive optics systems, to the ubiquitous use
of microscopic highly efficient lasers and near perfectly transparent opti-
cal fibers in the global Internet, optics and optical technology is front and
center.

This technology dream world has been made possible by an ever more
refined insight into the way light and matter interact, and the development
of computational algorithms to capitalize on this insight.

In this thesis we are first going to use the method of multiple scales [1]
to derive leading order asymptotic equations describing the propagation of
approximately paraxial pulses in a weakly dispersive and weakly nonlinear
medium. This method is a perturbation method that uses the presence
of a small dimensionless parameter to reduce a nonlinear problem into an
infinite series of linear problems. It uses the presence of breakdown for a
direct perturbation expansion, and turns them into solvability conditions.
These solvability conditions are enforced by making them into the differential
equations called amplitude equations. These equations are a key component
in our fast numerical method of solving optical propagation problems.

To build up the competence to derive the asymptotic equations we are
going to first use the method of multiple scales on a scalar equation, before
using the method on TE vector equations up to second order ¢, and then to
the fourth order in e. This will then give us the skills to be able to use the
method to derive amplitude equations from the full Maxwell’s equations.

These equations are going to be simplified by looking at the nondisper-
sive, purely paraxial case. By using numerical methods [2],these equations
will be investigated. We are particularly interested in the influence of po-
larization on the formation of optical shocks..

Earlier work that have been done on this subject are for example work
done by K. Glasner, M. Kolesik, J. V. Moloney and A. C. Newell [4], where a
scalar equation for the electric field as a model for optical shock formation is
introduced. Their equation also includes the effect of dispersion, diffraction
and nonlinearity. But unlike in this thesis the equation is not derived using
a systematic perturbation expansion, and doesn’t include effects from non-
linear terms that occur after order ¢*. And since it’s not a scalar equation
can it not be used to investigate the effect of polarization.

Another earlier work is done by A. A. Balakin, A. G. Litvak, V. A.
Mironov and S. A. Skobelev [5]. This work also take into account dispersion,
diffraction, nonlinearity and polarization. And like [4], and unlike this thesis,
are the equations not derived using a systematic perturbation expansion. It
only includes a specific dispersion model and doesn’t include nonlinear - or



polarization effects that occur at order €.

In chapter one we will introduce the Maxwell’s equations and simplify
them into a scalar equation.

In chapter two we will introduce linear and nonlinear polarization into
the scalar equation found in chapter one, and explain the effect which is
assumed in this case to be the source of the nonlinear polarization, which is
called the Kerr effect.

Chapter three takes into account the presence of temporal dispersion
in Maxwell’s equations, which makes it impossible to solve them as an ini-
tial value problem, and introduces a change of variables to turn it into a
boundary value problem.

Chapter four uses the method of multiple scales to derive the leading
order asymptotic equations, starting with the TE scalar equation. Then we
are moving on to derive the TE vector equations to order €2, before finally
deriving the vector Maxwell equations to the fourth order of e. Starting
with the scalar equations and deriving vector equations to second order of
€ makes it possible for us to develop our skills before deriving our vector
Maxwell’s equations.

In chapter 5 we look at our perturbation equations in the non-dispersive,
purely paraxial case without polarization up to secont order of €, and use
numerical methods to investigate the optical shock.

And in chapter 6 we reintroduce the contribution from the fourth order of
€ without polarization, and use numerical methods to investigate the optical
shock to see how big of a contribution this will have.

In chapter 7 we go back to the equations to the second order of ¢, and
introduce polarization, and use numerical methods to investigate how this
influences the optical shock.

And then in chapter 8 and 9 we discuss our results and summarize.

vi
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Figure 1: Coordinate system

1 Maxwell’s equations

The derivation of the leading order asymptotic equations describing the
propagation of approximately paraxial pulses in a weakly nonlinear an weakly
dispersive media start with Maxwell’s equations.

VXE+8,5B:0,
V x B = o0 E + 1190, P,
V.-B=0,

V.E=-1V.P.
€0

We introduce a cartesian coordinate system where i, j and k unity vectors
for three directions whose coordinates are x, y and z. In this first part of the
derivation the electric field and the polarization will only have contributions

in the y-direction, while the magnetic field will have a contributions in the
x- and z-direction. These are called transverse electric fields(TE).

B = B,(z, z,t)i+ B.(z, 2, )k, (5)
E = E(z, z,1)j, (6)
P = P(x, 2, t)j. (7)

Start by inserting (5)-(7) into the Maxwell’s equations (1)-(4).



For equation (1) will this give:

7
VxE=10, :—a—Ei+0+a—Ek,
0z ox

m@va,
o X =

0

Which implies

-0, F+ 0B, =0,
0.FE+ 0B, =0.

And for equation (2) of Maxwell’s equation inserting (5)-(7) gives:

Using (13) on equation (2) turns into

(8sz - 8IBZ)j - 60,11081tEj = Moatpja

Thus

82Bx - asz — EOMOatE = uo(‘)tP.

Inserting (5) - (7) into equation (3) we get

V-B=09,B, +9,B, =0,

and thus we have

0By + 0.B, = 0.

The last of Maxwell’s equations is automatically satisfied because

V-E=0,Ej=0,

(12)

(13)

(14)

(15)



and
V-P=0,Pj=0. (19)

The system (1) - (4) has thus been simplified into

-0, F 4+ 0,B, =0, (20)

0.E+ 0B, =0, (21)

0,B; — 0. B, — €oo0:E = o0 P, (22)
0:B; + 0.B, = 0. (23)

We will use equations (20)- (22) to eliminate B, and B, and will end up
with equations for E and P only. This is done by taking cross derivatives
of these equations such that equations (22) and (23) can be inserted into
equations (24).
The derivative of equation(22) with respect to t is
0:4By — 0pt B, — eoioOu B = 1Oy P. (24)
The derivative of equation (20) with respect to z is

- azzE + 6tZB£E = 0>

or solving with respect to B,

azth = azzE- (25)

And the derivative of equation (21) with respect to x is

a:r:a:E + 8xth = 0,

which give us
OB, = —05, E. (26)
Inserting equations (20) and (21) into equation (22) gives the following equa-

tion involving only E and P.

0. F + Oy B — 6OMOattE1 = ,U/Oattp- (27)






2 Polarization

The polarization is generally a sum of terms that are linear in E and that
are nonlinear in E,

P =P;, + Pyy, (28)

2.1 The Kerr effect

Generally the nonlinear polarization can come from any source, but when
doing concrete calculations will we for simplicity assume that the nonlinear
polarization comes from the Kerr effect [3]. This is a phenomenon where
the refractive index changes because of a sufficiently strong electrical field,
and arises because of the off-resonance electronic response of the atoms
and molecules that are exposed to this field. For materials with inversion
symmetry the nonlinear polarization will be given by Py, = eynE?, where
n is the Kerr coefficient|[3].

2.2 Linear Polarization

The linear polarization has the general form

t
Pr = ¢ / dt'x(t —t"YE(t). (29)
—00

This means that the polarization at time t is dependent on the electric field
at all times before t. This is called temporal dispersion. The presence of
this in Maxwell’s equations makes it impossible to solve them as a standard
initial value problem.

A more convenient representation of the temporal dispersion is found by
rewriting the linear polarization using the convolution theorem.

Pr=¢ /OO dwy(w)E(w)e™ ™t (30)

—00

Using the Taylor expansion of y(w) around w = 0 we have



2 (n) . ,
= eoz X (0)/ dw - W"E(w)e ™"

(n .
PL—G()/ dwzx E ) —iwt

n!
o (31)
_ X n —iwt
= E / dw(id,)"E(w)e
= Z i ”/ dwE(w)e ™t
Where
/ dwB(w)e— " = (1), (32)
Thus
Pr, = eox(i0t) E(t). (33)
Inserting equation (28) into equation (27) will give
8ttE — CQang = 626133E — Gttf((zat)E — 60778ttE3. (34)

Applications of equation (34) usually starts by doing some sort of scaling.
This means that one choose some relevant scales for space, time and the
electrical field E such as to render the equation dimensionless. In this thesis
we will only consider scales where the terms representing diffraction, disper-
sion and nonlinearity are small and of the same order. For our calculations
we will introduce a formal perturbation parameter, €2, in the dispersive and
nonlinear terms and use the space scale x = ex;

8ttE — CZaZZE = czamE — €2att)2(’i8t)E — 62607’]8ttE3. (35)

where € << 1



3 Change of variables

Because of the presence of temporal dispersion in Maxwell’s equations it will
be impossible to solve the equations as a standard initial value problem. We
will avoid this problem by rather solving the equations as a boundary value
problem. This is the way experiments in nonlinear optics are usually done,
where a laser pulse is launched into a medium through a boundary.This is
thus natural way of solving problems in optics. The way to change the initial
value problem into a boundary value problem is to use a change of variables.
For the lowest order of € equation (35) will look like this:

OuE — ?0..E = 0. (36)

This is a homogeneous one- dimensional wave equation, and will have a
general solution that is the sum of waves that are propagating both left and
right along the z-axis, E(z — ct) and E(z + ct).

We introduce the change of variables:

0 =z—ct, (37)
T =2z (38)

Using the chain rule to find the partial derivatives will give:

or 0 00 0
or 0 00 9
From these equations we get
azz = 87'7' + 287'9 + 8097 (41)
and
8tt = 02899. (42)

Inserting these change of variables into equation (35) give us the equation

200 F = — 0z B + 62699)2(—i009)E + 6277599E3 — 0.+ F. (43)

Because of the fact that e2i™ . ¢~ = 2iz . g=ile—ct) — (i(2z—z+ct) — pi(atet)
we still haven’t made any assumptions about the solution, equation (43) and
(34) are equivalent.



Note that through the change of variables from equation (37) and (38),
the line (6,0) in the (0, 7) plane corresponds to the line (0,¢) in the (z,t)
plane. This means that the optical propagation problem is now a boundary
value problem. For this type of problem it is necessary to make sure that the
pulse traveling to the right into the medium does not create a significant
pulse that is traveling to the left. If that happens the problem will not
make sense mathematically. This is because the pulse traveling to the left
will eventually hit the boundary at z=0. When that happens, the field at
z=0 will not only consist of the initial pulse, but also have contributions
from the left traveling pulse. The left traveling pulse is unknown until the
equation is solved, and that means that the propagation problem will not be
well posed mathematically as a boundary value problem if this left traveling
pulse is of any significant size. We will therefore look for solutions of the
form F = F(z—ct,ez) that is a small perturbation on a purely right traveling
wave.



4 The Method of multiple scales

4.1 TE scalar equation

We will now use the multiple scale method [1] to find the approximation
solution to equation (43). Introduce the function e(6,x1,71,72,...) where
z1 = ex and 7; = €¢/7 and make the expansions:

Or = €0y, + 20, + ..., (44)
Oy = €0y, (45)
e=eo+eer +eteg + ... (46)

Inserting the expansions (44)-(46) into equation (43) gives us the equation

20y (€D, €0 + 6269161 + 6269260) = _egamwleo (47)
+6260899)2(—i039)60 + 62601’]89968 — 6287-1-,-1 eg.

And this equation gives us the following perturbation hierarchy to second
order in €

€' 1 20,,9e0 = 0, (48)

e 209, €1 = —20pr,€0 — Oz, €0 + €00poX (—icOg)eo (49)
+ €0ndgecy — Oryry €0

The general solution to (48) is

eo = eo(21,0,72,..). (50)
Where we have disregarded an arbitrary function of the form
Ct:Oz(:Bl,Tl,TQ...). (51)

The solution (51) implies that
87'17'1 eo = 0. (52)

Since the right hand side of (49) does not depend on 71, we will get a secular
growth and breakdown of our perturbation expansion (46) when

T ~ —. (53)



In order to avoid this we must impose the solvability condition

20,00 — Oz €0 + €00pg X (—icOp)eq + €ondgpel = 0. (54)

Using (52) our order €2 equation simplifies into

209, 1 = 0. (55)

According to the rules of the game [2], we choose the special solution

€1 = 0. (56)
This will give us the equation
20,060 = —0gy2, €0 + €00go X (—icdp) e + ondgaey. (57)
Define
E0(97:1777—) = 60(97‘7;77-27")’xlzex,rj:&‘r' (58)

Then multiplying (57) with €2, using (58) we get the amplitude equation

209, Eg = —0pe Ep + 6260899)2(—2'689)E0 + 626077899Eg. (59)

4.2 TE vector equations order ¢

We are now moving on with building up a competence to do the derivations
on chapter 4.4. This is why we are using the change of (37) and (38) on
Maxwell’s equations instead of the scalar equation (27). So, doing a change
of variables from equations (37) to (42) on Maxwell’s equations will give us
the system of equations

O-E + OpE + cOp B, = 0, (60)
0. FE —cOyB, = 0, (61)
1
0By + 09yB, — 0, B, + EagE = —pocOy P, (62)
Ox Bz + 0-B, + 0B, = 0. (63)

We solve this system of equations by the multiple scale method, and start
by introducing the functions

10



€= 6(971‘177—177-27 ")7
bx = bx(é,xl,n,r% ..),
bz = bz(G,xl,n,Tg, ..),

p=p(0,x1,7172,...).

Introduce the expansions up to the second order of e:

e =eg+e€e1+ 6262 + ..,
by = by + €bg, + €2by,y,
b, =b.g+ eb,, + €%b.,,

p=e€p1+ 62]927
Or = €0y, + €20,
Oy = €0y,

where 79 = /7. When we insert the expansions (68)-(73) into the equations
(60)-(63) we end up with four perturbation hierarchies. The perturbation

hierarchy for equation (60) is

e : Opeo + cOpby, =0,
el Oge1 + Cagbxl = —87160,

e Opea + cOpby, = —O0r €1 — Orye€0.

The perturbation hierarchy for equation (61) is
® 2 b, = 0,

1. _
€ :cOpb,, = 0s, €0,

63 : Ca,gbzz = 896161.

The perturbation hierarchy for equation (62) is

1
0 89be + —0peg =0,
C

1
61 : 89bx1 + 28061 = _aTl bzo + axle() - Mocaeplv

1
e 89bx2 + 584962 = *87'1 bx1 - aTQbIO + aﬂm bzl - M0030p2-

And the perturbation hierarchy for equation (63) is

11

(80)
(81)

(82)



® 2 Opb,, =0, (83)
€' 1 Dby, = — 0y byy — Or sy, (84)
€ Opbsy = —0p by, — Orybsy — Orybsy. (85)
The solution to these system of equations will be found separately order by

order in e. At order ¢” we have equations (74), (77), (80) and (83) which we
will write as the system

Opeo + cOpby, = 0, (86)

cOpbz, =0, (87)
1

89();50 + 28960 =0, (88)

Dgbag = 0. (89)

Equation (87) has the general solution

by = a(x1, 71,72, ...). (90)

Since these solutions doesn’t depend on 6 we will disregard them and choose

Equation (86) has the general solution

eo + by, = B(x1, 71, T2, ...). (92)
As before we disregard 3 because it doesn’t depend on 6, and we get the
following expression for b,
1

We observe that (88) and (89) are automatically satisfied, which means that
there are no solvability conditions at this order.

The equations from !, equations (75), (78), (81) and (84) are written
as the system:

94
95

8961 + Caeba:l = _87'1605
caszl = 8951 €0,

96
97

1
89b$1 + 26061 = _87'1[)1‘0 + 6x1bZ0 - /J'Ocaapla

(94)
(95)
(96)
Opbzy = — i, by — Ory by (97)

12



Starting with equation (96) and (94). In order have a solution we have to
impose the solvability condition

—0r,e0 = —cOr, by, + O3, by, — 1oc dpp1 . (98)

And for equation (95) and (97) we get the solvability condition

Oz, €0 = — €Oy byy — €07 by (99)

When the solvability conditions are imposed, the equations (86) and (94)
becomes under-determined, and it is possible to choose the special solution

er = 0. (100)

Which give us the equation

cOpby, = —0r, €p. (101)

And the solvability condition for (87) and (89) gives us the equation

1
Opbs, = ~ 0, 0. (102)

The equations from €2, (76), (79), (82) and (85), can be written as the
System:

Opes + Cagbx2 = —87-161 — 87-260, (103)
cOpb,, = 0y, €1, (104)

1
aebiﬂz + 28962 - _8T1brl - aTgbmo + amlbzl - /JOC@HP% (105)
Opbsy = — O by, — Oy by — Orybsy. (106)

For the pair of equations (103) and (105) we get the solvability condition

—0p, 61 — Oryeg = —COp by, — €Opybyy + €Op by — poc*Ogpo. (107)

And the solvability condition from (104) and (106) is

Oy €1 = —COy, by, — Oy by — Opybay. (108)

13



When the solvability condition (107) is imposed, (103) will become under-
determined, and it’s possible to choose without loss of generality the value

ez = 0. (109)
By choosing e3 = 0 will we get
cOgpby, = —0r,€0. (110)
So far we have found equations
by, =0,
1
bmo = _260’

Caabzl - 82:1 €0,

Caebwl = _87'1607
€1 = 0,
€9 = 0.

Inserting these into the solvability condition (98) give the equation

207, €0 = 1o 0pp1, (111)

and inserting them into equation (107) give the equation

2807'1 €0 = _87171 e + azl.m ey + M002890p2- (112)

Equation (99) becomes

Oz €0 = —COqz, by, (113)

which is automatically satisfied. We consider the special case when

P =€ (eo(—icOp)eq + eoney) , (114)
= p1 =0, (115)
Py = (60)2(—1'089)60 + eoneg) ) (116)

From this we get
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2897—160 = 0, (117)
209, €0 = —0yya, €0 + HoC e00pgX (—icDp)eo + poeoc®ndpa(e)®.  (118)

Introduce

Eo(e, Z, T) = 60(9.1’1, T1, 72, ...)|x1:5x77_j:€j7_. (119)

Multiplying (117) by € and (118) by €2, adding and using (119) and using
the expansions

a$ - eaxla (120)
O0r = €0, + 6287—2, (121)

we get
209, By = — 0z Eo + 6260899(—i089)E0 + 62607’]699Eg. (122)

Which is the same equation as the one we got by applying the multiple scale
method to the scalar equation (43).
4.3 TE vector equations order ¢*

Moving on with the last example before the derivation of our equations.
This time are we starting with equations (60)-(63)

O-FE + OgFE + c0yB, =0,
O FE — cOyB, =0,

1
0By + 0yBy — 0:B, + EagE = —ppcOy P,
0y By + 0;B, + 0pB, = 0.

Introducing the functions (64)-(67)

e=ce(0,x1,1,T2,..),
by = by (0,21, 71,72, ..),
b, =0b,(0,21,71,72,..),
p=p(0,z1,7172,...).

And introducing the expansions, that this time is going to go up to the
fourth order of €
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e —=eg+e€er + 6262 + 6363 + 6464,

by = by + €by, + €2by, + by, + €'byy s

b, = b, + €bo, + €2b.y + b,y + €0, + ...,
p=ep1+epa+eEpst+etpsi+ ..,

O0r = €0, + 62872 + 63(9T3 + 6487—4 + ...,

Or = €0y, .

(123)
(124)
(125)
(126)
(127)
(128)

Inserting the expansions (123)-(128) into the equations (60)-(63) and ex-

panding will give us the perturbation hierarchy to order four in €

¥ : Hgey + cOgby, =0,
€ :0per + C@gbxl = —87—160,

€ : Ogea + cOgby, = —0r €1 — Oryep,

3. _

€’ : Opes + cOpby, = —0r €2 — Or,€1 — Orye,

4

€ : Opeq + c89bx4 = —87-163 — 87262 — 67361 - 87—460.

The perturbation hierarchy for equation (61) is

e cOpb,, =0,

€' cOgb., = Dy, €0,
€ cOgb,, = Oy, €1,
e cOpb, = Oy, €2,

€ :cOpby, = Oy, €3.

The perturbation hierarchy for equation (62) is

e Opba, + %8960 =0,

€ : Opbg, + %3961 = —10cOgp1 — Ory byy + Oy by,

&+ Qb + 00es = ~10cOops — Dby — Dribs + Doy,

€’ : Ogby, + %8@63 = —upcOpps — Or by, — OTaby, — OT3byy + Oy, b2y,
€ : Opby, + %8@64 = —pocOgps — Or byy — Orybypy — Orybyy — Ory by

+ Oz, b2y
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And the perturbation hierarchy for equation (63) is

" : Ogbs, = 0, (144)
€' - Db, = —0y,byy — Or by, (145)
€2 : Ogbsy = —Oyy by, — Orybay — Opybay, (146)
€3 Opbay = —Opybyy — Or by — Orybyy — Orybeg, (147)
€t Opb,, = —0pybyy — Orybay — Opybay — Opybay — Opybey. (148)

The solutions will again be found separately order by order in €. The equa-
tions for €”, equations (129), (134), (139) and (144), which we write as the
System

Opeo + cOpby, = 0, (149)
cOpb,, =0, (150)

1
Opbz, + 28960 =0, (151)
Opb, = 0. (152)

It’s easy to see that equations (150) and (152) are equivalent, which will
give us

Aoz, = 0. (153)

The general solution to (153) is

bz = B(z1, 71,72, ) (154)

Equation (154) doesn’t depend on 6, and therefore will we disregard it and
choose

bsy = 0. (155)

It’s also easy to see that equation (149) equals to ¢ multiplied by (151). This
will in the same way give us the general solution

by, + €0 = a1, 71, T2, ... (156)

This will also be disregarded to give the equation
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1
bIO = —Ee[). (157)

Moving on to the equations for €', which are equations (130), (135), (140)
and (145).

158
159

Oge1 + cOgby, = —0r, e,
080b21 = axle()u

160
161

1
89b:21 + 28961 = _87117370 -0, 1bZ0 - ,U(]ca@pla

(
(
(
bz, = — O, bay — Or, bz (

)
)
)
)

In order for (158) and (160) to have a solution, we have to impose the
solvability condition

—0re0 = —€Op byy — Oz, bz — Loc App1 . (162)

And in order for (159) and (161) to have a solution, we have to impose the
solvability condition

Op €0 = —COgy byy — €O by (163)

When the solution condition (162) is imposed, equation (158) becomes mul-
tivalued. This makes it possible to choose without loss of generality

e = 0. (164)

When e; = 0,equation (158) will become

1
Ogbs, = —Onco. (165)

When the solution condition (163) is imposed, we get the equation

1
Oyb, = — O, co. (166)

The equations for €2, (131), (136), (141) and (146), can be written as the
system
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167
168

Ogez + cOpby, = —0r €1 — Oryeq,

caabzg == amlela
1
aebxz + 28062 = _N0069p2 - a7'1 bl“l - aszﬂlfo + 8$1b217 169

(
(
(
Opbzy = — Oy bay — Orybsy — Oryby. (

)
)
)
170)

It’s easy to see that the left side of equation (167) is equivalent to equation
(169) multiplied by c. This means that in order for equation (167) and (169)
to have a solution we have to impose the solvability condition

—O0r €1 — Ore0 = — 1102 Ogpo — €Or by, — cOrybyy + €Oz, b, (171)

In the same way is it for (168) and (170) to have a solution we have to
impose the solvability condition

Op,€1 = —COy byy — cOr by, — €O by, (172)

When the solution condition (171) is imposed, equation (167) becomes
under-determined. This makes it possible to choose, without loss of gen-
erality

er = 0. (173)

Because we choose e; = 0 and ez = 0, equation (167) becomes

cOpbz, = —0rep. (174)

And because of the solution condition (171) and that e; = 0, we get from
equation (168) that

9gbs, = 0. (175)

The equations for €3, (132), (137), (142) and (147), can be written as
the system

6963 + Caebxg = _87'162 - 8T26]. - 873605
Caﬁbz;; = 81‘1 €2,

(
(
1
895353 + 28963 = _,U/Ocaap3 - 8T1 brg - 87—2611 - 8Tgbzo + azl b227 (178
Opbzy = —0u,byy — Or by — Orybzy — Orybzg. (
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We can see that the left side of equation (176) is the same as the left side
of equation (178). This means that in order for (176) and (178) to have a
solution, we have to impose the solvability condition

_67'1 €2 — 87‘261 - aTgeO = _MOC289P3 - 8’7‘1 ba)g - aTle’l

(180)
—Orybgy + Oy bay.

In the same way as above it is necessary for (177) and (179) to have a
solution, to impose the solvability condition

Op €2 = —COy by, — €O7 by — cOrybyy — Orgby,. (181)

When the solvability equation (180) is imposed (176) will become under-
determined. This makes it possible without loss of generality to choose

es = 0. (182)

Because we have chosen e; = 0, e = 0 and e3 = 0, equation (176) will
become

cOpbgy = —0ry€0. (183)

Because of the solvability condition (181), and because we have chosen ey =
0, equation (177) becomes

dgb., = 0. (184)

The equations for €%, (133), (138), (143) and (148), can be written as this
system

Opea + c8gbx4 = —87—1 e3 — 87262 — (97361 — 87—460, (185)
cOpb,, = Oy, €3, (186)

1
89b:v4 + 26964 = _87—16363 - a‘rzb:m - 8T3b961 (187)

— Orybay + 02, b2y — p10cOppa,
Opby, = —0z,bgy — O byy — Oy by, — Orybyy — Ory by, (188)

We can easily see that equation (185) is the same as the left side of equation
(187) under-determined by c. This means that in order for (185) and (187)
to have a solution, we impose the solvability condition
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—87—163 — 87—262 — 87—361 — 87460 = —871 bz3

(189)
—O0rybyy — Orybyy — Orybyy + Oy bzy — ptocOppa.

In the same way as above we will have to impose the solvability condition

Oy €3 = —COpybyy — €Op by — Orybsy — Orgbyy — Oy bsy . (190)

When the solvability condition (189) is imposed, equation (185) will become
multivalued. This makes it possible to choose without loss of generality

es = 0. (191)

Because we have chosen e; = 0, e2 = 0, e3 = 0 and e4 = 0, equation (185)
becomes

cOpbz, = —0r,€p. (192)

When the solvability condition (190) is imposed, and because ez = 0, we get
from equation (186)

dgb, = 0. (193)

As a summary we’re now ending up with the equations (157), (155), (166),
(165),(175), (174), (184), (183), (193), (192), and the solvability conditions
(162), (163), (171), (172), (180), (181), (189) and (190). They are written
as the system of equations

bay =0, (194)
1

o=y =~y 0. (195)

Dbz, = 0, (196)

Opbzy = 0, (197)

9pbz, = 0, (198)
1

by = ——€0, (199)

1

pbay = —=r, €0, (200)

cOpby, = —0r,e0, (201)

cOpby, = —0r;e0, (202)

Cagb;,;4 = —87—460, (203)
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and the solvability conditions

— Or €0 = —COp byy — €Oz, bz — Loc2opp1., (204)
O €0 = —COg, byy — €O by, (205)
- 67'260 = —,U00289P2 - CaTl b:tl - CaTQbIE() (206)
+ ¢0y, b2,

0= —0z,bz;, — Or bz, — Oryby, . (207)

— Oryeq = —10C20gp3 — Op byy — Orybay
— Orybyy + O, b2y,

0 = —€Og, by, — €O7 bsy — cOrybs, — 07y, (209)
— 060 = —0r,byy — Ory by

(208)

(210)
— Orybyy — Orybyy + Op,bzy — pocOppa,
Using equations (194) and (195) on (205) gives the equation
Oz, €0 = O, €0, (211)

which is true. Using equation (200), (195) and (194) on (207) give us 0 = 0.
The same happens by doing the substitutions for (209), which means that
the equations are automatically satisfied. Now, inserting equations (194)
and (199) into equation (204) give the equation

20-, €0 = L0c dgp . (212)

Finding the derivative on 6 of equation (206), and inserting (200), (199) and
(195) give the equation

20pr,e0 = (H0C*Dgop2 — Opyzy€0) - (213)

Finding the derivative on 6 of equation (208) and inserting (200), (195) and
(199) give the equation

209r,€0 = poc*Ogops. (214)

And finding the derivative on 6 of (210), and inserting equations (202),
(201), (200), (199) and (197) give us the equation

207, = (10 Ogops — Oryrye) - (215)
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Consider the special case when

P=¢ (em%(—z’cﬁg)eo + eoneg) ,

which implies that

p1 =0,
p2 = (oX(—icdy)eq + eqned) ,
b3 = 07
pa=0
Introduce
EO(G,.’E,Tl,TQ, -")xlzem,fj:ej‘r' (216)

Multiplying (212) by €, (213) by €2, (214) by €3 and (215) by €*, adding and
using the expansions

Oy = €0y, (217)
Or = €0y, + €20, + 30, + €10, (218)

we get

209 Eg = 62/1,062899 (60)2(—’L'689)E0 + EQT]ES’) — Opeo — 077 Ey. (219)

4.4 Vector Maxwell’s equations order ¢*

Then let us finally start on the derivation of the perturbation equations.
Starting all over again with Maxwell’s equations

VxE—i—BtB:O,
V x B = euo0E + 100; P,
V-B=0,

V.E=—2V.P.
€0

This time are no assumptions made of the directions the polarization and
the electric and magnetic fields have.
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B = B,i+ B,j+ B.k, (220)
E = E,i+ E,j + E.k, (221)
P = P,i+ P,j+ P.k. (222)

Inserting (220)-(222) into Maxwell’s equations, starting with equation (1)

i ik
VxE=|8, 8, 0.

= (0yE, — 0.Ey)i+ (0.E; — 0, E.)j+ (0, Ey — 0y Ey) k,

VXxE+§B=(0,E, —0.E))i+ (0,E; — 0,E.)j

224
+ (0o By — 0yEy) K + 0:Bai + 0, B,j + 0, Bk = 0. (224)

Then dividing this equation into vector components give the equations:

0yE. — 0,E, + 0,B, =0, (225)
0.Ey — 0,F. + ,B, =0, (226)
0.Ey — 0yEy + 0:B, = 0. (227)

Moving on to equation (2)

i j  k
VxB=|0, 0y, 0.
= (0yB; + 0.By) i+ (0.By — 0;B.) j+ (0, By — 0yB;) k.
(0yB, + 0.By)i+ (0.By — 0;B,) j+ (0, By — 0yB;) k (229)
= €olo (8tE$1 + 6,5Eyj + 8thk) + Lo (@Pml + 8thj -+ 8tpzk> .
Dividing equation (229) into vector components give the equations:
3sz — Osz = EoﬂoatEm + uoath, (230)
GZBx — GIBZ = EoluoatEy + ,uoath, (231)
8xBy — 8yBx = Eoﬂoath + uoé)th. (232)

Equation (3) becomes
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V.-B=0,

— 0, B, + 9,B, + 9.B. = 0, (233)

and equation (4) becomes

V.E--1v.P,
€0
1
— 0; By + 0,By + 0.B. = —— (0, Py +0,P, + 0.P.) . (234)
0

Ending up with a new set of equations, (225)-(227), (230)-(232), (233) and
(234)

0,E. — 0.E, + 0,B, = 0,
0.E, — 0, . + 8B, = 0,
Oy Ey — OyEy + 0B, =0,
OyB. — 0.B, = eopo0i By + 1100: Py,
0.By — 0, B, = eopo0i By + po0i Py,
0: By — 0y By = eopuoOi B, + o0 P,
0y By + 0yBy + 0.B. = 0,

0By + OyEy + 0.E, = —— (0, Py + 0,P + 0.P;) .

1
€0

Introducing the change of variables (37)-(40)

0 =z—ct,
T =2z,

or 0 00 0
az-&g‘F&%—&r‘Faea

or 0 00 0
815—554-5%—0‘1‘69——089

Using these changes of variables on Maxwell’s equations will give a new set
of equations:
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OyE. — 0.E, — 9B, — cdyB, = 0, (235)
OrEy + 0pEy — 0y E, — cOy By = 0, (236)
OBy — OyEy — c0pB, = 0, (237)
1
(9sz - 6TBy — 8gBy = —EagEx — uocang, (238)
1
0,By + 09yB, — 0B, = —EagEy — ,ugcagpy, (239)
1
8mBy — 8me = —EOQEZ — ,U/OCOQPZ, (240)
0x By + 0yBy + 0, B, + 8B, = 0, (241)
1
Op By + 0yBy + 0, E, + OgE. = —— (0,Py + 0,P, + 0. P.) . (242)
€0

4.4.1 The Multiple scale method

Introducing the equations

[\
=~
w

er = ez(0,21,y1,71,72),

( ) (243)

ey = ey(0, 21, 91,71, 72), (244)
ez = e;(0,21,91,71,72), (245)
by = by (0,21, 91,71, 72), (246)
by = by (0, z1, 91,71, 72), (247)
b, = b.(0,21,y1,71,72), (248)
Pz = pz(0, 21,91, 71, T2), (249)
py = py(0, 21,91, 71, T2), (250)

P = p=(0, 21,91, 71, T2). (251)

where

Ty = €ex, (252)

Y = ey, (253)

Tj = ér. (254)
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Introducing the expansions

€x = €y, + €€y, + eQe;B2 + 636953 + 646954 + ..., (255)
ey = eyy + €y, + ey, + ey, +etey, + o, (256)
€, = €y + €esy + Eeny + Eeny +ete, + o (257)
by = by + €by, + €2by, + by, + €'by, + ..., (258)
by = by, + €by, + €2by, + by, + €*by, + ..., (259)
b, = by, + €byy + €2bay + by + €M, + o (260)
Po = Py + € Day + €Duy + € Py + o) (261)
Dy = €py, + €2pyz + €3py3 + €4py4 T (262)
Ds = €Pay + Py, + Epsy + €'pay + oy (263)
Or = €0py + €20, + €0py +€* 0y + ..., (264)
Oy = €0y, (265)
0, = €. (266)

Inserting these expansions into equations (235)-(242), will make perturba-
tion equations f(e). Dividing these equations into parts that are multiplied
with each order of €, will make perturbation hierarchies. Starting with the
perturbation hierarchy for equation (235):

e 1 cOpbyy + Dpey, = 0, (267)
€' 1 cOpby, + Opey, = Oy ez — Om ey (268)
€2 cOpbyy + Opey, = Oy sy — Oryyy — Oryeyo, (269)
€3 1 COpbyy + Dpeyy = Oy, €2y — Ory€yy — Oryeyy — Oryeys (270)
€t 1 cOpby, + Opey, = Oy €y — Or ys — Orylyy — Orgey, — Onyeyy.  (271)
The perturbation hierarchy for equation (236) is
" 1 Oger, — cOpby, = 0, (272)
€' 1 Opey, — cOpby, = Oy €2 — Or Cays (273)
€2 : Ogery — COpbyy, = Oy €z — Or €z, — Oryeuy, (274)
€31 Ogeyy — COpbyy = O, €2y — Ory€xy — Orysy — OryCay)s (275)

€ :0peg, — cOpby, = Oz €. — Or €0, — Ory€p, — Oryey,

— Or €xp-

The perturbation hierarchy for equation (237) is
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"2 b, = 0,

€' 1 cOpbzy = Oy yy — Oy g
€ : cOpb., = Op ey, — Oy, €41,
(S Caebzg = avleyz - ayleﬂﬂw

€ :cOpb.y = Op ey, — Oy €qs.

The perturbation hierarchy for equation (238) is

1
0 Ogby, — E@gem =0,

1
€' : Dpby, — Eageml = 0y, bzy — Orybyy + 1H0COpPay 5

1
€? 2 Dpby, — E@gem = Oy, b2y — Or by, — Orybyy + 110C09P,

1
63 . agby3 — E@ge% = ayl bZQ — 87-1 by2 — BTQbyl — 8sty0 + ,uocagpx:i,

1
¢! : Byby, — 28061‘4 = Oy bzy — Or by; — Oryby, — Oryby, — Oryby,
+ 10cOppa, -

The perturbation hierarchy for equation (239) is
® : DOpby, + éageyo =0,
€+ Opbe, + ey, = Oaybay — Dby — pocopy,
€ O0pbz, + éageyz = Oz, bz, — Or byy — Orybyy — 110CO8Dys
€’ : Ogby,y + éﬁgeyg = Oz, bsy — Orbyy — Ory by — Orybyy — 10CO9Dy;
et Opby, + %89€y4 = Op by — Or byy — Orybyy — Oryby, — Orybay

— [10C0oPy, -

The perturbation hierarchy for equation (240) is
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(287)
(288)
(289)

(290)
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0 1

€ : 589620 =0, (292)
el %(%ezl = 0y, bzg — Oy byy — 110€00Dz, (293)
€ %89622 = Oy, by, — Oz, by, — 100Dz, , (294)
e %89623 = Oy, bgy — Oz, by, — 110COHPs, (295)
et %8962«4 = Oy, byy — Oz, by, — 10COpD-, .- (296)

The perturbation hierarchy for equation (241) is

®: b, = 0, (297)
€' 1 Ogbyy = — 0, by — Oyybyy — Or by (298)
€2 Opbsy = —0y, by, — yy by, — Or sy — Orybigs (299)
€3 Opbay = —0p,byy — Oyybyy — Or sy — Opybay — Orybay, (300)
et Ogby, = —0p by — Oy bys — Orybay — Orybsy — Orgbsy — Onybyy. (301)
And the perturbation hierarchy for equation (242) is
" Oges, = 0, (302)
1
€' Opes, = —0p €0y — Oy €yy — Or €2 — %agpzl, (303)
€ : 89622 = _69616901 - 8y1€y1 - 87'1621 - 87'2620 - :aﬂilpwl
) . ) 0 (304)
- %awpyl - %8‘1’1])21 - %80]%2’
e 0pe.y = —Op,€py — Oy €y, — Or €2y — Oy — Oy
1 1 1 1 1 (305)
- gawlpl? - gaylpyz - %8T2pZ1 - :087—1]9,22 - %89p237
et 0pey = —Op,€ay — Oy €yy — Or €2y — Ory€sy — Orpey,
1 1 1 1 1

- 87’462’0 - aamlpxg - gaylpyg, - %aTgp,Zj - :087'21)22 - %aTlszg (306)

1
The way to solve these equations is to divide them into groups from what
order of € they belong to, and then solve them like that. Starting with €?,

(267), (272), (277), (282), (287), (292), (297) and (302), and writing them
as the system
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Cagbxo + 6gey0 =0, (307)

g€y — cOpby, =0, (308)

cOgb,, =0, (309)
1

Ogby, — Eagexo =0, (310)
1

Opba, + Eageyo =0, (311)
1

Eaeezo =0, (312)

Dgba = 0, (313)

89620 = 0. (314)

Two and two of these equations are equal, so it’s actually four equations,
(307), (308), (313) and (314):

c89bx0 + 896y0 =0,
Opes, — cOpby, = 0,
89[)20 =0,
Opez, = 0.

Equation (304) has the general solution

Cbe + Cyy = (1(1}1, Y1,T1, T2, ) (315)

Since a doesn’t depend on 6 can it be disregarded, and we choose a = 0

by + €y, =0,

1
= bay = ——ey,. (316)

Equation (308) has the general solution
€zo — Cbyy = d(z1,y1,71, T2, ...). (317)

Because d doesn’t depend on 6, can we as before choose d = 0, and equation
(308) has the solution

by, = o Cao- (318)



Equation (309) has the general solution

bz = f(@1,91,71, 72, -.0). (319)

Because f does not depend on 6, can we choose f = 0, and

bay = 0. (320)

The general solution to equation (310) is

ez = 9(T1,Y1,T1, T2, ...). (321)

Since g doesn’t depend on 6, will the solution to (310) be

€z = 0. (322)

And then moving on to the equations for €', (268), (273), (278), (283), (288),
(293), (298) and (303), which can be written as the system

cOpby, + Opey, = Oy, €z, — Or €y, (323)

Ogey, — cOpby, = Oz, €,y — Or €4y, (324)

cOpbz, = O, €yy — Oy, x5 (325)
1

Opby, — E@geml = Oy, b2y — Or by, + 120¢09Da, 5 (326)
1

Oy, + E&geyl = Oz, b2y — Or,bzy — 110c0gPy, (327)
1

286’621 = 81/1 bxo - aw1byo - /LoCagpzl, (328)

Opbz; = =0y, byy — Oy by — Or, by, (329)

1
Ogez, = —Og €y — Oyr €y — Or €25 — aﬁgpzl. (330)

Let us start with looking at equations (323) and (327). It’s easy to see that
the left side of equation (323) is equal to the left side of (327) multiplied by
c. In order for (323) and (327) to have a solution, we have to impose the
solvability condition

Oyr €20 — Or €yy = C(Op1 b2y — Or byy — 110CO9Dy, )- (331)

In the same way as above equation (324) and (326) will only have a
solution when we impose the solvability condition
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Og1 €20 — Or €xy = €(Oy, b2y — Or byy + 10c0pP, )- (332)

Moving on to equation (325) and (329). They will only have a solution if
we impose the solvability condition

Oz, eyy — Oy, €y = c(—=0x, bzy — Oy, by, — Ory bzg)- (333)

And equations (328) and equation (330) only have a solution if we impose
the solvability condition

1
_8116900 - a3/163/0 - a7'16Zo - %89}921 = C(aylbmo - 8961 byo - Mocaepn)'
(334)

Because of the solvability condition (331) equation (323) will become under-
determined. This makes it possible to choose without loss of generality

ey, = 0. (335)

When e,, =0, equation (323) becomes

cOpbz, = Oy, €2, — Or €y,. (336)

The solvability condition (332) makes equation (324) become multivalued.
This means that we can choose without loss of generality

ez, = 0. (337)

When e,, = 0 equation (324) becomes

—cOpby, = Oy €2y — Or €. (338)

Imposing the solvability conditions (333) and (333) give us

cOpb,, = Oz, eyy — Oy, €z, (339)

and
1
O0pez, = —Opy€zy — Oyr€yy — Or €25 — %aepzl. (340)
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Moving on to solve the equations for €2, (269), (274), (279), (284), (289),
(294), (299) and (304), which can be written as the system

cOpby, + Opey, = Oy €2 — Or €y, — Oryey, (341)

Opey, — cOpby, = Oz, €., — Or €, — Oryeyy, (342)

cOpbzy = Oy €y, — Oy, €z, (343)
1

89by2 - 269612 - ay1 bzl - 87'1 byl - 6T2by0 + ﬂOCa@pzza (344)
1

89bzz + Eaeeyg = 83:1 bz1 - 871 b:pl - aszxo + MOcaepyza (345)
1

289622 = ayl b361 - aﬂhbyl - M0669p227 (346)

Ogb.y, = — 0z, bzy — Oy, by, — Or, by — Orybey, (347)

Ogezy = =0z, €4y — 8yley1 - a7'2820 — Or €z — :8961]%1
0 (348)

1 1 1
- aawpyl - 58712721 - %392?@-

It’s easy to see that equation (341) is (345) multiplied by c. So in order
for equation (341) and (345) to have a solution we impose the solvability
condition

ayl ez — On €y, — 87’26y0 = (0, bz, — 07, by, — Orybay + MOC@@pyz)' (349)
In the same way as above will equation (342) and (344) only have a solution
if we impose the solvability condition

O €z — Or g — Oryea, = C(a?h bz, — Ory by, — 8T2by0 + 1ocOppa, )- (350)
In the same way will also equation (343) and (347) only have a solution if
we impose the solvability condition

Ony€y, — Oy €y = c(—0p by — Oy by, — Op bz — Orybiy), (351)
And equation (346) and (348) needs the solvability condition

651316961 - a’yl €y — aTzezo - 6‘1'1 €z

1 1 1 1
- 78w1p$1 - 7ay1py1 - 787’11721 - 7891)22 (352)
€0 €0 €0 €0

= C(ayl bil?l - a3&1by1 - M0039p22)-
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When the solvability condition (349) is imposed, equation (341) becomes
under-determied. This means that it is possible without loss of generality
to choose

ey, = 0. (353)

When e,, = 0, equation (341) becomes

cOpby, = Oy €2, — Or €y, — Oryy. (354)

When the solvability condition (350) is imposed, equation (342) becomes
under-determined. This means that it is possible to choose without loss of
generality

ez, = 0. (355)

When e, = 0 equation (342) becomes

—cOpby, = Oy €5, — Or €z, — Ory€yy. (356)

When the solvability conditions (351) and (352) are imposed we will get the
equations

cOpbzy = O, €y, — Oy, €a1, (357)

and

1
89622 = _63616331 - ay1€y1 - 87'2620 - 8Tlezl - :aﬂclpxl
0

1 1

1 (358)
- ;ampyl - %8711721 - %891722'

The equations for when €3, (270), (275), (280), (285), (290), (295), (300)
and (305) can be written as the system
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COpbyy + Opeyy = Oy, €2y — Or €y — Oryeyy, — Oryey,
g€y — Opbyy = Oyy €2y — Or €0y — Ory€qy — Org€ay,
COpbzy = Oy €y, — Oy €xy,
1
8gby3 - 2896363 = ayl bZ2 - 87'1 by2 - 87'2 by1 - 87'3 byo + Mocaanga

1
Opby,y + Eageys = 03, bzy — Or byy — Orybyy — Orybyy — p0COpDys, (363)

1
E896z3 = Oy, by, — Oz, by, — 110€09D2, (364)
0.y = =0z, by, — Oy, by, — Or b2y — Orybzy — Orybey, (365)
0gzy = —Opi€gy — Oy €y, — Oryey — Opy€z — Or €2
1 1 1 1
- gaxlpxg - gaylpyz - %ampzl - ganpzz (366)
1
— —OgPss-
€0 0P z3

In order for (359) and (363) to have a solution we will impose the solvability
condition

Oy, €25 — Or €y, — Oryey, — Oryey, (367)
= c(al'l bZQ - 87'1 bwg - aT2 bml - 87—3be - Mocaepy:;)'

In order for (360) and (362) to have a solution we impose the solvability
condition

Oz, €2y — Or €2y — Ory€s, — Orz€s,

(368)
= 891 bZz - aTl byz - aT2 byl - a7'3 byo =+ Mocaep:m.

In order for (361) and (365) to have a solution we impose the solvability
condition

aﬂneyz - aylexa = ¢(—0p, by — ayl by, — Orybzy — Orybyy — Orghsy).  (369)

And in order for (364) and (366) to have a solution we impose the solvability
condition

- 63316362 - ayl Cys — 87’3620 - 87'2631 - a7’1 €z

1 1 1 1
- %&fmpm - %a’ylpr - %aTQPZI - %8‘1’1}722 (370)

1
- %86’1723 = ¢(Oy, bzy — Oz, by, — 110c0pp2;, ).
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When the solvability condition (367) is imposed, equation (359) becomes
under-determined, and it’s possible without loss of generality to choose

eys = 0. (371)

When ey, = 0 equation (359) becomes

cOpbg, = 8yl €z — Oy €y — 87’26141 - 8736210' (372)

When the solvability condition (368) is imposed equation (360) becomes
under-determined, and it is possible to choose without loss of generality

ezs = 0. (373)

When e,, = 0, equation (360) becomes

—cOpby, = Oy €2y — Or €35 — Ory€, — Ory€yy. (374)

And when the solvability conditions (369) and (370) are imposed, we get
the equations

cOpbzy = Or, €y, — Oy, Eas, (375)
and
Opesy = —Op €5y — Oy €y, — Orgezy — Onyesy — Ory€z,

1 1 1 1

- gaxlpxg - gaylpyz - ga’rzpzl - gaTlpZQ (376)
1

- 7801)23'
€0

And then the last set of equations for €*, (271), (276), (281), (286), (291),
(296), (301) and (306), which can be written as this following system:
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cOgbz, + Ogey, = Oy, €2y — Or €y, — Opy€y, — Orz€y, — Or €y, (377)

Op€sz, — €Opby, = Oy €25 — Or €yy — Ory€py — Oy — Orj€qq, (378)
cOpbz, = Oy, €yy — Oy, €as, (379)
1
Opby, — EaHeu = Oy bzy — Oy byy — Oryby, — Oy, (380)
- 87'4 byo + ,u0080pw47
1
Opbz, + E@gem = O3, bz — O byy — Ory bz — Oryby, (381)
- 87’4 ba)o - Nﬂcaﬁpym
1
289624 = 62/1 bzs - 8Sﬂlbyex - M0689p24a (382)
a9bZ4 = _awlbws - 8y1by3 - 87’1b23 - 87’2b22 (383)
- aT3bZ1 - aT4bzoa
a9ez4 = _8161 Cxz — ayl Cys — 87462’0 - 87’3621
1
— Ory€zy — Ory€25 — — O Pay
€0
1 1 (384)
— — 0y pys — — 0Pz
€0 €0

1 1 1
— L0, — L omp, — ~Oupe,.
€0 ToDzo o T1Pz3 P 0Pz,

In order for (377) and (381) to have a solution we impose the solvability
condition

Oy, €25 — Or €yy — Oryey, — Orgey, — Oryey,

(385)
= C(aﬂvl b23 - aT1 b.’L’3 - 87’2()332 - aTgb:L'l - 67'4b£E0 - Mocaepm)-

In order for (378) and (380) to have a solution we impose the solvability
condition

O €25 — Or €g5 — Ory€3, — Org€q, — Ory€q,
= ¢c(0y, by — 07 by, — Or,by, — Oryby, (386)
- a7'4 byo + M0080px4)'

In order for (379) and (383) to have a solution we impose the solvability
condition

8961 Cyz — ayl Cx3

(387)
= ¢(—0p, byy — Oy, byy — Or bzy — Orybzy — Orgbsy — Orybz)-
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And in order for (382) and (384) to have a solution we impose the solvability
condition
- 89U1 €x3 — 8?;1 Cyz — 87'4 €2 — a7'3 €z

— Ory€zy — Orj€25 — :8931]7:03
0

1 1
= Oy, — —Onpn (388)
0 €0

1 1 1
S 0npsy — — 0TIy — —0
P ToDzo €0 1DPz3 €0 0P z4

= C(azn bz — 8961[7213 - M0080Pz4)-
When the solvability condition (385) is imposed, equation (377) becomes
under-determined. This makes it possible to without loss of generality
choose
ey, = 0. (389)

When e,, = 0 equation (377) becomes

cOpby, = Oy, €25 — Or €yy — Ory€y, — Oryey; — Ory€y0. (390)

When the solvability condition (386) is imposed, equation (378) becomes
under-determined and we can choose without loss of generality

When ez, = 0 equation (378) becomes

—cOpby, = Oy, €25 — Or €3y — Ory€qy — Ory€z — Orj€qq. (392)

And when the solvability conditions (387) and (388) are imposed, we get
the equations

cOpb,, = Oy, ey — Oy, €z, (393)

and
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89624 - _8116563 - 8?!1 Cys — a7'4620 - 873621

1
— Ory€zy — Ory€55 — %aﬂmpxs
1 1 (394)
— — 0Oy Pys — —Orypzy
€0 €0

1 1 1
— L0, — L Omip, — ~Oupe,.
€ ToDzo P, T1Pz3 P 0D zy

Now let’s summarize what we have. We have the values (320), (322),
(337), (355), (373), (391), (335), (353), (371) (389), the equations (340),
(358), (376), (394), (316), (318), (336), (338), (354), (356), (372), (374),
(390), (392), (339), (357), (375), (393), and the solvability conditions (331),
(332), (333), (334), (349), (350), (351), (352), (367), (368), (369), (370),
(385), (386), (387) and (388). They become the system of equations

bay =0, (395)
ez =0, (396)
eg, =0, (397)
ey =0, (398)
eay = 0, (399)
ey, =0, (400)
ey = 0, (401)
exy =0, (402)

the equations
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1

bIO = —Eeyo, (403)
1
by, = Eexm (404)
cOpbz, = Oy, €2y — Or, €y, (405)
— cOpby, = Oy, €2y — Or €x, (406)
cOpbz, = O €yy — Oy, Exp s (407)
1
Oz, = —Or €qy — Oy €yy — Or €25 — %aepzl, (408)
cOpby, = Oy €z, — Or €y, — Ory€yq, (409)
— cOpby, = Oy, €:, — Or €3, — Ory€s, (410)
cOpbz, = Oy €y, — Oy €51, (411)
1
89622 = *8361 €xy — 8y1ey1 - a7'2620 - 8‘1'1621 - :aﬂclpxl
0 (412)
1 1 1
- gampyl - %87'1])21 - %591&2.
COpbzy = Oy, €z, — Or €y, — Oryeyy — Oryey, (413)
— cOpby, = Oy, €2y — Or €3y — Oy — Oy, (414)
cOpbzy = Oy €y, — Oy, €y, (415)
Opezy = —Op €q, — Oy €y, — Orgezy — Orye5y — Oy €2,
1 1 1 1
- 5811]?([2 - :anlpyz - 507—21)21 - %87'1]922 (416)
1
- ;aepZ:ja
Ca@bm = 8y1 €z3 — 87’1 Cys — 87'261/2 - a‘F36y1 - a‘1'462,10’ (417)
— cOpby, = Oy €23 — Or €35 — Ory€zy — Ory€s — Or €, (418)
cOpb., = Oy, €ys — Oy €y, (419)
80“3Z4 = _aﬂh €z3 — 8y16y3 - 37-4620 - 87’3621
- 8726z2 - 87'1623 - %amlng,
1 1 (420)

— Loy py -~
P y1Pys . 3Dz
1 1 1

- %87'2])22 - ;aTlng - %89])247

and the solvability conditions
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8l/l €20 — 87’1 Cyo = C(aﬂﬁlbzo - 87'1 byy — Mocaepyl),
8331620 - a‘1'1 €xy = C(ayl bZo - a7’1 byo + Mocaopxl),
axleyo - ayl €xy = C(_axlbmo - aylbyo - 87'1 bZO)?

1
— Oy €30 — Oy €y — Or €55 — %af?ph = ¢(Oy, bzy — Oz, by,

— H0COpPz, ),

Oyr€z — Or ey, — Opyeyy = (03, b2y — 07 byy — Orybyy + 10COpDy, ),
Opr€y; — Oyreqy = (—0g by, — Oy by, — 07, by — Oryby),

O, €z, — Oyy €y, — Oryesy — Or €5,

1 1 1 1
- —0 - —0 - —0 — —0,
P 1Pz 0 y1 PDy1 . 1Pz o 0Dz

= ¢(0y, by, — Og, by, — 10COpD2, ).

Opr €2, — Or €3, — Oryepy = (0y, by — 07 by, — Orybyy + 10COpD2s ),
Oy, €25 — Or €y, — Oryey; — Oryey,

= ¢(0g, b2y — Orybgy — Orybyy — Orybay — pocOgpy,),

Op,€29 — Or €py — Ory€z, — Org€qy

= Oy, bzy — Or by, — Oryby, — Orybyy + p0COpPay s

Op1€yy — Oy €y = C(—0g,bgy — Oy by, — 07, b2y — Orybsy — Orybsy),
— Op €5y — Oy €y — Ory€zy — Oryez — Or €2,

- elo%pm - el()aylpyz - 6108721%1 - 610&11922

~ 2Oy = (Db = Oy — Oy,

Oy, €25 — Or €y; — Oryey, — Oryey, — Or ey,

= (01 b2y — Orybay — Orybyy — Orybayy — Orybzy — pocOppy,),
O €25 — Or €g5 — Ory€3, — Org€q, — Or €4,

= ¢(0y, by — 07, by, — Oryby, — Orsby,

— Orby, + 110¢0pPay),

Ogy€ys — Oy, €y

= ¢(—0p,bgy — Oy by, — 07 by — Orybzy — Orybyy — Oryb2,),

- axl Cxz — 8yl Cyz — 87’4620 - a‘F3621

1
- 87'2622 - 8716»23 - 78171pr3
€0
1 1
- %awpys - % OrsPz

1 1 1
- %87'2])22 - %aTlng - %86‘]7,@1

= C(ayl bﬂcs - aﬂ?lby:s - M0089p24)' 41

(421)
(422)
(423)

(424)

(425)
(426)

(427)

(428)

(429)

(430)

(431)

(432)

(433)

(434)

(435)

(436)



We are now going to use the equations (395) - (420) on the solution con-
ditions. When finding the derivative on 6 and simplify using (395)-(418)
on the solution conditions (423), (424), (426), (427), (431), (432), (435)
and (436). Simplifying them in this way shows that they are automatically
satisfied.

Using (395)-(420) on the rest of the solvability conditions in the same
way as in the previous chapters let us end up with the equations

207,062, = p0C OpoPay (437)

287196210 = MOCQBOpru (438)
1

2872961/0 = _8y1y16y0 - ;aaylpzl - 8x1991€y0 (439)

2
- aﬁﬁ €0 + Hoc 899py27

20r,0€20 = —Oyiy1€xy — Oriri €29 — Oy €
1 9 (440)
- aaxlepzl + 110¢” OggPas »
1
2873061/0 = *28‘1‘17‘26340 - 5(ay1931px1 + 8y1y1pyl + 8y17'1pz1 (441)
+ Oy,0p2,) + 10> Ogopys
287’39610 = =207 ry€xq + ;UJOC2890pa:3
1 (442)
- %(8331371]911 + a5t713,11py1 + 63617'1pz1 + 81‘19pz2)7
1
20, 9¢y, = —— (D a ) G
40€y0 EO( 121 Pz T Oyiyi Dys T Oroy1 P2y + Oyir P2y (443)
+ 83;101723) - 287'17'3 €yo — 87—27—2 €yo T+ M002609py47
1
2(97496330 = _%(837111]912 + amylpyz + a961T2pz1 (444)

+ Ozyry P2y + O216Pz23) — 207 r3€20 — 20myr, €yo T Mocza%pm'

Consider the special case when

P = € (eox(—icdp)eq + eonep)

which implies that

p1 =0,
p2 = (oX(—icdy)eq + eoned) ,
p3 =0,
ps = 0.

42



Introduce

E$O (97 X, T1,T2, ”')xlzez,szejT'

Eyo (97 L, T1, T2, "')IElZEZE,T]’:Gj’T

(445)
(446)

Multiplying (437) and (438) by e, (439) and (440) by €2, (441) and (442)

by € and (443) and (444) by ¢*, and using the expansions

Op = Eaxla
O0r = €0, + 6287—2 + 6387—3 + 6487—4,

we get,

20r9Ey, = —O0yy By — OraEry — 077 Ey
— (€200a (X(—icOp) Exy + 1(E3, + Ey Ewy))
+ € 0uy(e0X(—icDy) Eyy + eon(Ez By, + E )+
633x96077(Eg0 + EEO)EZJ

+ u062c2899(60>2(—i089)E$0 + e(m(EgO + ESOEQCO)),

20r9Ey, = —O0yy By, — Ova By — Orr By,
— (€20ay(X(—icDp) Eqy + n(E3, + E2 Euy))+
628yy(60>2(_i089)Ey0 + nEU(EgoEyO + EZ:;)O))

+ €3ay9601’](E§0 + ESO)EZI) + poeoc®e*pg (X (—icdp) Ey,

+ U(E:%OE:LIO + E;g))
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5 Perturbation equations to order ¢ without po-
larization

We now have equations (449) and (450)

20:0Es, = —0OyyEuy — Ova By — Orr Bxg
— (200 (X(—ic0p) By + n(E3, + E2 Eyy))
+ € 0uy(e0X(—icOy) Eyy + con(Ez By, + E )+
636x95077(E§0 + EZO)Em)
+ po€®c®dgg(eoX (—icdp) Euy + eon(E3, + Ep Eay)),

20:9Ey, = —0yy By, — 0veFyy — Orr By,
— (€2 Day (X (—icDp) Euy + 1(ES, + Epy Exy )+
€0y (coX (—icp) Eyy + neo(Ex Eyy + E5)))
+ 0ygean(E2, + E2 ) Ex,) + pococ e 0pg (X (—icdp) By,
+n(E2, Ey, + Ej))).

Taking away the dispersion and the diffraction from (449) and (450) and
dropping all terms of order € or higher we get

209, Ezy = pococ”€*pon(ES, + Exy By ), (451)
209 Eyy = pococ*e*0ggn(E2, Eyy + Ep ). (452)

Integrating over 6 on both sides will give:

20.E, = M06062€28977(E30 + EIOEZO) + f(T)7 (453)
20, Ey = poeoc’e*0gn(E>, ey, + Eo) + g(7). (454)
We are choosing to disregard f(7) and ¢g(7) . Doing a change of variables

where 7 = 797" and 6 = 6p0’ and choosing 0y = pgegc’e?ny will give the
equations:

20, Eyy = 0g(ES, + exEL), (455)
20, Ey, = 0p(E2 ey, + Ep ). (456)

Where we have returned to unprimed quantities the case of linear polariza-
tion where Ey; = 0. Equation (456) will then disappear and equation (455)
will become:
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20, Eyy = 0p(E3)) = 3E2 0Ey,. (457)

This is now a quasilinear first order partial differential equation. This is
because it is linear in the derivative terms, but has a nonlinear expression

3E2 09 Ey,.
20:Eyy — 3E2 09Ey, = 0. (458)
With an initial value E,(0,0) = f(0). It can be solved using the method

of characteristics[6]. First parameterize the initial curve

0=t T

Il
o

Eyy = f(1), (459)

and find the value of

_ 0T apay 905
J =5 (SBEL) — 5 (2) = —2#0. (460)

This means that there exists one and only one solution to this equation. It’s
necessary to find the motion of the wave, and that means finding the velocity
of % of each point of the wave. The first two parts of the characteristic
equations (423) means that, the bigger the amplitude |E,, (0, 7)| of the wave
is, the bigger is the speed of the corresponding point of the wave 6.

00 ) or OE,
a5~ P P s & oY

with the initial condition s = 0.

00 9
% == _3E$O’
= 0= -3E2s+t=-3f(t)’s+t, (462)
or
L9
0s ’
= 7 =25+c=2s. (463)
6?;60 = 0 means that E,,(s,t) is constant along the characteristic curves

such that Fy(s,t) = E3,(0,t) = f(¢).
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0 —%f(t)% 1, (464)

3
— t=0+ 5f(t)%, (465)
3
=0+ §E§OT, (466)
Egy = f(t(0,7)). (467)
The implicit solution is
3 2
Emo = f(e + §E:c07—)' (468)

5.1 Breaking Time

If £, > 0 the point 6 will move to the right, if £, = 0 6 will be fixed, and
if B, < 0 will # move to the left. But if E,, (6, 7) takes on both positive and
negative values, different parts of the wave will move with different speeds
to the right or to the left. In this case the wave will move to the left. That
means that the points 6 where E,, has higher values will move faster to the
left than the points where E,, has smaller values. If the higher parts of the
wave form initially are to the right or the rear of the of lower parts, then will
the higher parts eventually pass the lower parts. The first time this happens
is when the wave breaks, and E,, becomes multivalued and is no longer a
valid solution. This means that equation (458) no longer is an acceptable
model for the physical process, and the neglected parts of the quasilinear
equation (458) are significant. It’s possible to use implicit derivation to find
both the time 7 and the point § where the wave breaks:

3 3
OoEy, = ['(0+ 5Eﬁor)(l + 57+ 2By 0p Ey), (469)
3
=f 0+ iEgoT)(l + 37E4,0pEy, ), (470)
3 3
= f/(9§E§OT) + 37 B,y O By (60 + §E§OT), (471)
3 3
— OBy (1 — 37E,, f'(0 + iEior)) = (6 + §E§Or), (472)
"6+ SE2
— o, = — LU D (473
1 —37E, f'(0 + 3E2,7)
!
f'(@) (474)

T 1=3rf(Of ()
The equation breaks down when 1 — 37 f(¢)f'(t) = 0:
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3T f'(t) =1, (475)

1
= TS 50ro He)

The breakdown time will then be:

7 = min <3f(t)1f(t)> . (477)

5.2 Numerical solution

The finite difference method[2] is a numerical method that is used to find
the numerical solution of ordinary and partial differential equations. The
method solves equations by discretization of the equations on the space-time
grid in figure 3

That means that the equation E, (0, 7) becomes Ey,(0;,7,). The fi-
nite difference method use Taylors theorem to find an approximation to the
derivatives of the equations expressed by the points on the space- time grid.
Using this gives the forward difference

OF, \" (B — (Epy)?
~ t 2 478
( or )Z dr ’ (478)
backward difference
8EOEO " (Exo)n_l _ (El’o)n
~ L L 479
< or )Z dr ’ (479)
and center difference
OF2, \"  (Bxg)™ — (Byp) !
~ L CE— 4
( or >Z 2dr (480)

Center difference has an approximate error of dr?, while forward and back-
ward difference has an approximate error of dr. This means that center
difference has a more accurate approximation, something that makes it the
best choice in this case to use to find the numerical solution to equation
(458). Choosing in this case to use periodic boundary conditions, which
means that the first point and the last point on each line in the space- time
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grid have the same value. This is something that is going to be used when
finding the equations that’s used in the code.

The first line for when n=0 is given as a Gaussian function. The equa-
tions for center difference uses points from the two last lines to find a point
on the next line. It is therefore impossible to use center difference to find
the points for n=1, and we have to use forward difference for the derivative
on 7, and the equation to find the points (not the end points) when n=1 is

(Ezo)i = (Bao)i + Zs((Exo)?)Q((Eﬁo)?+l ~ (B )i-1), (481)

where s = ?Tg' Because of the boundary conditions will the equation for the
boundary points need to be different from equation (433) with the derivative
on 0. The equation of i=0 is

(Bug)b = (Bu)+ S 5((Eug)9)2 (i)l = (Ep)% ). (482)

ZS

and the equation for the last point when i=N-2 is

(Bzo)n—2 = (Bag) -2 + %s((EIO)(])V—Q)Q((EIO)g — (Ezo)y-3),  (483)

where s = %. The center difference equation in general except the boundary
points is

(Bao)i ™ = (Eag)7 ™ + 28((&0)?)2((&0)&1 = (B )it1)- (484)

The center difference equation for the boundary point i=0 is

(Bao)o ' = (Bao )5~ + ;8((&0)8)2((&0)? = (Ezo)N—2); (485)

and the center difference equation for the boundary point i=N-2 is
_ 3
(Bz)N" = (Bro )N 2 + 55((Bao)N—2)*((Bzo)§ — (Brg)i—s)-  (486)

5.2.1 Initial function

The numerical solution uses an initial function, which in this case is the
initial laser pulse. This laser pulse has the form

49



E,,(0,t) = f(t) cos(wot). (487)

Where f(t) is the pulse shape function, which can also be called an envelope
function. The common choice for this type of function is a Gaussian, which
has the form

f(t) = aexp(—bz?), (488)

which is a function symmetrical around t =0. A typical shape for this is
shown in figure 4, where the period is

_ o

T (489)

wo

The oscillating part of E,,(0,t) is called the ”carrier” wave. Introducing
the change of variables (37) and (38) to equation (496) will give the initial
function in the(f, 7) plane

A(0,0) = f <—9> cos <—w09> | (490)

C C

Inserting (526) into (528) and using the scaling

A= apA’ (491)
0 = 000 (492)
will give the function
A'(0',0) = 9 ex —2929'2 cos WO—QOQ’ (493)
’ o SR\ T2 c )

Choosing @ = « so the amplitude is normalized to one, and choosing the
scaling of 6y such that the carrier wave as a period of 27 is

wobo _ 4. (494)
c
Equation (493) now becomes
A'(#,0) = exp(—0"?) cos(0'), (495)

where v = %.

0
Since b is free,then v is a free dimensionless number, and by varying the
number v can we get as few or as many oscillations in the carrier wave under
the envelope wave as we want.
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5.2.2 Stability

The numerical solution, with in this case a chosen Gaussian initial function,
can look like shown in figure 5.

This is because of a numerical instability in our finite difference method.
To find the stability condition let’s look at the linear case of equation (458),
which is

0y Eyy + cOpEyy = 0. (496)

It’s now possible to use this equation to find a stability condition using
separation of variables on the center difference equation for equation (496)

(Ero)? - (Efﬂo)<$ja tn)? (497)

and the center difference equation for (496) is

(EZO);'H_I - (EOE());L_l C(Ewo)?Jrl - (Eﬂco)?fl .

=0
2dt + 2dx ’
= (Buo)j ™ = (Buo)jt + es(Bug) i1 — (Bao)j-1) =0, (498)
where s = c%. Now let’s assume that
(Ezy)j = &"nj (499)
Inserting (528) into equation (528) will give
" = &y + (€ — €M, (500)
= = s (=), (501)
Still assuming periodic boundary conditions
o = 1IN-1, (502)
such that
(Bry)j =€ exp(zN — 1) = " exp(if). (503)



Where for large N 6; is approximated by a continuous variable 6. This
means that equation (501) becomes

e = 1 4 e s(exp(if) — exp(—if)). (504)

Using the fact that

(exp(if) — exp(—if)) = 2isin(H) (505)

equation (504) will become

¢l = ¢+ 25isin(h). (506)

This becomes the second order polynomial equation

€2 — 2issin(0)¢ — 1= 0. (507)

Equation (507) has the solution

1
£ = 3 (23i sin(f) + \/—432 sin?(0) + 4) . (508)
when assuming that s < 1 the norm of £ will be

€)? = s?sin?(A) + 1 —sin?(0) = 1. (509)

Since the requirement of stability is that

€l <1 (510)

can we say that the numerical scheme (498) is stable for s < 1.
When s > 1

s%sin?() — 1 > 0, (511)

which means that

> > 1, (512)

and the numerical scheme (498) is not stable for s > 1.
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This is for the linear case, but the quasilinear case that we have

3
E? (513)

25 z0)

c= C(Ero)

the requirement for stability is conjectured to be, based on the arguments
given on the previous page

c(Eay)s <1, (514)

3
= SEs <1 (515)

which means that the numerical solution for equation (458) is stable if

2
< 516
i 3(E900)12naw ( )

This makes sense since in light of figure 5 the instability appears on the top
of the graph.
5.2.3 Testing

When choosing a Gaussian function as the initial function for the numerical
solution is it possible to use equation (439) to test the implementation. This
is done by finding the breaking time by inserting the initial function into
equation (439), and then see if the time fits with the breaking time of the
numerical solution. The starting function has the form

f(a) = aexp(—ya?), (517)

which has the derivative

f'(x) = =2y exp(—vya?). (518)

Inserting this into equation (438) defines the function g(x)

_exp(2ya?)
g(z) = BT (519)

The minimum value of z is found by setting the derivative of g(x)equaltozero.
We have

§(@) = (=5 + o) ep(21a®) =0, (520)
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The solution to this equation is

1
The value of x that will give a positive time 7 is
1
Inserting this into equation (519) give the equation
_ exp(1/2)
=3 (523)
Choosing a function where v = 0.01 will give a breaking time
Tx = 5,4957 = 5, 5. (524)

This corresponds to the numerical implementation, because we can see in
figure 6 that the graph starts to break when 7 = 5.5.

5.3 Results

For the case when v = 0.01 will the initial wave look like in figure 7.

Over time when the graph starts to lean to the left, because of the
nonlinearity of function (458). This is shown in figure 8.

When it leans so much to the left that the graph has a vertical line, it
will break. In this case it will break after 0.59 seconds.

When iterating a little bit more from the breaking point, it is shown in
figure 10 that the function will no longer give valid solutions to the physical
process.

54



6 Perturbation equations to order ¢* without po-
larization

20r9Eyy = —Oyy By — OraEry — Orr B
— (€000 (X(—icO) Exy + 1(E3, + Egy Euy )
+ 628xy(60>2(—i089)Ey0 + GOU(E;%OEyo + Ego))+
*du9eon(Ea, + Eo )Ez,)
+ po€>c*Ogg (€0 X (—icdy) Exy + con(Es, + Eo Eay)),

20:0Ey, = —0yyEy, — OpzEyy — Orr Ey,
— (2 (X(—icOy) Exy + n(E3, + gy Euy))+
e2ayy(eof<(—icag)Ey0 + neo(EgoEyo + E;’O))
+ 0ygean(E2, + Eo ) Ex,) + pococ e 0pg (X (—icdp) By,
+n(E2, Ey, + E)).

Removing the dispersion and the diffraction, but now retaining terms at
order ¢*, we get the equations (410) and (411):

20p:Ey = =07+ By + ,ugeoc2e289977(E§’O + EIOEEO),
200:Ey = =077 Ey, + uoeoc262899n(E§OEyO + ESO)

In this case will ;- not be disregarded, and the case of F,, = 0 is still valid.
This makes the equation
209rEzy = —0rrEqy + poc’€0pgES . (525)
Doing a change of variables where 7 = 797’ and 6 = 6y + 6’ and choosing
0y = poeoc?e®nty will give the equation:
20r9Ey, = —0rr By, + OpgES, . (526)

Without the 9, will equation (526) become

20,;9F., = Opo 3, (527)
= 20.E,, = E3 + O(e?), (528)
(529)
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The reason why our iteration procedure is expected to work is because
OrrEy, is a small correction in (526). From (528) we get by taking the
derivative with respect to 7

201 Eyy = 0,(0pE3), (530)
= 0p(0, E3 ), (531)
= 0p(3E2 07 Eyy), (532)

and inserting (528) will make the equation

1
20,7 Fy, = Oy (QEioagE;jO) : (533)
9 4
=09 | 5F2y00Fuy ) - (534)

Inserting (534) into equation (526) will give

9
287'9Ezo = —0p <4E§089Ex0> + 699E§0' (535)
This will give the equation
9
20: By = _ZE;*OagExO + O E3 + f(7), (536)

We disregard f(7), and end up with the equation

3
- 87—Em0 = iEgo <1

3

- Egg) 09 By, - (537)

This is also a quasilinear first order partial differential equation with the
initial value E,,(0,0) = f(#). It can therefore be solved using the method
of characteristics [6]. First parameterize the initial curve:

0=t T=0 E,, = f(t), (538)
and find the value of
0T, 3, 3 5 00 B B
J—a(—§E$O(1—ZEIO))—a(1)—0—1——17&0. (539)
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This means that there exists one and only one solution to this equation.
The characteristic equations are

00 3 3 or OE
2 —_YF?2(1-2E? =1 o — 4
Os 2 ol 4 zo) 0s Os 0, (540)
with the initial condition s = 0.
Here will
00 3 o 3 o
P —5 B2 (1 = 1 Ea)
become
3 3
6 = —§E§O (1 — 4E§0> s+t (541)
or
=1
0s
will become
T=s5+c (542)
Because of the initial condition s = 0 will ¢ =0 and
T =Ss. (543)
O0Ey,
—— =0 544
s (544)
means that E,,(s,t) is constant along the characteristic curves such that
E.o(s,t) = E5,(0,t) = f(%). (545)
Inserting (541) and (543) will give the equation
3 2 3 2
0:—5]"(75) 1_1f(t) T+ t, (546)
3 o2 3 2
== t:0+§f(t) 1_Zf(t) T, (547)
3 3
=0+ §E§O <1 — 4E§0> T. (548)
This will give the implicit solution
3 2 3 o
E,, = f(6+ §Exo 1-— ZE»TO 7). (549)
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6.1 Breaking Time
Start with equation (549) :

3 3
By, = f(0+ §E§O <1 - 4E§O> 7).

9
OpEyy — 3E4,m0gFyy f'(t) + 5E;”anE%O ') = f'(t), (550)

09 Ey, (1 —3E,,7f(t) + gEfgoff’(t)> = f'(t), (551)

3 9 3 9
OoEy, = f' <9 + §E§OT - = §OT) (1 + §2EIOT(99EIO - 84E§0789Ex0> ,

8
(552)
/ 3 2 9 4 /! 9 3 /!
=f <0 + §E$07' - 8E$OT> + 3E,,TOg By, f'(t) — §Ex07—89E350f (1),
(553)
7(t)
OE,, = : . 554
= TS W + O PO (554)
Breakdown when
P01 = 3£0)f (57 + 3 F(1PF' (1) =0, (555)
— 7 (35070 - 10 )) =1 (556)
1
T= , 557
= TS50 = O (557)
so it’s breakdown time when
T = min ! (558)
S re - i )

6.2 Numerical Solution

The finite difference method [2] is a numerical method that is used to find
the numerical solution of ordinary differential equation. The method solves
the ordinary differential equation by first discretization of the equations on
a space- time grid, that is shown in figure 3.
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The first line is given. Center difference uses points from the two prior
lines to find the next point, and therefore is it impossible to use center dif-
ference to find the second line. That’s why we have to use forward difference
for the derivative on 7. This makes the equation for the second line on the
space-time grid (without the boundary points)

S((Ben) DA (Bro)is — (Fag) (1 = S((E)?)?)
(559)

where s = %, which it is all the time.

Because of the boundary conditions will the equation for the boundary
points need to be different from (559) with the derivative on 6. So the
equation for the second line and i=0 is

(Bao)h = (a5 5((Ban)§) (B} — () —2) (1~ H(Eu)})?)
(560)
And the equation for the second line and i = N-2
(Bao)—2 = (Fan)a + 35((Fa) ) (Bu)) — (Fa) )1 = S ((Bu)ho)?)
(561)

Now do we have the second equation. Then is it possible to use central
difference for the rest of the lines, so the equation for the rest of the lines
(except from the boundary points) is

(Baa)i™ = (Bt + S5((Bea) ) (Br)is — (Beo) o) (1= 5 (B 1),

(562)

The boundary points still need their own equations because of the boundary
conditions. The center difference equation for the boundary point i=0 is

(Bao)y ™ = (Brg)g ™ + 55((Bag)5)*((Bag)T = (Bag)ie—3) (1 = 5 ((Bro) —2)*),
(563)
. and the center difference boundary point i=N-2 is
n+1 n—1 3 n 2 n n 3 n 2
(Eao)N=2 = (Bao)y—2 + 55((Eao)N—2) (B Jo — (B )N-3)(1 = 7 (Bao)N—2)")-
(564)
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6.2.1 Stability

The numerical solution can have an instability. This can be avoided by
finding a stability condition.

To find the stability condition let’s look at the linear case of equation
(537)

OrEyy + cOpEy, = 0, (565)
where
3 3
c=c(Fy) = §E§O <1 — 4E§0> : (566)

Equation (565) is now the same as (496), and the stability analysis will be
the same as for equations (526) to (512). There do we find out that finite
difference method is stable if s < 1 for the linear case. In the quasilinear
case of equation (537) will we have

1 1
_ 567
§< maxc(FEg,) max (%E%O (1- %E:%o)) 67

6.2.2 Testing

Choosing the Gaussian function as a starting function to the numerical
solution

f(z) = exp(—7a?). (568)

The derivative is

f'(x) = —2yz exp(—ya?). (569)

Inserting (568) and (569) into equation (558) give us the equation g(z),

o exp(292?)

= . 570
9yz exp(—2vx?) — 6yx (570)

The value of x where g(z) has it’s minimum value is found by solving the
equation where

d(z) =0. (571)

Equation (571) become
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9 7272552 — 9y

exp(2vyx®) = Gy R o (572)
Now we are using Mathematica to find the solution (572). This is done
by using the Mathematica function FindRoot. But this function needs an
approximate value to start from when looking for the root. To do this we
simply plot the right side and the left side of equation (572)to see where
they intersect. To be able to do a plot we need to choose a value for v, and
in this case we choose

~ = 0.001. (573)

By trial and error we find that the value of x that will give the smallest value
for 7« lies somewhere inside the domain x € [—30, —22], as shown in figure
11. In this figure we can see that the intersection point is close to x = —26.
Using x = —26 as the starting point we find the value of x where g(x) has
its minimum value is = —26.03. Inserting this into equation (558) give
the breaking point

7% = 40.49 (574)

Comparing this to the numerical breaking time will then test that the
numerical implementation is correct. Figure 12 shows the wave at time
7 = 40.5. The vertical line at the left shows that the graph breaks at this
time, which means that the numerical implementation is correct.

6.3 Results

When v = 0.01 the initial wave will look the same as in figure 7. And in the
same way as in figure 8 the wave will start to lean to the left. For this case
is the movement of the wave before breaking point shown in figure 13.

The breaking time for this case is

T = 1.27, (575)
which is shown in figure 14. The vertical line in the graph of figure 14
show that there is no longer possible to find a valid solution to equation

(537).After the breaking point the wave will continue to get worse, as shown
in equation 15.
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7 Perturbation equations to order ¢ with polar-
ization

Starting again with equations (449) and (450):

20r9Fy, = —0yyEry — OzaEry — Orr B
— (€050 (R(—ic0p) Exy + (B3, + By Exy))
+ 628xy(60>2(—i089)Ey0 + eon(EgOEyO + ESO))+
0y9eon(E2, + E2 )E=,)
+ poe’c?Bpg (0 (—icdp) Exy + eon(E3, + Eo Eny)),

20:9Ey, = —0yy By, — 0vxFyy — Orr By,
— (20 (X(—icOy) Eny + (B3 + E2 Eyy))+
€Oy (coX (—icp) Eyy + neo(Ex Eyy + E5)))
+ 0ygean(E2, + E2 ) Ex,) + pococ e 0pg (X (—icdp) By,
+n(E2, By, + EJ))).

Removing the dispersion and the diffraction and retaining only terms at
order €2 will give the equations:

209, Bz = poeoc®€*dgon(ES, + Exy By ), (576)
209 Ey = pococ*e*0gon(E2, Ey, + EJ). (577)

Integrating over 6 on both sides will give:

20, E, = M06002628977(E§0 + Eongo) + f(7), (
20- B, = poc®eoe”dgn(Es By, + Ey) + (7). (579)
This time are we going to disregard f(7) and g(7). Saying that ugegnc?e? =

(6N

20, B, = adg(Ej, + Ev EL), (580)
20, B, = adg(E} Ey, + E3 ). (581)

This time will Ey; = 0, so we're ending up with a system of equations.
Doing a change of variables
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0= 6,0, (582)

T =107 (583)
The chain rule will then give
0 1 0
= - = 4
00 6y 00" (584)
0 1 0
= (585)

o mor

Inserting (584) and (585) into equations (580) and (581) will give

1 0 1
29— B, =a—

Oor0 00'07 ™~ 02 0000/
19 19
0 p—a
boro 00'07 " ~ V2 00/00"

(B3, + EnyE2), (586)

(E3 + EyE2). (587)

Multiplying equation (586) and (587) by 796y will give the equations

QT
2011 By = 970”(99@30 + By, E2), (588)
QT
200 By, = Tfagf(E;jO + By E2). (589)
And then choosing
aT)
=1
to
will give the system of equations
20, By, = 0y (E3) + ExoEL ), (590)
20, Ey, = 0y (ES + By E2). (591)
Equation (590) becomes
20, By, = 09 B3 + 09(Exy Ey ), (592)
= 200 Eyy = 3E4,0p Exy + E2 0p By + 2E2Ey, 0pr Ey,., (593)
—> 200 Eyy = 3E2, + E; )09 Exy + 2E4, Eyy 0y Ey,. (594)
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And equation (591) becomes

20,/ Ey, = 0p B3 + 05(Eyy E2,)), (595)
= 200 By, = 3Ey 09 Ey, + E2 0 Eyy + 2Ey, EyoOp Eq, (596)
= 20 Ey, = (3E2 + EZ )0y Eyy + 2By, By, Oy Ex,. (597)

7.1 Numerical Solution

The finite difference method [2] solves the ordinary differential equation by
first discretization of the equations on the space- time grid shown in figure
3. That means that the equation E, (0, 7) becomes Eg,(6;, ).

The two equations will be solved by the same way as before, where they
are solved separately by finite differences. It’s just important to find all the
points in each variable before moving on to the points in the next line. The
first line for each variable is given. Center difference uses points from the
two prior lines to find the next point, and therefore is it impossible to use
center difference to find the second lines. That’s why it’s necessary to use
forward difference on the derivative of 7. This makes the equations for the
second lines on the space- time grids (without the boundary points). First
for (594):

(Buo)i = ()i + 55B(Euo)D) + ((Byo)?) ) (Bao)isr — (B )i)
1 0 0 0 0 (598)
+§3(Exo)z‘ (Eyo)i (Eyo)igr — (Eyo)i1),
and for equation (597)
1
(Byo)i = (Byo)i + 75B((Byo)d)* + ((Bag)))) (Eyo)isr = (Eyo)ia) (599)
1
+§5(Exo)?(Ey0)?((Exo)?+l - (Exo)?—l)-
where s = %, which it is always. Because of the boundary conditions

will the equations for the boundary points need to be different from (598)
and (599). First for the boundary points i=0 on the second line. First for
equation (594)

(Eao)o = (Ea ) + %8(3((&0)8)2 + ((By)0)) (Eao)] = (Eao) o)

+55(Ben) 8B (B ) — (By)ho).

(600)

and for equation (597)
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(3((Eyo)0)” + (Ezo)0)*)(Eyo )i = (Eyo)¥-2)

4 55(Be) 8B (B}~ (Bg)v )

(Eyo)(l) = (Eyo)g + %5
(601)

And then for the boundary point i=N-2 for the second line. For equation
(594) is it

(Bao)v2 = (Fay)a + 75G3((Beg) X2 + (B )2 ) (B~ (Brg)—s)
4550 X2 (B (B )§ — (Bu)h—s),

(602)

and for equation (597) is it

(Fyo) %2 = (Fyo)%a + 353((Far) ) + (B2 By )~ (Byo)—s)
+55(Ben) 2By )X a(Far ) — (Beg) o).
(603)

Now do we have the whole second line, and it is then possible to use center
difference to find the general equation for the rest of the lines on the space-
time grids (except of the boundary points). Starting with equation (594)

$(3((Bao)i)? + ((Eyo))*)(Eao)iys — (Bag)in)

+5(Ea0)i (Byo )i (Eyo)it1 — (Byo)i1)
(604)

and for equation (597):

(Byo)i ™ = (Byo)i ™' + %8(3((%0)?)2 + ((Eao))*) (g — (Byo)ia)

+5(Eyo)i (Ezo)i (Eao )it — (Eao)iz1)-
(605)

The general center difference equation for the boundary point i=0 for equa-
tion (594)

(Euo)p ™ = (Buo)p " + %8(3((&0)8)2 + ((Byo)6)*) (B )T = (Bg)N—2)
+S(Exo)g(Ey0)6L((Eyo)7ll - (Eyo)r]if—2)7

(606)
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and the equation for the boundary point i=0 for equation (597)

(B )™ = (B g+ 5 5B(EWE? + (Ea)§)*) (Bt~ (Byo)iy—)

+3<E$0 )g(Eyo )8((E$0>7f - (EfCO)?V—Q)'
(607)

The general center difference equation for the boundary point i=N-2 for

equation (594)

(Bao) iy = (B )i + 55B((Bra) b2 + (Byo) b)) (Buo)f — (Be)e—a)

+5(Ewo)%—2(Eyo)R/—2 ((Eyo)g - (Eyo)T]{/—S)v
(608)

and the equation for the boundary point i= N-2 for equation (597) is

(Eyo) Ny = (By)N_a + %8(3((Eyo)’f°v_z)2 + ((Bao)N-2)*) ((Eyo)§ — (Eyo) N —3)

+S(E$0>T]i772(Eyo)7]i/72((Emo )8 - (Eyo )nN73)'
(609)

7.1.1 Initial functions

The initial incoming laser pulse is a polarized wave packet of the form

Eyy = [f(t) cos(wot), (610)
Ey, = f(t) cos(wot + o), (611)

where
0<¢<2m. (612)

The variable ¢ takes into account polarization. For the case when f(t) =
const, the components e, and e, will be periodic and define an ellipse in
the (e, ey) plane, as the example of figure 16. Using the change of variables
(37)-(38) to equation (610)-(611) give the equations

A(0,0) = f (-i) cos (—wo‘z> , (613)

B(0,0) = <—i> cos (—woi + ¢> | (614)
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We will use a Gaussian envelope equation that is symmetric around t=0.

f(t) = aexp(—bt?). (615)
Introducing the scales
T =197, (616)
0 = 60, (617)
A= apA, (618)
B =ayB, (619)
will give the equations
A'(0',0) = = exp —2029’2 cos wo—eoel (620)
’ ag 2’0 c ’
B'(¢',0) = ieXp —2920'2 cos wo—eoel + ¢ (621)
’ o0 20 c '

Choosing o = a will normalize the amplitude to one, and choosing the
scaling g in such a way that the carrier wave is of period 27 gives

6
U (622)
c
c
O = —. 2
== (623)
These choices give us the equations
A'(#,0) = exp(—0'"?) cos(¢'), (624)
B'(6,0) = exp(—~8") cos(#' + o), (625)

where v = %. Since b is free can v be a free dimensionless number.
0

7.1.2 Stability

Equations (594) and (597) are a system of equations on the form

OU = adyU + b3, V, (626)
0V = adyv + bo,U. (627)

Equation (626) and (627) can be written on the form
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(3)-G olt)
A= (g 2).

The eigenvalues of our system will be

where matrix A is

a—\ b
det( by al A) =0, (629)
(A —a)? —b* =0, (630)
— A=a=+b. (631)

For a Gaussian choice for the starting function will the value of A that means

stability be the largest value A = a+b. Because of the fact that in equations
2 2

(594) and (597) is a = % and b = E, E,, the stability condition will

be

3E2 + E2
% + By Eyy- (632)

Because we have chosen a Gaussian initial function with amplitude 1, will
the stability condition be

A=a-+b=

3+1 6
5 + 5 3 (633)
So the stability value for s is

As < 1, (634)

1
— 635
s < 3 (635)

1
= s<3. (636)

7.2 Results

For the case when v = 0.1 will the starting function look like shown in figure
17. And the starting function when v = 0.01 is as shown in figure 18.

The breaking times depending on the value of ¢ are shown in figure 18.
The red line show the breaking time when v = 0.1, and the blue line show
the breaking times when v = 0.01.
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8 Discussion

In chapter 5 it is shown that the quasilinear equation will break at a time
7%. The example shown in chapter 5.3 show that the equation will break at
7% = 0.59 when v = 0.01. When reintroducing 0., the equations will also
break.

The example shown in chapter 6.3 is also when v = 0.01, and that the
breaking time then is 7« = 1.27. This show that reintroducing 0., in the
non dispersive, purely paraxial case of chapter 5 will not remove breakdown.

We can also see that reintroducing 0., to equation (458) will get the
breakdown to come later than the breakdown in (458). However, the equa-
tion will still break at an early time. This means that the contribution 0.,
has to the breakdown is small.

In chapter 7 is it looked into how polarization influences the breaking
time. In figure 19 is it shown that when ~ gets smaller, the polarization

will have a smaller effect on the breaking time. Remembering that v = w%,
0

where b is a small dimensionless number.

This means that the dependence of the breaking time on the angle ¢
will increase when wy increase for a fixed envelope shape. Thus the effect of
polarization on breakdown increase when there are more carrier oscillations
within the envelope.
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9 Summary

We have been using the method of multiple scales to derive leading order
asymptotic equations describing the propagation of approximately paraxial
pulses in a weakly nonlinear and weakly dispersive media. When doing this
we have first been looking at scalar equations, before moving on to vector
equations, first to order €2 and then to order ¢*. This to build up the
competence to be able to be able to do the final derivations.

After that we simplified the equations to look at the non-dispersive and
purely paraxial case. These were investigated both of the leading order €2
and at order €*. The results there shows that in the case of €2, after a specific
time our model will break down. Perturbing to the order e¢* will make the
breakdown time come later. But when perturbing to order e* there will only
be a small contribution, and the breakdown time only comes a little later.

In particular we have looked into how the polarization influences the
shock. This is done in the case of leading order 2. The results from this
shows that in that case the breaking time will depend more on polarization
when there are more carrier oscillations within the envelope.

Further work that could be done after this is investigating through nu-
merical simulations of the asymptotic equations in order to see how diffrac-
tion modify the optical shocks. It is also possible to find corrections to
the leading order asymptotic equations by continuing the method of mul-
tiple scales to even higher order, and then investigating how these terms
adding to the leading order equations modify the optical shocks in the non-
dispersive purely paraxial case. Another thing that can be done further is
to investigate how the presence of dispersion modify the optical shocks by
numerical solution of the asymptotic equations, and use the Kerr coefficient
and dispersion to for example the noble gas Xenon.
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Figure 2: Coordinate system

n=hi-1

==
TR
(=1 [ =]

i=0i=1 . i=M-1

Figure 3: Space-time grid for (6;,7,), where i = 0,...,N-1, and n=0,...M-1.
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Figure 4: Shape of the initial laser pulse.
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Figure 5: Graph that shows instability in the numerical method.
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Figure 6: Graph for 7 = 5.5. The front of the graph is vertical, which means
that the graph has broken.

77



1.0

—

0.5

0.0

-0.5

——
_

Figure 7: The initial incoming laser pulse
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Figure 8: The nonlinearity of equation (458) makes the graph start to lean
to the left.
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Figure 9: The graph in the breaking point. The vertical line shows that it
has broken.
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Figure 10: Graph of function after breaking point. This shows that it is now
impossible to find a numerical solution.

Figure 11: Graph of intersection of right and left side of (572) in the domain
(-30,-22).
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Figure 12: Graph of wave when 7 = 40.5.The front of the wave is vertical,
which means that the wave has broken.
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Figure 13: Graph for case 2 that shows how the wave moves before it reaches
the breaking point.
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Figure 14: Graph that shows how the breaking point at case 2. The breaking
point is shown by the vertical line in the graph.
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Figure 15: Graph at a time beyond the breaking point for case 2.

Figure 16: Example of an ellipse in the (e, e,) plane
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Figure 17: Initial wave packet when v = 0.1.
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Figure 18: Initial wave packet when v = 0.01.
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Figure 19: Figure showing the breaking times depending on the value of the
polarization ¢ € [0,27]. The red line is when v = 0.1, and the blue line is
when v = 0.01.
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