
The Faculty of Science and Technology
Department of Computer Science

Improving Disk Performance in Vortex With NVMe
—
Kristian Elsebø
INF 3981 — Master’s Thesis in Computer Science — June 2015







“Well, that was pointless. . . ”
–Hubert Farnsworth, Futurama



Abstract
With the development of ssds, performance limitations in persistent storage
have shifted from the underlying medium to the interface through which
the host and disk communicates. nvme is a recently developed standard for
operating ssds connected to a host through pci Express, and offers significant
performance improvements compared to conventional interfaces, as well as
features designed for multi-tenant environments.

Vortex is an experimental implementation of the omni-kernel architecture, a
novel operating system kernel designed to offer strong isolation and accurate,
fine-grained scheduling of system resources for all tenants that share a platform.
The bios of the hardware platform currently supported by Vortex does not
recognize nvme devices, and the Vortex operating system does not support
configuration of devices that are unrecognized by the bios. Further, the storage
stack implemented in Vortex only supports scsi-based storage devices.

This thesis presents the implementation of an nvme driver for Vortex that
is exposed as a scsi device. We also implement a system for recovering
information about devices that are unrecognized by the bios, and use this
system to successfully configure nvme devices on our hardware platform. The
nvme driver is fully functional, deployed in a running Vortex system, and
evaluated through performance experiments.





Acknowledgements
I want to thank my supervisor, Dr. Steffen V. Valvåg. Your advice and guidance
through this project has been invaluable.

Thank you Dr. Åge “The Manual” Kvalnes for taking time off to share your
knowledge.

A special thank you to Erlend Graff, your devotion and eagerness is highly
contagious! Further, I want to express my sincerest gratitude to my fellow
students and friends, Vegard Sandengen, Bjørn Fjukstad, Einar Holsbø, Jan-
Ove “Kuken” Karlberg, Michael Kampffmeyer, and Magnus Stenhaug. To all of
the above, I value your friendship and all the help (criticism) you have given
me.

Also, a great big thanks is in its place to the backbone of IFI, Jan “The Man”
Fuglesteg, Maria W. Hauglann, and the rest of the TK and administration stab.
You all make this a great place to be a student!

And of course, to my parents, Kari and Nils-Jacob, and my sister Elisabeth:
thank you for your support, I could not have done this without you.

Last, but not least, to my girlfriend Marita Skogmo: thank you for your love and
for believing in me, and especially for sticking with me through the insanity.
You have created an environment in which I am able to relax and recover
during stressful times.





Contents
Abstract iii

Acknowledgements v

List of Figures ix

List of Code Snippets xi

List of Abbreviations xiii

1 Introduction 1
1.1 Non Volatile Memory Express . . . . . . . . . . . . . . . . . 3
1.2 Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . 6
1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 From Parallel to Serial Communication . . . . . . . . . . . . 9

2.1.1 Evolution . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Interface Lineage . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Small Computer System Interface . . . . . . . . . . . 13
2.2.2 Integrated Drive Electronics / Parallel-ATA . . . . . . 13
2.2.3 Serial-ATA . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Serial Attached SCSI . . . . . . . . . . . . . . . . . . 17

2.3 From Magnetic to Flash Based Storage . . . . . . . . . . . . 17
2.3.1 Non-Volatile Memory Express . . . . . . . . . . . . . 18

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Device Configuration 21
3.1 Basic Device Discovery and Configuration . . . . . . . . . . 22
3.2 Configuring Devices Present on a Secondary Bus . . . . . . . 23

vii



viii CONTENTS

3.3 Vortex Class Drivers . . . . . . . . . . . . . . . . . . . . . . 24
3.4 PCI-to-PCI Bridge Device Driver . . . . . . . . . . . . . . . . 25
3.5 Configuring a Parent Bridge . . . . . . . . . . . . . . . . . . 26
3.6 Determining IRQ Information . . . . . . . . . . . . . . . . . 29

3.6.1 Interrupt Routing . . . . . . . . . . . . . . . . . . . 30
3.6.2 Swizzling . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 NVMe as a SCSI Device 33
4.1 The Vortex Storage Stack . . . . . . . . . . . . . . . . . . . 33
4.2 Controller Initialization . . . . . . . . . . . . . . . . . . . . 34
4.3 Setting up I/O Queues . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Physical Region Pages . . . . . . . . . . . . . . . . . 37
4.4 Exposing NVMe as a SCSI Device . . . . . . . . . . . . . . . 38

4.4.1 Normal Driver Operation . . . . . . . . . . . . . . . 39
4.4.2 Command Completion . . . . . . . . . . . . . . . . . 40

4.5 Driver Specific Command Arbitration . . . . . . . . . . . . . 42
4.5.1 Round Robin . . . . . . . . . . . . . . . . . . . . . . 42
4.5.2 Per Core . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.3 Per Core Pool . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Evaluation 45
5.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Controller Configuration . . . . . . . . . . . . . . . . . . . . 46
5.3 Measuring Performance . . . . . . . . . . . . . . . . . . . . 46

5.3.1 Collecting Data . . . . . . . . . . . . . . . . . . . . . 46
5.3.2 Diskhog . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Configuring an SSD with the Limitations of MFI . . . . . . . 47
5.5 Multiple Queues . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5.1 Sustained Throughput . . . . . . . . . . . . . . . . . 51
5.5.2 I/O Operations per Second . . . . . . . . . . . . . . 52

6 Concluding Remarks 55
6.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 Weighted Round Robin . . . . . . . . . . . . . . . . 56
6.2.2 Alternative Methods of Assigning Priority . . . . . . . 57
6.2.3 Namespaces . . . . . . . . . . . . . . . . . . . . . . 57
6.2.4 Power Management . . . . . . . . . . . . . . . . . . 58

Bibliography 59



List of Figures
1.1 HDD storage capacity and transfer rate development . . . . . 2
1.2 Comparison between the increase in HDD storage capacity

and transfer rate. . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 With RR arbitration, every submission queue is treated equally,

including the admin queue. . . . . . . . . . . . . . . . . . . 3
1.4 WRR arbitration consists of three priority classes and three

WRR priority levels. . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Parallel buses transfer 32 to 64 bits per clock cycle, but are
prone to interference and variances in propagation delay, due
to varying length of the wires. . . . . . . . . . . . . . . . . . 10

2.2 A PCIe x1 link uses four wires and transmits one bit in each
direction per cycle. . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Differential signaling provides a higher immunity to EMI. . . 12
2.4 A PCIe x4 link uses sixteen wires and transmits four bits in

each direction per cycle. . . . . . . . . . . . . . . . . . . . . 12
2.5 The SCSI bus is a linear daisy chain of up to eight devices,

but expanders allow more SCSI segments to be added to the
domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 A SCSI bus must be terminated to avoid interference. A ter-
minator stops the signals at the end of the line, and makes it
appear as if the bus is infinite in length. . . . . . . . . . . . 14

2.7 Programmed I/O occurs when the CPU instructs access to a
device’s I/O space for data transfer. . . . . . . . . . . . . . . 15

2.8 Direct memory access allows a peripheral on the system bus
to perform reads and writes to host memory on behalf of the
CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 AHCI HBA memory consists of Generic Host Control registers
that control the behavior of the entire controller. . . . . . . . 16

3.1 PnP Configuration Error. . . . . . . . . . . . . . . . . . . . . 22
3.2 The PCI-to-PCI bridge connects the processor and memory

subsystem to the PCI switch fabric composed of one or more
switch devices. . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



x L IST OF FIGURES

3.3 Vortex class drivers may export a resource interface that al-
lows processes to interact with any device by using the same
functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 PCI hierarchy displaying the route to our network and storage
controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 We report SCSI capabilities from our NVMe driver, and allow
the current storage stack to remain unchanged, regardless of
the underlying physical device and storage interface. . . . . 34

4.2 PRP entries point to a memory page used for the data transfer. 38

5.1 SSD vs HDD: Read and write throughput when the SSD is
limited with an MFI configuration. One core producing load. 48

5.2 SSD vs HDD: Read and write throughput when the SSD is
limited with an MFI configuration. Eight cores producing load. 48

5.3 SSD vs HDD: Maximum achieved throughput per core when
all eight cores produce load. . . . . . . . . . . . . . . . . . . 49

5.4 Throughput per core when multiple queues are used with the
RR arbitration policy, and eight cores produce load. . . . . . 50

5.5 The maximum aggregate throughput as a function of cores
producing load. . . . . . . . . . . . . . . . . . . . . . . . . 51

5.6 Sustained read and write throughput with different arbitra-
tion policies, including a comparison with Ubuntu. . . . . . . 52

5.7 IOPS for random reads and writes of 4KB data. . . . . . . . 53

6.1 Given the support for enough I/O queues by the controller,
the assignment of more queues to higher priority processes
can be one way of assigning priority. . . . . . . . . . . . . . 57



List of Code Snippets
3.1 The Class Driver Multiplexor standardizes how the device sub-

system communicates with different device drivers. . . . . . 24
3.2 Probing of PCI devices. . . . . . . . . . . . . . . . . . . . . 26
3.3 The Vortex device structure contains all necessary informa-

tion about a device. . . . . . . . . . . . . . . . . . . . . . . 27
3.4 The pci_configure_parent function is run per device imme-

diately after all PCI devices are located, and stores a reference
to the parent bridge. . . . . . . . . . . . . . . . . . . . . . . 28

3.5 The function used to read IRQ information from the MP table
can also determine this by doing a swizzle through the PCI
hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 The NVMe driver multiplexor is a set of functions that is used
by the virtual dispatch table to route a request to the correct
device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 The nvme_controller_t structure contains all information
necessary to interact with an NVMe device. . . . . . . . . . . 36

4.3 A nvme_completion_status_t is associated with each issued
command. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 During normal operation, nvme_readwrite is called for all
commands directed to the storage device. . . . . . . . . . . 39

4.5 The interrupt handler uses branch prediction to favor han-
dling of I/O completions over admin completions. . . . . . . 40

4.6 IOQ specific interrupt handler. All completions in the current
phase are processed. . . . . . . . . . . . . . . . . . . . . . . 41

4.7 The driver-specific RR arbitration method loops without con-
cern for CPU affinity, and requires lock primitives to guard the
active queues. . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.8 The driver-specific per core arbitration method uses one queue
per CPU core. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.9 The driver-specific per core pool arbitration method uses a set
of queues per CPU core. . . . . . . . . . . . . . . . . . . . . 44

xi





List of Abbreviations
aer Advanced Error Reporting

ahci Advanced Host Controller Interface

ansi Americal National Standards Institute

api application programming interface

apic Advanced Programmable Interrupt Controller

aq admin queue

asq admin submission queue

ata at Attachment

atapi at Attachment Packet Interface

bar base address register

bdf bus device function

bios Basic Input Output System

cd Compact Disk

cpu central processing unit

cq completion queue

dbms database management system

xiii



xiv List of Abbreviations

dma direct memory access

dram dynamic ram

ecc error-correcting code

emi electromagnetic interference

esdi Enhanced Small Device Interface

fs file system

ftl Flash Translation Layer

gbit/s gigabit per second

gpu graphics processing unit

gt/s gigatransfers per second

hba host bus adapter

hdd hard disk drive

i/o input/output

ide Integrated Drive Electronics

iops i/o operations per second

ioq i/o queue

iosq i/o submission queue

irq interrupt request

isa Industry Standard Architecture



List of Abbreviations xv

lba logical block address

lun logical unit

mfi MegaRAID Firmware Interface

mp MultiProcessor

msi message signaled interrupts

msi-x msi extended

nand not and

nic network interface card

nvm non-volatile memory

nvme Non-Volatile Memory Express

oka omni-kernel architecture

os operating system

p-ata Parallel ata

pba physical block address

pc/at Personal Computer at

pcb printed circuit board

pci Peripheral Component Interconnect

pcie pci Express

pci-x Peripheral Component Interconnect eXtended

pio programmed i/o



xvi List of Abbreviations

pm power management

pnp Plug and Play

pqi pcie Queueing Interface

prp Physical Region Page

raid redundant array of independent disks

ram random access memory

rpm rounds per minute

rr round robin

sas Serial Attached scsi

sasi Shugart Associates Systems Interface

sata Serial ata

sata express Serial ata Express

scsi Small Computer System Interface

sla service level agreement

sop scsi over pcie

sq submission queue

sram static ram

ssd solid state drive

tb/in2 terabits per square inch



List of Abbreviations xvii

usb Universal Serial Bus

vm virtual machine

vmm virtual machine monitor

wrr weighted round robin





1
Introduction
In 1965, Gordon E. Moore observed that the number of components per in-
tegrated circuit had increased at an exponential rate, roughly doubling each
year [1]. He conjectured that this trend would likely continue for at least ten
years. For central processing units (cpus), random access memory (ram), and
cpu-cache¹ technology, we see that this conjecture, known as “Moore’s law”,
is still highly applicable.

The trend is particularly clear in the development of non-volatile memory
(nvm). Over the past 20 years, the storage capacity for a single device has
increased from a maximum of 1000MB [2], to passing the 10TB mark [3].
For conventional hard disk drives (hdds), Moore’s law is reflected in the areal
density on the magnetic surface of a hdd platter, which currently peaks at
0.848 terabits per square inch (tb/in2) [4]. According to a roadmap released
by the Advanced Storage Technology Consortium at the Magnetism and Mag-
netic Materials conference in 2014, the density is expected to reach 10 tb/in2
in 2025, providing approximately 100TB of storage on a single hdd [5].

However,hdd transfer rate does not growproportionally to the storage capacity,
as displayed in Figure 1.1 and Figure 1.2. While cpu and ram technology
continues to advance, the hdd has become the main limiting factor of the

1. The cpu cache is memory located on the cpu chip, and is based on static ram (sram)—a
faster chip than the dynamic ram (dram) chip used in main memory. The cpu cache is
used to reduce the average access time to data in the main memory.

1



2 CHAPTER 1 INTRODUCT ION

0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

9 000

1990 1995 2000 2005 2010 2015

G
B

Year

Storage Capacity

0

100

200

300

400

500

600

1990 1995 2000 2005 2010 2015

M
B

/s

Year

Transfer Rate

Figure 1.1: hdd storage capacity and transfer rate development.
Sources: [2], [4], [6], [7].

overall performance of many systems, which has lead to the development of
solid state drives (ssds). An ssd outperforms a mechanical storage device by
orders of magnitude, both in terms of i/o operations per second (iops) and
transfer rate, but current interfaces are unfortunately not able to fully exploit
ssds.

0,1

1

10

100

1000

10000

100 1000 10000 100000 1000000

T
ra

n
sf

e
r 

ra
te

 (
M

B
/s

)

Storage capacity (MB)

Storage Capacity vs Transfer Rate

Actual increase Equal increase

Figure 1.2: Comparison between the increase in hdd storage capacity and transfer
rate. The straight line represents an ideal growth in both capacity and transfer
rate; that is, the ratio between the two do not change. The jagged line represents
the actual change in ratio between the two. This line shows that at two occasions
the transfer rate increased more than capacity, but that the ratio has shifted and
continued to favor an increase in capacity. Note that the axes are in log10 scale.

Serial ata (sata), Small Computer System Interface (scsi), and Serial At-
tached scsi (sas), have been, and still are, the main technologies used for at-
taching storage devices to a host computer system. However, these technologies
are storage-oriented, and their designs are permeated by the assumption that



1.1 NON VOLAT ILE MEMORY EXPRESS 3

the connected device is mechanical. For example, current sata-technology does
not match the capabilities of an ssd, effectively limiting sata-connected ssds
to less than 6gbit/s. Exploiting ssd performance within the constraints of a tra-
ditional bus attachment is difficult, and attachments throughpci Express (pcie)
are gaining adoption. ssds using this type of interconnect are already on the
market, and are currently offering transfer rates beyond 24gbit/s [8].

1.1 Non Volatile Memory Express
Non-Volatile Memory Express (nvme) [9] is a recently developed standard
for operating ssds that are connected to a host system through pcie. The
interface is designed to address the needs of enterprise and consumer systems,
and provides optimized command submission and completion paths. With
features such as support for parallel, priority based operation of up to 65 535
input/output (i/o) queues, namespace management, and advanced power
management options, nvme allows us to rethink how we interact with storage
devices.

Namespaces are nvme’s equivalent to a logical unit (lun), and are isolated
from each other. Each namespace can have its own set of i/o queues, and can
be configured individually. A namespace also supports variable block sizes, and
per-block metadata for storing protection information or other information.
The number and size of i/o queues, and the sequence in which these are
processed, is configurable. For example, the controller may use a round robin
(rr) arbitration to launch one command at a time from each active queue, as
shown in Figure 1.3, or in bursts.²

SQ

ASQ

SQ

SQ
RR

Figure 1.3: With rr arbitration, every submission queue is treated equally, including
the admin queue. The controller can be configured to process a single command
from each queue at a time, or in bursts.

Additionally, weighted round robin (wrr) arbitration may be used, where
each i/o queue is assigned a priority. Using this setting, the controller will,

2. nvme supports burst rates of 2, 4, 8, 16, 32, 64, or limitless, the latter means that all
commands present in a single queue are immediately processed.



4 CHAPTER 1 INTRODUCT ION

ASQ

Priority

WRR

RR

RR

SQ

SQ

SQ

SQ

SQ

SQ

RR

SQ

SQ

SQ

RR
SQ

SQ

Urgent Priority

High Priority

Medium Priority

Low Priority

Strict 
Priority 1

Strict 
Priority 3

Strict 
Priority 2

Figure 1.4: wrr arbitration consists of three priority classes and three wrr priority
levels. The admin class is assigned to the admin submission queue, and is priori-
tized over any other command. The urgent class is only outranked by the admin
class, and might starve the lower classes if not used with caution. The lowest
priority class, the weighted round robin class, consists of three priority levels
that share the remaining bandwidth. Each wrr priority group is arbitrated
internally in a rr fashion.

based on a defined metric, launch commands with respect to the priority of
each queue. The wrr arbitration method, illustrated in Figure 1.4, consists of
three classes [9]:

• Admin, which applies to the admin queue. Any command submitted
to a queue of this class, such as an abort, is prioritized above all other
commands that has been or is yet to be submitted to a queue of a different
class.

• Urgent,which is similar to, but ranked below, the admin class. Commands
submitted to an urgent class queue are immediately processed, unless
the admin class has outstanding commands.



1.2 VORTEX 5

• Weighted Round Robin, which is the lowest prioty class, consists of
three priority levels that share the remaining bandwidth. The priority
levels high, medium, and low are scheduled with wrr arbitration based
on weights assigned by host software.

1.2 Vortex
Cloud environments often employ virtual machines (vms) that rely on a vir-
tual machine monitor (vmm) to schedule physical resources. The virtualized
environment allows multiple instances of operating systems (oss) to co-exist
on the same system, improving utilization of the physical machines. Service
providers and customers establish a service level agreement (sla): a contract
that states the amount of resources that shall be available to the customer at all
times. The vmm must therefore schedule the available resources in a manner
that honors any active sla, regardless of howmany vms that are present. These
agreements cover anything from cpu time and available memory, to network
bandwidth and storage capacity.

The omni-kernel architecture (oka) is a novelos architecture designed to offer
strong isolation and accurate, fine grained scheduling of system resources for
all tenants that share a platform [10], [11]. The oka is divided into resources,
which provide access to both hardware and software components, and uses
messages to communicate between them. By controlling the flow of messages,
the oka ensures that all resource consumption resulting from a scheduling
decision is measured and attributable to an activity.³

Vortex is an os kernel implementing the oka, and offers pervasive monitoring
and scheduling of resources at a typical cost of 5% cpu utilization or less [10].
Unlike conventional vmms [12], [13], Vortex does not offer virtual device in-
terfaces to its vms; rather, high-level abstractions and features are presented
to a guest os, targeting compatibility at the application level. Functionality
and abstractions offered by Vortex—multithreading, networking, processes,
memory management, and files—facilitate the implementation of a thin guest
os that translates native Vortex system calls to the system call interface of the
os it virtualizes. An example is a minimal port of Linux, on which unmodi-
fied applications such as Apache [14], MySQL [15], and Hadoop [16] can be
run [17], [18].

The oka’s focus on fine-grained scheduling and performance isolation makes

3. The oka defines an activity as any unit of execution, for example a process, a vm, or a
service.



6 CHAPTER 1 INTRODUCT ION

the features of nvme particularly desirable. For example, the option to cus-
tomize and associate priority with a queue, to adjust the burst rate of each
queue, or even to assign a varying number of queues to different processes, can
help better uphold the resource shares assigned to different activities. The abil-
ity to isolate portions of a disk using namespaces, and assigning queues private
to each namespace, is also very attractive in a virtualized environment.

This thesis describes the implementation of an nvme driver for Vortex that is
exposed as a scsi device, such that the already implemented storage stack
can remain untouched. We explore what impact adding support for nvme will
have on the existing system, and whether Vortex is capable of supporting this
new kind of storage device.

1.3 Problem Definition
This thesis investigates whether Vortex can exploit the recently introduced
nvme technology. A particular focus and goal is to identify shortcomings and
opportunities for improvement if the current Vortex storage stack is to host
an nvme device. To give additional weight to findings, the approach will be
experimental, aiming to implement a working nvme driver.

1.4 Scope and Limitations
The nvme specification defines support for features such as end-to-end data
protection, per-block metadata, namespace sharing and multipath i/o [9],
which may be very useful when building large systems. The center of interest in
this thesis, however, lies in the exploration of whether an already implemented
system is able to support and make use of a storage interface that features
a large number of data pathways, contrasting with the single pathway of
conventional interfaces.

In our experiments, we use an Intel DC P3600 ssd, and we are in general
limited by the capabilities of this disk. The disk includes a fixed namespace, rr
arbitration with a single command burst, support for 31 i/o queues (ioqs),
and a maximum queue depth of 4096 entries. We have focused on this set of
supported features.



1.5 METHODOLOGY 7

1.5 Methodology
The final report of the ACM Task Force on the Core of Computer science states
that the discipline of computing consists of three major paradigms: theory,
abstraction, and design [19]. Albeit intricately intertwined, the three paradigms
are distinct from one another in the sense that they represent separate areas
of competence:

Theory is the search for patterns. With mathematics as the methodological
paradigm of theoretical science, the patterns are used to form conjectures
that are verified or disproved by mathematical proof [20]. The process
consists of a characherization of objects, hypothesizing possible relation-
ships among them, proving whether they are true, and an interpretation
of the results. These steps are expected to be iterated when errors and
inconcistencies are discovered.

Abstraction is rooted in the experimental scientific method. The approach
uses relationships between objects to formulate predictions that can be
compared with the world. A hypothesis is tested by creating a model and
designing experiments, which are used to collect data. The produced
data is used to either verify or disprove the hypothesis. When results
contradict the prediction, an engineer expects to iterate the steps.

Design is the bedrock of engineering, and uses the implementation of specific
instances of relationships to perform useful actions. In the process of
constructing a system, requirements and specifications form the grounds
for its design and implementation. Once implemented, the system is
tested to reveal whether the implementation is satisfactory. The steps
are expected to be iterated until the requirements are met.

The nature of this thesis is in systems research, investigating whether an
existing system is capable of accommodating technology that changes the way
storage is interfaced. We construct a hypothesis on whether a current system
is able, with few modifications, to accommodate and exploit technology that
differs from what is currently supported. We incorporate the new technology
in our system and design experiments that measure and compare the achieved
performance with its predecessor.

As part of a systems research project, we do not aim to meet a finite set of
requirements, but to continuously iterate the design process and use the results
to explore and compose requirements for a new and better version.



8 CHAPTER 1 INTRODUCT ION

1.6 Contributions
This thesis makes the following contributions:

• Vortex currently implements support for storage through the scsi in-
terface. This project expands the storage stack with support for nvme-
capable storage.

• The Vortex device system has been altered to enable configuration of
pin-based interrupts for devices that do not appear in the mp-table, or
have failed to be configured due to pnp errors.

• We add support for configuration of devices that require initialization over
pin-based interrupts before activating more advanced interrupt delivery.

• The nvme driver is implemented with the possibility to customize how
commands are issued to the storage device. We evaluate each imple-
mented method.

• We measure and evaluate the storage performance gain from employing
pcie-based ssds in Vortex, and discuss other possible benefits of using
a multi queued storage interface.

1.7 Outline
The rest of this thesis is organized as follows:

Chapter 2 describes the development in how we interface storage, and the
evolution of the interconnect that supports them.

Chapter 3 presents the improvements made that allow Vortex to configure
devices that are unrecognized or not supported by the bios.

Chapter 4 describes how we expose an nvme ssd as a scsi device in Vortex,
such that these devices may be usedwithout changing the current storage
stack. We also present the improvements made that allow us to change
interrupt delivery method for a configured device.

Chapter 5 evaluates the implementation by measuring the achieved through-
put when performing reads and writes to an nvme device.

Chapter 6 discusses future work and concludes the thesis.



2
Background
While the rest of the computer components are generally becoming more
parallelized, storage devices have achieved higher transfer rates by changing
from a parallel to a serial interface. This chapter starts by describing the
advantage of using a serial interface rather than a parallel one, and move on to
presenting a historical lineage of the interfaces that have had the most impact
in both enterprise and consumer markets. Following that is a description of
the advances that have lead to the development of nvme. Finally, we present
related work that also aims to better utilize multi-queued interfaces.

2.1 From Parallel to Serial Communication
Improvement in storage interfaces cannot be exploited if the underlying con-
nection to the host system is slow or incompatible with a device. As mentioned
in Chapter 1, interconnect technology is diverging from the development pat-
tern in other components of the computer by migrating data transfer from
parallel to serial communication.

Normally, serial communication is slower than parallel. For example, a 32 bit
wide parallel bus is able to transfer 32 times as much data per clock cycle
than a serial bus which only transfers a single bit per cycle. The parallel bus is,
however, prone to clock skew issues and electromagnetic interference (emi),
especially when the clock rate increases [21].

9



10 CHAPTER 2 BACKGROUND

Figure 2.1: Parallel buses transfer 32 to 64 bits per clock cycle, but are prone to
interference and variances in propagation delay, due to varying length of the
wires.

Skew
In circuit designs, skew is the time delta between the actual and expected
arrival time of a clock signal. When designing a bus, for example the 32 bit
parallel Peripheral Component Interconnect (pci)-104 bus [22], it is difficult
to ensure that all 104 wires are of equal length. Figure 2.1 illustrates a parallel
bus that includes a 90° angle that causes the outer wires to be longer than
the innermost wire. Because no two lines are equal in length, the propagation
delay¹ will be different. For short distances and slow clock rates, this is not
an issue, but as the distance and signaling frequency increases, the difference
becomes significant. For example, the shortest wires may be able to deliver a
second bit before the longest wire delivers the first bit, violating the integrity
of the transmitted data.

Electromagnetic Interference
Ampère’s law states that if a current flows through a conductor, a magnetic field
appears around it, and that the strength of the magnetic field is proportional
to the net current that passes through the conductor [23]. It is, for example,
because of this law that we are able to create powerful electromagnets.

In printed circuit boards (pcbs), this creates an unwanted effect, called crosstalk:
a coupling of energy between transmission lines that causes signals to appear
on both lines when they are only desired on one [24]. As mentioned, for
low-powered parallel buses this is not a big problem, but when the frequency
of the bus is increased, the magnetic forces increase, compromising signal
integrity.

1. The propagation delay is the time taken to transport a signal from source to destination.



2.1 FROM PARALLEL TO SER IAL COMMUNICAT ION 11

2.1.1 Evolution
The parallel pci bus has until recent years been the main interface for con-
necting peripherals to a computer, and was, until 2004, able to keep up with
the increasing requirements for throughput. The original 32 bit pci local
bus standard, or legacy pci, operated at 33MHz, supporting a transfer rate of
133MB/s [22]. Peripheral Component Interconnect eXtended (pci-x) is an en-
hancement of the pci bus, and increased the throughput to 4.2GB/s [25].

pci-x 3.0 was created as a last improvement in 2004. It defines an operational
speed of 1066MHz, resulting in a transfer rate of 8.5GB/s. However, Intel
started sidelining pci-x in favor of the serial pcie interface, which requires
only a fraction of the transmission lines of a parallel interface, avoiding the
“1000 pin apocalypse” [26].²

pcie is a high-speed serial bus, and replaces the parallel pci and pci-x stan-
dards. Additionally,pcie supports native hot swap³ functionality and Advanced
Error Reporting (aer). Recent versions also implement i/o virtualization, a
technology that allows multiple vms to natively share pcie devices [27]. pcie
requires only four wires to transmit data, in unison called a lane, two for
transmitting and two for receiving, as shown in Figure 2.2.

SWITCHPCIe Card

Figure 2.2: A pcie x1 link uses four wires and transmits one bit in each direction per
cycle.

The bus is not vulnerable to skew since only one bit is transmitted per direction
per clock cycle. pcie also avoids emi by employing a technique called differen-
tial signaling, in which the same signal is transmitted simultaneously on two
wires, but with an inverted polarity on the second wire [28], as depicted in
figure Figure 2.3. Thus, pcie is able to operate at frequencies of 8.0GHz, or
a transfer rate of 8 gigatransfers per second (gt/s) [29]. Multiple lanes are
often used to further increase the bandwidth between the device and the host
system. Figure 2.4 illustrates an x4 link, which supports roughly four times the

2. A 32 bit pci-x 2.0 connector contains 184 pins.
3. Hot swapping is a term used to describe the action of removing or replacing a component
without having to power down the system.



12 CHAPTER 2 BACKGROUND

transfer speed of an x1 link.

+

– 

Figure 2.3: Differential signaling provides a higher immunity to emi. With this tech-
nique, a single signal is transmitted on two adjacent wires, with the second wire
transmitting the signal “mirrored” to the first, canceling out the interference.

SWITCHPCIe Card  

Figure 2.4: A pcie x4 link uses sixteen wires and transmits four bits in each direction
per cycle.

Data Encoding
Although the number of transferred bits per second is equal to the operating
frequency of the bus, the actual usable data transferred is less. The serial pcie
bus does not use dedicated wires to transmit clock signals, but relies on a
frequent transition between ones and zeros in the data stream to recover the
clock period. A deterministic transition pattern is ensured by employing an
encoding scheme in which extra bits are used to limit the number of consecutive
ones or zeros [28].

bandwidth = 2R × lanes ×
bits

line code

Equation 1: To calculate the aggregate bandwidth of a pcie link, multiply the link’s
bitrate R by 2 to account for the dual-simplex link, and multiply the product
by the number of lanes in the link. Finally, multiply the result by the encoding
overhead to get the number of bits of actual data that is transferred per second.

pcie 2.0 uses an 8b/10b encoding, and uses ten bits to transfer a byte—a
20% overhead—while pcie 3.0 reduces the overhead to approximately 1.54%



2.2 INTERFACE L INEAGE 13

with a 128b/130b encoding. From the formula in Equation 1, we see that for a
pcie 3.0 device using an x1 connection, the actual bandwidth is approximately
1.97GB/s or 985MB/s in each direction.

2.2 Interface Lineage
Many different solutions to interfacing a storage device have emerged over the
years. Interfaces such as the FD-400 8 inch floppy disk driver, the Enhanced
Small Device Interface (esdi), and most proprietary interfaces, have not sur-
vived, while others, such as Integrated Drive Electronics (ide) and scsi based
interfaces, have remained and are still widely used. Here follows a description
of the interfaces that have stood the test of time, and are still in use.

2.2.1 Small Computer System Interface
Small Computer System Interface (scsi), originally named Shugart Associates
Systems Interface (sasi),was developed in the years 1978–1981 by the Shugart
Associates Company, who based it on the Selector Channel in IBM-360 com-
puters. In 1986, only few years after being publicly disclosed in 1981, sasi
became an ansi standard and the name was changed to scsi [30]. The scsi
standard defines how computers physically connect with and transfer data to
and from peripheral devices. The uses of scsi range from Compact Disk (cd)
drives and printers to hdds, where the latter is the most common.

scsi uses a bus topology, meaning that all devices are daisy-chained linearly,
as depicted in Figure 2.5. Each bus supports up to eight devices, but expanders
can be used to allow more scsi segments to be added to a scsi domain. A
scsi bus must be terminated at the end, such that the bus appears electrically
as if it is infinite in length. Any signals sent along the bus appear to all devices
and end in the terminator, which cancels them out, such that there are no
signal reflections that cause interference [31], as shown in Figure 2.6.

2.2.2 Integrated Drive Electronics / Parallel-ATA
Integrated Drive Electronics (ide), also referred to as Parallel ata (p-ata), is
the the result of further development of the Industry Standard Architecture
(isa) interface developed for use in IBM’s Personal Computer at (pc/at)—
a bus that supported a parallel transmission of 16 bits at a time. The ide
channelwas designed as a purehdd interface since other proprietary interfaces
already existed for devices such as cd-roms and tape drives. However, during



14 CHAPTER 2 BACKGROUND

SCSI bus

ID 0

ID 1

ID 2 ID 4

ID 3 ID 5

Figure 2.5: The scsi bus is a linear daisy chain of up to eight devices, but expanders
allow more scsi segments to be added to the domain.

T
e
rm

in
a
to
r

1

2

Figure 2.6: A scsi bus must be terminated to avoid interference. A terminator stops
the signals at the end of the line, and makes it appear as if the bus is infinite
in length. The figure illustrates an unterminated bus (1) and a terminated bus
(2). The terminated bus appears to be infinite in length, and avoids interference
from signals that bounce back from the end.

the 1990’s, it became obvious that a single, standardized interface would be
preferable to the proprietary interfaces.

Because the at Attachment (ata) command structure is incompatible with
anything buthdds, the at Attachment Packet Interface (atapi) was developed
to work on top of ide [32], which allows the ata interface to carry scsi
commands and responses. atapi became very successful, and is still used in
modern sata interfaces.

Programmed I/O
Early versions of ata operated in programmed i/o (pio) data transfer mode,
which occurs when the cpu instructs access to a device’s i/o space for data
transfer. pio is relatively simple and cheap to implement in hardware, but has
the disadvantage that the cpu is responsible for all data transfer, as illustrated
in Figure 2.7. This means that the cpu consumption increases proportionally
with the transfer rate, potentially creating a bottleneck in the overall computer
performance.



2.2 INTERFACE L INEAGE 15

CPU
RAM

Device 
memory

Read / Write 

Read / Write

Figure 2.7: Programmed i/o occurs when the cpu instructs access to a device’s
i/o space for data transfer. As the transfer speed increases, the cpu resource
consumption increases as well.

In modern systems, pio has been replaced with direct memory access (dma),
but is still implemented in interfaces that do not require high transfer rates,
including serial ports, and the PS/2 keyboard and mouse ports.

Direct Memory Access
Unlike pio, where the cpu controls and monitors data transfers to and from
a peripheral device, the device operating in dma mode is programmed to
perform data transfers to and from host memory on behalf of the cpu, as
depicted in Figure 2.8. The only interaction required by the cpu is to grant the
controller access to the system bus for data transfer.

RAM

Device 
memory

DMA 
controller

Read / Write

Read / Write

Figure 2.8: Direct memory access allows a peripheral on the system bus to perform
reads and writes to host memory on behalf of the cpu. The cpu is free to
perform other tasks while data transfer is performed, and is notified by the
device via interrupts when the transfer is complete.

Modern pcie devices can be configured as bus masters, allowing the dma
controller to initiate transactions without involvement from the cpu. While



16 CHAPTER 2 BACKGROUND

data transfers are handled by the controller, the cpu is free to perform other
tasks, and may be notified of any changes in the memory area governed by the
peripheral through interrupts [33].

2.2.3 Serial-ATA
Serial ata (sata)-600 is the result of a continuous effort to improve an ex-
isting interface, and offers a theoretical maximum speed of 600MB/s, while
retaining backwards compatibility with earlier versions of the interface, such
as sata-300 [34]. Besides supporting high speed devices, sata also supports
hot swapping. Redundant storage systems benefit from this ability, as a faulty
hdd may be replaced without having to disconnect the service.

Advanced Host Controller Interface
Advanced Host Controller Interface (ahci) is an application programming
interface (api) that defines a mode of operation for sata. The ahci device is a
pci class device that acts as a data movement engine between system memory
and sata devices, providing a standard method of interaction between the host
system and sata devices. This simplifies both detection, configuration, and
programming of sata and ahci adapters [35]. An ahci device, or host bus
adapter (hba), is required to be backwards compatible with ata and atapi
compliant devices, as well as both the pio and dma protocols.

Generic 
Host 

Control
Reserved

Vendor 
specific

Port 0 Port 1 ··· Port 31

Port Control Registers

Figure 2.9: ahci hba memory consists of Generic Host Control registers that control
the behavior of the entire controller. Port Control registers contain information
for each port, such as two descriptiors per port, which are used to convey data.

The system memory structure described by ahci contains a generic control
and status area, a pointer to a descriptor table used for data transfers, and
a command list, in which each entry contains the information necessary to
program a sata device. Figure 2.9 shows a simplification of this memory
structure. In addition to implementing native sata features, ahci specifies the
support for 1 to 32 ports, to which a sata device can be connected. The ahci
ports support simultaneous transmission of 32 commands.



2.3 FROM MAGNET IC TO FLASH BASED STORAGE 17

2.2.4 Serial Attached SCSI
Like sata is an improvement of p-ata, and has become widespread in the
consumer and small business market, Serial Attached scsi (sas) builds on, and
replaces the older parallel scsi interface with a serial point-to-point protocol.
sas has for a long time been the main choice in building enterprise storage
systems, and is usually the choice of interface if performance and reliability is
of concern. Being a more costly system, it is used almost exclusively in medium
and large systems [36].

sas supports a greater number of devices than the original scsi interface—
up to 65 535 devices if expanders are used—and throughput up to and past
1200MB/s [37]. Like sata, sas devices also support hot swapping, a highly
desirable feature in large data centers where disk-failures are the norm rather
than the exception. Furthermore, some sas sockets are designed for compati-
bility with sata devices.⁴

2.3 From Magnetic to Flash Based Storage
With the advances in storage interface technology, hdds are no longer able to
keep up. In a mechanical hdd, a motor rotates the platters while an actuator
armmoves the heads across themagnetic surface to read orwrite data. Themov-
ing parts cause turbulence,which becomes problematic when the rotation speed
increases. Current high end hdds are therefore limited to 15 000 rpm and
10 000 rpm, producing an average seek time⁵ below 3.0ms [38], [39].

Because of the limited performance, but low cost, of hdds, the interest in
redundant arrays of independent disks (raids) exploded [40]. raid 0, or
striping, does not actually offer redundancy, but spreads the data evenly across
the entire array of disks, which in return produces a higher throughput. raid 0
is, for example, widely used in supercomputing environments where perfor-
mance and capacity are the primary concerns. Other raid levels are designed
to provide fault tolerance by mirroring the written data on two or more drives
(raid 1), or by using dedicated parity drives that can be used to recreate
corrupted information (raid 2–6).

In recent years, the price of not and (nand) flash memory has decreased

4. Some sas sockets are designed such that sata devices may be uses as well, but sata
sockets do not support sas devices.

5. Seek time is the accumulated time taken for the actuator arm to move the heads to the
track where data is to be read or written, and the time it takes for the platters to rotate
such that the data blocks are positioned under the heads.



18 CHAPTER 2 BACKGROUND

drastically, and ssds are becoming popular in systems that require better disk
performance thanhdds can offer. ssds have nomoving parts, and are primarily
composed of nand flash memory. Perhaps the most important component in
the ssd is the Flash Translation Layer (ftl) that translates the logical block
addresses (lbas) of the host to its corresponding physical block addresses
(pbas) in the storage device, so that an os can read and write to nand flash
memory like it would with disk drives [41]. The ftl is the ssd’s equivalent
to the actuator arm in an hdd, but offers, in contrast, a more or less constant
access latency of between 20µs and 120µs across the entire drive [42]. This
corresponds to an access time speedup factor of 150 when compared with an
hdd.

2.3.1 Non-Volatile Memory Express
In contrast to sata and scsi, nvme has been architected from the ground
up, and targets flash-based storage. nvme devices are directly attached to the
cpu subsystem through pcie, and offer a high level of parallelism and reduced
latency. This has improved both random and sequential performance [43]. The
interface supports up to 65 536 i/o queue pairs, each large enough to support
up to 65 536 outstanding commands—2048 times the number of supported
ports and commands of ahci.

nvme is a standard-based initiative by an industry consortium consisting of
more than 80 large companies,⁶ to develop a common interface for connecting
high-performance storage. Version 1.0 of the nvme interface was released
on March 1st 2011, which defines the queuing interface, nvm and Admin
command sets, end-to-end protection, and physical region pages.

The nvm command set is designed for simplicity: every command is 64 bytes,
which is sufficient for a read or write of 4 KB. For a virtualized environment,
the namespace system offers isolation between luns, with i/o queues private
to a namespace, and while ahci requires 4 uncacheable register reads, each
translating to about 2000 cpu cycles, nvme requires none.

6. The nvm Express Work Group includes companies such as Intel, CISCO, DELL, and Sam-
sung.



2.4 RELATED WORK 19

2.4 Related Work
The Serial ata International Organization⁷ has, based on sata, designed an
improved interface for targeting pcie connected ssds [44], with backwards
compatibility for conventional sata devices [45]. The interface consists of two
sata 3.0 ports, and a pcie x2 connector, which allows Serial ata Express (sata
express) to supports both ahci for software level backwards compatibility
with sata devices, and nvme devices. The interface supports the use of either
sata or pcie, but not both in tandem, setting a maximum theoretical transfer
rate of 1.97GB/s.

scsi Express is a more direct competitor to nvme, and targets an interface that
carries scsi commands over pcie. The interface uses two T10 standards, scsi
over pcie (sop) and a pcie Queueing Interface (pqi), and operates similarly
to nvme, with one or more pairs of inbound and outbound queues [46]. A goal
of scsi Express is to be flexible, and to support sas, sata, sata express, scsi
Express, and nvme devices.

In the field of networking, multi-queued interfaces have existed for some time,
but have, like storage interfaces, continued to use well established apis, such
as Berkeley Sockets. NetSlices [47] provides an os abstraction that enables
a more efficient utilization of multi-queue network interface card (nic). The
NetSlice abstraction enables linear performance scaling with the number of
cores in the system while processing network packets in user-space. This work
shows that multiprocessor systems benefit from interfaces that allow parallel
operation of multiple queues, but also that changes in the api are required to
fully exploit newer technology.

7. http://sata-io.org/

http://sata-io.org/




3
Device Configuration
The Basic Input Output System (bios) is normally able to recognize and
perform basic configuration of a device connected to the pci subsystem, and
store interrupt routing information in the MultiProcessor (mp) table such that
an os can retrieve the information through a simple lookup. If the bios fails
to prepare the device, the basic information is not stored, and must be gathered
by the os if the device is to be used.

One shortcoming that we identified with the current Vortex implementation,
was the reliance on bios-supplied information and configuration. Failure by
the bios to identify or configure an attached device results in Vortex not
being able to use that device. The bioss of the hardware platform currently
supported by Vortex does not recognizenvme devices. To remedy this problem,
a contribution of this thesis is the design and implementation of a system
for configuration of pci bridges in Vortex. This system enables Vortex to
recognize host-attached nvme devices and, crucially, to correctly configure
device interrupt management. This includes the nvme-particular need to
initially operate the device using conventional pin-based interrupts, before
changing to the more modern message signaled interrupts (msi) or msi
extended (msi-x) after performing the first steps of device configuration.

In this chapter, we first present the mechanism used by the bios to execute
basic configuration, and causes of failure. Thereafter, we describe how data
collected from pci bridges can be used to determine the missing information.
We then describe the implementation of a pci-to-pci bridge device driver that

21



22 CHAPTER 3 DEV ICE CONFIGURAT ION

is used to assist in the mapping of the pci hierarchy, and how we use this
mapping to retrieve the information needed to configure pin-based interrupts
for an nvme device. We end the chapter with a short summary.

3.1 Basic Device Discovery and Configuration
The large variety of available devices—graphics processing units (gpus), net-
work adapters, and storage devices—allows us to tailor and improve computers
to better suit our needs. However, devices require resources to work, and con-
flicts may occur when more than one device is attached to the same computer.
Plug and Play (pnp) is designed to let hardware and software work together
to automatically configure devices and allocate resources [48], rather than
requiring a user to perform complicated setup procedures for every component.
But for pnp to work, both the host system and the attached peripheral device
must be capable of responding to identification requests, and accept resource
assignments, and the bios must collect and communicate information about
devices to the os. Additionally, the os must set up drivers and other necessary
low-level software to enable applications to access the device.

If these requirements are not met, pnp configuration fails. An example of this
is when the bios has insufficient information to recognize all types of devices,
resulting in a pnp configuration error, effectively hindering the computer from
using the device. Figure 3.1 displays a screenshot from a DELL PowerEdgeM600
blade server with such a problem. The server is equipped with an unrecognized
device, an nvme ssd, and is unable to configure it.

                                                            F12 = PXE Boot
Two 2.66 GHz Quad-core Processors, Bus Speed: 1333 MHz, L2 Cache: 2x6 MB
System Memory Size: 16.0 GB, System Memory Speed: 667 MHz

Plug & Play Configuration Error: Device Location Table Error
 Bus#07/Dev#00/Func#0: Unknown PCI Device

Plug & Play Configuration Error: Option ROM Device Location Table Error
 Bus#07/Dev#00/Func#0: Unknown PCI Device

Plug & Play Configuration Error: IRQ Allocation
 Bus#07/Dev#00/Func#0: Unknown PCI Device

Broadcom NetXtreme II Ethernet Boot Agent v5.0.5
Copyright (C) 2000-2009 Broadcom Corporation
All rights reserved.
Press Ctrl-S to Configure Device (MAC Address - 002219942582)

Figure 3.1: pnp Configuration Error.

An os is much more flexible than the bios when it comes to configuring a
device, and can usually configure even those that failed during boot. In our
case, Vortex is able to discover the ssd and read its capabilities, and attempts to



3.2 CONFIGUR ING DEV ICES PRESENT ON A SECONDARY BUS 23

configure it. However, nvme requires that initialization is done over pin-based
interrupts [9], and the aforementioned pnp error causes the bios to ignore the
device, which means that when Vortex queries the bios for interrupt request
(irq) information for the device, it is not available.

3.2 Configuring Devices Present on a Secondary
Bus

In a pci hierarchy, a bridge is an endpoint that provides a connection path
between two independent pci buses [49], as illustrated in Figure 3.2. The
primary function of a bridge is to allow transactions between a master on one
bus, and a target on the second bus. Devices that reside on a secondary bus
may have their irq information determined from the hardware address of the
parent bridge.

PCI-PCI
Bridge

PCI EndpointPCI Endpoint

PCI Endpoint PCI Endpoint

Root Complex Memory

CPUCPU

bus 00

bus 07

Secondary / 
subordinate

bus: 07

Figure 3.2: The pci-to-pci bridge connects the processor and memory subsystem to
the pci switch fabric composed of one or more switch devices. The bridge device
implements pci header type 1, which includes the secondary and subordinate
bus number registers. When combined, these registers define the range of buses
that exists on the downstream side of the bridge [28].



24 CHAPTER 3 DEV ICE CONFIGURAT ION

Until now, Vortex has worked under the assumption that all devices are success-
fully detected during boot, and that irq information is immediately available
for any device. irq information for pin-based interrupts is usually obtained
from the mp table. The mp table was introduced along with the Advanced
Programmable Interrupt Controller (apic), and enumerates the processors
and apics in a computer, as well as describing the routing of pci interrupts
to apic input pins [50]. The mp table is, however, not guaranteed to include
information about the entire system. The error shown in Figure 3.1 affects the
configuration of a device that resides on an expansion bus, and the mp table
will typically not list buses behind a bridge.

During device discovery, Vortex currently ignores anything but network and
storage class devices. But to obtain the missing irq information for our device,
we require a mechanism that is able to discover the pci hierarchy.

3.3 Vortex Class Drivers
In addition to low level device drivers, Vortex implements class drivers—a high
level abstraction that handles all instances of a device type, such as storage
and network. Each class driver implements a class multiplexor: a set of callback
functions that allows the device subsystem to use the same interface when
accessing different classes. The classmux, displayed in Code Snippet 3.1, defines
functions used by the kernel to start and stop a device, and to get or set its
current state.

Code Snippet 3.1: The Class DriverMultiplexor standardizes how the device subsystem
communicates with different device drivers.

1 struct devclassmux_t {
2 dcl_new_t dcl_new; // Instantiate new classmux type
3 dcl_get_id_t dcl_get_id; // Get device identifier
4 dcl_get_cap_t dcl_get_cap; // Get device capabilities
5 dcl_start_t dcl_start; // Start device
6 dcl_stop_t dcl_stop; // Stop device
7 dcl_write_done_t dcl_write_done; // Action on completed write request
8 dcl_devbuf_alloc_t dcl_devbuf_alloc; // Allocate device specific buffer
9 dcl_devbuf_free_t dcl_devbuf_free; // Free device specific buffer

10 dcl_isoperational_t dcl_isoperational; // Set or read device operational state
11 };

Devices that should be accessible from kernel or userland processes also specify
a resource interface that maps request types to their respective functions in
the class driver. The resource interface depicted in Figure 3.3 is common for
all i/o devices in Vortex, and allows a process to access any device without
changing anything but the destination of the request.



3.4 PC I-TO-PC I BR IDGE DEV ICE DR IVER 25

BCE

SCSI

NVMe

SATA

Network deviceStorage device

READ WRITE READWRITE INTERRUPT

Resource Interface

I/O device

Figure 3.3: Vortex class drivers may export a resource interface that allows processes to
interact with any device by using the same functions. Requests are multiplexed
and routed to a device class driver, which invokes the corresponding device
driver that translates the request to a device specific command. Thus, a process
only needs to change the resource path to interact with a different device type.

To support the detection of the pci bus hierarchy, Vortex must be able to
reference the bridges that expand to secondary buses. The kernel requires that
devices are associated with a class driver, and that the class driver is able to
set and report the operational state of the device.

The implemented bridge class driver is a minimal implementation, and supports
the functionality necessary to instantiate a new bridge device type, and to set
or report the operational state of a device. This state is only logical, and we
ignore all commands that would change the state of the hardware.

3.4 PCI-to-PCI Bridge Device Driver
Although the class driver abstraction offers simplicity in process-to-device
interaction, specialized device drivers are still required to communicate with
the actual hardware. The pci-to-pci bridge driver allows pci-to-pci bridges
that master secondary buses to be instantiated as Vortex device objects and be
added to the global device list.

Because we want bridges to be passive, and to let interrupts be produced by
devices located on the secondary bus, rather than the bridge, the bridge driver



26 CHAPTER 3 DEV ICE CONFIGURAT ION

reports the NOINT capability. This capability stops the kernel from configuring
interrupts for the given device, regardless of the capabilities listed in the device’s
pci header. Devices present on the secondary bus are not affected by this.

3.5 Configuring a Parent Bridge
During system initialization, the pci_probe function enumerates all peripher-
als connected to the pci bus by probing the pci bios for all known devices.
Code Snippet 3.2 shows the linear search through the pci subsystem. The probe
queries all permutations of device class and location in the subsystem.

Code Snippet 3.2: Probing of pci devices. If the pci bios finds a device, it is matched
with the types supported by the system, and either configured, or ignored.

1 for class in pci classes {
2 for index in range 0 to 255 {
3 // Probe the PCI BIOS for the class at index
4 busdevfunc = asm_pci_find_class(class, index);
5 if (busdevfunc == -1)
6 break;
7
8 switch class {
9 case NETWORK_CONTROLLER:

10 devclass = DEV_CLASS_NET;
11 devcap = DEV_CAP_BUSMASTER;
12 break;
13
14 case MASS_STORAGE_CONTROLLER:
15 devclass = DEV_CLASS_STORAGE;
16 devcap = DEV_CAP_BUSMASTER;
17 break;
18
19 case BRIDGE_DEVICE:
20 devclass = DEV_CLASS_BRIDGE;
21 // A bridge device should be passive
22 devcap = DEV_CAP_NOINT;
23 // If one of the following tests fail, we fall through to the
24 // default case
25 // For now, we ignore all but pci-to-pci bridges
26 // Include only if bridge has a secondary/subordinate bus
27 // (0 is root)
28 if (pci_probelist[i].class == PCIDF_CLASS_BRIDGE_DEVICE_PCI_PCI
29 && pci_1_header->ph1_secondary_bus != 0
30 || pci_1_header->ph1_subordinate_bus != 0)
31 break;
32
33 default:
34 devclass = DEV_CLASS_UNKNOWN;
35 break;
36 }
37 }
38 }



3.5 CONFIGUR ING A PARENT BR IDGE 27

If a device is found, its bus device function (bdf) code is returned and stored
for future reference when the device’s configuration space is read or written.
The bdf is a unique identifier for devices connected to the pci subsystem, and
is composed of three components. The bus number is the index of the bus to
which the device is attached. A single pci subsystem supports a maximum
of 256 buses. The device number is the slot number on a given bus. Although
the theoretical maximum number of devices on a single bus is 32, the actual
maximum is often less due to electrical limitations. The function is the addressed
controller on the expansion card. A single device may implement up to eight
functions, but at least one is required.¹

The bdf is used for routing reads and writes to the configuration space of a
specific device. The extended pci configuration space contains information
about device capabilities, such as power management, msi/msi-x, and pcie.
Also found here are the base address registers (bars) that reveal the memory
addresses used by the device controller. The Vortex pci code implements an
interface for reading and writing to the pci configuration space, and setting
device power state. This is part of the device configuration interface, and is made
available through the device structure displayed in Code Snippet 3.3.

Code Snippet 3.3: The Vortex device structure contains all necessary information
about a device. If a device is located on a secondary bus, *de_parent points
to the bridge device that manages the bus, which can be used to configure
pin-based interrupts if the targeted device is not present in the mp-table.

1 struct device_t {
2 device_t *next, *prev;
3 device_t *de_parent; // Parent device if located on a
4 // secondary bus
5 devclass_t de_class; // Device class
6 devtype_t de_type; // Device type
7 devcap_t de_cap; // Device capabilities
8 enum_t de_index; // Device unit number
9 devstate_t de_state; // Device state

10 resourceid_t de_resourceid_write; // Resourceid for write
11 resourceid_t de_resourceid_read; // Resourceid for read
12 resourceid_t de_resourceid_readwrite; // Resourceid for read/write
13 resourceid_t de_resourceid_interrupt; // resourceid for interrupts
14 devclassdrv_t *de_classdrv; // Device class driver
15 devconf_t *de_conf; // Device configuration
16 devdrv_t *de_drv; // Device driver
17 devbuf_t *de_read_done; // Completed reads
18 devbuf_t *de_write_done; // Completed writes
19 devpowerdrv_t *de_pwrdrv; // Device power driver
20 };

1. An example of a multi-function device, is a card that includes both an audio controller
and a Universal Serial Bus (usb) hub.



28 CHAPTER 3 DEV ICE CONFIGURAT ION

We add an optional reference to a parent bridge to the device structure, and
extend the probe function to match devices with their parent bridges. The
function displayed in Code Snippet 3.4 is invoked for every device in the global
device list, and populates the parent pointers. To do so, we use the information
present in the configuration space of a bridge device, which includes a number
representing the id of the bus to which the bridge expands.² Figure 3.4 depicts
the detected pci hierarchy of our server.³

Code Snippet 3.4: The pci_configure_parent function is run per device imme-
diately after all pci devices are located, and stores a reference to the parent
bridge.

1 static void pci_configure_parent(device_t *newdev)
2 {
3 device_t *dev;
4 pcidev_t *parentpcidev, *newpcidev;
5 pcidf_header1_t *bridgeheader;
6
7 newpcidev = (pcidev_t *)newdev->de_conf->dc_priv;
8
9 if (newpcidev->pd_busdevfunc == 0)

10 return;
11
12 for (dev = VxL_QHEAD(get_device_list()); dev != NULL; dev = dev->next)
13 {
14 parentpcidev = (pcidev_t *)dev->de_conf->dc_priv;
15
16 // The new device cannot be its own parent
17 // and non-bridge devices cannot be parents
18 if (dev == newdev ||
19 PCI_CLASSCODE(parentpcidev->pd_class) !=
20 PCIDF_CLASSCODE_BRIDGE_DEVICE)
21 continue;
22
23 // Read the header as a PCI header type 1
24 // which specifies secondary bus
25 bridgeheader =
26 (pcidf_header1_t *) &parentpcidev->pd_config.pc_basic.pc_header0;
27
28 if (bridgeheader->ph1_secondary_bus == PCIDEV_BUS(newpcidev))
29 {
30 newdev->de_parent = dev;
31 return;
32 }
33 }
34 }

2. While a non-bridge device implements pci header type 0 that includes six bars, bridges
implement pci header type 1, which replaces four of these registers with information
about the expansion bus. This information includes the Secondary Bus, and Subordinate
Bus Number, that identifies the bus controlled by the bridge [28].

3. The number of detected devices is actually much higher, and includes other kinds of bridges
and devices, which we ignore in our system.



3.6 DETERMIN ING IRQ INFORMAT ION 29

Root

Bridge
01:00.0

Bridge
00:02.0

Bridge
02:01.0

Bridge
05:00.0

Network 
Controller

06:00.0

Bridge
02:00.0

Bridge
03:00.0

Network 
Controller

04:00.0

Bridge
00:03.0

NVMe Controller
08:00.0

Figure 3.4: pci hierarchy displaying the route to our network and storage controllers.

3.6 Determining IRQ Information
Pin-based interrupts use a dedicated wire to transmit the interrupt signal unlike
msi, where interrupts are transmitted with in-band signaling. A pci device
can have up to four pins [51], identified as INTA#, INTB#, INTC#, and INTD#.
However, devices that implement a single function are limited to using only
one pin.

When configuring pin-based interrupts for devices, Vortex performs a lookup
in themp table to get the interrupt pin and vector that the device is configured
to use. If the information is not found, the device remains unconfigured. With
the introduction of parent devices, we are able to detect the information based
on the pci hierarchy.



30 CHAPTER 3 DEV ICE CONFIGURAT ION

3.6.1 Interrupt Routing
In a pci subsystem where devices are connected through expansion buses, the
actual interrupt line used for each device may differ based on its index on the
bus. For example, if a device specifies that its interrupt line is INTA#, but is the
second device on the bus, the cpu will receive interrupts from the device via
line INTD#. The pci bridge specification defines a routing table for interrupt
lines [28], this is shown in Table 3.1.

Table 3.1: apic Interrupt routing table.

Input Device 0 Device 1 Device 2 Device 3

INTA# INTA# INTD# INTC# INTB#
INTB# INTB# INTA# INTD# INTC#
INTC# INTC# INTB# INTA# INTD#
INTD# INTD# INTC# INTB# INTA#

3.6.2 Swizzling
Based on the interrupt routing table, we can use Equation 2 to calculate the
output pin based on the input pin. If we have a device that is far down the pci
hierarchy, such as the network controllers in Figure 3.4, the calculation must
be done for every bridge between the device and the root complex—a process
nicknamed swizzling.⁴

pinparent = (buschild + pinchild) mod 4

Equation 2: pci-to-pci Bridge swizzle.

We implement the swizzling procedure in the mpc_intdetail_init function,
which previously only performed a single lookup in the mp table for a single
device. This function, shown in Code Snippet 3.5, now invokes the parent
bridge of a device whose information was not found, and continues up the
hierarchy until the root is reached, or if a pin matches the original pin, at which
point there is no change in routing (see Table 3.1).

4. Swizzling,meaning stirring ormixing, is a widespread term in open source implementations
of pci bridge drivers, including the ones used in the FreeBSD and Linux Kernels, and
describes the calculation of which interrupt line is used.



3.6 DETERMIN ING IRQ INFORMAT ION 31

Code Snippet 3.5: The function used to read irq information from the mp table can
also determine this by doing a swizzle through the pci hierarchy.

1 vxerr_t mpc_intdetail_init(intdetail_t *intdetail, device_t *dev)
2 {
3 // Variables and initialization
4 {· · · }
5 // Get the initial pin from the device’s configuration space
6 pin = cfg->pc_basic.pc_header0.ph0_interrupt_pin;
7
8 for (tmp_dev = dev; tmp_dev;)
9 {

10 // Locate interrupt information in MPC tables
11 // mpc_interrupt_num is the a number of allocated entries in the table
12 for (i = 0; i < mpc_interrupt_num; i++) {
13 // Collect BUS and DEVICE id from current entry
14 {· · · }
15
16 // Move to next entry if this is not the one we’re looking for
17 // (entry is not for this bus)
18 if (source_bus_id != devid->pi_busid)
19 continue;
20
21 // If the MP table entry matches the BUS and DEVICE ID of the device,
22 // copy the interrupt information from the MP table
23 if (source_bus_id == devid->pi_busid &&
24 source_bus_irq == devid->pi_devbusid) {
25 // COPY interrupt information from MP table
26 {· · · }
27
28 // If the entry is a direct match we are good to go, else, we
29 // see if we can find a better match
30 if (pin == source_bus_pin)
31 return VXERR_OK;
32 }
33 }
34 // Get parent bridge of current device if it exists, or end here
35 tmp_dev = tmp_dev->de_parent;
36 if (tmp_dev == NULL)
37 break;
38
39 // Assume PCI type of device id
40 devid = device_config_get_id(&nbytes, tmp_dev);
41
42 // Determine type of bus
43 bustype = mpc_dev_to_bustype(devid);
44 if (bustype == -1) {
45 vxerr = VXERR_NEXIST;
46 goto error;
47 }
48 // Swizzle interrupts (bridge interrupt routing) (use pin id 0-3, not 1-4)
49 pin = (((pin - 1) + devid->pi_devbusid) % 4);
50 }
51 return VXERR_OK;
52 error:
53 return vxerr;
54 }



32 CHAPTER 3 DEV ICE CONFIGURAT ION

3.7 Summary
This chapter described improvements to the Vortex device system that allow
configuration of devices that the bios is unable to recognize. We have im-
plemented a system for detecting the hierarchy of the pci subsystem, and
described how this is used to determine irq information that is missing from
the mp table. This solves a problem that occurred when we attached an nvme
device to the server, which hindered us from using it, and by adding this sup-
port, we are now able to detect and set up pin-based interrupts for our nvme
device.



4
NVMe as a SCSI Device
This chapter describes the implementation of an nvme driver for Vortex that
is exposed as a scsi device, allowing the current storage stack to remain
untouched. Configuration ofnvme controllers did necessitate changes to Vortex
and these changes are presented here.

We open this chapter with a presentation of the current state of the Vortex
storage stack and how we aim to integrate nvme in it. Next, we detail how we
leverage the improvements described in Chapter 3 to configure nvme devices
when the bios does not recognize them, and describe how we prepare our
nvme device for use. We then present the details of how we can expose our
nvme ssd as a scsi device, and how normal operation occurs. Finally, we
present our configurable methods for selecting the queue to which we submit
a command, and end the chapter with a summary.

4.1 The Vortex Storage Stack
Vortex already contains a fully functional MegaRAID Firmware Interface (mfi)
driver that provides support for the MegaRAID sas family of raid controllers.
A detectedmfi device is exported as scsi capable, allowing it to be paired with
the Vortex scsi driver, which is registered as a scsi resource. When a process
issues a read or write request to physical storage, it is passed through a generic
storage device resource to the scsi resource, which translates the request to a

33



34 CHAPTER 4 NVME AS A SCS I DEV ICE

SCSI

Storage 
resource

NVMe driver MFI driver

HDDSSD

Figure 4.1: We report scsi capabilities from our nvme driver, and allow the current
storage stack to remain unchanged, regardless of the underlying physical device
and storage interface.

corresponding scsi command that is sent to the mfi device driver.

To start using nvme in Vortex, driver software is required. nvme drivers are
already shipped with Windows, FreeBSD, and many Linux based oss. Vortex
is not an extension of an existing os, and cannot use drivers implemented for
mainstream oss. Some low-level work is involved when implementing a driver
for devices such as nvme. This includes designing a usable api for reading and
writing to device registers, and setting up command structure and logic for
safely issuing commands. A few of these changes were implemented previously
as a capstone project [52], and are not covered here.

We aim to reuse as much as possible of the current storage stack, and expose
the nvme device as a scsi device. Figure 4.1 shows the desired result, with
nvme placed in juxtaposition to mfi.

4.2 Controller Initialization
Thenvme specification states that initialization of the controller should be done
via pin-based interrupts or single-message msi. It is in other words optional to
support configuration through msi-x. Our Intel DC P3600 ssd does not have
msi capabilities, nor does it implement support for configuration over msi-x.
As described in Chapter 3, our DELL PowerEdge M600 blade server fails to



4.2 CONTROLLER IN IT IAL IZAT ION 35

recognize the drive, and two implications emerge. The first is that the os is
now responsible for both detection and configuration of the device in order to
allow applications to use it. The second implication is that because the device
is not recognized by the bios, the disk cannot be used as a boot device.

Vortex prioritizes msi-x over msi, and msi over pin-based interrupts, and
configuration of peripheral devices in Vortex works under the assumption that
a device that supports multiple interrupt models, will become fully functional
with any of them. For nvme, this is not true, and we need to override the initial
configuration to use pin-based interrupts.

All drivers in Vortex implement a standard set of functions—a driver multi-
plexor—that is part of the device interface, and is used to connect the driver
to the rest of the resource system. Our nvme driver implements the interface
listed in Code Snippet 4.1, which is used by the virtual dispatch table to route
requests.

Code Snippet 4.1: The NVMe driver multiplexor is a set of functions that is used by
the virtual dispatch table to route a request to the correct device.

1 static devdrvmux_t nvme_drvmux = {
2 .ddm_probe = (ddm_probe_t) nvme_probe,
3 .ddm_get_cap = (ddm_get_cap_t) nvme_getcap,
4 .ddm_start = (ddm_start_t) nvme_start,
5 .ddm_stop = (ddm_stop_t) nvme_stop,
6 .ddm_interrupt = (ddm_interrupt_t) nvme_interrupt,
7 .ddm_readwrite = (ddm_readwrite_t) nvme_readwrite,
8 .ddm_watchdog = (ddm_watchdog_t) nvme_watchdog,
9 .ddm_get_id = (ddm_get_id_t) nvme_getid,

10 };

A ddm_probe_t function is used to match a driver with a device, and returns
an instance of the controller object shown in Code Snippet 4.2. This structure is
used as an argument when any of the other functions in the device multiplexor
is called, to reference a specific device. The ddm_get_cap_t function is used
to report capabilities of the driver. For example, the scsi resource invokes
this function for a device to determine whether it is scsi capable. In the
nvme driver, we use this to our advantage, and add a new device capability
flag, DEV_CAP_INTPIN_INIT, which is detected when the kernel attempts to
configure interrupts.

During system initialization, device_config_set_inthandler is called for ev-
ery discovered device, and allocates the number of interrupt vectors supported
by the device.¹ We use the DEV_CAP_INTPIN_INIT flag when allocating inter-

1. The number of supported interrupts for an msi/msi-x compatible device is read out of
the extended configuration space in its pci header.



36 CHAPTER 4 NVME AS A SCS I DEV ICE

rupts for the device to determine whether it should ignoremsi-x and configure
pin-based interrupts instead. If the capability is set, interrupts for the device
are initialized based on information located in the mp table, or based on the
swizzling process described in Chapter 3. When the nvme device is configured
and ready for use, the nvme driver removes DEV_CAP_INTPIN_INIT from its
capabilities, and issues a new call to device_config_set_inthandler, which
enables msi-x for the device.

Code Snippet 4.2: The nvme_controller_t structure contains all information neces-
sary to interact with an nvme device.

1 struct nvme_controller_t {
2 // The actual device handled by this driver instance
3 device_t *dev;
4 // Used to set/unset DEV_CAP_INTPIN_INIT
5 bool_t ctrlr_ready;
6 // Registers that will be cached during initialization to
7 // reduce unnecessary access
8 nvme_register_identify_controller_data_t *controller_id;
9 nvme_register_controller_capabilities_t cap;

10 // Read from device
11 // Defines the offset between doorbell registers
12 // Typically 0 (4 byte), but may be different, especially
13 // in software emulations
14 uint16 doorbell_stride;
15 // Number of interrupts allocated for device
16 uint32 max_numint;
17 // Number of allocated queue pairs
18 // This is set during controller initialization
19 uint32 num_queue_pairs;
20 // List of namespaces on this device
21 nvme_namespace_t *namespaces;
22 // Only commands that are part of the Admin Command Set may be
23 // issued to the Admin Submission Queue
24 nvme_admin_queue_pair_t admin_queue_pair;
25 // Admin commands cannot be issued to regular I/O queue pairs
26 nvme_queue_pair_t *queue_pair;
27 };

Except for interrupt allocation and configuration of pin-based interrupts, the
device is prepared for use from nvme_start. From here, we configure the
desired command arbitration method, the submission and completion queue
pairs, and enable the controller to make it ready to process i/o requests.

4.3 Setting up I/O Queues
The clear separation of administrative and i/o specific commands defined
by nvme is preserved in our driver. Although all commands are equal in
size (64 bytes), the admin submission queues (asqs) and ioqs only accept



4.3 SETT ING UP I/O QUEUES 37

commands from the admin and nvm specific command sets, respectively, and
we therefore implement a logical separation between the two.

An nvme queue is a circular buffer allocated in dma memory accessible by the
controller. For a queue of size n, a submission queue (sq) occupies at any time
n × 64 bytes, while a completion queue (cq) occupies n × 16 bytes. Our driver
always creates queues in pairs, and each queue is referenced via an instance
of the nvme_queue_pair_t struct. The controller object contains an array of
all allocated queue pairs, including a standalone reference to the admin queue
(aq) pair. Along with the sqs and cqs, we associate a third circular buffer with
each queue pair, in which information about requests that are currently being
processed are stored. The nvme_completion_status_t structure, displayed
in Code Snippet 4.3, includes a callback function to call when the command
completes, as well as a reference to the original i/o request.

Code Snippet 4.3: A nvme_completion_status_t is associated with each issued
command.

1 struct nvme_completion_status_t {
2 // Called when command completes
3 nvme_completion_callback_t completion_callback;
4 // Associated CQ entry, contains command specific status
5 nvme_completion_t *completion;
6 // Associated command ID
7 uint16 cid;
8 // Driver specific status, occupied or free
9 nvme_command_status_code command_status;

10 // I/O request
11 devbuf_t *dbuf;
12 // PRP List for use with reads and writes over one page
13 prp_entry_t prp_list[64];
14 };

4.3.1 Physical Region Pages
The host memory locations used for data transfers are specified using Physical
Region Page (prp) entries, and are used as a scatter/gather mechanism. The
size of a page is set during controller initialization, and is in Vortex fixed to
4KB. Each command includes two Physical Region Page (prp) fields, and
supports transfers of 8 KB. Additionally, the second prp entry may point to a
memory page that contains a list of prp entries, as illustrated in Figure 4.2.
The list contains up to 64 entries, although the controller may support less, or
even more, in which case the last entry points to an additional prp list. The
number of entries used per command is implied by the command parameters
and memory page size.

The structure in Code Snippet 4.3 includes a prp list that can be used when



38 CHAPTER 4 NVME AS A SCS I DEV ICE

PRP2 – 0xf0000

PRP1 – 0xa1000

DATA

DATA

DATA

DATA

PRP64 – 0xXX000

PRP01 – 0xa2000
PRP02 – 0xa3000

Figure 4.2: prp entries point to a memory page used for the data transfer. If the data
transfer is for more than two memory pages of data, the second prp entry in
the command may point to a list of prp entries.

required by a request. We implement a one-to-one association between a
command entry and a completion status entry to avoid race conditions, and
do the allocation of all entries once, at the time of controller initialization to
avoid frequent memory allocation/deallocation.

The entries in a prp list are not required to be physically contiguous. However,
the buffers allocated for data transfer in Vortex are always contiguous, making
the process of creating a prp list straightforward.

4.4 Exposing NVMe as a SCSI Device
In addition to using the ddm_get_cap_t function to change how interrupts are
initially configured, we also use this to report that our nvme device is scsi
capable. This is picked up by the scsi resource, which starts to query the driver
for more information.

scsi uses inquiry messages to probe a storage device for information such as
its type, supported command set, number of luns, and storage capacity. For
a scsi device, these commands are sent to, and interpreted by, the controller.
Based on the translation reference [53] released in January 2015,we implement
a translation between the scsi commands received from the scsi resource
and the information gathered from the storage device using nvme’s identify
controller and identify namespace commands.



4.4 EXPOS ING NVME AS A SCS I DEV ICE 39

4.4.1 Normal Driver Operation
All commands directed to the physical device go through the nvme_readwrite
command shown in Code Snippet 4.4. Here, repeated calls are made to
device_devbuf_next to retrieve devbufs, each detailing an i/o operation, such
as a read or a write, the address of buffers, and the size of the request.

Code Snippet 4.4: During normal operation, nvme_readwrite is called for all com-
mands directed to the storage device. We instruct the compiler with branch
prediction information to favor read and write.

1 static vxerr_t nvme_readwrite(nvme_controller_t *nvme)
2 {
3 {· · · }
4 // Get next request
5 dbuf = device_devbuf_next();
6 if (__builtin_expect((dbuf == NULL), 0) {
7 vxerr = VXERR_OK;
8 goto error;
9 }

10 ext = (dbufstorage_t *) dbuf->db_classext;
11 // Respond immediately to deletes, but assume that it is not a delete
12 if (__builtin_expect(ext->dse_state & SBUF_STATE_DELETE), 0) {
13 assert(ext->dse_state & SBUF_STATE_CMD);
14 vxerr = VXERR_OK;
15 goto iodone;
16 }
17 // Assume that command is read or write
18 // The SCSI resource only issues READ/WRITE 16 commands
19 cmd = (uint8*) ext->dse_cmd;
20 if (__builitin_expect(cmd[0] == SCSIDF_COMMAND_OPCODE_READ_16 ||
21 cmd[0] == SCSIDF_COMMAND_OPCODE_WRITE_16))
22 {
23 if (cmd[0] == SCSIDF_COMMAND_OPCODE_READ_16)
24 vxerr = nvme_cmd_read({· · · });
25 else if (cmd[0] == SCSIDF_COMMAND_OPCODE_WRITE_16)
26 vxerr = nvme_cmd_write({· · · });
27 }
28 else
29 {
30 switch (cmd[0])
31 {
32 case SCSIDF_COMMAND_OPCODE_INQUIRY:
33 {· · · }
34 case SCSIDF_COMMAND_OPCODE_REPORT_LUNS:
35 {· · · }
36 case SCSIDF_COMMAND_OPCODE_READ_CAPACITY_10:
37 {· · · }
38 default:
39 CRITICAL("DEV 0x%X Received unknown SCSI command 0x%x",
40 device_get_index(nvme->dev), cmd[0]);
41 }
42 }
43 {· · · }
44 }



40 CHAPTER 4 NVME AS A SCS I DEV ICE

Other commands, such as scsi inquiry and report luns, also arrive in this func-
tion. These requests are issued rarely—only during scsi resource initializing—
and by using GCC’s preprocessor flag __builtin_expect, we provide the
compiler with branch prediction information. In most cases, programmers are
bad at predicting how a program will execute, but in this case, we know that
reads and writes will occur the most, and this is the path for which we want
to optimize our function.

4.4.2 Command Completion
For admin commands, we implement both synchronous and asynchronous
handling of completions. Asynchronous completion is automatically selected
by specifying a callback to run on completion. Otherwise, the original code
path is reentered only when the command completes. Synchronous operation
is required during some stages in the initialization of the controller, as we need
to ensure that a command succeeds before issuing the next. For example, when
registering queues with the controller, it is important that a cq is successfully
created before we register the associated sq. On the other hand, we only
implement asynchronous completion for ioqs.

When the controller completes a command for an asynchronous request, it
generates an interrupt, which arrives in the nvme_interrupt handler shown
in Code Snippet 4.5. This handler receives all interrupts generated by the
controller, and because we have a logical separation between the aq and ioqs,
we need to invoke two different handlers based on the incoming interrupt
vector. The switch is, however, because vector 0 always refers to the aq, while
all other vectors refer to an ioqs. To ensure an optimized completion path for
ioq operation, we provide the compiler with branch prediction information
here as well.

Code Snippet 4.5: The interrupt handler uses branch prediction to favor handling of
i/o completions over admin completions.

1 static vxerr_t nvme_interrupt(nvme_controller_t *nvme, uint32 devintvector)
2 {
3 // We know that most interrupts are generated for I/O queues
4 // and provide GCC with branch prediction information such that
5 // processing of the admin queue becomes the ’abnormal behavior’
6 if (__builtin_expect((devintvector != 0), 1))
7 nvme_process_completion(nvme, devintvector);
8 else
9 nvme_process_admin_completion(nvme);

10
11 return VXERR_OK;
12 }



4.4 EXPOS ING NVME AS A SCS I DEV ICE 41

All nvme ioqs are given a unique identifier, but rather than assigning this
identifier to a variable in the queue structure, we use the index of the queue
pair in the array in which we store reference to the queue pairs. The vector
assigned to each queue also reflects its identifier, and because we separate the
aq from the ioqs, the queue pair in question is located at index qid − 1.²
When receiving a completion for an ioq, the number of actually completed
commands are not restricted to one. As shown in Code Snippet 4.6, we continue
processing completions as long as there are any. This is possible because of
the phase bit included in the completion entry, which the controller flips every
time the queue wraps (the queue wraps when it reaches the end and returns
to offset 0 in the queue).

Code Snippet 4.6: ioq specific interrupt handler. All completions in the current phase
are processed.

1 void nvme_process_completion(nvme_controller_t *nvme, uint16 qid)
2 {
3 nvme_completion_queue_t *cq;
4 volatile nvme_completion_t *completion;
5 nvme_completion_status_t *completion_status;
6 cq = NVME_COMPLETION_QUEUE(nvme, qid);
7 while (1)
8 {
9 completion = &cq->base[cq->head];

10 // Continue processing all completions for this phase
11 if (completion->status_field.p != cq->phase)
12 break;
13
14 // Get associated completion status
15 completion_status = &NVME_COMPLETION_STATUS(nvme, qid, completion->cid);
16
17 // Add reference to the completion status
18 completion_status->completion = (nvme_completion_t *)completion;
19
20 // Increment head, wrap if end of queue and switch phase
21 if (++cq->head == cq->size)
22 {
23 cq->head = 0;
24 cq->phase = !cq->phase;
25 }
26 // Controller has completed the command, but we are not done with it yet
27 completion_status->command_status = NVME_COMMAND_STATUS_COMPLETE;
28 completion_status->completion_callback(nvme, completion_status);
29
30 // The work is done, signal controller that we are happy
31 completion_status->command_status = NVME_COMMAND_STATUS_FREE;
32 NVME_SUBMISSION_QUEUE(nvme, qid)->head = completion->sqhd;
33 nvme_register_write_completion_queue_head_doorbell(nvme, qid, cq->head);
34 }
35 }

2. Queue identifier and interrupt vector 0 always refers to the aq.



42 CHAPTER 4 NVME AS A SCS I DEV ICE

4.5 Driver Specific Command Arbitration
Drivers for mainstream oss, such as FreeBSD, implement one queue per
core [54]. We want to explore how to best utilize the number of ioqs supported
by nvme. We implement in our driver a customizable method for selecting
the i/o submission queue (iosq) we use to submit a command. This is a
driver specific configuration, and does not affect the arbitration method, nor
command burst settings, of the controller. The current implementation features
three different driver specific arbitration methods: rr, per core, and per core
pool.

4.5.1 Round Robin
The first and simplest implementation is a rr selection of queues. With this
configuration we use all available queues. An Intel DC P3600 ssd supports 31
i/o queue pairs, each supporting 4096 commands. This means that by using
this configuration, we could issue 126 945 commands before having to wait
for completions.³

All queues can be used by any cpu, which means that locks must be applied.
The current active queue is a shared variable, which is incremented when the
queue it represents is successfully locked, to avoid race conditions. The queue
selection mechanism is displayed in Code Snippet 4.7.

Code Snippet 4.7: The driver-specific rr arbitration method loops without concern
for cpu affinity, and requires lock primitives to guard the active queues.

1 vxerr_t nvme_readwrite({· · · })
2 {
3 lock_t lock;
4 static uint16 queue_id = 0;
5 VxO_LOCKNULL(&lock);
6 VxO_LOCK(&lock, NVME_SUBMISSION_QUEUE(nvme, queue_id)); // Lock queue
7 // We only get here if we have the lock
8 if (++queue_id > nvme->num_queue_pairs)
9 queue_id = 1;

10
11 {· · · } // calculate number of blocks in request and offset
12 {· · · } // generate prp list if required
13 {· · · } // issue read/write
14
15 VxO_UNLOCK(&lock);
16 return vxerr;
17 }

3. Although the maximum number of entries is 4096, the queue is considered full when the
tail is one entry behind the head.



4.5 DRIVER SPEC IFIC COMMAND ARB ITRAT ION 43

4.5.2 Per Core
The second implementation is an approach used by most mainstream driver
implementations, including the FreeBSD nvme driver, and is a configuration
in which we allocate a single queue per available core in the system. An
eight core system supports having 32 760 outstanding commands using this
setting.

We show the simple logic used to select the active queue in Code Snippet 4.8.
The buffers containing information about the i/o request also include the id
of the cpu that issued it. This id is used to select the queue, which results in
a fixed affinity, meaning that queues are not shared between cores, such that
no locks are required.

Code Snippet 4.8: The driver-specific per core arbitration method uses one queue
per cpu core. Queues have fixed affinity, and are not shared among cores, thus
locks are not required.

1 vxerr_t nvme_readwrite({· · · })
2 {
3 uint16 queue_id;
4 // CPU ID’s start with 0, IOQ ID’s start with 1
5 queue_id = CPUID + 1;
6
7 {· · · } // calculate number of blocks in request and offset
8 {· · · } // generate prp list if required
9 {· · · } // issue read/write

10
11 return vxerr;
12 }

4.5.3 Per Core Pool
Our third arbitration variant is a a combination of both the rr and per core
methods, which we call a per core pool arbitration method. With this setting, we
allocate an equal number of queues per available core, and do an rr selection
on a per core basis. For our eight core server, and the 31 queues supported by
the controller, we allocate 3 queues per core, or 24 in total.

This setting requires more logic than the per core arbitration method, but the
same benefits apply: fixed affinity allows lockless use of the queues. With the
additional queues, the number of outstanding commands supported at any
time is 12 285 per core, or 98 280 for the entire system.



44 CHAPTER 4 NVME AS A SCS I DEV ICE

Code Snippet 4.9: The driver-specific per core pool arbitration method uses a set of
queues per cpu core. The number of allocated queues are always a multiple of
the number of cores. Queue sets have fixed affinity, and are not shared among
cores, thus locks are not required.

1 vxerr_t nvme_readwrite({· · · })
2 {
3 static uint16 queues_per_core = NVME_NUM_QUEUE_PAIRS/CPU_MAXNUM;
4 static uint16 queue_pool[CPU_MAXNUM] = { 0 };
5 uint16 affinity;
6 uint16 core_queue_num;
7 uint16 queue_id;
8
9 affinity = dbuf->db_reqhdr.rh_target.affinity;

10 core_queue_num = queue_pool[affinity];
11
12 if (++queue_pool[affinity] > (queues_per_core-1))
13 queue_pool[affinity] = 0;
14
15 queue_id = ((affinity * queues_per_core) + core_queue_num) + 1;
16
17 {· · · } // calculate number of blocks in request and offset
18 {· · · } // generate prp list if required
19 {· · · } // issue read/write
20
21 return vxerr;
22 }

4.6 Summary
This chapter has presented the implementation of an nvme driver that is
exposed as a scsi device. We have created a way of overriding the default
selection of interrupt delivery system, and are able to successfully configure
the nvme controller. In addition, we have shown some design choices made to
reduce overhead produced by frequent memory allocation/deallocation, and
by exploiting the compiler’s __builtin_expect to provide branch prediction
information.

We have implemented three different methods for selecting the i/o queue to
whichwe submit a command. Thesemethods are evaluated in Chapter 5.



5
Evaluation
This chapter evaluates the integration of an nvme ssd as a scsi device in
Vortex. We start by presenting the environment used during the experiments,
before discussing the problems that occured when we first introduced an
nvme device to our system. We then describe our evaluation method, before
presenting and discussing the achieved results.

5.1 Environment
The experiments described in this chapter are all executed on aDELL PowerEdge
M600 blade server equippedwith two Intel® Xeon®E5430 processors running
at 2.66GHz, 16GB of DDR2-667 PC2-5300 fully buffered ram with error-
correcting code (ecc), and an nvme v1.0 compliant Intel DC P3600 ssd
connected to a pcie 2.0 bus. The ssd supports 31 ioqs, each supporting up
to 4096 command entries.

In experiments that target mechanical disks, two 10K rpm sas hdds are used.
These drives are connected through a MegaRAID sas 1078 controller, and are
configured in raid 0, with stripe size of 1MB, and with adaptive read ahead,
a good basis for high throughput.

45



46 CHAPTER 5 EVALUAT ION

5.2 Controller Configuration
During the implementation of our nvme driver, we discovered that nvme
cannot be initialized with msi-x, and we were forced to implement a method
of retrieving missing interrupt information. With this capability, we are able to
set up pin-based interrupts for the unrecognized controller, and configure it.
We are, however, not interested in using pin-based interrupts for normal i/o
operations, and have improved the device system to support a switch between
interrupt delivery methods.

In the early stages of nvme initialization, it is important that each step is
completed successfully before the next is issued. We therefore configure the
device to use pin-based interrupts, as required, but having the kernel ignore
them, and rather use a polling mechanism to do a synchronized wait for
completion. However, this is not completely safe, as the code will keep spinning
if a completion never arrives, but we have yet to experience this problem.

5.3 Measuring Performance
Most raw storage devices are accessed through a file system (fs) abstrac-
tion, even when used as dedicated storage for database management systems
(dbmss). fss often employ caching [55] or other latency hiding techniques,
such as heuristic-based approaches to prefetching data [56], that significantly
reduce latency. On the other hand, a fs may also introduce negative overhead
by using journaling and other metadata [57], [58]. When a system is to be
used for applications that rely heavily on disk storage, for example dbmss,
both positive and negative effects of using a fs must be taken into considera-
tion.

This thesis is concerned with the capabilities of the storage interface and
medium. Therefore, we design our experiments to bypass the fs, such that
raw throughput is measured, without the effects of caching, latency hiding, or
having to handle journaling.

5.3.1 Collecting Data
The oka uses schedulers interpositioned on communication paths to con-
trol resource-consumption of processes [10]. Instrumentation code in the
kernel-side schedulers and inside the resource itself is used to report resource-
consumption. To collect data during experiments, we use the Vortex Moni-
tor [59], a tool that exploits the instrumentation code to extract and export



5.4 CONFIGUR ING AN SSD WITH THE L IMITAT IONS OF MFI 47

performance data over the network.

The Vortex Monitor samples performance data at one second intervals. Some
metrics are computed by comparing the delta between consecutive samples.
This leads to some inaccuracy on startup, so we generally ignore the first few
seconds of our experiments.

5.3.2 Diskhog
Diskhog is an application designed to generate a continuous read or write
load towards a block-level storage device. Because we are able to extract
performance data directly from the kernel, we do not implement measurement
code in this application; it is only concerned with generating load.

When targeting the storage device on a block level, all reads and writes must
be performed in block-multiples. To simulate a multi-tenant workload towards
the storage device, diskhog can be configured to start multiple threads. Each
Diskhog thread opens its own connection to the storage device for reading and
writing, and is given its own private lba range to isolate reads andwrites

The scheduler implemented in the kernel automatically distributes threads over
the available cores in the system, which means that our single process can have
up to eight threads running without having competition for cpu-time.

5.4 Configuring an SSD with the Limitations of
MFI

MegaRAID sas controllers have an advantage over sata with a queue depth of
128 or 256 commands versus 32. Here we compare the achieved throughput
when configuring nvme with the limitations of our sas hdds to demonstrate
the power of ssds without the additional perks of having multiple queues and
greater queue depths.

The nvme driver is configured to use one i/o queue pair with room for 128
commands, matching the configuration of ourmfi controller. Figure 5.1 shows
that the ssd achieves almost three times the throughput of the hdd.

An interesting observation here is that the achieved write throughput is much
higher than for reads. When a request is issued, data is copied from the
source to a request buffer owned by the kernel, from which it is written to the



48 CHAPTER 5 EVALUAT ION

0 5 10 15 20 25 30 35 40
TIME

0

100

200

300

400

500

600
M

B
/s

Read Throughput

NVMe SSD MFI HDD

0 5 10 15 20 25 30 35 40
TIME

0

100

200

300

400

500

600

M
B

/s

Write Throughput

NVMe SSD MFI HDD

Figure 5.1: ssd vs hdd: Read and write throughput when the ssd is limited with an
mfi configuration. One core producing load.

0 5 10 15 20 25 30 35 40
TIME

0

100

200

300

400

500

600

700

M
B

/s

Read Throughput

NVMe SSD MFI HDD

0 5 10 15 20 25 30 35 40
TIME

0

100

200

300

400

500

600

700
M

B
/s

Write Throughput

NVMe SSD MFI HDD

Figure 5.2: ssd vs hdd: Read and write throughput when the ssd is limited with an
mfi configuration. Eight cores producing load.

destination. A process issuing a read must wait for the data to arrive in its
local buffer, while a process issuing a write only has to wait for the kernel to
copy the data into a request buffer, which explains why we are able to achieve
higher write throughput.

Multi-Core Workload
Further, we simulate the workload of having multiple processes read from the
storage device in parallel, by issuing requests from all eight cores simultaneously.
As can be seen in Figure 5.2, the aggregate throughput generated from the
ssd is almost five times the throughput of the hdd. Also visible here is that
the maximum throughput does, however, not scale linearly with the number
of cores. Subsequent experiments reveal the same results as shown in these
graphs, and we choose to display a representable graph, rather than a “busy”
one.



5.5 MULT IPLE QUEUES 49

0 5 10 15 20 25 30 35 40
TIME

0

50

100

150

200

M
B

/s

READ Throughput per Core: NVMe SSD

0 5 10 15 20 25 30 35 40
TIME

0

10

20

30

40

50

60

70

80

M
B

/s

READ Throughput per Core: MFI HDD

0 5 10 15 20 25 30 35 40
TIME

0

50

100

150

200

250

300

M
B

/s

Write Throughput per Core: NVMe SSD

0 5 10 15 20 25 30 35 40
TIME

0

10

20

30

40

50

60

70

80
M

B
/s

Write Throughput per Core: MFI HDD

Figure 5.3: ssd vs hdd: Maximum achieved throughput per core when all eight cores
produce load.

When inspecting the results displayed in Figure 5.3, which details the perfor-
mance of each device individually, we see that achieved throughput per core
is less for both devices, because all threads issuing requests share the same
resource. We also observe that with our ssd, one core is achieving higher
throughput than the other seven. This is because we use one global queue in
this experiment, and guard it with a primitive spin-lock, which means that a
core gets the lock completely by chance, and that one of the cores receive the
lock more frequently than the rest. After multiple experiments, we found that
the pattern is consistent, with only a difference in which core is favored.

5.5 Multiple Queues
We have seen that an nvme ssd is better at handling parallel disk requests,
even when limited with a single ioq and a queue size of 128. When we
configure our driver to use more than one queue, we see that lock contention
is no longer a problem. Figure 5.4 shows that even when all queues are shared
among all cores in the system, load distribution is even. Further, we find that the



50 CHAPTER 5 EVALUAT ION

0 5 10 15 20 25 30 35 40
TIME

0

10

20

30

40

50

60

70

80
M

B
/s

Read Throughput per Core

0 5 10 15 20 25 30 35 40
TIME

0

10

20

30

40

50

60

70

80

M
B

/s

Write Throughput per Core

Figure 5.4: Throughput per core when multiple queues are used with the rr arbitra-
tion policy, and eight cores produce load.

maximum achieved throughput is achieved when only three cores produce load,
as can be seen in Figure 5.5. The results are consistent across experiments here
as well, and have negligible variance, making the graph representable.

Round robin
With the rr policy, all queues are shared between all cores in the system, and
are prone to race conditions, thus requiring us to lock access to the device. We
do not, however, need to lock access to the entire controller, but only to the
current active queue.

When using the rr policy, we see that the achieved throughput is not much
higher than with the limit of one queue. However, Figure 5.4 shows that because
multiple queues are used, there is not as much contention, which results in an
even load distribution.

Per Core
The per core policy matches that of drivers in mainstream oss, with one queue
allocated per cpu core in the system. The fixed affinity of each queue means
that the locking mechanisms required in the rr policy are not needed.

Per Core Pool
Unlike otheross, we also implement a variant of this, in which multiple queues
are allocated per core and given fixed affinity. This allows us to support more



5.5 MULT IPLE QUEUES 51

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

M
B

/s

Cores

Throughput over Cores

Read Write

Figure 5.5: The maximum aggregate throughput as a function of cores producing
load.

commands, and still require no locks.

5.5.1 Sustained Throughput
We measured read and write throughput for all implemented policies, and find
that there is a tradeoff to making all queues available to all cpu cores. We also
found that the achieved throughput is equal for the two policies that are based
on fixed affinity, and that even though there is no better policy of the two,
there is no backside to using more queues. On the contrary, if more queues are
in use, then we are also able to handle more requests at a time.

Figure 5.6 shows a comparison between the different policies when performing
i/o requests of size 4MB, averaging the throughput over one minute. We
have included the read and write throughput as measured with the gnome-
disks benchmarking tool on an Ubuntu 14.04 (kernel version 3.13.0-24) server
edition running on the same machine we use during our experiments in Vortex.
We see that Ubuntu achieves 11% faster reads andwrites than Vortex. However,
we observe that when we increase the request size, Ubuntu experiences a
drop to about 560MB/s, while the throughput achieved from Vortex remains
unchanged. These results are consistent across runs, with small variance, so



52 CHAPTER 5 EVALUAT ION

we have omitted error bars.

We believe that we should be able, after some optimization work, to match the
throughput of Ubuntu, because we experience short bursts of higher throughput,
up to about 720MB/s just before our test application exits. When the process
exits, it no longer produces i/o requests, but waits for the completion of all
that remain, and it is plausible that because the cpu is free to only handle
completion of commands, the achieved throughput is able to climb.

0

100

200

300

400

500

600

700

800

Linux Round Robin Per Core Per Core Pool

M
B

/s

Arbitration Policy

Arbitration Policy Throughput 

Read Write

Figure 5.6: Sustained read and write throughput with different arbitration policies,
including a comparison with Ubuntu.

5.5.2 I/O Operations per Second
In this experiment, we benchmark our driver to find the maximum number of
iops that we are able to produce in our system. The experiment is performed
by issuing 1000 4KB requests per thread before waiting for results. As can be
seen from Figure 5.7, when performing reads, we are able to complete close to
50 000 iops. For reads, the theoretical maximum for our disk is 70 000 iops,
and we see that the results from testing throughput are mirrored here.

Note, however, that the number of iops for writes is much higher than the
theoretical maximum for this disk, which is 30 000 iops. As explained in
Section 5.4, writes are copied to kernel-side buffers for writes. Because we
support a very large number of outstanding requests, the results just reflect
the rate at which write requests are enqueued. We would prefer to measure



5.5 MULT IPLE QUEUES 53

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8

IO
P

S
 (

x
1

0
0

0
)

Cores

IOPS over Cores

Read Write

Figure 5.7: iops for random reads and writes of 4 KB data.

the rate at which requests are processed by the ssd. Unfortunately, the Vortex
Monitor does not directly report this number, and time did not permit any
workarounds for this issue.

When we compare Figure 5.5 to Figure 5.7, we see that only two cores are
required to achieve maximum iops, while maximum sequential throughput
is achieved with three cores. When generating load for maximum throughput,
we issue and wait for a single large request to complete before issuing the
next, while the iops experiment issues a large number of requests before
waiting for replies. This reduces overall wait time and leads to better cpu
utilization.





6
Concluding Remarks
In this chapter we summarize our contributions, and present deliberations
on shortcomings and opportunities for future improvements to Vortex in the
context of nvme support.

6.1 Main Contributions
Conventional storage interfaces, such as sata and sas, are designed to interface
with mechanical hdds. However, ssds are becoming more popular, and we
see that the limitation in throughput no longer lies with the storage medium,
but with the interface connecting the host and the disk. A solution to this has
been to bypass the storage interface adapters, and connect the ssd directly to
the pcie bus. The nvme standard is designed for pcie-based ssds, and offers
high levels of parallelism and other features that are desirable for multi-tenant
platforms.

nvme devices require that initialization is done through pin-based interrupts,
and the bios in our DELL PowerEdge M600 does not recognize our Intel
DC P3600 ssd. We have implemented a pci-to-pci bridge device driver that
is used to map the hierarchical structure of the pci subsystem. We use this
functionality to improve the Vortex systemwith the capability to determine irq
information for devices that do not appear in the mp table. This functionality
allows us to determine missing irq information and configure the ssd.

55



56 CHAPTER 6 CONCLUDING REMARKS

We have implemented an nvme driver that exposes the nvme ssd as a scsi
storage device, which allows us to use the ssd without introducing further
changes to the Vortex storage stack. Our driver implements three command
submission policies, which we have evaluated. Although our implementation
has had little focus on optimization, we achieve higher throughput than what
is attainable through a conventional sata interface.

6.2 Future Work
Although functional, the integration ofnvme in Vortex as a scsi device is not an
optimal solution. The scsi resource translates read and write requests to their
corresponding scsi commands and passes the request on to the device driver.
The nvme specific commands for read and write are standardized and do not
differ between devices. This means that we can implement a resource interface
for nvme as part of the device driver, reducing the number of indirections
between the calling process and the physical storage device.

As shown in Chapter 5, our solution does not match the throughput of the
implementation ofnvme in a Linux based system, indicating that optimizations
of our implementation are needed. One possible point of improvement is
to increase the size of the kernel side request buffers, each of which can
contain 32KB of data. Our nvme device supports transfers of up to 128KB per
command using prp lists, but are currently limited by the request buffers.

6.2.1 Weighted Round Robin
The possibility to assign priority to processes through a scheduling mechanism
in the storage controller is a completely new way of thinking, and is definitely
worth exploring. However, Vortex implements schedulers for fair resource
allocation on a high level, and it should be a point of focus to explore to what
degree the controller should handle scheduling of queues.

This being said, the wrr arbitration funtionality also offers more control by
management code. While rr treats all queues, including the admin queue,
equally, wrr will always prioritize admin commands over any other i/o
command. Additionally, the urgent priority class is always prioritized over
queues belonging to the wrr priority class, and can be assigned to a queue
controlled solely by the kernel if needed.



6.2 FUTURE WORK 57

RRSQProcess 2

Process 1
SQ

SQ

Process 3 SQ

SQ

SQ

Figure 6.1: Given the support for enough i/o queues by the controller, the assignment
of more queues to higher priority processes can be one way of assigning priority.

6.2.2 Alternative Methods of Assigning Priority
If wrr is not supported, we can still achieve priority-based command arbitra-
tion in other ways. Figure 6.1 illustrates a suggested solution, in which a higher
prioritized process is given control over more ioqs.

Dataset Management
Optional features, such as the dataset management feature can be used to
indicate attributes for lba ranges. The controller can be instructed to optimize
performance and reliability for ranges that are used for frequently accessed
data, such as inodes for a file system, or swap area for the os. This feature can
possibly also be used to favor processes with higher priority.

6.2.3 Namespaces
The creation/deletion of namespaces is not trivial, and was, until version 1.2 of
thenvm specification, only part of vendor specific command sets. When devices
that do support this feature arrive on the market, we can use namespaces to
support our isolation model, and allow multiple processes and vms to access
their own private namespace.

For example, during initialization of an nvme device, a predetermined number



58 CHAPTER 6 CONCLUDING REMARKS

of namespaces can be created, with equal shares of the available storage space,
each of which can be assigned to a process or a vm. Alternatively, a namespace
can be created along with a vm if it requires disk access.

6.2.4 Power Management
An nvme device supports between one and 32 power states that can be man-
aged statically or dynamically. Each power state defines the maximum power
that the controller can consume, and the latency associated with each state.
Static power management involves an active host-to-controller interaction for
setting power state, while dynamic is handled by the controller by measuring
the current load.

Vortex includes power management (pm) functionality that leverages informa-
tion about resource consumption collected from kernel-side schedulers to make
a decision about which power state the cpu should operate in, or whether it
should enter an idle state [60]. This functionality can be extended to control
the power state of nvme devices as well.



Bibliography
[1] G. E. Moore, “Cramming more components onto integrated circuits”.

Electronics Magazine, pp. 114–117, 1965.

[2] P. Rex Farrance, “Timeline: 50 Years of Hard Drives”. [Online],
Available: http://www.pcworld.com/article/127105/article.html.
Retrieved: Mar. 17th, 2015.

[3] L. Mearian, “WD leapfrogs Seagate with world’s highest capac-
ity 10TB helium drive, new flash drives”. [Online], Available:
http://www.computerworld.com/article/2604311/wd-leapfrogs-
seagate-with-world-s-highest-capacity-10tb-helium-drive-new-
flash-drives.html. Retrieved: Mar. 23th, 2015.

[4] Seagate, “Seagate® Archive HDD ST8000AS0012”. [Product Manual],
Rev. A, July 2014.

[5] “ASTC Technology Roadmap”. [Online], Available: http://www.idema.
org/wp-content/plugins/download-monitor/download.php?id=2244.
Retrieved: Mar. 23th, 2015.

[6] Toms Hardware, “Performance Charts Hard Drives”. [Online], Avail-
able: http://www.tomshardware.com/charts/hard-drives,3.html. Re-
trieved: Mar. 17th, 2015.

[7] “Hitachi Deskstar 7K1000”. Hitachi, [Data Sheet], 2007.

[8] “Micron P320h HHHL PCIe NAND SSD”. Micron Technology Inc.,
[Datasheet], Rev. V 8/2014 EN, 2014.

[9] “NVM Express”. NVM Express Inc, [Specification], Rev. 1.0e, Jan. 2013.

[10] Å. A. Kvalnes, D. Johansen, R. van Renesse, S. Valvag, and F. Schneider,
“Omni-kernel: An operating system architecture for pervasive monitoring
and scheduling”. IEEE Transactions on Parallel and Distributed Systems,

59

http://www.pcworld.com/article/127105/article.html
http://www.computerworld.com/article/2604311/wd-leapfrogs-seagate-with-world-s-highest-capacity-10tb-helium-drive-new-flash-drives.html
http://www.computerworld.com/article/2604311/wd-leapfrogs-seagate-with-world-s-highest-capacity-10tb-helium-drive-new-flash-drives.html
http://www.computerworld.com/article/2604311/wd-leapfrogs-seagate-with-world-s-highest-capacity-10tb-helium-drive-new-flash-drives.html
http://www.idema.org/wp-content/plugins/download-monitor/download.php?id=2244
http://www.idema.org/wp-content/plugins/download-monitor/download.php?id=2244
http://www.tomshardware.com/charts/hard-drives,3.html


60 BIBL IOGRAPHY

Oct. 2014.

[11] Å. A. Kvalnes, “The Omni-Kernel Architecture: Scheduler Control Over
All Resource Consumption in Multi-Core Computing Systems”. Ph.D.
dissertation, UiT The Arctic University of Norway, Oct. 2014.

[12] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the art of virtualization”. ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

[13] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the Linux
virtual machine monitor”, in Proceedings of the Linux Symposium, vol. 1,
pp. 225–230, 2007.

[14] “Apache HTTP Server Project”. [Online], Available: http://httpd.
apache.org/. Retrieved: Mar. 29th, 2015.

[15] “MySQL:: The world’s most popular open source database”. [Online],
Available: http://www.mysql.com/. Retrieved: Mar. 29th, 2015.

[16] “Apache Hadoop”. [Online], Available: https://hadoop.apache.org/.
Retrieved: Mar. 29th, 2015.

[17] A. Nordal, A. Kvalnes, J. Hurley, and D. Johansen, “Balava: Federating pri-
vate and public clouds”, in Services (SERVICES), 2011 IEEE World Congress
on, IEEE, pp. 569–577, 2011.

[18] A. Nordal, Å. Kvalnes, and D. Johansen, “Paravirtualizing tcp”, in Proceed-
ings of the 6th international workshop on Virtualization Technologies in
Distributed Computing Date, ACM, pp. 3–10, 2012.

[19] D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, P. R. Young,
and P. J. Denning, “Computing as a discipline”. Communications of the
ACM, vol. 32, no. 1, pp. 9–23, 1989.

[20] L. A. Steen, “The science of patterns”. Science, vol. 240, no. 29, p. 616,
1988.

[21] S. H. Hall, G. W. Hall, and J. A. McCall, “High-speed digital system design:
a handbook of interconnect theory and design practices”, Citeseer, 2000.

[22] “PCI-104 Specification”. PC/104 Embedded Consortium, [Specification],
Rev. v1.0, 2003.

http://httpd.apache.org/
http://httpd.apache.org/
http://www.mysql.com/
https://hadoop.apache.org/


B IBL IOGRAPHY 61

[23] D. Giancoli, “Physics-principles with applications”, Aubrey Durkin, 2005.

[24] J. A. DeFalco, “Reflection and crosstalk in logic circuit interconnections”.
Spectrum, IEEE, vol. 7, no. 7, pp. 44–50, 1970.

[25] “PCI-X 2.0: The Next Generation of Backward-Compatible PCI”. PCI-SIG,
[White Paper], Rev. 1.0, 2002.

[26] M. Hachman, “Intel Begins Making Its Case Against PCI-X”. [Online],
Available: http://www.extremetech.com/extreme/53584-intel-begins-
making-its-case-against-pcix. Retrieved: May 12th, 2015.

[27] PCI-SIG, “I/O Virtualization”. [Online], Available: https://www.pcisig.
com/specifications/iov/. Retrieved: May 12th, 2015.

[28] D. Anderson, T. Shanley, and R. Budruk, “PCI express system architecture”,
Addison-Wesley Professional, 2004.

[29] “PCI Express Base Specification”. PCI-SIG, [Specification], Rev. 3.0, Nov.
2010.

[30] G. Field and P. M. Ridge, “The book of SCSI: I/O for the new millenium;
2nd ed.”, No Starch Press, 2000.

[31] T. P. Guide, “SCSI Bus Termination”. [Online], Available:
http://www.pcguide.com/ref/hdd/if/scsi/cablesTermination-c.html.
Retrieved: May 7th, 2015.

[32] C. M. Kozierok, “SFF-8020 / ATA Packet Interface (ATAPI)”. [On-
line], Available: http://www.pcguide.com/ref/hdd/if/ide/stdATAPI-c.
html. Retrieved: May. 15th, 2015.

[33] A. Osborne, “An Introduction to Microcomputers: Basic concepts”,
McGraw-Hill, 1980.

[34] “Faster Just Got Faster: SATA 6Gb/s”. [Online], Available:
https://www.sata-io.org/system/files/member-downloads/SATA-
6Gbs-Fast-Just-Got-Faster_2.pdf. Retrieved: May 7th, 2015.

[35] “Serial ATA AHCI”. Intel Corporation, [Specification], Rev. 1.3.1, 2014.

[36] J. Dedek, “Basics of SCSI”, Ancot Corporation, 1998.

[37] “Ultrastar SSD1000MR Enterprise Solid State Drives”. [Online],

http://www.extremetech.com/extreme/53584-intel-begins-making-its-case-against-pcix
http://www.extremetech.com/extreme/53584-intel-begins-making-its-case-against-pcix
https://www.pcisig.com/specifications/iov/
https://www.pcisig.com/specifications/iov/
http://www.pcguide.com/ref/hdd/if/scsi/cablesTermination-c.html
http://www.pcguide.com/ref/hdd/if/ide/stdATAPI-c.html
http://www.pcguide.com/ref/hdd/if/ide/stdATAPI-c.html
https://www.sata-io.org/system/files/member-downloads/SATA-6Gbs-Fast-Just-Got-Faster_2.pdf
https://www.sata-io.org/system/files/member-downloads/SATA-6Gbs-Fast-Just-Got-Faster_2.pdf


62 BIBL IOGRAPHY

Available: https://www.hgst.com/solid-state-storage/enterprise-
ssd/sas-ssd/ultrastar-ssd1000mr. Retrieved: May 7th, 2015.

[38] “Seagate ST600MP0005”. Seagate, [Data Sheet], 2014.

[39] “600 GByte, 3.5”, 15,000 rpm Disk Drive Specification”. Sun Microsys-
tems, [Specification], no. 820-7290-10, Rev. A, Sept. 2009.

[40] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
“RAID: High-performance, reliable secondary storage”. ACM Computing
Surveys (CSUR), vol. 26, no. 2, pp. 145–185, 1994.

[41] “NAND Flash Translation Layer (NFTL)”. Micron, [User Guide], 2011.

[42] “Intel Solid-State Drive 750 Series”. Intel Corporation, [Product Specifi-
cation], Apr. 2015.

[43] NVM Express Inc., “Why NVM Express”. [Online], Available: http://
nvmexpress.org/about/why-nvm-express/. Retrieved: May 11th, 2015.

[44] “Serial ATA”. Serial ATA International Organization, [Specification],
Rev. 3.2 Gold, Aug. 2013.

[45] “Connector Mating Matrix”. [Online], Available: https://www.sata-
io.org/sites/default/files/documents/MM_Nereus_Signage_Print_
0719.pdf. Retrieved: May 19th, 2015.

[46] B. Gibbs, “SCSI Express - Advancements in PCIe Storage”. [Online],
Available: http://www.scsita.org/serial-storage-wire/2012/08/scsi-
express-advancements-in-pcie-storage.html. Retrieved: May 19th,
2015.

[47] T. Marian, K. S. Lee, and H. Weatherspoon, “NetSlices: Scalable Multi-core
Packet Processing in User-space”, in Proceedings of the Eighth ACM/IEEE
Symposium on Architectures for Networking and Communications Systems,
ser. ANCS ’12, pp. 27–38, 2012.

[48] T. Shanley, “Plug and play system architecture”, Addison-Wesley Profes-
sional, 1995.

[49] “PCI-to-PCI Bridge Architecture Specification”. PCI-SIG, [Specification],
Rev. 1.2, 2003.

[50] “MultiProcessor Specification”. Intel Corporation, [Specification], 1997.

https://www.hgst.com/solid-state-storage/enterprise-ssd/sas-ssd/ultrastar-ssd1000mr
https://www.hgst.com/solid-state-storage/enterprise-ssd/sas-ssd/ultrastar-ssd1000mr
http://nvmexpress.org/about/why-nvm-express/
http://nvmexpress.org/about/why-nvm-express/
https://www.sata-io.org/sites/default/files/documents/MM_Nereus_Signage_Print_0719.pdf
https://www.sata-io.org/sites/default/files/documents/MM_Nereus_Signage_Print_0719.pdf
https://www.sata-io.org/sites/default/files/documents/MM_Nereus_Signage_Print_0719.pdf
http://www.scsita.org/serial-storage-wire/2012/08/scsi-express-advancements-in-pcie-storage.html
http://www.scsita.org/serial-storage-wire/2012/08/scsi-express-advancements-in-pcie-storage.html


B IBL IOGRAPHY 63

[51] D. Anderson and T. Shanley, “PCI system architecture”, Addison-Wesley
Professional, 1999.

[52] K. Elsebø, “Vortex NVMe”. [Capstone Project], 2014.

[53] “NVM Express – SCSI Translation Reference”. NVM Express Inc, [Speci-
fication], Rev. 1.4, Jan. 2015.

[54] “FreeBSD NVMe Driver”. [Online], Available: https://github.com/
freebsd/freebsd/tree/master/sys/dev/nvme. Retrieved: May 20th,
2015.

[55] “File Caching”. [Online], Available: https://msdn.microsoft.com/en-
us/library/windows/desktop/aa364218%28v=vs.85%29.aspx. Re-
trieved: May 16th, 2015.

[56] J. Griffioen and R. Appleton, “Reducing File System Latency using a
Predictive Approach.”, in USENIX Summer, pp. 197–207, 1994.

[57] “Solaris™ ZFG and RED HAT Enterprise Linux EXT3 File System Perfor-
mance”. Sun microsystems, Inc., [White Paper], June 2007.

[58] “File System Performance: The Solaris™ OS, UFS, Linux ext3, and Reis-
erFS”. Sun microsystems, Inc., [White Paper], Aug. 2004.

[59] R. M. Pettersen, “Hubble: a platform for developing apps that manage
cloud applications and analyze their performance”. Master’s thesis, The
University of Tromsø, 2012.

[60] J.-O. Karlberg, “ROPE: Reducing the Omni-kernel Power Expenses”.
2014.

https://github.com/freebsd/freebsd/tree/master/sys/dev/nvme
https://github.com/freebsd/freebsd/tree/master/sys/dev/nvme
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364218%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364218%28v=vs.85%29.aspx



	Abstract
	Acknowledgements
	List of Figures
	List of Code Snippets
	List of Abbreviations
	1 Introduction
	1.1 Non Volatile Memory Express
	1.2 Vortex
	1.3 Problem Definition
	1.4 Scope and Limitations
	1.5 Methodology
	1.6 Contributions
	1.7 Outline

	2 Background
	2.1 From Parallel to Serial Communication
	2.1.1 Evolution

	2.2 Interface Lineage
	2.2.1 Small Computer System Interface
	2.2.2 Integrated Drive Electronics / Parallel-ATA
	2.2.3 Serial-ATA
	2.2.4 Serial Attached SCSI

	2.3 From Magnetic to Flash Based Storage
	2.3.1 Non-Volatile Memory Express

	2.4 Related Work

	3 Device Configuration
	3.1 Basic Device Discovery and Configuration
	3.2 Configuring Devices Present on a Secondary Bus
	3.3 Vortex Class Drivers
	3.4 PCI-to-PCI Bridge Device Driver
	3.5 Configuring a Parent Bridge
	3.6 Determining IRQ Information
	3.6.1 Interrupt Routing
	3.6.2 Swizzling

	3.7 Summary

	4 NVMe as a SCSI Device
	4.1 The Vortex Storage Stack
	4.2 Controller Initialization
	4.3 Setting up io Queues
	4.3.1 Physical Region Pages

	4.4 Exposing NVMe as a SCSI Device
	4.4.1 Normal Driver Operation
	4.4.2 Command Completion

	4.5 Driver Specific Command Arbitration
	4.5.1 Round Robin
	4.5.2 Per Core
	4.5.3 Per Core Pool

	4.6 Summary

	5 Evaluation
	5.1 Environment
	5.2 Controller Configuration
	5.3 Measuring Performance
	5.3.1 Collecting Data
	5.3.2 Diskhog

	5.4 Configuring an SSD with the Limitations of MFI
	5.5 Multiple Queues
	5.5.1 Sustained Throughput
	5.5.2 I/O Operations per Second


	6 Concluding Remarks
	6.1 Main Contributions
	6.2 Future Work
	6.2.1 Weighted Round Robin
	6.2.2 Alternative Methods of Assigning Priority
	6.2.3 Namespaces
	6.2.4 Power Management


	Bibliography

