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We study the weighted p → q-boundedness of the multidimensional weighted Hardy-type
operators Hα

w and Hα
w with radial type weight w = w(|x|), in the generalized complementary

Morrey spaces �Lp,ψ

{0}(R
n) defined by an almost increasing function ψ = ψ(r). We prove a theorem

which provides conditions, in terms of some integral inequalities imposed on ψ and w, for such a
boundedness. These conditions are sufficient in the general case, but we prove that they are also
necessary when the function ψ and the weight w are power functions. We also prove that the
spaces �Lp,ψ

{0}(Ω) over bounded domains Ω are embedded between weighted Lebesgue space Lp

with the weight ψ and such a space with the weight ψ, perturbed by a logarithmic factor. Both the
embeddings are sharp.

1. Introduction

Hardy operators and related Hardy inequalities are widely studied in various function
spaces, and we refer to the books [1–4] and references therein. They continue to attract
attention of researchers both as an interesting mathematical object and a useful tool for many
purposes: see for instance the recent papers [5, 6]. Results on weighted estimations of Hardy
operators in Lebesgue spaces may be found in the abovementioned books. In the papers [7–9]
the weighted boundedness of the Hardy type operators was studied in Morrey spaces.

In this paper we study multi-dimensional weighted Hardy operators

Hα
wf(x) := |x|α−nw(|x|)

∫
|y|<|x|

f
(
y
)
dy

w
(∣∣y∣∣) , Hα

wf(x) := |x|αw(|x|)
∫
|y|>|x|

f
(
y
)
dy∣∣y∣∣nw(∣∣y∣∣) ,

(1.1)
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where α ≥ 0, in the so called complementary Morrey spaces. The one-dimensional case will
include the versions

Hα
wf(x) = x

α−1w(x)
∫x

0

f(t)dt
w(t)

, Hα
wf(x) = x

αw(x)
∫∞

x

f(t)dt
tw(t)

, x > 0 (1.2)

adjusted for the half-axis R
1
+, so that in the sequel R

n with n = 1 may be read either as R
1 or

R
1
+.

The classical Morrey spaces Lp,λ(Ω), Ω ⊆ R
n, defined by the norm

∥∥f∥∥p,λ := sup
x∈Ω,r>0

(
1
rλ

∫
B̃(x,r)

∣∣f(y)∣∣pdy
)1/p

, 1 ≤ p <∞, 0 ≤ λ ≤ n, (1.3)

where B̃(x, r) = Ω ∩B(x, r), are well known, in particular, because of their usage in the study
of regularity properties of solutions to PDE; see for instance the books [10–12] and references
therein. There are also known various generalizations of the classical Morrey spaces Lp,λ,
and we refer for instance to the surveying paper [13]. One of the direct generalizations is
obtained by replacing rλ in (1.3) by a function ϕ(r), usually satisfying some monotonicity
type conditions. We also denote it as Lp,ϕ(Ω) without danger of confusion. Such spaces
appeared in [14, 15] and were widely studied in [16, 17]. The spaces Lp,ϕ

loc (Ω), defined by
the norm

∥∥f∥∥p,ϕ; loc := sup
r>0

(
1

ϕ(r)

∫
B̃(x0, r)

∣∣f(y)∣∣p dy
)1/p

, (1.4)

where x0 ∈ Ω, are known as generalized local Morrey spaces
Hardy type operators (1.1) in the spaces Lp,ϕ(Ω),Lp,ϕ

loc (Ω) have been studied in [7–9].
The norm in Morrey spaces controls the smallness of the integral

∫
B(x,r) |f(y)|p dy over

small balls B(x, r) (and also a possible growth of this integral for r → ∞ in the case Ω
is unbounded). There are also known spaces �Lp,ψ

{x0}(Ω), called complementary Morrey spaces,
with the norm controlling possible growth, as r → 0, of the integral

∫
Ω\B(x0, r)

∣∣f(y)∣∣p dy (1.5)

over exterior of balls. Such spaces have sense in the local setting only. It is introduced in
[16, 17] that the space �Lp,ψ

{x0}(Ω) is defined as the space of all functions f ∈ Lploc(Ω\{x0})with
the finite norm

∥∥f∥∥�Lp,ψ

{x0}(Ω) = sup
r>0

ψ1/p(r)
∥∥f∥∥Lp(Ω\B(x0, r)), (1.6)

where admission of the multiplier ψ(r) vanishing at r = 0 controls the growth of the norm
‖f‖Lp(Ω\B(x0, r)). Such spaces were also studied in some later papers, and we refer for instance
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to [18]. We refer also to the paper [19] where variable exponent complementary spaces of
such type were introduced.

During the last decades various classical operators, such as maximal, singular, and
potential operators were widely investigated both in classical and generalized Morrey
spaces, including the complementary Morrey spaces. The mapping properties of Hardy
type operators in complementary Morrey spaces were not known. In this paper we obtain
conditions for the p → q-boundedness of Hardy type operators in complementary Morrey
spaces. Thus we make certain contributions to the known theory of Hardy type inequalities;
see, for example, the books [2–4] and references given there.

We also prove a new property for the generalized complementary Morrey spaces; see
Theorem 3.1, by showing that the spaces �Lp,ψ

{0}(Ω) over bounded domains Ω are embedded
between the weighted Lebesgue space Lp with the weight ψ, and such a space with the weight
ψ, perturbed by a logarithmic factor. In the case where ψ was a power function, this was
proved in [19].

The paper is organized as follows. In Section 2 we give definitions and necessary
preliminaries, including conditions for radial functions to belong to complementary Morrey
spaces. In Section 3 we prove the abovementioned embedding of the generalized Morrey
space between Lebesgue weighted spaces. In Section 4, which plays a crucial role in the
preparation of the proofs of the main results, we prove pointwise estimate for the Hardy-
type constructions via the norm defining the complementary Morrey space. In Section 5
we give the final theorems on the weighted p → q-boundedness of Hardy operators in
complementaryMorrey spaces. In the appendix we collect various properties of weights from
the Bary-Stechkin class which we need when we formulate some sufficient conditions for the
boundedness in terms of the Matuszewska-Orlicz indices of the functions ψ and w.

2. Complementary Morrey Spaces and Their Properties

2.1. Definitions

LetΩ be an open set in R
n,Ω ⊆ R

n and � = diam Ω, 0 < � ≤ ∞, B(x, r) = {y ∈ R
n : |x−y| < r}

and B̃(x, r) = B(x, r) ∩ Ω. Let also ψ(r) be a continuous function nonnegative on (0, �) with
ψ(0) := limr→ 0 ψ(r) = 0 which may arbitrarily grow as r → ∞. Let also 1 ≤ p <∞.

Definition 2.1. Let 1 ≤ p < ∞. The complementary Morrey space �Lp,ψ

{x0}(Ω), where x0 ∈ Ω, is
the space of functions f ∈ Lploc(Ω \ {x0}) such that

∥∥f∥∥�Lp, ψ

{x0}(Ω) := sup
r>0

(
ψ(r)

∫
Ω\B̃(x0,r)

∣∣f(y)∣∣p dy
)1/p

<∞. (2.1)

In the case of power factor ψ(r) ≡ rλ, λ > 0, we also denote

�Lp, λ

{x0}(Ω) := �Lp, ψ

{x0}(Ω)|ψ≡rλ (2.2)

without danger of confusion.



4 Journal of Function Spaces and Applications

The space �Lp, ψ

{x0}(Ω) is nontrivial in the case of any locally bounded function ψ(r)with
an arbitrary behaviour at infinity, because bounded functions with compact support belong
then to this space.

We will also use the following notation for the modular:

Mp, ψ

(
f ;x0, r

)
:= ψ(r)

∫
Ω\B̃(x0, r)

∣∣f(y)∣∣p dy. (2.3)

The function ψ, defining the complementary Morrey space, will be called definitive
function.

Remark 2.2. The function ϕ in (1.4), defining the Morrey spaces, in some papers is called
weight function. We prefer to call both ϕ and ψ as definitive functions, keeping the word weight
for its natural use in the theory of function spaces, that is, for the cases where the function f
itself is controlled by a weight.

2.2. On Belongness of Radial Functions to the Space �Lp, ψ

{x0}(Ω)

Lemma 2.3. For a nonnegative radial type functions u = u(|x − x0|), x0 ∈ Ω, the condition

sup
0<r<�

ψ(r)
∫�

r

u(t)ptn−1 dt <∞ (2.4)

is sufficient to belong to �Lp, ψ

{x0}(Ω). (It is also necessary, when Ω = R
n or Ω is a ball centered at x0.)

The proof of Lemma 2.3 is obvious. By means of this lemma we easily obtain the
following corollary.

Corollary 2.4. Let Ω be bounded. A power function |x − x0|γ with γ /= − n/p belongs to the space
�Lp, ψ

{x0}(Ω) if and only if

sup
r>0

rmin{n+γp, 0}ψ(r) <∞. (2.5)

In the case n+γp = 0, the same holds with rmin{n+γp,0} replaced by | ln r|. WhenΩ = R
n, the necessary

and sufficient conditions are n + γp < 0 and supr>0 r
n+γpψ(r) <∞.

As is known, there may be given sufficient numerical inequalities for the validity of
the integral condition in (2.4) in terms of Matuszewska-Orlicz indices m(u) andM(u) of the
function u. We give below such sufficient inequalities, but in order not to interrupt the main
body of the paper by notions connected with such indices and related Bary-Stechkin function
classes Zα,β, we put these notions in the appendix.
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Let now u be a nonnegative function in Bary-Stechkin class, namely,

u ∈ Z−n/p([0, �]) if � <∞, u ∈ Z−n/p,−n/p
(
R

1
+

)
if � = ∞. (2.6)

Then
∫�
r u

p(t)tn−1 dt ∼ rnup(r), 0 < r < �, so that the condition sup0<r<� r
nψ(r)up(r) < ∞

is sufficient for u = u(|x − x0|) to be in �Lp, ψ

{x0}(Ω). Note also that (2.6) is equivalent to the
inequalities pM(u)+n < 0, pM∞(u)+n < 0 in terms of the indices, where the second inequality
is to be used only in the case � = ∞; see (A.16).

3. Complementary Morrey Spaces Are Closely Embedded between
Weighted Lebesgue Spaces

The complementary Morrey spaces are close to a certain weighted Lebesgue space as stated
in the following theorem, which provides sharp embeddings of independent interest. The
notation for the weighted space is taken in the form Lp(Ω, 	) := {f :

∫
Ω 	(x)|f(x)|pdx < ∞}.

The classW0([0, �]), used in this theorem, is defined in the appendix; see Definitions A.1-A.2
therein. In the case where ψ(r) is a power function, Theorem 3.1 was proved in [19].

Theorem 3.1. Let Ω be a bounded open set, 1 ≤ p < ∞, ψ ∈ W0([0, �]), � = diamΩ, and let ψ be
absolutely continuous and

P := sup
0<t<�

t
∣∣ψ ′(t)

∣∣
ψ(t)

<∞. (3.1)

Then

Lp
(
Ω, ψ

(∣∣y − x0
∣∣)) ↪→ �Lp, ψ

{x0}(Ω) ↪→
⋂
ε>0

Lp
(
Ω, ψε

(∣∣y − x0
∣∣)), (3.2)

where ψε(t) = ψ(t)/(ln(A/t))1+ε, A > �. The left-hand side embedding in (3.2) is strict, when ψ
satisfies the condition

∫�

r

dt

tψ(t)
dt ≤ C

ψ(r)
(3.3)

(in particular, if ψ(r) = rλ, λ > 0); that is, there exists a function f0 = f0(x) such that

f0 ∈ �Lp, ψ

{x0}(Ω), but f0 /∈ Lp
(
Ω, ψ

(∣∣y − x0
∣∣)). (3.4)

The right-hand side embedding in (3.2) is strict, when ψ satisfies the doubling condition ψ(2r) ≤
Cψ(r), (in particular, if ψ(r) = rλ, λ ≥ 0), there exists a function g0 = g0(x) such that

g0 ∈
⋂
ε>0

Lp
(
Ω, ψε(|x − x0|)

)
, but g0 /∈ �Lp, ψ

{x0}(Ω). (3.5)



6 Journal of Function Spaces and Applications

Proof. Without loss of generality, we may take x0 = 0 for simplicity, supposing that 0 ∈ Ω.
10. The left-hand side embedding: since the function ψ is almost increasing, we have

(∫
Ω
ψ
(∣∣y∣∣)f(y)|p dy

)1/p

≥
(∫

Ω\B̃(0,r)
ψ
(∣∣y∣∣)f(y)|p dy

)1/p

≥ C
(
ψ(r)

∫
Ω\B̃(0,r)

∣∣f(y)∣∣p dy
)1/p

(3.6)

so that

∥∥f∥∥Lp(Ω,ψ(|y|)) ≥ C
∥∥f∥∥�Lp,ψ

{0}(Ω). (3.7)

20. The right-hand side embedding: we have

∫
B̃(0,r)

∣∣f(y)∣∣pψε(∣∣y∣∣)dy =
∫
B̃(0,r)

∣∣f(y)∣∣p
(∫ |y|

0

d

dt
ψε(t)dt

)
dy, (3.8)

where

ψ ′
ε(t) =

ψ(t)
t

[
tψ ′(t)
ψ(t)

+
1 + ε

ln(A/t)

]
1

(ln(A/t))1+ε
, (3.9)

so that

∣∣ψ ′
ε(t)

∣∣ ≤ Cεψ(t)

t(ln(A/t))1+ε
, Cε = P +

1 + ε
ln(A/�)

. (3.10)

Therefore,

∫
B̃(x0,r)

∣∣f(y)∣∣pψε(∣∣y∣∣)dy ≤
∫ t

0

∣∣ψ ′
ε(t)

∣∣
(∫

{y∈Ω:t<|x0−y|<r}

∣∣f(y)∣∣pdy
)
dt

≤
∫�

0

∣∣ψ ′
ε(t)

∣∣ · ∥∥f∥∥p
Lp(Ω\B̃(x0,t))

ds

≤ ∥∥f∥∥p�Lp,ψ

{x0}(Ω)

∫�

0

∣∣ψ ′
ε(t)

∣∣
ψ(t)

dt,

(3.11)

where the last integral converges when ε > 0 since |ψ ′
ε(t)|/ψ(t) ≤ Cε/(t(ln(A/t))

1+ε).
30. The strictness of the embeddings: the corresponding counterexamples are

f0(x) =
1

ψ1/p(|x|)|x|n/p
, g0(x) =

ln(ln(B/|x|))
|x|n/pψ1/p(|x|)

, B > �ee. (3.12)
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Calculations for the function f0, which is obviously not in Lp(Ω, ψ(|y|), are easy.
Indeed,

∥∥f0∥∥p�Lp,ψ

{0}(Ω)
≤
∣∣∣Sn−1

∣∣∣ ψ(r)
∫�

r

dt

tψ(t)
, (3.13)

where the right-hand side is bounded by (3.3).
In the case of the function g0 we have

∥∥g0∥∥pLp(Ω,ψε) =
∫
Ω

lnp(ln(B/|x|))
|x|n(ln(A/|x|))1+ε

dx ≤
∣∣∣Sn−1

∣∣∣
∫�

0

lnp(ln(B/t))

t(ln(A/t))1+ε
dt <∞ (3.14)

for every ε > 0. However, for small r ∈ (0, δ/2), where δ = dist(0, ∂Ω), we obtain

ψ(r)
∫
x∈Ω: |x|>r

g
p

0 (|x|)dx ≥ ψ(r)
∫
x∈Ω: r<|x|<δ

lnp(ln(B/|x|))dx
|x|nψ(|x|)

=
∣∣∣Sn−1

∣∣∣ ψ(r)
∫δ

r

lnp(ln(B/t))dt
tψ(t)

≥
∣∣∣Sn−1

∣∣∣ψ(r)
∫2r

r

lnp(ln(B/t))dt
tψ(t)

.

(3.15)

Taking into account that ψ(t) is almost increasing and satisfies the doubling condition,
we get

ψ(r)
∫2r

r

lnp(ln(B/t))dt
tψ(t)

≥ C ψ(r)
ψ(2r)

lnp
(
ln

B

2r

)∫2r

r

dt

t
≥ C lnp

(
ln
B

r

)
−→ ∞ as r −→ 0,

(3.16)

which completes the proof of the theorem.

Remark 3.2. Under the assumption (3.3), the upper embedding in (3.2) does not hold with ε =
0. The corresponding counterexample is f(x) = 1/(|x − x0|nψ(|x − x0|))which is in �Lp,ψ

{x0}(Ω),
but f /∈ Lp(Ω, ψε(|y − x0|))|ε=0.

4. Weighted Estimates of Functions in Complementary Morrey Spaces

In the following lemmas we give a pointwise estimate of the “Hardy-type” constructions in
terms of the modular Mp,ψ(f ;x0, r) with x0 = 0. These estimates are of independent interest
and also crucial for our study of the Hardy operators in the complementary Morrey space.
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Lemma 4.1. Let 1 ≤ p <∞, 0 < s ≤ p, let v, ψs/pv ∈W([0,∞]), and v(2t) ≤ cv(t). Then

∫
|z|<r

∣∣f(z)∣∣s
v(|z|) dz ≤ C

∫ r

0

Vs(t)
t

dt · Ms/p
p,ψ

(
f ; 0, r

)
, r > 0, (4.1)

for f ∈ Lploc(Ω \ {0}), where C > 0 does not depend on f and r ∈ (0,∞) and

Vs(t) =
tn(1−(s/p))

v(t)ψs/p(t)
. (4.2)

Proof. We use the dyadic decomposition as follows:

∫
|z|<r

∣∣f(z)∣∣s
v(|z|) dz =

∞∑
k=0

∫
Bk(r)

∣∣f(z)∣∣s
v(|z|) dz, (4.3)

where Bk(r) = {z : 2−k−1r < |z| < 2−kr}. Since there exists a β such that tβv(t) is almost
increasing, we observe that

1
v(|z|) ≤ C

v
(
2−k−1r

) (4.4)

on Bk(r). Applying this in (4.3) and making use of the Hölder inequality with the exponent
p/s ≥ 1, we obtain

∫
|z|<r

∣∣f(z)∣∣s
v(|z|) dz ≤ C

∞∑
k=0

(
2−k−1r

)n(1−(s/p))
v
(
2−k−1r

)
(∫

Bk(r)

∣∣f(z)∣∣p dz
)s/p

. (4.5)

Hence

∫
|z|<r

∣∣f(z)∣∣s
v(|z|) dz ≤ C

∞∑
k=0

(
2−k−1r

)n(1−(s/p)) Ms/p
p,ψ

(
f ; 0, 2−k−1r

)
v
(
2−k−1r

)
ψs/p

(
2−k−1r

) . (4.6)

On the other hand we have

∫ r

0

Vs(t)
t

Ms/p
p,ψ

(
f ; 0, t

)
dt =

∞∑
k=0

∫2−kr

2−k−1r
tn(1−(s/p))−1

Ms/p
p,ψ

(
f ; 0, t

)
v(t)ψS/p(t)

dt. (4.7)
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The function 1/(ψ(t))Mp,ψ(f ; 0, t) is decreasing, and the function 1/(v(t)) is almost
decreasing after multiplication by some power functions. Therefore,

∫ r

0

Vs(t)
t

Ms/p
p,ψ

(
f ; 0, t

)
dt ≥ C

∞∑
k=0

(
2−kr

)n(1−(s/p)) Ms/p
p,ψ

(
f ; 0, 2−kr

)
v
(
2−kr

)
ψS/p

(
2−kr

)

≥ C
∞∑
k=1

(
2−kr

)n(1−(s/p)) Ms/p
p,ψ

(
f ; 0, 2−kr

)
v
(
2−kr

)
ψs/p

(
2−kr

)

= C1

∞∑
k=0

(
2−k−1r

)n(1−(s/p)) Ms/p
p,ψ

(
f ; 0, 2−k−1r

)
v
(
2−k−1r

)
ψs/p

(
2−k−1r

) .

(4.8)

Then (4.1) follows from (4.6) and (4.8).

Lemma 4.2. Let 1 ≤ p <∞, 0 ≤ s ≤ p, v ∈W(R1
+) and v(2t) ≤ Cv(t), ψ(2t) ≤ Cψ(t). Let also

V s(t) :=
tn(1−(s/p))v(t)

ψs/p(t)
. (4.9)

Then
∫
|z|>r

v(|z|)∣∣f(z)∣∣sdz ≤ C
∫∞

r

V s(t)
t

Ms/p
p,ψ

(
f ; 0, t

)
dt, (4.10)

where C > 0 does not depend on r > 0 and f .

Proof. We use the corresponding dyadic decomposition:

∫
|z|>r

v(t)
∣∣f(z)∣∣s dz =

∞∑
k=0

∫
Bk(r)

v(z)
∣∣f(z)∣∣sdz, (4.11)

where Bk(r) = {z : 2kr < |z| < 2k+1r}. Since there exists a β ∈ R
1 such that tβv(t) is almost

increasing, we obtain

∞∑
k=0

∫
Bk(r)

v(|z|)∣∣f(z)∣∣sdz ≤ C
∞∑
k=0

v
(
2k+1r

)∫
Bk(r)

∣∣f(z)∣∣sdz, (4.12)

where C may depend on β but does not depend on r and f . Applying the Hölder inequality
with the exponent p/s, we get

∫
|z|>r

v(|z|)∣∣f(z)∣∣sdz ≤ C
∞∑
k=0

v
(
2k+1r

)(
2kr

)n(1−(s/p))(∫
Bk(r)

∣∣f(z)∣∣pdz
)s/p

≤ C
∞∑
k=0

v
(
2k+1r

)(
2kr

)n(1−(s/p))
ψ−s/p

(
2kr

)
Ms/p

p,ψ

(
f ; 0, 2kr

)
.

(4.13)
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On the other hand, the integral on the right-hand side of (4.10) can be estimated as
follows:

∫∞

r

V s(t)
t

Ms/p
p,ψ

(
f ; 0, t

)
dt =

∞∑
k=0

∫2k+1r

2kr
tn−1−(ns/p)

[Mp,ψ

(
f ; 0, t

)
ψ(t)

]s/p
v(t)dt

≥ C
∞∑
k=0

v
(
2kr

)[Mp,ψ

(
f ; 0, 2k+1r

)
ψ
(
2k+1r

)
]s/p(

2kr
)n(1−s/p)

≥ C
∞∑
k=0

v
(
2k+1r

)
ψ−1/p

(
2kr

)(
2kr

)n(1−s/p)Ms/p
p,ψ

(
f ; 0, 2k+1r

)
,

(4.14)

which completes the proof.

Corollary 4.3. Let 1 ≤ p < ∞, let w,wψ1/p ∈ W([0, �]), w(2t) ≤ cw(t), 0 < � ≤ ∞ and 0 ∈ Ω.
Let also

V (r) :=
1

wp(r)ψ(r)
∈ Z0. (4.15)

Then

Mp,ψ

(
f

w
; 0, r

)
≤ C

wp(r)
Mp,ψ

(
f ; 0, r

)
, 0 < r < �. (4.16)

5. Weighted Hardy Operators in Complementary Morrey Spaces

5.1. Pointwise Estimations

The proof of our main result of this Section given in Theorems 5.3 and 5.6 is prepared by the
following Theorems 5.1 and 5.2 on the pointwise estimates of the Hardy-type operators.

Theorem 5.1. Let 1 ≤ p ≤ ∞, let w,wψ1/p ∈W , and w(2t) ≤ Cw(t). The condition

∫ ε

0

V (t)
t

dt <∞ with ε > 0, where V (t) =
tn/p

′

w(t)ψ1/p(t)
(5.1)

is sufficient for the Hardy operatorHα
w to be defined on the space �Lp,ψ

{0}(R
n). Under this condition, the

pointwise estimate

∣∣Hα
wf(x)

∣∣ ≤ C|x|α−nw(|x|)
∫ |x|

0

V (t)
t

dt
∥∥f∥∥�Lp,ψ

{0}
(5.2)

holds.

Proof. Apply Lemma 4.1 with s = 1.
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Theorem 5.2. Let 1 ≤ p ≤ ∞ and 1/w ∈W , or w ∈W and w(2t) ≤ Cw(t). The condition

∫∞

ε

V(t)
t

dt <∞, with ε > 0, where V(t) =
1

w(t)ψ1/p(t)tn/p
(5.3)

is sufficient for the Hardy operator Hα
w to be defined on the space �Lp,ψ

{x0}(R
n), and in this case the

following pointwise estimate:

∣∣Hα
wf(x)

∣∣ ≤ C|x|αw(|x|)
∫∞

|x|

V(t)
t
dt
∥∥f∥∥�Lp,ψ

{x0}
(5.4)

holds.

Proof. Apply Lemma 4.2 with s = 1.

5.2. Weighted p → q Boundedness of Hardy Operators in Complementary
Morrey Spaces

5.2.1. The Case of the OperatorHα
w

The Lp → Lq-boundedness of the multidimensional Hardy operators within the frameworks
of Lebesgue spaces (the case ϕ ≡ 1 in (1.4)) with 1 < p < ∞ and 0 < q < ∞ is well known: see
for instance, [4, page 54]. ForMorrey spaces, both local and global, the boundedness of Hardy
operators was studied in [7, 8]. We call attention of the reader to the fact that, in contrast to the
case of Lebesgue spaces, Hardy-type inequalities in both usual and complementary Morrey
spaces different from Lebesgue spaces (i.e., in the case ϕ(0) = 0 or ψ(0) = 0) admit the value
p = 1.

Theorem 5.3. Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and let

w,ψ1/pw ∈W
(
R

1
+

)
, w(2t) ≤ cw(t). (5.5)

The operatorHα
w is bounded from �Lp,ψ

{0}(R
n) to �Lq,ψ

{0}(R
n) if supr>0W(r) <∞, where

W(r) := ψ(r)
∫∞

r

	n−1
(

	(α−(n/p))

ψ1/p(	)V (	)

∫	

0

V (t)
t

dt

)q

d	, (5.6)

and V (t) is the same as in (5.1). Under this condition,

∥∥Hα
wf

∥∥�Lq,ψ

{0}
≤ C sup

r>0
W

1/q(r)
∥∥f∥∥�Lp,ψ

{0}
. (5.7)
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Proof. From the estimate (5.2) of Theorem 5.1 we have

∣∣Hα
wf(x)

∣∣ ≤ C |x|α−(n/p)
ψq/p(|x|)

(
1

V (|x|)
∫ |x|

0

V (t)
t

dt

)∥∥f∥∥�Lq,ψ

{0}
. (5.8)

Hence, calculating ‖Hα
wf‖�Lp,ψ

{0}
, passing to polar coordinates, we obtain (5.6).

Remark 5.4. Note that

1
V
(
	
)
∫	

0

V (t)
t

dt  1 (5.9)

in (5.6) if we suppose that V ∈ Z
0.

The following corollary gives sufficient conditions for the boundedness of the operator
Hα

w in terms of the Matuszewska-Orlicz indices of the function ψ and the weightw (we refer
to the appendix for these notions).

Corollary 5.5. Let 1 ≤ p ≤ q < ∞ (with q = p admitted in the case α = 0) and the conditions (5.5)
be satisfied. Suppose also that

ψ(r) ≥ Cr(αpq/q−p)−n (5.10)

in the case α/= 0. The operatorHα
w is bounded from �Lp,ψ

{0}(R
n) to �Lq,ψ

{0}(R
n) if

min{m(V ), m∞(V )} > 0, min
{
m
(
ψ
)
, m∞

(
ψ
)}

> 0. (5.11)

The condition min{m(V ), m∞(V )} > 0, is guaranteed by the inequalities

M(w) <
n

p′
−M(

ψ
)
, M∞(w) <

n

p′
−M∞

(
ψ
)
. (5.12)

In the power case ψ(r) = rλ, λ > 0, and w(r) = rμ, the conditions (5.10)-(5.11) reduce to

1 ≤ p < n + λ
α

,
1
q
=

1
p
− α

n + λ
, μ <

n

p′
− λ

p
; (5.13)

conditions (5.13) are also necessary for the operatorHα
w to be bounded from �Lp,ψ

{0}(R
n) to �Lq,ψ

{0}(R
n).

Proof. We have to check that the condition supr>0W(r) < ∞ of Theorem 5.3 holds under the
assumptions (5.10)-(5.11). From the inequality min{m(V ), m∞(V )} > 0 it follows that

W(r) ≤ Cψ(r)
∫∞

r

	n−1
	q(α−(n/p))

ψq/p
(
	
) d	. (5.14)
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We represent ψq/p(	) as ψq/p(	) = ψ(q/p)−1(	)ψ(	) and by (5.10) obtain

W(r) ≤ Cψ(r)
∫∞

r

d	

	ψ
(
	
) , (5.15)

which is bounded in view of the second assumption in (5.11), by the property (A.4).
The sufficiency of the conditions (5.13) in the case of power functions is then obvious

sincem(ψ) = m∞(ψ) = λ andm(w) = m∞(w) = μ in this case.
Let us show the necessity of these conditions. From the boundedness ‖Hα

w‖�Lq,ψ

{0}(R
n) ≤

C‖f‖�Lp,ψ

{0}(R
n) with ψ(r) = rλ, λ > 0, and w(r) = rμ, by standard homogeneity arguments

with the use of the dilation operator Πδf(x) := f(δx) it is easily derived that the conditions
1 ≤ p < (n + λ)/α, 1/q = (1/p) − (α/(n + λ)) necessarily hold, via the relation

∥∥Πδf
∥∥�Lp,ψ

{0}(R
n) = δ

−(n+λ)/p∥∥f∥∥�Lp,ψ

{0}(R
n), Hα

wΠδf = δ−αΠδH
α
wf. (5.16)

(We take into account that we excluded q = ∞ in this theorem.)
The necessity of the remaining condition μ < (n/p′) − (λ/p) in (5.13) follows from the

fact that |y|−(n+λ)/p ∈ �Lp,ψ

{0}(R
n) by Corollary 2.4, so that this condition is necessary for the

operatorHα
w with w = rμ to be defined on the space �Lp,ψ

{0}(R
n).

5.2.2. The Case of the OperatorHα
w

Let

W(r) := ψ(r)
∫∞

r

wq(	)	qα+n−1
(∫∞

	

V(t)
t
dt

)q

d	, (5.17)

where V is the same as in (5.3).

Theorem 5.6. Let 1 ≤ p <∞, 1 ≤ q <∞ and

wψ1/p ∈W
(
R

1
+

)
or w ∈W

(
R

1
+

)
, w(2t) ≤ Cw(t). (5.18)

The operator Hα
w is bounded from �Lp,ψ

{0}(R
n) to �Lq,ψ

{0}(R
n) if

sup
r>0

W(r) <∞, (5.19)

and then

∥∥Hα
wf

∥∥�Lq,ψ

{0}
≤ C sup

r>0
W1/q(r)

∥∥f∥∥�Lp,ψ

{0}
. (5.20)
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Proof. From the estimate (5.4) we obtain

Mq,ψ

(Hα
wf ; 0, r

) ≤ Cψ(r)
∫∞

r

	n−1+q(α−(n/p))ψ−q/p(	)
(

1
V(

	
)
∫∞

	

V(t)
t
dt

)q

d	
∥∥f∥∥q�Lp,ψ

{0}
, (5.21)

from which (5.20) follows.

As above, we provide also sufficient conditions for the boundedness of the operator
Hβ

w in terms of the Matuszewska-Orlicz indices.

Corollary 5.7. Let 1 ≤ p ≤ q < ∞ (with q = p admitted in the case α = 0 and w and ψ satisfy the
conditions (5.18). The operator Hα

w is bounded from �Lp,ψ

{0}(R
n) to �Lq,ψ

{0}(R
n) if

max{M(V),M∞(V)} < 0, min
{
m
(
ψ
)
, m∞

(
ψ
)}

> 0, (5.22)

and the condition (5.10) holds; the assumption max{M(V),M∞(V)} < 0 is guaranteed by the
conditions

m(w) > −m
(
ψ
)
+ n

p
, m∞(w) > −m∞

(
ψ
)
+ n

p
. (5.23)

In the case ψ(r) = rλ, λ > 0, and w(r) = rμ, the conditions (5.22) and (5.10) reduce to

1 ≤ p < n + λ
α

,
1
q
=

1
p
− α

n + λ
, μ >

n + λ
p

; (5.24)

conditions (5.24) are also necessary for the operatorHα
w to be bounded from �Lp,ψ

{0}(R
n) to �Lq,ψ

{0}(R
n).

Proof. We have to find, in terms of the Matuszewska-Orlicz indices, conditions sufficient for
the validity of (5.19). For the latter we have

W(r) ≤ Cψ(r)
∫∞

r

	n−1+q(α−(n/p))ψ−q/p(	)
(

1
V(
	
)
∫∞

	

V(t)
t

dt

)q

dρ

≤ Cψ(r)
∫∞

r

	n−1+q(α−(n/p))ψ−q/p(	)dρ
(5.25)

by the assumption max{M(V),M∞(V)} < 0. With ψq/p(ρ) = ψ(q/p)−1(ρ)ψ(ρ) and the
condition (5.10)we arrive atW(r) ≤ Cψ(r) ∫∞r d	/	ψ(	), where the boundedness of the right-
hand side is guaranteed by the condition min{m(ψ), m∞(ψ)} > 0.

The proof for the case of power functions is similar to that in Corollary 5.5.
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Appendix

A. Zygmund-Bary-Stechkin (ZBS) Classes and
Matuszewska-Orlicz (MO) Type Indices

In the sequel, a nonnegative function f on [0, �], 0 < � ≤ ∞, is called almost increasing
(almost decreasing) if there exists a constant C (≥ 1) such that f(x) ≤ Cf(y) for all x ≤ y
(x ≥ y, resp.). Equivalently, a function f is almost increasing (almost decreasing) if it is
equivalent to an increasing (decreasing, resp.) function g, that is, c1f(x) ≤ g(x) ≤ c2f(x),
c1 > 0, c2 > 0.

Definition A.1. Let 0 < � <∞:

(1) by W = W([0, �]) we denote the class of continuous and positive functions ϕ on
(0, �] such that there exists finite or infinite limit limx→ 0ϕ(x);

(2) by W0 = W0([0, �]) we denote the class of almost increasing functions ϕ ∈ W on
(0, �);

(3) by W = W([0, �]) we denote the class of functions ϕ ∈ W such that xaϕ(x) ∈ W0

for some a = a(ϕ) ∈ R
1;

(4) byW =W([0, �])we denote the class of functions ϕ ∈W such that ϕ(t)/tb is almost
decreasing for some b ∈ R

1.

Definition A.2. Let 0 < � <∞:

(1) byW∞ = W∞([�,∞]) we denote the class of functions ϕ which are continuous and
positive and almost increasing on [�,∞) and which have the finite or infinite limit
limx→∞ϕ(x),

(2) byW∞ = W∞([�,∞)) we denote the class of functions ϕ ∈ W∞ such xaϕ(x) ∈ W∞
for some a = a(ϕ) ∈ R

1.

By W(R1
+) we denote the set of functions on R

1
+ whose restrictions onto (0, 1) are in

W([0, 1]) and restrictions onto [1,∞) are inW∞([1,∞)). Similarly, the setW(R1
+) is defined.

A.1. ZBS Classes and MO Indices of Weights at the Origin

In this subsection we assume that � <∞.
We say that a function ϕ belongs to a Zygmund class Z

β, β ∈ R
1, if ϕ ∈ W([0, �]) and∫x

0 (ϕ(t)/t
1+β)dt ≤ c(ϕ(x)/xβ), x ∈ (0, �), and to a Zygmund class Zγ , γ ∈ R

1, if ϕ ∈ W([0, �])

and
∫�
x(ϕ(t)/t

1+γ)dt ≤ c(ϕ(x)/xγ), x ∈ (0, �). We also denote

Φβ
γ := Z

β
⋂

Zγ , (A.1)

the latter class being also known as Bary-Stechkin-Zygmund class [20].
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For a function ϕ ∈W , the numbers

m
(
ϕ
)
= sup

0<x<1

ln
(
lim suph→ 0

(
ϕ(hx)/ϕ(h)

))
lnx

= lim
x→ 0

ln
(
lim suph→ 0

(
ϕ(hx)/ϕ(h)

))
lnx

,

M
(
ϕ
)
= sup

x>1

ln
(
lim suph→ 0

(
ϕ(hx)/ϕ(h)

))
lnx

= lim
x→∞

ln
(
lim suph→ 0

(
ϕ(hx)/ϕ(h)

))
lnx

(A.2)

are known as the Matuszewska-Orlicz type lower and upper indices of the function ϕ(r). The
property of functions to be almost increasing or almost decreasing after the multiplication
(division) by a power function is closely connected with these indices. We refer to [22–28] for
such a property and these indices.

Note that in this definition ϕ(x) need not to be an N-function: only its behaviour at
the origin is of importance. Observe that 0 ≤ m(ϕ) ≤M(ϕ) ≤ ∞ for ϕ ∈W0, and −∞ < m(ϕ) ≤
M(ϕ) ≤ ∞ for ϕ ∈W , and the following formulas are valid:

m
[
xaϕ(x)

]
= a +m

(
ϕ
)
, M

[
xaϕ(x)

]
= a +M

(
ϕ
)
, a ∈ R

1, (A.3)

m
([
ϕ(x)

]a) = am
(
ϕ
)
, M

([
ϕ(x)

]a) = aM
(
ϕ
)
, a ≥ 0, (A.4)

m

(
1
ϕ

)
= −M(

ϕ
)
, M

(
1
ϕ

)
= −m(

ϕ
)
, (A.5)

m(uv) ≥ m(u) +m(v), M(uv) ≤M(u) +M(v) (A.6)

for ϕ, u, v ∈W .
The proof of the following statement may be found in [21], Theorems 3.1, 3.2, and 3.5.

(In the formulation of Theorems in [21] it was supposed that β ≥ 0, γ > 0 and ϕ ∈ W0. It is
evidently true also for ϕ ∈W and all β, γ ∈ R

1, in view of formulas (A.3)).

Theorem A.3. Let ϕ ∈ W and β, γ ∈ R
1. Then ϕ ∈ Z

β ⇔ m(ϕ) > β and ϕ ∈ Zγ ⇔ M(ϕ) < γ .
Besides this, m(ϕ) = sup{μ > 0 : ϕ(x)/xμ is almost increasing}, and M(ϕ) = inf{ν > 0 :
ϕ(x)/xν is almost decreasing}, and for ϕ ∈ Φβ

γ the inequalities

c1x
M(ϕ)+ε ≤ ϕ(x) ≤ c2xm(ϕ)−ε (A.7)

hold with an arbitrarily small ε > 0 and c1 = c1(ε), c2 = c2(ε).

We define the following subclass inW0:

W0,b =
{
ϕ ∈W0 :

ϕ(t)
tb

, is almost increasing
}
, b ∈ R

1. (A.8)
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A.2. ZBS Classes and MO Indices of Weights at Infinity

Following Section 2.2 in [29], we use the following notation.
Let −∞ < α < β < ∞. We put Ψβ

α := Ẑ
β ∩ Ẑα, where Ẑ

β is the class of functions ϕ ∈
W∞ satisfying the condition

∫∞
x (x/t)β(ϕ(t)dt/t) ≤ cϕ(x), x ∈ (�,∞), and Ẑα is the class of

functions ϕ ∈ W([�,∞)) satisfying the condition
∫x
� (x/t)

α(ϕ(t)dt/t) ≤ cϕ(x), x ∈ (�,∞),
where c = c(ϕ) > 0 does not depend on x ∈ [�,∞).

The indices m∞(ϕ) and M∞(ϕ) responsible for the behavior of functions ϕ ∈
Ψβ
α([�,∞)) at infinity are introduced in the way similar to (A.2):

m∞
(
ϕ
)
= sup

x>1

ln
[
lim infh→∞

(
ϕ(xh)/ϕ(h)

)]
lnx

,

M∞
(
ϕ
)
= inf

x>1

ln
[
lim suph→∞

(
ϕ(xh)/ϕ(h)

)]
lnx

.

(A.9)

Properties of functions in the class Ψβ
α([�,∞)) are easily derived from those of

functions in Φα
β([0, �]) because of the following equivalence

ϕ ∈ Ψβ
α([�,∞)) ⇐⇒ ϕ∗ ∈ Φ−β

−α([0, �
∗]), (A.10)

where ϕ∗(t) = ϕ(1/t) and �∗ = 1/�. Direct calculation shows that

m∞
(
ϕ
)
= −M(

ϕ∗
)
, M∞

(
ϕ
)
= −m(

ϕ∗
)
, ϕ∗(t) := ϕ

(
1
t

)
. (A.11)

By (A.10) and (A.11), one can easily reformulate properties of functions of the classΦβ
γ

near the origin, given in Theorem A.3 for the case of the corresponding behavior at infinity
of functions of the class Ψβ

α and obtain that

c1t
m∞(ϕ)−ε ≤ ϕ(t) ≤ c2tM∞(ϕ)+ε, t ≥ �, ϕ ∈W∞,

m∞
(
ϕ
)
= sup

{
μ ∈ R

1 : t−μϕ(t) is almost increasing on [�,∞)
}
,

M∞
(
ϕ
)
= inf

{
ν ∈ R

1 : t−νϕ(t) is almost decreasing on [�,∞)
}
.

(A.12)

We say that a continuous function ϕ in (0,∞) is in the classW0,∞(R1
+) if its restriction

to (0, 1) belongs toW([0, 1]) and its restriction to (1,∞) belongs toW∞([1,∞]). For functions
inW0,∞(R1

+) the notation

Z
β0,β∞

(
R

1
+

)
= Z

β0([0, 1]) ∩ Z
β∞([1,∞)), Zγ0,γ∞

(
R

1
+

)
= Zγ0([0, 1]) ∩ Zγ∞([1,∞)) (A.13)



18 Journal of Function Spaces and Applications

has an obvious meaning (note that in (A.13) we use Z
β∞([1,∞)) and Zγ∞([1,∞)), not

Ẑ
β∞([1,∞)) and Ẑγ∞([1,∞))). In the case where the indices coincide, that is, β0 = β∞ := β,

we will simply write Z
β(R1

+) and similarly for Zγ(R1
+). We also denote

Φβ
γ

(
R

1
+

)
:= Z

β
(
R

1
+

)
∩ Zγ

(
R

1
+

)
. (A.14)

Making use of Theorem A.3 for Φα
β
([0, 1]) and relations (A.11), one easily arrives at

the following statement.

Lemma A.4. Let ϕ ∈W(R1
+). Then

ϕ ∈ Z
β0,β∞

(
R

1
+

)
⇐⇒ m

(
ϕ
)
> β0, m∞

(
ϕ
)
> β∞, (A.15)

ϕ ∈ Zγ0,γ∞

(
R

1
+

)
⇐⇒M

(
ϕ
)
< γ0, M∞

(
ϕ
)
< γ∞. (A.16)
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[20] N. K. Bari and S. B. Stečkin, “Best approximations and differential properties of two conjugate
functions,” Proceedings of the Moscow Mathematical Society, vol. 5, pp. 483–522, 1956 (Russian).

[21] N. K. Karapetyants and N. Samko, “Weighted theorems on fractional integrals in the generalized
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[22] S. G. Kreı̆n, Ju. I. Petunin, and E.M. Semënov, Interpolation of Linear Operators, Nauka, Moscow, Russia,
1978.

[23] L. Maligranda, “Indices and interpolation,” Dissertationes Mathematicae, vol. 234, p. 49, 1985.
[24] W.Matuszewska andW. Orlicz, “On some classes of functions with regard to their orders of growth,”

Studia Mathematica, vol. 26, pp. 11–24, 1965.
[25] L.-E. Persson, N. Samko, and P.Wall, “Quasi-monotone weight functions and their characteristics and

applications,”Mathematical Inequalities and Applications, vol. 12, no. 3, pp. 685–705, 2012.
[26] N. Samko, “Singular integral operators in weighted spaces with generalized Hölder condition,”
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