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We present a parallel and linear scaling implementation of the calculation of the electro-

static potential arising from an arbitrary charge distribution. Our approach is making

use of the multi-resolution basis of multiwavelets. The potential is obtained as the direct

solution of the Poisson equation in its Green’s function integral form. In the multiwavelet

basis the formally non-local integral operator decays rapidly to negligible values away

from the main diagonal, yielding an effectively banded structure where the bandwidth

is only dictated by the requested accuracy. This sparse operator structure has been

exploited to achieve linearly scaling and parallel algorithms. Parallelization has been

achieved both through the shared memory (OpenMP) and the message passing (MPI)

paradigm.

Our implementation has been tested by computing the electrostatic potential of

the electronic density of long-chain alkanes and diamond fragments showing (sub)linear
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scaling with the system size and efficent parallelization.

Keywords: Multiwavelets, electrostatic potentials, Poisson equation, integral operators,

linear scaling, parallel implementation.

1. Introduction

One of the most widespread yet challenging physical problems is the calculation

of the electromagnetic interactions between charge distributions.1 Its applications

range from engineering problems, to physics, chemistry and biology. The full solu-

tion is in principle described by the four Maxwell equations coupling the electric

field, the magnetic field, the charge density and the charge current. Moreover, the

presence of media and their interaction with the fields renders the problem even

more complicated.

If we restrict ourselves to the realm of electrostatic interactions (time indepen-

dent fields, and no current), the Maxwell equations can be reduced to the Poisson

equation, linking the scalar electrostatic potential V to the charge density ρ:

∇ · ε(r)∇V (r) = −4πρ(r) (1)

where the permittivity ε in general is position dependent. Most commonly, the

charge distribution ρ is known and one is interested in obtaining its effect on the

surroundings by computing the electrostatic potential. The formal solution for the

free boundary problem with constant ε can be written in a closed form by making

use of a Green’s kernel formalism:

V (r) =

∫
R3

1

|r − r′|
ρ(r′) dr′ (2)

From a computational point of view the challenge in modeling such a problem

is twofold. On the one hand, the Green’s kernel in Eq. (2) is non-separable: the

Cartesian coordinates are coupled and the integral cannot be decomposed into the

product of mono-dimensional integrals. On the other hand, the electrostatic inter-

action represented by the 1/r Green’s kernel has a singularity at short distances
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and is decaying slowly for long distances; the singularity makes accurate computa-

tion of electrostatic interactions challenging and the long-range interaction makes

the scaling with the system size challenging for straightforward computational ap-

proaches.

Several strategies have been devised to address the problem, depending e.g. on

the boundary conditions and on the type of charge distribution. When possible

the electrostatic equations are recasted onto a boundary problem thus limiting the

system size to a two-dimensional surface instead of the whole three-dimensional

space.2;3;4;5 This is the preferred approach in case e.g. of solute-solvent interac-

tions.3;6 For charge distributions that can be conveniently described in terms of

distributed multipoles, a very promising approach is constituted by the Fast Mul-

tipole Methods (FMM).7;8;9;10 For more general cases real-space mesh methods

must be employed.11;12;13;14;15;16;17;18 Besides the generality, the advantage of such

an approach is that it is well suited for modern parallel computing architectures:

the parallelization is achieved by distributing the mesh among the compute nodes,

although care must be taken in order to ensure a balanced workload.

The main disadvantage of real-space mesh methods is constituted by the large

storage requirements implied.13 This problem can be alleviated by making use of

an adaptive multiwavelet approach where functions are represented on adaptive

multi-resolution grids, the local refinement being dictated by a preselected accu-

racy.19 The other advantage of a multiwavelet basis is constituted by the efficient

representation of the integral operator in Eq. (2) which can be described in terms

of narrow-banded matrices in the so called Non-Standard form.20;21 By approxi-

mating the integral kernel in Eq. (2) as a sum of Gaussian functions, the operator

is decomposed into several components, each of which is Cartesian separable and

non-singular in the short-range limit. The prohibitive scaling in the long-range

limit is taken care of by the multi-resolution analysis, as each operator component

is further decomposed into different length scales. In this work we will present a

practical implementation of such a method, with focus on computational efficiency
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and application to molecular systems.

2. Mathematical Background

We will briefly introduce the mathematical background of our approach which is

based on multi-resolution analysis and the multiwavelet basis.22

2.1. The multiwavelet basis

Following the original construction from Alpert,23 a one-dimensional multiwavelet

basis is obtained by defining the multi-resolution scaling space V nk as the space of

piecewise polynomials on the unit interval

V nk
def
= { f : all polynomials of degree ≤ k

on (2−nl, 2−n(l + 1)) for 0 ≤ l < 2n,

f vanishes elsewhere }

(3)

From this definition Alpert shows that each space V nk is fully contained in all spaces

of higher resolution V mk ,m > n, and we can therefore consider a so called “ladder

of spaces” with increasing flexibility

V 0
k ⊂ V 1

k ⊂ . . . ⊂ V nk ⊂ . . . (4)

It is well known that the basis obtained by taking the limit for k →∞ is dense in the

L2 norm sense, and it has also been shown that the limit n→∞ is dense. In other

words, any function of L2 can be represented within any given accuracy by making

use of a polynomial of sufficiently high order at a given spatial refinement, or with

sufficiently high refinement for a given polynomial order. In practical applications

it is generally convenient to find a good balance by increasing both simultaneously.

The wavelet spaces Wn
k can be formally constructed by taking the orthogonal

complement between two successive scaling spaces:

Wn
k ⊕ V nk = V n+1

k (5)
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By construction the wavelet space Wn
k is orthogonal to all scaling spaces V mk , m ≤

n. In other words the first k + 1 moments of a wavelet basis ψn of the space Wn
k

are zero ∫ 1

0

xmψn(x) dx = 0, m = 0, . . . , k (6)

which means that the basis is very efficient for the representation of smooth func-

tions.

Eq. (5) does not completely define the basis. This flexibility can be exploited in

order to obtain a basis with useful properties, e.g. additional vanishing moments

and symmetry (see Alpert23 for details).

The change of basis from the scaling basis φn+1
l defining V n+1

k to the compound

scaling φnl and wavelet ψnl basis at scale n is undertaken by making use of a unitary,

local transformation called filters:ψnl
φnl

 =

G(1) G(0)

H(1) H(0)

φn+1
2l+1

φn+1
2l

 (7)

The locality of the transformation ensures that it can be performed in linear com-

plexity. In addition, it also ensures that it can easily be implemented on distributed

memory architectures.

Although the construction described applies to the one-dimensional case, the

multi-dimensional extension can be obtained by making use of tensor-product bases,

which in three dimensions yields

Φnijk(x, y, z) = φni (x)φnj (y)φnk (z) (8)

To summarize, the scaling basis is equivalent with the more commonly employed

basis of the finite element method (FEM): the three-dimensional unit cube is uni-

formly subdivided into cubic cells, each with a polynomial basis. What separates

the multiwavelet basis from FEM is the additional wavelet (or difference) basis,

which allows for adaptive (non-uniform) grids.
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2.1.1. Function representation

Functions are formally represented in a multiwavelet basis by projection, and we

define Pnk and Qnk as the projection operators onto V nk and Wn
k , respectively. It is

useful to point out that on the unit interval

Pnk +Qnk = Pn+1
k (9)

and

lim
n→∞

Pnk = 1 lim
n→∞

Qnk = 0 (10)

Eq. (9) follows from the construction of the wavelet basis, whereas Eq. (10) is due

to the completeness in the L2 sense. The projection of an arbitrary function f is

denoted

fn
def
= Pnk f dfn

def
= Qnkf (11)

Any smooth function can be approximated to any finite precision by a scaling pro-

jection with sufficiently high resolution N , and by recursive application of Eq. (9),

this approximation can be decomposed into its multi-resolution components

f ≈ fN = f0 +

N−1∑
n=0

dfn (12)

Although mathematically equivalent, the representation in the combined (multi-

resolution) scaling and wavelet basis in (RHS in Eq. (12)) has several advantages

over the pure (high-resolution) scaling representation fN . Because of the vanishing

moments property of the wavelet basis (Eq. 6), the sum in Eq. (12) is rapidly con-

verging for smooth functions and can be locally truncated to a predefined precision

ε based on the wavelet norm ‖dfnl ‖ at each interval 2−n(l, l + 1)

‖ dfnl ‖ <
ε

2n/2
‖f‖ (13)

which can be used to build adaptive, function specific grids that dramatically re-

duces the number of coefficients needed to represent the function to the given

accuracy.
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The vanishing moments also means that the Coulomb interaction between

charges represented in the wavelet basis decays very rapidly with distance, as the

leading multipole order of this interaction is k + 1. This is what ultimately allows

for linear scaling algorithms, as the full (long-ranged) interaction is decomposed

into different length scales, where the interaction is ”local” at each length scale

separately.

2.2. Operator representation

In order to apply the Poisson operator efficiently in three dimensions it is crucial

to achieve an optimal representation. Several properties need to be considered:

(1) In order to exploit the tensorial representation of the basis, a representation

that separates the Cartesian coordinates needs to be employed.

(2) Coupling between different length scales should be avoided in order to limit

communication and to exploit adaptivity for function representations.

(3) The operator representation should ideally be banded in order to limit the

coupling to the minimum necessary.

The first point is achieved by constructing a separated representation of the Poisson

kernel in terms of Gaussian functions:

1

r
' KM (r) =

M∑
i=1

aie
−αir

2

(14)

where the components of the expansion are determined by an efficient quadrature

scheme.24 Although the Poisson kernel is not separable, each term in Eq. (14)

is, and the expansion can be made arbitrarily accurate since for any given ε it is

possible to find a rank M such that∣∣∣∣KM (r)− 1/r

1/r

∣∣∣∣ < ε (15)

is fulfilled within any given interval r ∈ [r0, r1], where r0 is chosen so that the

contribution due to the integration at the singularity can be neglected,25 and r1 is

the longest possible distance in the domain (
√

3 for the unit cube).
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The second and third points are achieved through the so called Non-Standard

form of the operator.20;21 The application of an operator T can be written as

g(x) = [Tf ](x) (16)

which can be discretized in a Galerkin scheme by projecting both the functions and

the operator on a given scaling space V nk

Tnk
def
= Pnk TP

n
k (17)

By recursive application of Eq. (9), TNk can be rewritten in a telescopic series:

TNk = PNk TP
N
k (18)

= P 0
kTP

0
k +

N−1∑
n=0

(Pn+1
k TPn+1

k − Pnk TPnk ) (19)

= P 0
kTP

0
k +

N−1∑
n=0

(Pnk +Qnk )T (Pnk +Qnk )− Pnk TPnk (20)

= P 0
kTP

0
k +

N−1∑
n=0

QnkTQ
n
k +QnkTP

n
k + Pnk TQ

n
k (21)

= T 0
k +

N−1∑
n=0

(Ank +Bnk + Cnk ) (22)

where we have implicitly defined the following components:

Ank
def
= QnkTQ

n
k Bnk

def
= QnkTP

n
k Cnk

def
= Pnk TQ

n
k (23)

The full operator can in theory be recovered by taking the limit to infinite refinement

and by making use of Eq. (10):

T = lim
N→∞

TNk = T 0
k +

∞∑
n=0

(Ank +Bnk + Cnk ) (24)

and by truncating the infinite sum we arrive at a multi-resolution operator with

finite precision. If we introduce the following auxiliary functions:

ĝn
def
= Tnk f

n (25)

g̃n
def
= Cnk dfn (26)

dg̃n
def
= (Ank +Bnk )(fn + dfn) (27)
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the operator application can be written

ĝN = TNk f
N = T 0

k f
0 +

N−1∑
n=0

(Ank +Bnk + Cnk )(fn + dfn) (28)

= ĝ0 +

N−1∑
n=0

g̃n + dg̃n (29)

In the Non-Standard form the operator is applied one scale at the time, starting

from scale zero. In this way the function g can be built adaptively in the same way

as for the projection of functions, refining locally based on the wavelet norm at

scale n and translation l

‖ dg̃nl ‖ ≤
ε

2n/2
‖g‖ (30)

At each scale g̃n and dg̃n are computed whereas ĝ is only computed at the coarsest

scale and reconstructed by recursion at all scales n > 0:

ĝn = ĝn−1 + dg̃n−1 + g̃n−1 n ≤ N (31)

Eq. (31) shows how the coupling between scales is then achieved by propagating the

result from the coarsest to the finest scale. This is done using the filter operations

of Eq. (7) in linear complexity.

The main advantage of such a construction is connected to the vanishing mo-

ments property of the multiwavelet basis. Apart from the coarsest scale where the

full operator is applied, the pure scaling component Tnk of the operator is never

used. The other components contain at least one projection onto the wavelet basis

(Bnk and Cnk ) or two (Ank ) and it can be shown that these terms decay rapidly with

the spatial separation between two grid cells20;26 and are hence diagonally domi-

nated, opening the way for linear scaling algorithms with reduced communication

requirements for parallel implementations.

2.3. Extension to several dimensions

The extension to several dimensions can formally be achieved by a standard tensor-

product structure (Eq. 8). The main challenge arises from the so called “curse of
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dimensionality”: the storage and computing costs scales exponentially with the

dimension d. The tensor product structure of functions and operators makes the

computational cost per grid cell scale as Mdkd+1 instead of k2d, where M is the

separation rank and k is the order of the polynomial basis, which reduces the expo-

nent and complexity significantly, making it feasible to use the described approach

up to d = 3. For dimensionality higher than 3, it would however be unavoidable

to make use of rank reduction techniques as described originally by Beyklin et al.

24;27;28 and recently employed by Bischoff and Valeev.29 It is beyond the scope of

the present paper to describe the details of the multi-dimensional implementation

which have been presented in detail elsewhere.25 Suffice to say that the number of

components of the Non-Standard form becomes 22d and all but the pure scaling

component are employed in the operator application. What makes it feasible to use

such an approach is again the tensor product structure coupled with the vanishing

moments which significantly reduce the cost of applying the different components.

3. Implementation

Implementing the mathematical formalism outlined in section 2 in an efficient com-

puter code is a complex task. In grid based, real-space methods the amount of

grid data required grows rapidly with the complexity of the function. The com-

putational requirements increase similarly with the number of grid points. For the

method to be feasible, it is important to utilize algorithms which reduce the mem-

ory footprint, lower the computational demands and have favorable parallel scaling

properties. Finding a good balance between these requirements can be challeng-

ing. We have addressed these issues by exploiting three major algorithmic ideas:

automatic grid adaptation, use of sparsity and parallelization. Our computer code

has been implemented in C++, due to the demands for high performance, as well

as the complex data structures involved. The code has been written using a fully

object-oriented approach, using generic programming and polymorphic classes.
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3.1. Grid adaptation

In order to drastically reduce the memory footprint we exploit the refinement prop-

erties of multiwavelets to automatically generate fully problem adapted grids. One

of the major problems encountered in FEM that employs a uniform (Eq. ??) distri-

bution of grid points is that the overall precision of the representation is limited by

the regions where the representation is poor, typically in regions where the function

is changing rapidly. With uniform grids large parts of the function will be exces-

sively overrepresented, if good precision is to be achieved. For molecular systems

it is well known that the problematic regions are in the vicinity of the nuclear

positions, and the problem has previously been addressed by projecting out the

spherically symmetric part around each nucleus and treating this separately.30;31;32

The remaining part of the solution is then treated much more efficiently by a uni-

form FEM grid. The main issues with this approach are the lack of generality and

the complication that arises from the coupling between the different parts. Instead,

by expanding the functions in the multi-resolution wavelet basis (Eq. 12), and trun-

cating this expansion locally according to Eq. (13), we achieve grid adaptation that

largely solves the problem by locally varying the grid density according to the ac-

tual needs. However, much of the code complexity arises from the grid adaptation

in a tensorial basis, since the grids cannot be easily stored in large blocks or arrays.

Instead the grids are stored in sub-blocks, or nodes, whose spatial extensions are

dependent on the level of refinement. Each node has a fixed number of grid points,

typically 10 × 10 × 10 points, and is uniquely addressable by four integers (scale

and translation in three dimensions). From an implementation point of view, it is

practical to store the grid blocks in a tree structure.

3.2. Sparsity

In the Non-Standard multiwavelet representation of integral operators the operator

matrices become sparse and diagonally dominant. The sparsity implies that the
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operator has a limited bandwidth at each scale, and is negligible outside the band-

width. By exploiting the sparsity one avoids calculating trivial zero contributions,

in addition to reducing the data access. We will show that by properly exploiting

the sparsity, the amount of computation scales linearly with the size of the problem.

Fully exploiting the operator sparsity is rather complex in a general, n-

dimensional tensorial basis. In tensorial form the operator has 4d components where

d is the dimensionality of the problem (A,B,C and T of Eq. (24) in each dimen-

sion). The structure of the operator is further complicated by the fact that different

operator components have different bandwidths (that also changes depending on

the length scale), and in the current implementation sparsity is fully utilized by

treating all 64 (for d = 3) operator components separately.

3.3. Parallelization

As pointed out above, any grid based, real-space method is faced with two major

problems: The data storage requirements that quickly exceed the available memory,

and the computational time that increases accordingly. Thus, calculations rapidly

become intractable. Both problems can be addressed simultaneously by parallel pro-

cessing. By having more processors working on the same problem the computation

time can be reduced without additional memory requirements on a given computa-

tional device. Furthermore, on cluster type machines with distributed memory, the

memory requirements on the individual compute nodes (hosts) can be reduced by

only storing parts of the function representation.

In the current version of the code we use two parallelization schemes: Utiliz-

ing symmetric multi-processing (SMP) and shared memory using the standard

OpenMP paradigm, as well as distributed processing using the Message Passing

Interface (MPI) for communication between computational hosts.
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3.3.1. Symmetric multi-processing and OpenMP

Modern computers have multiple, independent computational cores sharing a com-

mon memory space, and using OpenMP technology it does not require much in

terms of implementation to efficiently utilize all available processors on a given

host. Using multiwavelets, there is by construction no overlap between basis func-

tions located on different grid cells, so each node is formally independent of the

other nodes in the tree. Efficient parallelization is achieved by traversing the tree

structures and defining tasks for each node, letting the OpenMP runtime system

handle the scheduling. For function representation (projection of a function onto

the multiwavelet basis), the tasks are truly independent and the parallelization

is simple and highly efficient. Since every OpenMP thread has a fair amount of

computation to perform, the parallelization overhead is negligible.

Due to the grid adaptation, parallelization of the operator application is some-

what more complicated. Applying an operator with a non-zero bandwidth, implies

accessing neighboring nodes that may not be available at the given scale, since the

grid refinement might have stopped at a coarser scale for the neighboring part of the

function. By applying the wavelet transform (Eq. 7), information about the func-

tion at the correct scale can be generated. However, generating the corresponding

coefficients is costly, and they often get reused many times. It is wasteful to generate

the coefficients every time, and instead they are generated once when needed, and

kept until explicitly released. This complicates the parallelization of the operator

application, since a generated node might be within the bandwidth of two resultant

nodes being processed simultaneously, causing a data race. By carefully using ex-

plicit data locking at the deepest possible location in the code, and by tuning task

scheduling, we have been able to achieve very low impact from locking, achieving

good parallel performance.
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3.3.2. Distributed processing and MPI

While SMP reduces the total computational time, it does not reduce the local

memory requirements. By using homogeneous clusters of computers, we can reduce

both the computational time and the local memory footprint. However, contrary

to SMP, distributed processing adds significant complexity to the code.

When dealing with distributed data structures, one must consider not only

how the data should be distributed, but also how it should be accessed. In the

current version of the code we employ a series of techniques to distribute data in

an efficient manner. One of the key elements is a redundant representation of the

tree structure. Each host has a complete and identical, skeleton tree structure.

Each node in the tree has a label identifying the host it belongs to, and only the

owner of a node has allocated memory for it, and has coefficients, although some

redundancy in storage is allowed.

When applying an operator on a distributed tree (both input and output func-

tions are distributed), one finds that some of the required data is located on different

MPI hosts and needs to be transferred. Because of a non-zero bandwidth of the op-

erator, each node of the output function (the potential) will get contributions from

several of the surrounding nodes of the input function (the charge density), and

at the same time each node of the input function will give contribution to several

surrounding nodes of the output function.

In such situations there are two possible communication strategies: one can focus

on the data distributions of either the output or the input function. Each MPI host

will be allocated a number of nodes of the potential to calculate, and one can then

choose to fetch all the data needed of the charge distribution to calculate these

nodes. This requires MPI communication only prior to operator application, but

will result in a redundant distribution of the charge density nodes (several MPI

hosts will have the same data).

On the other hand, all MPI hosts also have a number of allocated nodes of
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the charge density, and one can instead choose to calculate the potential arising

from these nodes directly. This requires no initial communication step, but will

result in an incomplete potential for all MPI hosts, and the result needs to be

communicated and added up by the appropriate MPI host afterwards. We find

that the latter strategy generally requires less data communication, so this will be

our method of choice, although both strategies are implemented.

In both schemes it is equally important to ensure data localization to minimize

communication between hosts. When the real-space domains of all MPI hosts are

well localized, communication is reduced drastically, and when the number of MPI

hosts gets large the limited bandwidth of the operator will ensure that the communi-

cation will be limited to only near neighbors. In the current code, good localization

is achieved by first building a skeleton tree structure without coefficients, which

tries to estimate the final tree structure as closely as possible. Then the tree

is traversed through a so-called space filling curve: a path constructed recursively

such that its fractal limit coincide with the whole multi-dimensional space. In this

way, an ordering of the nodes in a tree structure is introduced and the data can

easily be distributed by partitioning the curve into contiguous chunks. Moreover,

the lengths of such portions should ideally reflect the computational work load in

subsequent computations.

There are several ways to construct such a space filling curve, but to ensure max-

imum locality Griebel33 suggests Hilbert curves. The construction of the Hilbert

curve starts at scale n = 1, connecting all 2d nodes in a specific sequence. In par-

ticular, addressing each node using a bit notation (one bit for each direction), the

fundamental Hilbert curve will start at a given node, and end at one of its adjacent

nodes (only one bit different from the starting node). Each step of the curve can

be defined by a bit switch: only one bit of the sequence changes every time. The

procedure is continued recursively through all nodes of the tree, but the sequence

through which the children nodesare connected is changing in such a way that

the curve remains continuous. Figures 1 and 2 show the difference between the
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Fig. 8.22. Three steps in the construction of the Lebesgue curve.

Fig. 8.23. Three steps in the construction of the Hilbert curve.

connected by a straight line, only the common edge of the two squares is
crossed. The construction is made clearer in Figure 8.23. One can show that
the sequence Kn for Hilbert’s curve converges uniformly to a curve K, which
implies that the limit curve K is continuous. For the Lebesgue curve, the
sequence only converges pointwise and the limit is discontinuous.

The construction can be generalized to arbitrary space dimensions DIM,
i.e. to curves K : [0, 1] → [0, 1]DIM. Such a Hilbert curve is shown for the
three-dimensional case in Figures 8.24 and 8.25.
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Fig. 8.24. Construction of a three-dimensional Hilbert curve.

Fig. 1. Three refinement levels in the construction of the Lebesgue curve in 2D.
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Fig. 8.24. Construction of a three-dimensional Hilbert curve.

Fig. 2. Three refinement levels in the construction of the Hilbert curve in 2D.

Lebesgue curve, which is induced by the natural ordering of the bit sequences (00,

01, 10, 11) and the Hilbert curve (00, 10, 11, 01) for three refinement levels in two

dimensions. The natural bit ordering of the Lebesgue curve implies “jumps” in the

sequence (shown by the Z shape) which will ultimately make the curve converge

to its space-filling limit point-wise to a discontinuous limiting curve. The Hilbert

curve converges uniformly to a continuous space filling curve. As a consequence,

employing a Hilbert curve to partition the domain will result in connected domains

with good locality properties which will eventually minimize the communication

overhead.

Besides the communication overhead, the main concern in distributed processing

is to ensure a balanced work load between MPI hosts. This is not a straightforward

task as the work needed to calculate a given node can vary a lot, depending on

the bandwidth (in each dimension, at a specific length scale) of the operator as

well as the local norms of both the input and output functions. This means that

simply dividing the Hilbert curve into equally sized portions (which is the way the
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data is initially distributed) does usually not give the best work distribution, and

some tuning is needed prior to operator application. This is done by assigning a

work load to each node in the tree and shifting the domain boundary along the

Hilbert curve in such a way that the total work gets evenly distributed. In this

way the communication is done only between neighboring MPI hosts. However, our

experience show that this load balancing algorithm is not always flexible enough,

and it requires that the work load is quite well distributed to begin with, and it

will probably be insufficient when the number of MPI hosts gets large.

3.4. Algorithm

Finally we present in Alg. 1 the hybrid MPI/OpenMP parallel algorithm for the

operator application in the Non-Standard form in the adaptive multiwavelet basis.

It is important to separate between the input and output functions, as the tree

building algorithm is driven by the nodes of the output function, while the MPI

work load distribution is based on the nodes of the input function. We will denote

the nodes that are owned by the given MPI host as local, while all nodes represents

the full tree, regardless of MPI ownership.

The initial tree skeleton for the output function that appears in line 2 of Alg.

1 can be chosen in several ways: Beylkin et al.20 suggests to simply copy the tree

of the input function, but we find this to be a suboptimal choice for the types of

operators we are dealing with, as their ”smoothing” properties in general leads to

output grids that are coarser but wider than the grids of the input function. For

applications in iterative solution algorithms, which are commonly encountered in

computational chemistry, the same functions are computed with minor modifica-

tions in each iteration, and a good choice in this case could be to reuse the grid from

the previous iteration. We would like to emphasize that the final tree structure

obtained at the end of the operator application will not depend on the choice of

initial tree skeleton, as the adaptive algorithm will always build the same tree in

the end. The initial choice is only important for obtaining a good and efficient data
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distribution, and becomes particularly important as all further refinement beyond

the initial tree will happen locally on the given MPI host (line 16).

The presented algorithm will build a tree structure for the output function

starting from the initial empty skeleton, adding non-uniform layers of refinement

until the requested accuracy is obtained in terms of the wavelet norm. In each

iteration (line 5) all new (empty) nodes of the output function is traversed by all

MPI hosts, but only the nodes that get contributions from one or more local nodes

of the input function will actually be calculated. Afterwards the calculated nodes

that belong to another host is transferred to (and added up by) its rightful owner

(line 12). When all contributions to a given output node are collected, the owning

host will decide whether or not the node needs to be further refined (line 15).

The actual computation of the scaling and wavelet coefficients in line 10 of

Alg. 1 involves rather complicated combinatorics in multiple dimensions, as the 4d

operator components will couple the 2d scaling/wavelet components of all input

nodes within the bandwidth to the 2d scaling/wavelet components of the output

node. Details can be found in Frediani et al.25 for the implementation without

parallelization.

4. Results

In this section we will demonstrate the performance of our code with vari-

ous test calculations on realistic molecular systems, specifically linear alkane

chains CnH2n+2 for n = {2, . . . , 70} and pyramidal diamond fragments

C(2n+3)(n+2)(n+1)/6H2(n+2)(n+1) for n = {1, . . . , 9}. All systems were constructed

with a constant C-C bond length of 0.154 nm, and terminal H atoms were attached.

The electron densities were precomputed at Density Functional Theory (DFT) level

(BLYP34;35;36 functional, Dunning’s DZ37;38 Gaussian basis) using the LSDalton39

program and then projected onto the multiwavelet basis. Similar calculations were

performed by Watson and Hirao40 using a spectral-element method with a high-
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Algorithm 1 Adaptive operator application in the Non-Standard form

1: MPI: assume input tree distributed among hosts through Hilbert path

2: create tree skeleton of empty nodes for the output function

3: MPI: distribute output nodes among hosts through Hilbert path

4: create list of all output nodes

5: while number of output nodes in the current list N > 0 do

6: OpenMP: divide the list of output nodes among available processors

7: for each output node in the current list do

8: fetch local input nodes within bandwidth of the operator

9: prune list of input nodes based on Cauchy-Schwartz screening

10: compute scaling and wavelet coefficients of output node

11: end for

12: MPI: communicate the nodes of the output function to the appropriate host

13: for each local node of the output function do

14: remove node from current list

15: if node needs to be refined then

16: allocate children nodes (inherits MPI ownership from parent)

17: add children nodes to the current list

18: end if

19: end for

20: MPI: collect list of all output nodes for the next iteration

21: end while

order Chebyshev polynomial basis.

All computations have been performed on a cluster consisting of 2×8 cores Intel

Xeon E5-2670 processors with 16 GB memory, connected by an infiniband network.

4.1. Accuracy

One attractive property of the multiwavelet basis that separates it from other bases

commonly used in quantum chemistry calculations is the strict error control in

both function projections and operator applications. By truncating the wavelet

expansions locally according to Eq. (13) we can control the global error of the



July 8, 2014 14:38
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calculations. We demonstrate this by calculating the Coulomb self-repulsion energy

of a charge distribution ρ(r):

E =

∫
ρ(r)V (r)dr (32)

where the potential V (r) is obtained by solving the Poisson equation (Eq. 2). There

are several critical issues in order to guarantee the precision of the calculated energy:

The charge distribution as well as the Poisson operator (e.i. the kernel expansion

in Eq. (14)) must be represented with sufficient accuracy, and the operator must

be applied in such a way that no significant contributions are omitted, while at the

same time thresholding as much as possible for efficiency. A detailed discussion of

the accuracy parameters that appear in the operator construction and application

is presented in a separate study.25

Test calculations were performed on the smaller alkane systems, n =

{2, 4, 6, 8, 10}. The Coulomb energy was calculated analytically in the Gaussian

basis by LSDalton, and the accuracy of our Poisson solver is tested against the

analytical result. For each system we calculate the energy to three different target

accuracies ε = {10−5, 10−7, 10−9} and the numbers are presented in table 1. The

error in the charge integral gives an indication of the accuracy of the projection of

the Gaussian basis onto the multiwavelet basis, and we see that the errors are well

within the given threshold. The errors in the Coulomb energy are also consistently

below the requested precision and are more or less independent of the size of the

system (at least for the more accurate calculations).

The calculations were performed using a polynomial order k ≥ − log(ε) + 2

that increases with increasing accuracy. This is a slightly less conservative choice

than what we have found to be a safe compromise to guarantee the accuracy of

the operator application (k ≥ −1.5 log(ε) + 2, details can be found in Ref. 25). In

principle the increasing accuracy should not be a result of the increasing polynomial

order, and a fixed, low polynomial order should give similar precision. This however

requires that the formally correct thresholding of wavelet coefficient is employed.



July 8, 2014 14:38

Linear scaling Coulomb interaction in the multiwavelet basis, a parallel implementation 21

With reference to Eq. (13), for a multivariate function the factor 2n/2 should be

exchanged for 2dn/2 where d is the dimensionality. This choice is however too strict,

yielding much larger function representations than necessary. In prctical cases it is

more convenient to make use of d = 1 in Eq. (13) and at the same time make use

of a polynomial order which is large enough to ensure that the requested accuracy

ε is achieved. A smaller k would not yield the required accuracy, whereas a larger

one would increase the size of the representation.
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Table 1: Accuracy of Coulomb energy and charge integral of small alkane molecules. Densities

are precomputed at DFT (BLYP) level and analytic energies are calculated in the Gaussian basis

(Dunning DZ) using the LSDalton program. Computation times are for a single processor.

Requested Time Coulomb energy Relative error

precision (sec) (hartree) Energy Charge

C2H6

ε = 1.0e-05 12 80.085849034 3.2e-06 5.9e-07

ε = 1.0e-07 41 80.086102499 1.4e-08 2.9e-09

ε = 1.0e-09 607 80.086103631 1.3e-10 2.2e-11

Analytic - 80.086103641 - -

C4H10

ε = 1.0e-05 13 205.548292326 2.0e-06 4.4e-07

ε = 1.0e-07 52 205.548692277 1.4e-08 2.4e-09

ε = 1.0e-09 774 205.548695185 1.3e-10 1.6e-11

Analytic - 205.548695213 - -

C6H14

ε = 1.0e-05 16 355.995462175 3.4e-06 4.2e-07

ε = 1.0e-07 63 355.996666233 1.4e-08 1.8e-09

ε = 1.0e-09 792 355.996671114 1.4e-10 1.3e-11

Analytic - 355.996671163 - -

C8H18

ε = 1.0e-05 18 523.397878651 4.1e-06 3.8e-07

ε = 1.0e-07 73 523.400041990 1.4e-08 1.2e-09

ε = 1.0e-09 1035 523.400049203 1.4e-10 9.7e-12

Analytic - 523.400049277 - -

C10H22

ε = 1.0e-05 20 703.6228144331 7.1e-06 3.4e-07

ε = 1.0e-07 85 703.6277668016 1.5e-08 1.3e-09

ε = 1.0e-09 1148 703.6277770551 1.5e-10 8.4e-12

Analytic - 703.6277771588 - -
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Table 2: Absolute and relative errors in Coulomb energies calculated to requested relative ac-

curacy 10−6, and requested absolute accuracy 10−3. Densities are precomputed at DFT (BLYP)

level and analytic energies are calculated in the Gaussian basis (Dunning DZ) using the LSDalton

program. Computation times are for a single processor.

Alkane system n in CnH2n+2

Req. rel. precision 1.0e-6 Req. abs. precision 1.0e-3

n Coulomb energy Time Error Time Error

(hartree) (sec) Relative Absolute (sec) Relative Absolute

2 80.08610364 24.9 1.0e-07 8.3e-06 7.7 2.7e-06 2.1e-04

10 703.62777716 42.8 1.1e-07 8.1e-05 30.9 2.4e-07 1.7e-04

20 1752.56975975 62.6 1.7e-07 3.0e-04 72.0 1.0e-07 1.8e-04

30 2936.25648588 84.0 4.4e-07 1.3e-03 110.8 2.0e-07 6.0e-04

40 4211.56647408 101.6 4.9e-07 2.1e-03 151.6 1.7e-07 7.3e-04

50 5555.20166293 116.3 5.5e-07 3.0e-03 190.4 1.6e-07 8.9e-04

60 6953.41087253 130.9 6.9e-07 4.8e-03 225.9 6.6e-08 4.6e-04

70 8396.93995214 143.0 8.8e-07 7.5e-03 259.0 6.4e-08 5.3e-04

4.2. Linear scaling

A direct consequence of the banded structure of the operator matrix is that the

computation time of applying the operator should scale linearly with system size.

We test this property by calculating the Coulomb energy on the full range of alkane

systems, n = {2, . . . , 70}. By making use of the Fast Multipole Method and adaptive

resolution (adaptive in polynomial order, not cell size) Watson and Hirao40 were

able to achieve linear scaling of the calculation of the Coulomb energy for both the

alkane and the diamond systems, with a relative error of around 1 ppm.

In trying to reproduce these calculations we choose a 9th order polynomial ba-

sis, with a target relative accuracy of ε = 10−6, and the numbers are presented in

table 2. We see that although the relative accuracy is somewhat degrading as the

system size increase, all numbers are within the requested precision. The computa-

tion times are plotted to the left in figure 3 and we see that the scaling is in fact
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Fig. 3. Scaling of computation time on a single processor for linear alkane systems when requested

accuracy is relative (left) and absolute (right). Best fit curves are Eqs. (33) and (34), respectively.

sublinear. The solid line in the plot is obtained using the Levenberg-Marquardt41;42

algorithm to fit the timings t with respect to the number of atoms n to the function

t(n) = 12.5 + 2.34n0.754 (33)

which shows an exponent significantly lower than one. This behavior can be under-

stood by the use of relative rather than absolute precision in combination with the

automatic adaptivity of the grids in our calculations. As the system size increases

the global norm of the functions involved increase accordingly, and the local trunca-

tion criterion in Eq. (13) is gradually relaxed. This means that the local resolution

of the grid around each CH2 fragment is gradually getting coarser, while the overall

relative accuracy of the function is maintained. As the computation time is expected

to be directly related to the overall number of grid cells, one can expect the scaling

to less than linear as the system size increases.

If we on the other hand are interested in an absolute accuracy, we need to main-

tain the local high resolution around each fragment as the system size is increased.

In this case the number of grid cells should grow linearly with the size of the system,

and one can expect the computation time to do the same. This would correspond

to the calculations done by Watson and Hirao,40 as their truncation is based on

the local rather than global norm of the function and the grid of the full system is
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more or less the union of the grids around its constituent atoms.

Even though our code is based on relative precision, we can simulate absolute

precision by gradually increasing the relative accuracy as the system size grows in

such a way that the absolute error remains approximately constant. We present

in table 2 also the numbers for such calculations, where the absolute error is kept

below 10−3, and the computation times are shown to the right of figure 3. We see

that the slope of this curve is steeper than the corresponding curve with relative

precision, as the absolute error criterion progressively becomes more demanding

than the relative one. The Levenberg-Marquardt algorithm gives a best fit

t(n) = −6.0 + 1.33n0.991 (34)

where the exponent now is very close to one. Comparing with Watson and Hirao,

we see a factor of 8-10 reduction of the computation time while the accuracy is

about an order of magnitude higher.a However, it should be pointed out that their

objective was only to demonstrate the linear scaling behavior of their method, and

their parameters were not optimized for computational speed.

If one is satisfied with sticking only to a relative accuracy, the calculations

quickly becomes much more favorable, and for the biggest alkane system C70H142

(562 electrons) the calculation is more than 15 times faster than Watson and Hirao

with comparable accuracy.

4.3. Parallel performance

We test the parallel performance of our code by calculating the electrostatic po-

tential of the pyramid shaped diamond fragments C(2n+3)(n+2)(n+1)/6H2(n+2)(n+1)

for n = {1, . . . , 9}, where the biggest system contains more than 600 atoms. The

calculations were done using a 9th order polynomial basis with a requested relative

aTimings are not adjusted for differences in hardware performance. Watson and Hirao ran on

IBM Power 5+ 2.1GHz processors. Although the architectures are not identical, they are to a

large extent comparable in performance.
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Table 3: Wall clock computation time in seconds for parallel calculation of electronic potential of

diamond fragments using pure OpenMP, pure MPI and hybrid MPI/OpenMP strategies. Densities

are precomputed at DFT (BLYP) level using the LSDalton program.

Number of CPUs Diamond system n in C(2n+3)(n+2)(n+1)/6H2(n+2)(n+1)

MPI OMP TOT 1 2 3 4 5 6 7 8 9

1 1 1 29.4 46.2 64.7 97.8 133.9 166.8 213.4 269.4 332.0

1 2 2 15.5 25.5 33.0 51.3 69.5 87.2 110.0 138.9 163.4

1 4 4 8.0 12.8 17.4 27.0 36.1 47.3 57.8 73.7 90.1

1 8 8 4.2 6.5 8.8 13.9 18.6 23.5 29.4 36.7 45.0

1 16 16 2.4 3.5 4.7 7.5 9.6 12.2 15.4 19.1 23.3

2 1 2 17.9 28.4 35.8 59.2 81.6 93.0 121.7 147.5 176.5

4 1 4 10.1 16.3 21.2 32.5 51.6 53.8 60.8 85.3 100.7

8 1 8 6.1 9.4 11.8 19.9 25.6 28.0 35.4 43.7 50.7

16 1 16 5.0 6.2 8.2 12.4 15.0 17.3 23.0 26.1 31.3

32 1 32 3.6 4.2 5.4 9.5 9.2 10.9 14.1 16.8 20.0

64 1 64 3.1 3.9 4.3 6.5 6.6 7.4 10.3 11.4 13.4

128 1 128 5.2 5.7 6.4 7.6 7.8 8.8 10.9 10.9 11.9

2 16 32 1.5 2.2 2.9 4.8 6.0 7.0 9.6 11.4 13.7

4 16 64 1.1 1.6 2.0 3.2 4.3 4.7 6.3 7.3 7.9

8 16 128 1.0 1.4 1.8 2.9 3.3 3.8 4.8 5.9 6.4

16 16 256 0.9 1.3 1.6 2.2 2.9 3.3 4.2 4.9 6.0

32 16 512 1.1 1.3 1.5 2.0 2.4 2.8 3.4 4.0 4.8

accuracy of ε = 10−6.

Figure 4 shows to the left the walltime of the diamond calculations with 1, 2,

4, 8 and 16 shared memory processors. There are several things to note about this

figure. Firstly, we see that the scaling with respect to system size of the single

processor calculation is again sublinear. The Levenberg-Marquardt algorithm gives

t(n) = 11.6 + 1.84n0.805 (35)

which is quite close to what we had for the linear alkane systems (up to the biggest

alkane system of 200 atoms the difference is less than 2%). This indicates that the
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Fig. 4. Left: Scaling of computation time for the calculation of the electronic potential of diamond

fragments with number of processors 1, . . . , 16 using OpenMP. Numbers are taken from table 3.

Best fit curve is Eq. (35). Right: Parallel efficiency of the operator application for diamond systems

1 and 9.

computation time depends solely on the size of the system, not its geometry.

Secondly, we can see a reduction of computation time by roughly a factor of

two when the number of processors is doubled, while the scaling properties with

respect to the number of atoms is kept also for the parallel computations. To the

right of figure 4 we see the parallel speedup for the smallest and the biggest system,

which shows an efficiency of 80 and 90 %, respectively, on 16 processors. It is worth

noticing that for the biggest system the performance does not fall off significantly

up to 16 processors, and it would be interesting to test the code on computers with

even more shared memory processors available.

Even though the shared memory parallelization shows very good performance

there are still reasons for utilizing distributed memory (MPI) parallelization tech-

niques. Firstly, the memory requirements for representing three-dimensional func-

tions in the multiwavelet basis is still rather big, even with automatic grid adap-

tation, and the biggest diamond calculation presented in figure 4 more or less ex-

hausts the available resources (16 GB). By adding another layer of parallelization

the functions can be distributed over the memory of several MPI hosts, and we can

reach even bigger systems. It is expected that the parallelization overhead is more
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substantial for the MPI implementation, but with an efficient OpenMP implemen-

tation there are prospects of efficiently utilizing thousands of processors in a single

calculation using a hybrid MPI/OpenMP strategy.

Table 3 shows the computation time for the diamond fragments using different

numbers of processors, both in pure OpenMP and pure MPI, as well as using a

hybrid MPI/OpenMP strategy, and we see that the wall clock computation time

for the biggest diamond system C385H220 (2530 electrons) can be pushed down to 5

seconds (which is almost 1000 times faster than Watson and Hirao’s single processor

calculations) if one throws enough processors on the problem. However, the parallel

efficiency in this case is less than 20%, and we would need even bigger systems to

fully utilize the capacity of modern parallel computer clusters.

The effect of the Hilbert curve partition in the calculations presented above is

not substantial, but it is expected to become more important as the system size

increases. We do observe a slight decrease of post operator communication using the

Hilbert curve for up to 128 MPI hosts, but the work load distribution of the Hilbert

vs. Lebesgue curve is very different, and the overall effect is quite ambiguous. It

seems difficult to obtain a strong scaling and reduce the wall clock computation time

to less than a few seconds, which means that bigger systems are needed in order to

efficiently utilize thousands of MPI processes, where the Hilbert curve is expected

to really make a difference, but for such calculations there are other bottlenecks

like work load estimation and balancing, and the current implementation cannot

efficiently balance more than a few hundred MPI processes. However, the hybrid

implementation is rather efficient and a thousand processors is then still within

reach, which is satisfactory for the current applications of the code.

5. Conclusions

We have shown that by making use of the properties of multi-resolution analysis

and the multiwavelet basis the electrostatic potential arising from arbitrary charge
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distributions can be calculated efficiently and with guaranteed precision. Test cal-

culations on linear alkane chains demonstrates the inherent linear scaling of the

application of integral operators in the multiwavelet formalism. In fact, by virtue of

the automatic grid adaptation in our implementation, the scaling becomes sublinear

if only a relative accuracy is maintained, as the local accuracy criterion gradually be-

comes more relaxed as the norm of the function increases. This was demonstrated

both for linear alkanes and pyramidal diamond fragments, which showed similar

scaling behavior, indicating that this property is independent of the geometry of

the system.

The code has been successfully parallelized using both a shared memory

(OpenMP) and a distributed memory (MPI) strategy, as well as a combination

of these, and it is shown that a hybrid MPI/OpenMP strategy is preferable for

a given number of processors. We show a significant improvement in computation

time compared to previously reported numbers: an order of magnitude for single-

processor calculations, and three orders of magnitude reduction in wall time if

parallelization is added.
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