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What Are Bottlenecks?
The metaphor of a bottleneck has been used in a variety of fields to describe the critical con-
straints that limit a system’s performance or capacity. In biology, particularly in studies of pop-
ulation dynamics and evolution, the bottleneck concept is often used in reference to events that
sharply limit population size [1]. Such events frequently produce stochastic changes in the ge-
netic composition of a population (Fig 1), referred to as genetic drift. In extreme cases, popula-
tion-reducing events can eliminate genotypes from a gene pool (Fig 1), even genotypes not
associated with reduced fitness.

If the limited number of these surviving organisms found a population in a new environ-
ment, such as the colonization or infection of a host by microorganisms, those few organisms
determine the genetic composition of subsequent generations, creating a “founder effect” with-
in the post-bottleneck population [1]. These changes in genotype frequency are an important
driver of evolutionary change and speciation. In infection biology, bottlenecks shape genetic di-
versity of epidemics and have been shown to have an important influence on the effect of re-
combination and horizontal gene transfer, as well as the evolution of drug resistance [2–6].
Furthermore, bottlenecks may reduce pathogen virulence and adaptability to new hosts, as
they increase the rate at which attenuating mutations become fixed in a population [7,8].

Traditionally, population biologists have taken advantage of natural genetic variation to in-
vestigate transmission bottlenecks, e.g., during HIV transmission (reviewed in [9]). In addition,
with pathogens that contain or accumulate high amounts of genetic diversity over a small time-
scale, such as HIV, it is possible to investigate bottlenecks within a single host [5]. However,
many pathogens do not possess sufficient natural genetic variation for quantification of bottle-
necks in this setting. Measuring bottleneck sizes in animal models allows experimental access
to valuable information regarding the anatomical sites, sizes, and causes of population restric-
tions, which can provide key insights into the nature of host–pathogen interactions. Here, we
focus on recent new methods that rely on introduction of artificial genetic variation to quantify
bottleneck events during experimental infection, enabling more precise understanding of path-
ogen population dynamics.

How Are Bottlenecks in Experimental Infections Measured?
In principle, the size of an infection bottleneck can be measured by simply counting the num-
ber of organisms (e.g., viral particles, bacterial colony forming units [CFU]) that survive a
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population-restriction process. However, enumeration of these organisms (sometimes referred
to as the founding population) must occur prior to changes in their number, e.g., by replication
or migration (Fig 1), and great experimental efforts and a large number of experimental ani-
mals are often required to pinpoint the sites and times of population constrictions [10].

Fig 1. Schematic representation of the effect of bottlenecks on genetic diversity. Individual pathogens are shown as colored spheres; the colors
represent distinguishable markers. The barriers to infection that constitute the bottleneck are shown by the solid bars and the size of the bottleneck is
represented by the size of the gap between these bars. Bottlenecks are events that dramatically reduce the original population size, for example, the
inoculum in infectious diseases. In the context of infection, the founding population consists of the pathogens that survive passage through the bottleneck
and give rise to a population in a new environment, e.g., a new host or anatomical site. Often it is not feasible to sample directly after the bottleneck event (tb);
instead, populations are sampled (at time ts) after the passage of time (t), represented by the black arrow. During this time, the founding population often
replicates. Wide bottlenecks lead to limited loss of markers (e.g., the magenta and black spheres) and limited changes in the marker frequencies (e.g., over-
representation of the blue and under-representation of the olive marker). In contrast, tight bottlenecks lead to stochastic loss of many markers and substantial
changes in marker frequencies. These changes can be used to determine the magnitude of bottleneck events and the size of the founding population, even
after the population size has increased, provided that the expansion has limited effect on the marker composition (i.e., markers are fitness neutral, and no
additional genetic drift occurs).

doi:10.1371/journal.ppat.1004823.g001
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Furthermore, when there is complex migration of the pathogen within the host, rather than a
linear infection “pathway,” direct counting of individual infectious agents may not be feasible.

An alternative way to measure bottleneck sizes makes use of the stochastic changes in the
genetic composition (diversity) of the infecting population that usually accompany population
size reductions (Fig 1). This approach is employed in studies of natural populations, including
certain viral pathogens, in which there is substantial genetic diversity [11–13]. However, for ex-
perimental studies of infection, often there is insufficient natural diversity in the inoculum for
meaningful analyses. To circumvent this limitation, genetic variation has been introduced arti-
ficially into pathogen populations. Using inheritable, distinguishable markers that ideally do
not alter pathogen fitness, changes in marker prevalence between the inoculum (i.e., the popu-
lation prior to reduction by bottlenecks) and experimental samples can be used to estimate bot-
tleneck sizes. Different genetic markers that have been used for this purpose include antibiotic
resistances, lacZ+/lacZ-, fluorescent proteins, transposon insertions, restriction sites, and se-
quence tags [14–27]. The number of distinct markers is a major factor that limits the resolution
of these assays, with a greater number of markers enabling greater resolution. When bottle-
necks are very small, the assay limits of resolution are less of an issue; however, when there is a
wide bottleneck, the size of the founding population cannot be accurately determined using a
inoculum with low marker diversity [27]. Insertion of short DNA sequences into neutral loci in
the genome, thereby generating wild-type isogenic tagged strains (WITS) [17], allows for easy
creation of a large number of distinguishable strains. Sequence tags have been detected by a va-
riety of methods, including hybridization, PCR, and most recently, DNA sequencing [25–27].
The availability of relatively inexpensive high-throughput sequencing that enables accurate
quantification of a large number of sequence tags makes sequencing the current best approach
to measure bottleneck sizes.

Several analytic approaches have been developed to identify bottleneck sizes based on differ-
ences in marker representation at two time points. These approaches include (i) probabilistic
methods that analyze the stochastic loss of tagged strains [15,17,19,23,25], (ii) mathematical
modeling [21,22], and (iii) population genetic approaches [18,27]. Analyses based on the pres-
ence or absence of individual marked strains are the most commonly performed because many
experimental techniques can provide qualitative data about marker presence or absence. The
major drawback of these analyses is their limited resolving power because the maximum bottle-
neck size that can be measured strongly depends on the number of distinguishable markers in
the infecting population. Furthermore, since this approach is based on a stochastic model, rela-
tively large numbers of repetitions are required for accurate measurements, usually necessitat-
ing the use of many experimental animals [25]. When more detailed knowledge about a
pathogen’s behavior during infection is available, e.g., migration pattern in the host, mathemat-
ical models that explicitly describe this behavior can be used to estimate pathogen population
size as well as the speed of migration between compartments [21]. These complex models can
provide high-quality estimations but are dependent on knowledge of parameters that may not
be available for less well-characterized systems. Finally, approaches that are based on popula-
tion genetic theory [28,29] can be applied to estimate bottleneck sizes without knowledge of
pathogen spatiotemporal dynamics within the host. These methods infer the bottleneck size by
comparing allele frequencies (rather than just absence or presence of an allele) before and after
bottleneck events (Fig 1). Two approaches can be distinguished: (i) those requiring data from
several experiments, which yield the average bottleneck size across a series of hosts and are un-
able to distinguish between technical and biological variation between experiments [18,22],
and (ii) those allowing bottleneck size determination in a single experiment with high accuracy
[27]. The latter, recently developed method requires the use of a large number of tagged strains,
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but it allows the comparison of bottlenecks between individual hosts and, thereby, makes it
possible to analyze the biological variance between hosts.

What Are the Factors and/or Mechanisms That Restrict Pathogen
Populations during Infections?
The nature of host bottlenecks, as well as pathogens’ strategies for circumventing them, contin-
ues to be a central topic in studies of host–pathogen interactions. All host defenses that coun-
teract infection can be thought of as bottlenecks, as can some intrinsic features of the host
environment. Impediments to infection can include physical barriers, innate and adaptive im-
mune defenses, nutritional limitations, competing microorganisms, and niche availability (en-
vironments permissive for colonization and replication). The presence and mode of action of
some barriers, such as the size of the pore in the squid light organ, low stomach pH, antimicro-
bial peptides, and low iron availability, have long been known. However, much recent and cur-
rent research is devoted to uncovering new mechanisms of innate defense. Processes whereby
the commensal microbiota restrict pathogen populations (e.g., competition for nutrients or col-
onization sites, or modulation of host immune development) are also only beginning to come
into focus. Investigations of the specific mechanisms that mediate interbacterial competition
and/or killing, such as Type VI secretion, will shed light on novel types of bottlenecks.

On a more abstract level, host restrictions can either be toxic to pathogens or merely reflect
limited resources that can only sustain a finite number of organisms. These different types of
restriction will lead to different effects on the pathogen population. When there are finite re-
sources available, there is an “absolute” limit to the size of the bottleneck; i.e., the bottleneck
size is independent of the inoculum size, resulting in an upper limit to the size of the founding
population (Fig 2A). In contrast, toxic host defenses can result in a “fractional” bottleneck,
such that a proportion, rather than number, of the organisms survive (Fig 2B). For example, if
a fraction of the inoculum is phenotypically resistant to the restricting conditions, then a defin-
able percentage of the inoculum may survive. Alternatively, it is possible that host defenses can
control a limited number of pathogens. In this “limited” bottleneck scenario, a high number of
infecting organisms can exhaust host defenses, so that excess pathogens (above the saturating
level) survive (Fig 2C). For fractional and limited bottlenecks, there is no upper limit to the size
of the founding population; however, there is a lower limit to the inoculum size for establish-
ment of infection. In addition, more complex biological mechanisms, e.g., quorum-sensing-
regulated virulence [30,31], can result in complex inoculum size to founding population size
relationships (Fig 2D). In reality, bottlenecks likely reflect a combination of such mechanisms
(Fig 2E).

Bottlenecks Can Confound Genome-Wide Analyses of Virulence
and Transmission Studies
Bottlenecks can be a major technical challenge for the analysis of high-throughput (e.g., trans-
poson-insertion sequencing) studies of genes required for infection. For example, genome-
wide transposon insertion studies can be confounded by the existence of tight bottlenecks,
which can limit the complexity of libraries that can effectively be analyzed. Moreover, when
stochastic loss of transposon mutants due to bottlenecks overshadows the effects of fitness de-
fects, many false positive classifications result [32]. Genetic drift that results from bottleneck
events can also lead to pathogen populations that are very different between primary and sec-
ondary host. Such random differences may severely impact the accuracy and reliability of
transmission chains constructed based on the genetic similarity between pathogen populations
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Fig 2. Themechanisms underlying bottlenecks shape the relationship between inoculum size and
founding population size. Five conceptual examples of how the relationship between the inoculum size and
founding population size changes with different types of bottlenecks. (A) An “absolute” bottleneck allows the
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in different hosts [33]. Therefore, it is critical for high-throughput studies to account for
bottleneck effects.

Intriguing Questions That Can Be Addressed Using New
Approaches for Measuring Bottlenecks

a. Are bottleneck sizes constant during infection? Our recent work revealed that the size of the
Vibrio cholerae founding population in the intestines of infected rabbits changes as infection
progresses [27]. It will be fascinating to investigate the dynamics of the processes by which
pathogens counteract host restrictions during infection.

b. How and by what mechanisms does the composition of the microbiota (or co-infecting
pathogens) modulate bottleneck sizes?

c. Do virulence factors enable pathogens to overcome bottlenecks?

d. Can we take advantage of bottlenecks to design improved regimens for antimicrobial ad-
ministration or vaccination that limit emergence of resistance and have enhanced therapeu-
tic efficacy?

Overall, the development of new tools to analyze infection bottlenecks creates a new way to un-
derstand host–pathogen interactions during infection.
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