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ABSTRACT: The four-component matrix Dirac-Kohn-Sham (mDKS) implementation of EPR 

g- and hyperfine A-tensor calculations within a restricted kinetic balance framework in the 

ReSpect code has been extended to hybrid functionals. The methodology is validated for an 

extended set of small 4d1 and 5d1 [MEXn]q systems, and for a series of larger Ir(II) and Pt(III) 

d7 complexes (S=1/2) with particularly large g-tensor anisotropies. Different density 

functionals (PBE, BP86, B3LYP-xHF, PBE0-xHF) with variable exact-exchange admixture x 

(ranging from 0% to 50%) have been evaluated, and the influence of structure and basis set 

has been examined. Notably, hybrid functionals with exact-exchange admixture of about 40% 

provide the best agreement with experiment and clearly outperform the generalized-gradient 

approximation (GGA) functionals, in particular for the hyperfine couplings. Comparison with 

computations at the one-component second-order perturbational level within the Douglas-

Kroll-Hess framework (1c-DKH), and a scaling of the speed of light at the four-component 

mDKS level, provide insight into the importance of higher-order relativistic effects for both 

properties. In the more extreme cases of some iridium(II) and platinum(III) complexes, the 

widely used leading-order perturbational treatment of SO effects in EPR calculations fails to 

reproduce not only the magnitude but also the sign of certain g-shift components (with the 

contribution of higher-order SO effects amounting to several hundreds of ppt in 5d 

complexes). The four-component hybrid mDKS calculations perform very well, giving 

overall good agreement with the experimental data. 

 

Keywords. Dirac-Kohn-Sham calculations, Dirac-Coulomb Hamiltonian, exchange-

correlation functionals, g-tensor, hyperfine tensor, relativistic effects, spin-orbit coupling. 
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Introduction 

Electron paramagnetic resonance (EPR) spectroscopy1-4 of open-shell transition-metal 

complexes is an important spectroscopic tool in a variety of research fields, ranging from a 

mapping of defects in solid-state materials and surfaces (e.g. in heterogeneous catalysis)5,6 via 

studies of single-molecule magnets7-10 to those of paramagnetic metalloenzyme sites.11-13 Use 

of quantum-chemical methods to aid the evaluation and interpretation of EPR parameters, or 

to elucidate the structure of new, sometimes exotic, species based on EPR experiments has 

seen tremendous developments over the past 20 years.4,14-17 Calculations of molecular 

properties such as the electronic g-tensor and hyperfine coupling (HFC) A-tensors are, 

however, still a considerable challenge for quantum-chemical methods due to the large 

sensitivity of these intrinsic parameters to the molecular structure as well as to relativistic and 

environmental effects.4 Due to the spin-orbit-dominated nature of g-tensors and the 

dependence of HFCs on spin-density distributions near the nuclei, spin-orbit (SO) and scalar 

relativistic effects range from important to crucial in this context, and they grow towards the 

lower regions of the Periodic Table. Subtle electron exchange and correlation effects are 

furthermore relevant, in particular for isotropic HFCs. Accurate and efficient relativistic 

electronic-structure methods are thus mandatory in order to provide useful quantum-chemical 

tools for reliable predictions and interpretations of non-trivial EPR spectra. 

Multi-reference ab initio methods at the Douglas-Kroll-Hess (DKH) relativistic level 

have been promoted for calculations of g-tensors and zero-field splittings,18-20 but currently 

they are feasible only for small systems of around 15 atoms.21  Similar limitations apply to 

restricted active space state interaction (RASSI)-based calculations of HFCs.22 Recent density 

matrix renormalization group (DMRG) calculations of hyperfine couplings23 have so far also 

been limited to small molecules, and to scalar relativistic levels.24 Coupled-cluster and 

configuration-interaction calculations of g-tensors25-26 and relativistic coupled-cluster 

calculations of HFC tensors27 suffer from the same limitations. While such approaches may in 
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the future become more important for EPR parameter calculations, computations for larger 

systems, for example the transition metal complexes we focus on in this work, will have to 

rely on density functional theory (DFT) methods for some time to come. Initial DFT 

implementations of g-tensors and HFCs either included SO effects by leading-order 

perturbation theory28-34 or variationally in two-component quasirelativistic spin-restricted 

zero-order regular approximation (ZORA) or Douglas-Kroll-Hess calculations.35-38 

Subsequently, the Kramers-unrestricted two-component DKH,39-40 resolution of identity 

Dirac-Kohn-Sham (DKS-RI) method41 and, more recently, four-component DFT calculations 

of EPR parameters became available, allowing both spin polarization and higher-order SO 

effects to be included simultaneously.42-43 The advantage of fully relativistic approaches is not 

only the variational treatment of SO effects, but also that they avoid the additional operator 

transformations associated with picture-change effects in two-component frameworks (such 

as the DKH method).44-47 

Our initial assessment of the four-component matrix Dirac-Kohn-Sham (mDKS) method 

for smaller heavy-atom radicals and for medium-sized molybdenum(V) and tungsten(V) 

complexes has revealed the advantages of this method.48 The initial mDKS implementation of 

EPR parameters in the ReSpect program was, however, restricted to generalized-gradient 

approximation (GGA)-type functionals. As admixture of exact exchange (EXX) is known to 

be beneficial for both g-tensors,30,49-50 and in particular for isotropic hyperfine coupling 

constants51-53
  of transition-metal complexes, the use of global hybrid functionals is desirable 

also in a 4-component framework. Here we thus extend the implementation and validation of 

the four-component mDKS method to hybrid functionals. Moreover, metal HFCs for 4d and 

5d transition-metal complexes will be evaluated more systematically than done in the past. 

Evaluating and benchmarking the optimal EXX admixture in hybrid functionals will initially 

be done for a larger set of previously studied small 4d1 and 5d1 transition-metal complexes 

[M(E)X4]q and [M(E)X5]q (M = Mo, Tc, W, Re, Os; E = O, N; X = F, Cl, Br; q = 0, -1, -2) 
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with an extensive set of experimental data. Similar systems have also been in the focus of 

two-component ZORA studies,54-55 but without a comparably systematic evaluation of the 

optimal EXX admixture in global hybrids. An extension to the fully relativistic four-

component level is in any case desirable. We use this test set to derive a “best functional” to 

be suggested as part of a fully relativistic computational protocol for applications to a wider 

variety of 4d and 5d systems. This approach is then applied and tested for a selection of larger 

Ir(II) and Pt(III) d7 complexes exhibiting particularly large g-tensor anisotropies. By 

comparison with scalar relativistic DKH calculations with leading-order perturbation 

treatment of spin-orbit effects, we will demonstrate the importance of higher-order SO effects 

and show that in some cases these effects are necessary in order to even reproduce qualitative 

features (such as the sign of certain tensor components). 
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Theory 

Relativistic calculations of EPR parameters have a long history.2, 4,56 Here, we focus mostly 

on the theoretical foundations of the relativistic matrix Dirac-Kohn-Sham (mDKS) method as 

implemented in the ReSpect program package,57 involving a restricted kinetically balanced 

basis set for the small component of the wave function.58-59 Consistent with ref. 42, in the 

following we use the Hartree system of atomic units. ݅ denotes occupied positive energy 

orbitals, while ߣ, ߬ are basis-function indices, and ݑ,  the cartesian directions. ܿ is the speed ݒ

of light, and summation over repeated indices is assumed. 0ଶൈଶ and 1ସൈସ are the two-by-two 

zero matrix and the four-by-four unit matrix, respectively. 

To derive working equations for the EPR parameters, we start with the conventional form of 

the free-particle Dirac equation, 

 ሾܿࢼଶ ൅ ܿሺࢻ ∙ ሻሿ߮௜࢖ ൌ  ௜߮௜, ( 1 )ܧ

where ߮௜ is the 4-spinor wavefunction, separable into two 2-spinor parts, denoted as large (ܮ) 

and small (ܵ) components 

 ߮௜ ൌ ቆ
߮௜
௅

߮௜
ௌቇ . ( 2 ) 

 denote the 44 Dirac matrices ߚ and ߙ

ࢻ  ൌ ൤
0ଶൈଶ ࣌
࣌ 0ଶൈଶ

൨ ࢼ ൌ ൤
1ଶൈଶ 0ଶൈଶ
0ଶൈଶ െ1ଶൈଶ

൨ ( 3 ) 

and ࣌ refers to the 22 Pauli spin matrices 

௫ߪ  ൌ ቂ0 1
1 0

ቃ			 ௬ߪ ൌ ቂ0 െ݅
݅ 0

ቃ ௭ߪ ൌ ቂ1 0
0 െ1

ቃ . ( 4 ) 

 

Using the minimal electromagnetic coupling for the electron  

࢖  → ࣊ ൌ ࢖ ൅ ଵ
௖
࡭ ܧ → ܧ െ ܸ, ( 5 ) 

together with an energy alignment to the non-relativistic energy scale (ࢼᇱ ൌ ࢼ െ 1ସൈସ), gives 

the Dirac equation for an electron in the presence of an electromagnetic field 
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݄ୈ߮௜ ൌ 	,௜߮௜ܧ

݄ୈ ൌ ᇱܿଶࢼ ൅ ܿሺࢻ ∙ ሻ࣊ ൅ ସܸൈସ ൌ ൤
0ଶൈଶ ܿሺ࣌ ∙ ሻ࣊

ܿሺ࣌ ∙ ሻ࣊ െ2ܿଶ
൨ ൅ ସܸൈସ . 

( 6 ) 

The vector potential ࡭ has two contributions: one from an external uniform magnetic field ࡮ 

and one from the nuclear magnetic moment ࣆெ of nucleus ܯ  

 

࡭ ൌ ࡮࡭ ൅ ಾࣆ࡭

࡮࡭ ൌ
1
2
ሺ࡮ ൈ ீ࢘										ሻீ࢘ ൌ ࢘ െ 	଴࢘

ಾࣆ࡭ ൌ
ெࣆ ൈ ெ࢘

ெݎ
ଷ ெ࢘ ൌ ࢘ െ  ெࡾ

( 7 ) 

where ࢘଴ corresponds to an arbitrary fixed gauge origin, and ࡾெ is the position of nucleus ܯ. 

Note that ࣆ࡭ಾ in eq. (7) is given for a point nucleus magnetic moment, whereas the 

formulation of a finite nuclear magnetic moment entails a complicated expression, see for 

instance ref. 43. The connection between ࣆெ and the nuclear spin ࡵெ is given by the 

gyromagnetic ratio ߛெ:  ࣆெ ൌ  .ெࡵெߛ

Within the Kohn-Sham density functional theory, the scalar potential ସܸൈସ contains the 

electron-nucleus Coulomb potential ୬ܸ୳ୡ , the electron-electron interaction ܸୣ ୣ, as well as the 

Kohn-Sham exchange-correlation potential ୶ܸୡ, whose implementation involves a “non-

collinear” formalism.60 For the calculation of the exchange-correlation potential, the usual 

non-relativistic functionals are employed, though they will depend on relativistic density and 

spin densities. From here on we will use a superscript "ሺܬ௩ሻ" to indicate the dependence of the 

electronic energy on the orientation of the total magnetization vector ࡶ along the ݒ axis.  

Hence, 
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ܸሺ௃ೡሻ ൌ ୬ܸ୳ୡ ൅ ܸୣ ୣ
ሺ௃ೡሻ ൅ ୶ܸୡ

ሺ௃ೡሻ,

୬ܸ୳ୡ ൌ െ∑ ௓ಾ
௥ಾ

ெ 1ସൈସ,	

୶ܸୡ
ሺ௃ೡሻ ൌ ቎

ଶൈଶݒ
௫௖ ቂ1 െ ,ߦ ௞ߩ

ሺ௃ೡሻቃ 0ଶൈଶ

0ଶൈଶ ଶൈଶݒ
௫௖ ቂ1 െ ,ߦ ௞ߩ

ሺ௃ೡሻቃ
቏. 

( 8 ) 

Here, ߩ௞ (where ݇ ൌ 0, ,ݔ ,ݕ  and the three (଴ߩ) describes the relativistic electron density (ݖ

spin densities (ߩ௫, ,௬ߩ ଶൈଶݒ ௭), whereasߩ
௫௖ ቂ1 െ ,ߦ ௞ߩ

ሺ௃ೡሻቃ describes the noncollinear exchange-

correlation potential, 

௞ߩ 
ሺ௃ೡሻ ൌ ௜߮

ሺ௃ೡሻ
ற

௞ࣧ ௜߮
ሺ௃ೡሻ,						 ଴ࣧ ൌ 1ସൈସ, ௞ࣧஷ଴ ൌ ൬

௞ߪ 0ଶൈଶ
0ଶൈଶ ௞ߪ

൰. ( 9 ) 

Note, that  ୬ܸ୳ୡ in eq. (8) is given for a point charge distribution model of nucleus, whereas a 

more realistic description of the nuclear structure requires a finite-size distribution model, as 

described e.g. in ref. 43.  

The electron-electron term ܸୣ ୣ, has the form  

 ܸୣ ୣ
ሺ௃ೡሻ ൌ ׬

ఘబ
ሺ಻ೡሻ൫࢘ᇲ൯

|ᇲ࢘ି࢘|
	dVᇱ 1ସൈସ െ ସൈସܭߦ

ሺ௃ೡሻ, ( 10 ) 

ସൈସܭ 
ሺ௃ೡሻ	 ௜߮

ሺ௃ೡሻሺ࢘ሻ ൌ ቈ׬
	ఝೕ
಩ሺ಻ೡሻ൫࢘ᇲ൯ ఝ೔

ሺ಻ೡሻ൫࢘ᇲ൯

|ᇲ࢘ି࢘|
dVᇱ቉ ߮௝

ሺ௃ೡሻሺ࢘ሻ , ( 11 ) 

and consists of the classical Coulomb interaction and the exact-exchange interaction ቀܭସൈସ
ሺ௃ೡሻቁ. 

The scalar coefficient ߦ weights the admixture of the exact-exchange contribution with the 

DFT exchange-correlation part ቀ ୶ܸୡ
ሺ௃ೡሻቁ, that gives rise to pure Dirac Hartree-Fock (ߦ ൌ 1), 

pure DKS (ߦ ൌ 0), or hybrid schemes (0 ൏ ߦ ൏ 1). 

Our approach uses restricted kinetically balanced (RKB) basis sets for the small components: 

 
௜߮
୐ሺ௃ೡሻ ൌ ఒ௜࡯

୐ሺ௃ೡሻ߯ఒ,	

௜߮
ୗሺ௃ೡሻ ൌ ఒ௜࡯

ୗሺ௃ೡሻ ଵ

ଶ௖
࣌ ∙  ,ఒ߯࢖

( 12 ) 

with ߯ఒ being the ߣth Gaussian basis function and ࡯ the expansion coefficients. 
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The g-tensor can be calculated following the approach of refs. 39,42 as 

 ݃௨௩ ൌ
2ܿ
〈 ሚܵ௩〉

dܧሺܬ௩, ሻ࡮

dܤ௨
ቤ
ୀ଴࡮

 ( 13 ) 

   

where 〈 ሚܵ௩〉 is an effective spin of the molecule and ܬ௩ is the magnetization (both along the ݒ 

direction). To use this ansatz, it is necessary to properly choose the three directions (ݒ ൌ

,ݔ ,ݕ  .௩ as described in refs. 39,40 and to perform three separate energy calculationsܬ ሻ ofݖ

Similarly, the hyperfine coupling tensor of atom ܯ can be defined as43 

௨௩ெܣ  ൌ
1
〈 ሚܵ௩〉

dܧሺܬ௩, ெሻࡵ

dܫ௨ெ
ቤ
ಾୀ଴ࡵ

 ( 14 ) 

where ࡵெ represents the nuclear spin of atom ܯ. 

Applying the Hellmann-Feynman theorem to eqs. ( 13 ) and ( 14 ), with molecular orbitals 

expanded according to eq. ( 12 ), gives the final expressions for the g-tensor 

 ݃௨௩ ൌ
ଵ

〈ௌሚೡ〉
Tr ቈቆ

0ଶൈଶ ઩஻ೠ
ற

઩஻ೠ 0ଶൈଶ
ቇ ൬ࡼ

୐୐ሺ௃ೡሻ ୐ୗሺ௃ೡሻࡼ

ୗ୐ሺ௃ೡሻࡼ ୗୗሺ௃ೡሻࡼ
൰቉, ( 15 ) 

where 

 ൫Λ஻ೠ൯ఒఛ ൌ
ଵ

ଶ
࣌|ఒ߯ۦ ∙ ீ࢘ሺ࢖ ൈ  ሻ௨|߯ఛۧ, ( 16 )࣌

 ൬ࡼ
୐୐ሺ௃ೡሻ ୐ୗሺ௃ೡሻࡼ

ୗ୐ሺ௃ೡሻࡼ ୗୗሺ௃ೡሻࡼ
൰ ൌ෍൭

ሺ௜ሻ࡯
୐ሺ௃ೡሻ

ሺ௜ሻ࡯
ୗሺ௃ೡሻ

൱ ቀ࡯ሺ௜ሻ
୐ሺ௃ೡሻ

ற
ሺ௜ሻ࡯
ୗሺ௃ೡሻ

ற
ቁ

௢௖௖

௜

,	 ( 17 ) 

and the HFC-tensor 

 

 
௨௩ெܣ ൌ ଵ

ଶ௖〈ௌሚೡ〉
Tr ቈቆ

0ଶൈଶ ડூೠಾ
ற

ડூೠಾ 0ଶൈଶ
ቇ ൬ࡼ

୐୐ሺ௃ೡሻ ୐ୗሺ௃ೡሻࡼ

ୗ୐ሺ௃ೡሻࡼ ୗୗሺ௃ೡሻࡼ
൰቉, ( 18 ) 

with 

 ൫Γூೠಾ൯ఒఛ ൌ ெߛ ർ߯ఒฬ࣌ ∙ ࢖ ቀ
࣌ಾൈ࢘

௥ಾ
య ቁ

௨
ฬ߯ఛ඀. ( 19 ) 

Note again that ൫Γ஻ೠ൯ఒఛ will differ for a finite-nucleus magnetic moment, as shown in ref. 43. 
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The noncollinear Kramers-unrestricted calculations require several SCF calculations with 

different orientations of the magnetization vecor J to obtain the entire tensor information (see 

above). Jayatilaka61 suggested that six calculations are needed if the principal axes are not 

known. A priori knowledge of the proper orientation reduces this to three calculations with 

orthogonal orientations, where the ܬ௩ directions coincide with the principal axes of the g-

tensor or HFC A-tensors, respectively. 

We finally note that our four-component implementation is derived from the Dirac-Coulomb 

Hamiltonian. It therefore neglects the spin-other-orbit (SOO) terms arising from the Breit 

Hamiltonian, but in contrast to some early two-component DFT implementations using the 

“effective potential approach”, exchange contributions to the spin-same-orbit term62 are 

properly accounted for. The SOO contributions are of lesser relative importance compared to 

the other SO terms for heavier systems, on which this work focusses.48 Below, we will 

estimate the importance of the neglected SOO terms based on a perturbational treatment of 

SO effects. 

Computational Details 

Structures. Structures of the small d1 transition metal benchmark systems were optimized 

with GAUSSIAN 0963 using the PBE064-65 hybrid functional. Quasirelativistic energy-consistent 

small-core pseudopotentials (effective-core potentials, ECP)66 were used for the metal centers, 

with (7s7p5d1f)/[6s4p3d1f] and (8s7p6d1f)/[6s4p3d1f] Gaussian-type orbital valence basis 

sets for the 4d and 5d metal atoms, respectively. Ligand atoms were treated with an all-

electron def2-TZVP basis set.67 If not stated otherwise, for calculations of the large iridium 

and platinum complexes, the experimentally determined structures have been used. These 

have been taken from the same references as the EPR data (cf. Table 2 and references 

therein). Due to the absence of an experimental structure for [Pt(C6Cl5)4]-, this complex has 

been optimized at the PBE0-D3(BJ)/def2-TZVP/ECP level, including Grimme’s atom-
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pairwise D3 dispersion corrections68 with Becke-Johnson (BJ) damping.69 To assess the 

influence of input structures on quality of computed EPR parameters, we also optimized 

structures of some larger Ir(II) and Pt(III) complexes, for which X-ray structure data are 

known, at the same computational level and compared computed spectroscopic parameters 

(cf. Table S12 in Supporting Information). 

EPR Parameters Calculations. All property calculations at the one-component relativistic 

level were done in the older ReSpect-MAG program.70 Here, single-point self-consistent field 

(SCF) calculations using tight convergence criteria (energy and density matrix convergence 

10-6 and 10-8 a.u., respectively) and an ultrafine integration grid (99 radial shells and 590 

angular points per shell), along with Douglas-Kroll-Hess second-order corrections (DKH2) to 

account for scalar relativity, were done with the GAUSSIAN code,63 using a Gaussian-type 

finite nuclear-charge model. Subsequently, the unrestricted Kohn-Sham orbitals were 

transferred by interface routines to the ReSpect-MAG property package (invoking a “fine” 

grid with 64 radial grid points), which was then used to carry out the g-tensor calculations at 

the second-order perturbational level of theory. Spin-orbit (SO) effects in these calculations 

were included using the atomic mean-field approximation (AMFI)71 at the first-order DKH 

level, neglecting picture-change effects for the orbital-Zeeman term (this is expected to be a 

reasonable approximation,47 and in any case sufficient for the intended comparison; see also 

Table S10 in Supporting Information). Additionally, scalar relativistic HFC calculations at 

DKH2 level also used the orbitals transferred from GAUSSIAN and applied the DKH2-

transformed HFC operators reported in ref. 44, with a Gaussian finite-nucleus magnetic 

moment.72 In this work, we used and evaluated several basis set combinations. Dyall basis 

sets73-76 of double-zeta (DZ), valence double-zeta (VDZ) and triple-zeta (TZ) quality and 

basis sets by Hirao77 were employed for the 4d and 5d metal centers. Fully uncontracted 

Huzinaga-Kutzelnigg-type IGLO-II and IGLO-III basis sets78 were used for the light ligand 

atoms (Z < 18). 
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The 4c-mDKS calculations were carried out completely with the RESPECT program,57 

including a new four-component module. Calculations have been done either at the 

generalized gradient approximation (GGA) level (BP8679-80 and PBE64) or using customized 

B3LYP-xHF81-82 and PBE0-xHF functionals with variable exact-exchange admixture 

(indicated by  x). All-electron basis sets of the same quality as used in the 1c-DKH 

calculations (see above) were also applied in the mDKS calculations with restricted kinetic 

balance used to automatically construct the small-component basis. 

The following naming convention is used throughout the paper: <DFT functional>-xHF 

/<metal basis set>/<ligand basis set>. For instance, “PBE0-40HF/Dyall(TZ)/IGLO-III” 

denotes a property calculation using the PBE0 functional with a modified amount of Hartree-

Fock exact exchange (in this case 40% instead of the 25% used in standard PBE0), along with 

the Dyall(TZ) basis for the metal center and IGLO-III for ligand atoms. Since there are no 

IGLO basis sets available for the heavier halogen atoms, we have employed Dyall(VTZ) basis 

sets for Br and Dyall(TZ) or Hirao basis sets for iodine (depending on the corresponding 

metal basis). 

In the 4c-mDKS calculations, an integration grid of “ADAPTIVE” size for the Lebedev angular 

points was applied83 and the following numbers of radial grid points were used for the 

indicated atoms: B, C, N, O, F: 60;  P, Cl: 72; Br, Mo, Tc, I: 80; W, Re, Os, Ir, Pt: 96. In 

contrast to our previous work,48 all calculations were performed without fitting of electron 

and spin densities. 

The components of the g-tensor were obtained from three spin-unrestricted DFT self-

consistent-field (SCF) procedures with orthogonal orientations of ܬ௩. The principal axes in the 

small [M(E)Xn]q complexes are determined a priori by the C4v point group symmetry. The 

orientations for the larger systems were obtained by preceding one-component g-tensor 

calculations. The molecules were oriented such that the x, y, and z coordinate axes point along 

the (one-component) g-tensor principal axes. We note in passing that in some highly 



  

13 
 

asymmetric Ir(II) complexes, the principal axes of the EPR tensors obtained at the 4c-mDKS 

level deviated notably from those of the input structure (cf. Figures S3 and S4 in Supporting 

Information). However, reorientation of these molecules according to these new principal 

axes and subsequent 4c-mDKS calculations did not affect the computed data by more than 10 

ppt or 5 MHz for g-shift and HFC tensors, respectively (less than the effect of metal basis 

sets; see below). A common gauge origin (CGO) at the molecule’s center of mass was used 

for the g-tensors. This has been shown previously to be a good choice.48 Similarly to the 1c-

DKH calculations described above, a Gaussian finite-size nucleus model was applied for the 

nuclear charge in the SCF and for the nuclear magnetic moment in the HFC property 

calculations.43 We provide the principal components of the g-tensors as Δg-shifts in ppt, 

computed as deviation from the free-electron value (ge = 2.002319): Δg = (g – ge).1000. 

To assess the influence of higher-order SO effects, we provide plots of computed Δg-shifts 

and HFC tensor components against a “c scaling factor”, equal to 1/. The factor  scales the 

speed of light in the mDKS calculations as  ∙ ܿ and varies from 1 to 100, where the latter 

value approaches the non-relativistic limit and =1 corresponds to a fully relativistic 

treatment.39-40, 48  

For comparative purposes, a few 1c-DKH2 calculations were also performed in the ORCA 

program package (version 3.0.1)84 using identical functionals and basis sets, and the results 

were compared with those obtained at the 1c-DKH and 4c-mDKS levels in our ReSpect-MAG 

code (cf. Tables S10 and S11 in Supporting Information). 

Results and Discussion 

Benchmark study 
 

It is known that judicious EXX admixture in hybrid functionals can improve both the g-

tensors and in particular the isotropic metal HFCs of transition-metal complexes (see above). 
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For HFCs, the main issue is the description of the spin polarization of the metal s-type core 

shells (e.g. 2s and 3s orbitals for 3d centers), which is underestimated by (semi-)local 

functionals and enhanced by EXX admixture (unless spin contamination becomes an issue).51-

52 For g-tensors, the too covalent metal-ligand bonding at semi-local DFT levels is the main 

factor that is corrected for by EXX admixture. In the case of metal-centered spin density, the 

latter is underestimated at the LSDA or GGA levels. EXX admixture increases the metal spin 

density in such cases (this is expected to hold for all systems studied here). As the major SO 

contributions to the g-tensor often arise from metal SO coupling, more EXX admixture tends 

to increase the g-anisotropies in such cases30,48 (heavy ligand atoms may modify the picture, 

and ligand-centered radicals behave in an opposite manner)85. Compared to earlier studies 

based on leading-order perturbation theory for the SO contributions, the present inclusion of 

higher-order SO (HOSO) contributions might diminish the optimal EXX admixture for the g-

tensors, as the HOSO effects will enhance the g-anisotropies for a given EXX value. The 

effects on the isotropic HFCs are less obvious, as SO contributions may exhibit the same or 

opposite sign as compared to the Fermi-contact-type terms (with sometimes dramatic 

consequences).86 

With these considerations in mind, we have used a test set of 17 small 4d1 and 5d1 complexes 

with known experimental EPR data (17 g-tensors, 14 metal HFC tensors), largely adapted 

from previous studies,48,54-55,87 to carefully tune the optimal EXX admixture in four-

component calculations using hybrid functionals, with particular emphasis on the very 

sensitive HFCs. Where possible, we have replaced experimental EPR values collected 

originally in the work of Ziegler and Patchkowskii87 with those from more recent and reliable 

references (cf. Table 1 below). The complete set of results of this benchmark study for a large 

variety of functionals and basis sets, at the one-component second-order perturbation DKH 

(1c-DKH) and four-component mDKS (4c-mDKS) levels are collected in Tables S1S4 in 

Supporting Information. Figures 1 and 2 compare graphically the average percentage 
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deviations of the 4c-mDKS results from experiment with a few selected functionals and basis 

sets, respectively (Tables S5 and S6 in Supporting Information give the average total and 

percentage deviations in more detail). 
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Figure 1. The effect of selected DFT functionals on the average percentage deviations of 

computed data from experiment for the test set of d1 transition metal complexes (cf. Tables S1 

and S6 in Supporting Information for the numerical data; Dyall(TZ)/IGLO-III basis set used). 

Due to their very small g-shift values (2-15 ppt), [TcNCl4]- and [TcNF4]- are only included in 

the average deviations for A and not for Δg. 

 

Figure 1 shows clearly that pure GGA functionals, such as PBE and BP86, perform poorly for 

both g and A (with the average percentage deviations being larger than 20% for both Δg and 

A-tensor components), consistent with the above analyses and previous experience at one- 

and two-component levels.30-31, 40, 48, 54-55 This is particularly notable for the metal HFC 

components (for some rhenium complexes the percentage error exceeds 60% at the GGA 

level; cf. [ReNCl4]- and [ReNBr4]- in Table S1). As expected (see above), the GGA 

functionals also give too small g-tensor anisotropies (spin densities from Natural Population 
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Analysis (NPA) confirm exaggerated delocalization onto the ligands at these levels; see Table 

S7 in Supporting Information). 

Standard hybrid functionals such as B3LYP and PBE0 provide substantial improvements for 

both g- and HFC A-tensors (Figure 1). However, whereas deviations from the “best EXX 

admixtures” are small for the g-tensors (in fact, g at the PBE0 level is obtained somewhat 

more accurately than with higher EXX values, cf. Figure 1), there is considerable room for 

improvement left for the HFCs. In this case, enhanced EXX admixtures reduce the average 

percentage deviations to below 8%. We may thus already conclude that a) the dependence of 

the HFCs on EXX admixture is more pronounced compared to the g-tensors, and b) it is easier 

to reach small relative errors for the HFCs. This is in part due to the fact that SO effects play a 

smaller relative role for the HFCs than for the g-tensor.54 Moreover, the g-tensor is a valence 

property and thus more likely to be influenced by environmental effects, which we neglected 

here. EXX admixtures of about 30-40% appear to provide very reasonable core-shell spin 

polarization for the HFCs, but they also perform reasonably well for the g-tensors (in 

particular, for the g|| component). Variation of the “pure DFT ingredients” (e.g. for PBE vs. 

BP86 GGAs, or for PBE0- vs. B3LYP-based hybrids with the same amount of EXX) is less 

important than the percentage of EXX admixture alone.  
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Figure 2. The effect of basis-set combinations on average percentage deviations of computed 

data from experiment for the test set of d1 transition metal complexes (cf. Tables S2 and S6 in 

Supporting Information for numerical data; PBE0-40HF values). 

Comparing the results obtained with different basis sets (see Table S2 in Supporting 

Information for numerical data and Figure 2 for percentage deviations for the entire set of d1 

complexes) suggests a slight preference for the Dyall(TZ)/IGLO-III combination of basis sets 

in case of the 4d complexes, whereas differences are small for the 5d series (except for A of 

some rhenium complexes, where Hirao/IGLO-II performs somewhat better than 

Dyall(TZ)/IGLO-III, likely due to error compensation). The slightly smaller Hirao/IGLO-II 

basis set combination may thus be a useful alternative if computational efficiency is important 

(see below). 

We have used perturbational 1c-DKH calculations for a few complexes to analyze the 

importance of the SOO term neglected in the 4c-calculations of the g-tensor (Table S8 in 

Supporting Information), as removal of the SOO term is possible for the AMFI approximation 

used. Adding only the separately computed one-electron and spin-same-orbit (SSO) term 
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provides a reference value, and we may express the SOO contributions as a percentage of that 

sum. Results are ~12% for the 3d1 complex [CrOF5]2-, ~4% for the 4d1 system [MoOF5]2- and 

~2% for the 5d1 complexes [WOF5]2- and [OsOF5]. Results for the 3d and 4d systems are 

consistent with our earlier analyses,28 and confirm the decreasing relative role of SOO 

contributions as we descend the Periodic Table, and that complexes from the same row tend 

to exhibit very similar percentages. We thus confirm that the neglected SOO term is of minor 

importance compared to other inherent errors (DFT functionals, neglect of environmental and 

counterion effects) in the computations on the heavy-metal complexes. 

We are now in a position to select a recommended computational protocol that combines 4c-

mDKS calculations with a suitable functional and basis set. From Figure 1, it is clear that 

hybrid functionals are superior to GGA functionals for both g- and HFC A-tensors. Whereas 

the g-tensor components depend somewhat less on the EXX admixture than the HFCs, both 

are reasonably well reproduced by elevated values of x in the range of 3040% (noting that 

we arrive at somewhat smaller percentage deviations for HFCs than for the g-tensors; cf. 

Figure 1). We find 30 to 35 % of EXX (cf. Table S1 in Supporting Information) to be 

somewhat better than 40% for the 4d1 systems and the reverse for the 5d1 complexes. 

However, the differences for the 4d1 complexes are too small to warrant different protocols 

for the two transition-metal series. Keeping also in mind the slightly larger importance of the 

neglected SOO contributions for the 4d systems, we recommend hybrid functionals with 

roughly 40% of Hartree-Fock exchange as a good compromise for the entire test set, and for 

both g- and A-tensors. The mDKS/PBE0-40HF/Dyall(TZ)/IGLO-III level (or its B3LYP-

40HF analogue) based on good-quality structures, should thus provide excellent predictive 

power for the EPR parameters of 4d and 5d complexes. Results for the benchmark set at this 

recommended level are reported in Table 1. Further below we will investigate if this 

computational protocol is also accurate for rather different types of larger complexes. 
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Table 1. Comparison of experimental and computed electronic Δg-shift and metal HFC tensor 

principal components at the recommended 4c-mDKS/PBE0-40HF/Dyall(TZ)/IGLO-III level 

for the benchmark set of 4d1 and 5d1 complexes  

  
∆݃௜௦௢ 

[ppt] 

∆݃∥ 

[ppt] 

∆݃ୄ 

[ppt] 

 ௜௦௢ܣ 

[MHz] 

  ∥ܣ

[MHz] 

 ୄܣ 

[MHz] 
ref. add. refs.

[MoNCl4]2- calcd. 52 108 24 205 293 161   

 expt. 44 96 18        -         -          - 88  

[MoOF4]- calcd. 81 104 70 175 272 126   

 expt. 87 108 77         - 268          - 89  

[MoOCl4]- calcd. 48 26 58 140 223 98   

 expt. 49 37 56 145 227 103 89 90-91 

[MoOF5]2- calcd. 110 113 109 183 278 135   

 expt. 104 128 91 183 279 135 92 93-94 

[MoOBr5]2- calcd. 14 92 67 132 200 98   

 expt. 9 87 57 128 184 99a 93,94  

[TcNF4]- calcd. 47 91 25 765 1153 571   

 expt. 44 107 12 734 1129 537 95 96 

[TcNCl4]- calcd. 2 17 6 610 930 450   

 expt. 0 6 2 561 878 402 97 98 

[TcNBr4]- calcd. 73 171 23 548 801 421   

 expt. 69 145 32 488 743 360 97 99 

[WOCl4]- calcd. 209 200 213 223 347 161   

 expt. 229 209 239        -          -        - 100  

[WOF5]2- calcd. 391 464 354 329 473 257   

 expt. 368 443 330 331 469 262 93,94  

[WOBr5]2- calcd. 201 111 246 198 313 141   

 expt. 172 99b 206b           -       - 105 93,94  
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[ReNF4]- calcd. 198 351 121 2076 3054 1587   

 expt. 206 353 132 2117 3079 1637 101  

[ReNCl4]- calcd. 86 99 79 1475 2265 1081   

 expt. 78 87 73 1544 2263 1184 102 103-105 

[ReNBr4]- calcd. 3 82 46 1249 1915 917   

 expt. 3 67 29 1340 1994 1013 105 106 

[ReOBr4] calcd. 42 237 182 865 1343 626   

 expt. 98 171 232          -          -          - 107  

[ReOF5]- calcd. 350 326 362 1809 2682 1372   

 expt. 269 282 262 1959 2878 1499 108 109 

[OsOF5] calcd. 299 178 360 603 911 448   

 expt. 324 197 387c 627 935d 480 108  

a Expt. value for the perpendicular component obtained as A = (3Aiso  A||)/2. b Note that 

numerical data for Δg|| and Δg of [WOBr5]2- had been exchanged in refs. 93, 94, as evident 

from the experimental giso value and also from our calculations. c Value averaged over two 

close g-tensor components. d Note that two digits in the A|| value for [OsOF5] in ref. 108 had 

been exchanged (the 132.10-4 cm-1 should be 312.10-4 cm-1).  

 

However, let us first analyze the importance of scalar relativistic (SR) and spin-orbit (SO) 

effects on the computed EPR parameters of the smaller d1 complexes. To this end we compare 

the 4c-mDKS data with a) those obtained by applying the corresponding Breit-Pauli operators 

to non-relativistic (NR) Kohn-Sham wavefunctions and with b) those calculated within the 

second-order perturbation 1c-DKH framework, using identical basis sets and exchange-

correlation potentials. Figures 3 and 4 provide graphical comparisons for some selected 

systems (see also Tables S3, S4 in Supporting Information for detailed numerical data). 

Hence, it is obvious that scalar relativistic effects play a rather minor role for g-tensors of 4d 

complexes (SR effects are usually only a few ppt, up to ~14 ppt for [TcNBr4]-), while they 
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have a sizeable negative contribution to the g-shift components of 5d complexes, in particular 

for Δg|| (several tens of ppt up to 104 ppt in [ReNBr4]-, which corresponds to a decrease of 

the Δg|| value by ~50%; cf. Figure 3). Whereas the 1c-DKH Δg values for the 4d complexes 

reproduce the experimental values very well, the computed “parallel” g-tensor component at 

this level is insufficiently negative (cf. Table S3 for PBE0-40HF/Dyall(TZ)/IGLO-III results). 

Here, a variational inclusion of SO coupling is necessary, as also demonstrated by our 

previous studies at the two-component DKH level.40,48 Higher-order SO (HOSO) 

contributions to the g-tensor (beyond leading order in perturbation theory) become even more 

vital for the 5d complexes, where these effects are roughly an order of magnitude larger than 

for the 4d complexes and contribute to the Δg component as well. For instance, HOSO 

contributions amount up to 180 ppt (-95 ppt) for Δg|| (Δg) in case of [OsOF5] (Figure 3). 
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Figure 3. Δg|| and Δg computed for [ReNBr4]- and [OsOF5] within the one-component 

perturbation approach (1c-DKH) and at the four-component relativistic level (4c-mDKS) (cf. 

Computational Details) in comparison with experimental data (PBE0-40HF/Dyall(TZ)/IGLO-

III results; cf. Table S3 in Supporting Information for numerical values). The results for non-

relativistic wavefunctions and application of Breit-Pauli SO operators (denoted as “NR+SO”) 

are given as well. 
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In contrast, metal hyperfine couplings are significantly affected by SR effects even for the 4d 

complexes, with enhancements of about 1015% and 2535% for A|| and A, respectively. As 

expected, this enhancement is even more pronounced for the 5d complexes (ca. 2261% and 

58136% for A|| and A, respectively). Inclusion of leading-order SO corrections increases 

the absolute value of the HFCs further, more so for the 5d than for the 4d complexes. 

Interestingly, whereas the perturbational 1c-DKH+SO A|| values are already close to 

experiment, the corresponding A data overshoot appreciably (Figure 4). Both A-tensor 

components are reproduced well at the 4c-mDKS level, indicating the importance of HOSO 

effects also for HFCs (more so for the 5d than for the 4d complexes).  
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Figure 4. A|| and A computed for [MOF5]2- (M = Mo, W) at the one-component 

perturbational (1c-DKH) level, with and without inclusion of second-order SO corrections, 

and at the four-component relativistic level (4c-mDKS) (cf. Computational Details) in 

comparison with experimental data and non-relativistic results (PBE0-

40HF/Dyall(TZ)/IGLO-III data; see also Table S4 in Supporting Information). 

 

Further qualitative insight is obtained by scaling the speed of light, and thus also the SO 

integrals, in the 4c-mDKS calculations with different factors (see Computational Details). For 

the present 4d and 5d systems, the resulting curves are clearly nonlinear, which confirms the 

influence of HOSO effects.48 As illustrative examples, Figure 5 shows the curves for both g 
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and A-tensor components for the two 5d1 complexes [ReNBr4]- and [OsOF5]. The nonlinear 

behavior is particularly obvious for the g-tensors, where the Re complex even exhibits a non-

monotonous trend. We also see that the SO effects may go in either a positive or a negative 

direction, explaining the partly strange shapes of the curves. Somewhat smaller deviations 

from linearity are found for the HFCs, which indicates overall smaller HOSO effects, 

corroborating previous analyses at the two-component level by Verma and Autschbach.54  
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Figure 5. “Speed of light scaling” analyses (4c-mDKS level) for principal g- and A-tensor 

components for [ReNBr4]- and [OsOF5] (PBE0-40HF/Dyall(TZ)/IGLO-III results). 

 

Larger iridium(II) and platinum(III) complexes 

As an independent test and application of the selected PBE0-40HF/Dyall(TZ)/IGLO-III 

computational protocol, we have chosen a set of larger Ir(II) or Pt(III) complexes with 5d7 (S 

= ½) configuration, for which experimental EPR data are available, and which exhibit large g-
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tensor anisotropies (see Figure 6 for the structures).110-115 These larger complexes also 

demonstrate the efficiency of the 4c-mDKS approach, as they contain up to 133 atoms and 

607 electrons in the case of [PtI2(IPr)2]+. For this complex, we indeed reduced the 

computational effort by using the somewhat smaller Hirao/IGLO-II basis set combination 

(leading to 2960 Cartesian one-component GTOs). For comparative purposes, we have also 

computed a slightly truncated complex, where the isopropyl substituents of the “IPr” ligand 

(IPr = 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidine) were replaced by methyl groups 

([PtI2(IPr’)2]+, cf.  Figure 6). In this case, we still compared with data for the larger 

Dyall(TZ)/IGLO-III combination and find only rather minor differences between the results 

obtained with these two basis sets (see Table 2). Truncation of [PtI2(IPr)2]+ to [PtI2(IPr’)2]+ 

affects the results for both the g-shift and HFC A-tensor relatively little, consistent with the 

predominantly metal-centered spin density. In view of the good performance of the 

Hirao/IGLO-II basis sets for the smaller d1 complexes (see above), we also included PBE0-

40HF/Hirao/IGLO-II values for the other systems. They differ moderately from the 

Dyall(TZ)/IGLO-III data (Table 2).  

As a further test of optimal EXX admixture, Table 2 compares principal components of the 

∆g-shift and A-tensors for PBE, PBE0 and PBE0-40HF. Even for the very large g-tensor 

anisotropies of some of these systems, the dependence on the functional is not too pronounced 

(with the apparent exception of the g22 component in Pt(III) complexes; see Table 2). Hybrid 

functionals are better than PBE for the g-tensors, and the PBE0-40HF-based protocol appears 

to perform overall well (PBE0 appears to be in slightly better agreement only with the 

experimental g22 and g33 components for [PtI2(IPr)2]+, but not for the isotropic g-shift 

values). Overall, the very large g-tensor anisotropies are reproduced well. Similarly, a 

surprisingly small dependence of the HFC components on EXX admixture is seen for these 

complexes, with even PBE reproducing the available tensor components reasonably well.  
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An interesting non-monotonic dependence of the A-tensor components on the EXX admixture 

is found for [Pt(C6Cl5)4]- (Table 2), with PBE < PBE0 > PBE0-40HF. This trend is seen 

already at the DKH scalar relativistic level (Table S9 in Supporting Information). Whereas the 

overall metal spin density increases with larger EXX admixture (as expected), analyses of 

NPA atomic spin densities show that the hybridization between 6s and 5d AO contributions is 

more involved: the Pt 5d spin density increases monotonously, but the 6s spin density shows a 

small peak for PBE0 before decreasing for PBE0-40HF (see also Figure S1 for spin densities). 

Even very small changes in these 6s-type spin populations can affect the “direct” SOMO 

contributions to the metal HFC significantly, thus explaining the unexpected non-monotonous 

trend (which also extends to the g33 component; see Table 2). 

 

Figure 6. Visualization of the electronic Δg-tensors (represented as polar plots of the 

Σi,jrirjΔgij function; blue isosurface = positive value, orange isosurface = negative value)116 

and their principal axes in selected Ir(II) and Pt(III) complexes. A green arrow indicates a 

positive g-shift component; a red one indicates a negative g-shift component. 



  

26 
 

Table 2. Experimental vs. calculated principal components of the Δg (in ppt) and hyperfine A-tensors (in MHz) in larger Ir(II) and Pt(III) 

complexes. Calculations done at the 4c-mDKS level using different functionals and basis sets. 

Complex Method Δgiso Δg11 Δg22 Δg33 M Aiso(M) A11(M) A22(M) A33(M) 

  [ppt] [ppt] [ppt] [ppt]  [MHz] [MHz] [MHz] [MHz] 

trans-[Ir{η²-OC(CF3)2PtBu2}2] PBE/Dyall(TZ)/IGLO-III 269 140 206 741 193Ir 5 21 9 47 

 
PBE0/Dyall(TZ)/IGLO-III 318 184 211 927 193Ir 3 49 26 66 

 
PBE0-40HF/Dyall(TZ)/IGLO-III 336 235 188 1055 193Ir 9 67 40 79 

 
PBE0-40HF/Hirao/IGLO-II 335 246 168 1084 193Ir 12 70 44 79 

 expt.114  358 202 218 1058  - - - - 

[Ir(Me3tpa)(η²-ethene)]2+ PBE/Dyall(TZ)/IGLO-III 200 46 190 457 193Ir 136 90 147 171 

 
PBE0/Dyall(TZ)/IGLO-III 238 41 223 530 193Ir 131 86 144 163 

PBE0-40HF/Dyall(TZ)/IGLO-III 258 38 240 573 193Ir 127 82 140 159 

 
PBE0-40HF/Hirao/IGLO-II 261 36 240 579 193Ir 123 79 136 155 

 
expt.113  258 27 263 538 193Ir - - - 138 

[Ir(C6Cl5)2(cod)] PBE/Dyall(TZ)/IGLO-III 351 147 488 713 193Ir 463 438 470 481 

PBE0/Dyall(TZ)/IGLO-III 433 143 639 802 193Ir 447 409 460 470 

 
PBE0-40HF/Dyall(TZ)/IGLO-III 462 128 664 850 193Ir 424 384 437 451 

PBE0-40HF/Hirao/IGLO-II 454 126 647 842 193Ir 414 374 427 440 

 expt.110  545 149 788 998  - - - - 
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Complex Method Δgiso Δg11 Δg22 Δg33 M Aiso(M) A11(M) A22(M) A33(M) 

  [ppt] [ppt] [ppt] [ppt]  [MHz] [MHz] [MHz] [MHz] 

[Pt(C6Cl5)4]- PBE/Dyall(TZ)/IGLO-III 206 511 52 1078 195Pt 7018 6315 6902 7838 

 
PBE0/Dyall(TZ)/IGLO-III 489 344 826 986 195Pt 7887 7029 8272 8360 

 
PBE0-40HF/Dyall(TZ)/IGLO-III 543 330 927 1031 195Pt 7507 6600 7940 7981 

 
PBE0-40HF/Hirao/IGLO-II 548 323 931 1036 195Pt 7345 6445 7773 7816 

 

expt.112  594 400 1005 1177 195Pt 7322 6375 7735 7855 

[PtI2(IPr')2]+ PBE/Dyall(TZ)/IGLO-III 220 1244 1020 1604 195Pt 431 182 585 524 

 127Ia 250 18 53 786 

 PBE0/Dyall(TZ)/IGLO-III 85 1064 767 1575 195Pt 472 173 713 531 

     127Ia 252 57 49 748 

 PBE0-40HF/Dyall(TZ)/IGLO-III 7 940 533 1493 195Pt 520 152 872 536 

     127Ia 244 91 42 685 

 PBE0-40HF/Hirao/IGLO-II 1 960 553 1511 195Pt 476 131 805 491 

     127Ib 256 92 40 718 

 expt.111,c 15 933 722 1610 195Pt - - - 500 

      127I - - - 802 
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Complex Method Δgiso Δg11 Δg22 Δg33 M Aiso(M) A11(M) A22(M) A33(M) 

  [ppt] [ppt] [ppt] [ppt]  [MHz] [MHz] [MHz] [MHz] 

[PtI2(IPr)2]+ PBE0-40HF/Hirao/IGLO-II 19 932 508 1497 195Pt 494 136 840 507 

     127Ib 252 99 41 697 

 expt.111  15 933 722 1610 195Pt - - - 500 

      127I - - - 802 

a Dyall(TZ) basis set used on iodine. b Hirao basis set used on iodine. c Expt. values for [PtI2(IPr)2]+. 
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Table 3. Comparison of Δg-shift components (in ppt) computed at the 1c-DKH and 4c-

mDKS relativistic level, respectively.a Higher-order spin-orbit (HOSO) effects estimated from 

the difference between 4c-mDKS and 1c-DKH data. 

Δgiso Δg11 Δg22 Δg33 

  [ppt] [ppt] [ppt] [ppt] 

trans-[Ir{η²-OC(CF3)2PtBu2}2] 1c-DKH 744 343 410 1477 
 4c-mDKS 335 246 168 1084 

 expt.114  358 202 218 1058 

 HOSO 409 589 242 393 

      

[Ir(Me3tpa)(η²-ethene)]2+ 1c-DKH 377 47 450 634 

 4c-mDKS 261 36 240 579 

 expt.113  258 27 263 538 

 HOSO 116 83 210 55 

      
[Ir(C6Cl5)2(cod)] 1c-DKH 705 23 976 1116 

 4c-mDKS 454 126 647 842 

 expt.110  545 149 788 998 

 HOSO 251 149 329 274 

      
[Pt(C6Cl5)4]- 1c-DKH 1427 13 2051 2217 

 4c-mDKS 548 323 931 1036 

 expt.112  594 400 1005 1177 

 HOSO 879 336 1120 1181 

      

[PtI2(IPr')2]+ 1c-DKH 1708 219 1170 3736 

 4c-mDKS 1 960 553 1511 

 expt.111,b 15 933 722 1610 

 HOSO 1709 1179 1723 2225 

a Results obtained at the PBE0-40HF/Hirao/IGLO-II level (cf. Computational details). b Expt. 

values for [PtI2(IPr)2]+. 

 

In view of the extremely large g-tensor anisotropies for several of the complexes in Table 2, 

assessment of the importance of HOSO effects for these tensors is of particular interest. Table 

3 compares 4c-mDKS and 1c-DKH results (using identical functionals and basis sets) and 
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estimates the HOSO contributions from the difference. We first of all note, that the HOSO 

contributions amount to several hundreds of ppt for the three Ir complexes and to thousands of 

ppt for the two Pt complexes, and they thus exceed by far the dependence on the functional 

(cf. Table 2). We even see changes of sign for some tensor components (for instance, the Δg11 

component is systematically overestimated at the 1c-DKH level) and overall fundamental 

modifications of the entire tensor (as indicated by the percentage contributions in Table 3). In 

all five test cases, the 4c-mDKS results exhibit significantly better agreement with experiment 

than the 1c-DKH data. 

Further insight into the HOSO effects may again be obtained from a “c scaling” analysis 

(Figure 7, one Ir and one Pt complex shown, additional plots are in Figure S2 in Supporting 

Information), for both Δg-shift and HFC A-tensor components. All plots are clearly nonlinear 

and confirm the need to include relativistic effects variationally to reproduce the correct sign 

and magnitude of EPR parameters in these complexes. We also note that SO effects may 

change the sign for a given HFC tensor component, as seen for A33 of trans-[Ir{η²-

OC(CF3)2PtBu2}2] (cf. Figure 7). Similarly, scalar relativistic 1c-DKH calculations are not 

able to reproduce the positive sign for all A(195Pt)-tensor components of [PtI2(IPr)2]+ (cf. 

Table 2 and Table S9), and inclusion of only leading-order SO corrections overshoots the A33 

value by more than 100% (cf. Table S11 in Supporting Information). 
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Figure 7. “Speed of light scaling” analyses of principal g- and A-tensor components at 4c-

mDKS level for trans-[Ir{η²-OC(CF3)2PtBu2}2] and [Pt(C6Cl5)4]- (PBE0-

40HF/Dyall(TZ)/IGLO-III results). 

 

We finally note that the present implementation is able to handle heavy-metal complexes with 

more than 100 atoms and 2000 (scalar one-component) basis functions in affordable time. For 

instance, the 4c-mDKS calculations for the largest complex [PtI2(IPr)2]+ with 133 atoms and 

2960 basis functions required ~14 days on 24 CPUs, Intel Xeon 2.67GHz, with the three spin-

unrestricted SCF calculations done in parallel (each SCF running on 8 CPUs). 

Conclusions 
 

This work reports the implementation, and first applications of global hybrid functionals in 

four-component relativistic calculations of electronic g- and hyperfine-coupling A-tensors. 

The efficiency of the implementation in the ReSpect program allows computations for rather 

large complexes and thus makes the method available for interesting applications in a wide 

range of fields.  

Systematic benchmarking of hybrid functionals and basis sets on a series of 17 small 4d1 and 

5d1 complexes suggested a computational protocol (mDKS/PBE0-40HF/Dyall(TZ)/IGLO-III) 

that performed well for both g- and HFC A-tensors. In general, the need for appreciable exact-

exchange admixture in hybrid functionals was apparent, in particular for the HFCs. 
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Application of this protocol to larger Ir(II) and Pt(III) complexes with very large g-tensor 

anisotropies confirmed its applicability and demonstrated the importance of spin-orbit effects 

beyond leading order in perturbation theory. This holds particularly true for the extreme g-

shift anisotropies, where the higher-order SO effects can easily amount to several hundreds or 

even thousands of ppt and change the appearance of the tensor fundamentally. 
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