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Abstract
The harbour seal (Phoca vitulina) population in Svalbard marks the northernmost limit of the

species’ range. This small population experiences environmental extremes in sea and air

temperatures, sea ice cover and also in light regime for this normally temperate species.

This study deployed Conductivity Temperature Depth Satellite Relay Data Loggers (CTD-

SRDLs) on 30 adult and juvenile harbour seals in 2009 and 2010 to study their foraging

behaviour across multiple seasons. A total of 189,104 dives and 16,640 CTD casts (mean

depth 72 m ± 59) were recorded. Individuals dove to a mean depth of 41 m ± 24 with a maxi-

mum dive depth range of 24 – 403 m. Dives lasted on average 204 sec ± 120 with maximum

durations ranging between 240 – 2,220 sec. Average daily depth and duration of dives,

number of dives, time spent diving and dive time/surface time were influenced by date,

while sex, age, sea-ice concentration and their interactions were not particularly influential.

Dives were deeper (~150 m), longer (~480 sec), less numerous (~250 dives/day) and more

pelagic during the winter/early spring compared to the fall and animals spent proportionally

less time at the bottom of their dives during the winter. Influxes of warm saline water, corre-

sponding to Atlantic Water characteristics, were observed intermittently at depths ~100 m

during both winters in this study. The seasonal changes in diving behaviour were linked to

average weekly wind stresses from the north or north-east, which induced upwelling events

onto the shelf through offshore Ekman transport. During these events the shelf became

flooded with AW from theWest Spitsbergen Current, which presumably brought Atlantic

fish species close to shore and within the seals’ foraging depth-range. Predicted increased

in the influx of AW in this region are likely going to favour the growth and geographic expan-

sion of this harbour seal population in the future.

Introduction
Key foraging locations of top predators, such as sea birds and mammals, in marine environ-
ments have been shown to be tightly linked to oceanographic features and processes at various
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temporal and spatial scales [1–4]. Depending on their foraging strategy, marine mammals are
influenced by either static or dynamic oceanographic features, or both. Animals foraging pela-
gically rely on predictable, albeit dynamic, features such as frontal structures [5], eddies, fila-
ments [1,6,7], upwelling events or the stratification of the water column [8]; all of which can
vary in time and space. On the other hand, benthic foragers tend to focus on particular topo-
graphical features of the sea bed such as sea mounts, trenches or shelf breaks that are known to
concentrate nutrients [9–11]. Features such as these are often described as “biological hot-
spots” because they serve to aggregate invertebrate and fish prey that in turn concentrate large
predators [12]. Linkages between hydrographic features and biological production can however
be challenging to demonstrate because of time lags existing between productivity and trophic
dynamics the complexity of the relationships involved and the quality and the geographical
scale of the available environmental data [1–4]. In addition, fine-scale oceanographic processes
are rarely well described in remote Polar Regions where data, especially from during the winter
in ice-filled waters, are limited or completely lacking [13]. However, recent advances in novel
technologies allow animals to be fitted with multi-sensors instruments that collect data both on
their own behaviour and the environmental conditions the animals are experiencing [14–16] at
the same spatial and temporal scales.

Harbour seals (Phoca vitulina) have one of the broadest distributions among the pinnipeds
ranging from temperate areas to arctic waters of the North Pacific and the North Atlantic
[17,18]. A few harbour seal populations inhabit arctic areas in the latter region, including
southern Greenland [19]; northern Norway [20–22], Iceland [23] and the Murman area in
north-western Russia [24,25]. Harbour seals are a coastal species [26] that is usually found
within 50 km of their terrestrial haul-out sites [27,28]. The world’s northernmost population of
harbour seal is located in Svalbard, where the seals reside year-round in the High Arctic [29–
31]. The core of this population’s distribution is located on the west side of Prins Karls Forland
(PKF) close to the shelf break west of Spitsbergen at about 78.5°N (Fig 1a). Individuals in this
population experience extreme seasonal variation in the light regime, cold air and water tem-
peratures, especially in winter, as well as considerable amounts of drifting sea ice [32]. Recent
studies of the haul-out behaviour [33] and movement patterns [34] of this population have
shown that these environmental parameters (light, sea-ice concentration and air pressure)
have great influence on these facets of the behaviour of these seals. But, little is known about
how environmental factors specifically influence their diving and foraging behaviour.

Environmental parameters, particularly water mass characteristics, influence the composi-
tion of potential prey communities for marine mammals. In other regions harbour seals are
known to feed opportunistically on a wide variety of benthic and pelagic prey species and they
show strong regional patterns [35,36]. Seasonal variation in harbour seal diet has also been
documented repeatedly [35,37–41]; some of this seasonal variation has been linked to fish
migratory patterns. Relatively little information is available regarding the diet or diving behav-
iour of harbour seals in Svalbard, and most of what is available is from the summer and early
fall [29,30,42–44]; the winter and spring periods are especially poorly documented.

The Svalbard region, and in particular, the core of the area occupied by the local harbour
seal population, is characterized by complex oceanographic conditions. Warm, saline, nutri-
ent-rich Atlantic Water (AW) penetrates into the Arctic Ocean via the West Spitsbergen Cur-
rent (WSC) along the shelf west of Spitsbergen (Fig 1a) and is one of the key factors that drives
the high primary productivity in this region [45,46]. East of this current, on the shelf, Arctic
Water (ArW) from the east side of Spitsbergen flows north after having rounded South Cape.
Thus, the West Spitsbergen Shelf (WSS) is a site where AW and ArW converge forming the
Polar Front (PF) [47]. These various water masses create very dynamic ocean conditions along
the WSS, which change markedly on a seasonal basis.

Oceanographic Drivers on Svalbard Harbour Seals' Diving Behaviour
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Fig 1. Map of the Svalbard Archipelago, Norway. (a) shows a map of the Svalbard Archipelago, the red dot represents the capture site on Forlandøyane
west of Prins Karl Forland. The broken grey line represents the 500 m isobath delimiting the West Spistbergen Shelf. TheWest Spitsbergen Current (WSC) is
represented by the red arrow flowing northwards along the continental slope; the coastal current is illustrated in blue. It is mainly composed of Arctic Water
(ArW), which flows northwards along the west coast of Spitsbergen (modified from Nilsen et al. 2008). The Polar Front (not represented on the figure) is
located at the shelf edge between theWSC and the coastal current (b) shows the filtered tracks of the 30 adult and juvenile harbour seals equipped with
Conductivity Temperature Depth Satellite Relay Data Loggers (CTD-SRDLs) on Svalbard, Norway during 2009/2010 (green) and 2010/2011 (purple)
overlaid on bathymetry (darker shades of blue indicate deeper water). The inset in (a) shows the Svalbard Archipelago’s geographical position. The bottom
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During the last decades important climatic changes have occurred in Polar Regions; in this
context Svalbard is a hot spot [32]. Heat transported in the AW of the WSC has increased dra-
matically leading to a general warming of the WSS and adjacent fjords and a dramatic loss of
sea ice in the west coast fjords of Svalbard [48]. Such drastic changes are bound to affect the
distribution of phytoplankton, zooplankton, fish and hence also top predators. However, pre-
dicting future species distributions and status must be based on an understanding of how ani-
mals respond to current variation in the environment. Consequently, this study had two aims:
i) to characterize the diving/foraging behaviour of harbour seals in Svalbard on a seasonal
basis, with a focus on how they deal with High Arctic winter conditions and ii) to assess the
oceanographic drivers affecting their behaviour using information on regional hydrography
collected by the seals themselves. This will help us understand how harbour seals may be
affected by large scale environmental changes in the coming decades and predict their future
distribution within the Svalbard Archipelago.

Materials and Methods

Animal ethics statement
This study was carried out in strict accordance with the recommendations of the Norwegian
Animal Care Authority (Forsøksdyrutvalget) and was approved under permit number 2009/
1449. The protocol was also approved by the Governor of Svalbard (Sysselmannen på Svalbard)
under permit number 2009/00103-2 a.512 and followed best practice for all animal handling.

Capturing and tagging
Fifteen juvenile and fifteen adult (total n = 30) harbour seals were live-captured at For-
landøyane on the west coast of Prins Karls Forland (78°20 N, 11°30 E) in the High Arctic
Archipelago of Svalbard (Fig 1a) in 2009 and 2010 (n = 15 each year). The animals were cap-
tured immediately following their annual moult, between 23 August and 13 September using
tangle nets set from shore near haul-out sites (see Lydersen and Kovacs [31] for details). All
animals were weighed (Salter spring scales ± 0.5 kg) and sex was determined. Standard length
and girth were measured to the nearest cm. Seals were sorted into adult vs juvenile based on a
combination of their length, girth and mass measurements following Lydersen and Kovacs
[31]. All animals were equipped with Conductivity-Temperature-Depth Satellite-Relay Data
Loggers (CTD-SRDLs, Sea Mammal Research Unit (SMRU), University of St Andrews, St
Andrews, Scotland http://www.smru.st-andrews.ac.uk/Instrumentation/CTD), glued onto the
fur mid-dorsally in the neck area using quick-setting epoxy (tag dimensions 10.5 x 7 x 4 cm,
mass 545 g, average 1.0% (range 0.7–1.3%) of seal body mass). All of the seals were also tagged
with uniquely numbered plastic tags (Dalton rototags) placed through the webbing of each
hind flipper for permanent individual identification.

CTD-SRDL sampling protocols
Data collected by the CTD-SRDLs (including haul-out and dive behaviour as well as CTD-
upcasts [13]) were transmitted via the Argos satellite system (System Argos, Toulouse, France);
location estimates of the animals were also calculated by Argos. Accuracies of the CTD data are
estimated to be ± 0.02°C for temperature, ± 0.1 mPSU for the derived salinity without correc-
tion and 0.3 dBar for pressure [49]. A dive was defined as a period of submersion at least 8 sec

panels show the locations of Conductivity-Temperature-Depth (CTD) casts collected by the harbour seals during (c) 2009/2010 (d) and 2010/2011. Three
selected geographical regions (A, B and C) used in oceanographic analyses are represented on these maps (c,d).

doi:10.1371/journal.pone.0132686.g001
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long and at least 6 m deep. If either the depth, or the total duration of a dive, was less than
these values but the animal was wet, this time was recorded as surface time. If the saltwater
switch was dry for more than 10 minutes the time was recorded as haul-out event. The instru-
ments were programmed to send data whenever possible with no duty cycling.

Data processing
All data processing and analyses were done using the R statistical framework [50]. Satellite-
derived locations were first filtered using a speed, distance and angle filter (SDA filter [51])
using the R package “argosfilter” [52]. The swimming speed threshold was set at>2 ms-1 and
all spikes with angles smaller than 15 or 25 degrees were removed if their lengths were greater
than 2.5 or 5 km, respectively. The remaining location estimates were then processed further,
using a Kalman filter under a state-space framework using the R package “crawl” [53] that
incorporates a covariate for Argos location error (when available) for each of the six Argos
location classes (LC—3,2,1,0,A,B). In addition a covariate encompassing the time the animal
was hauled out was included allowing the movement along a track-line to stop completely dur-
ing a haul-out event. Processing the raw location estimates in this manner resulted in a model
of the most likely track, from which point location estimates could be interpolated for any spe-
cific time. Dive and CTD-cast locations were estimated based on this model using their trans-
mitted time stamps.

Dive parameters
The dive data stored and transmitted by these instruments fall into two categories: 1) summa-
ries which include the average dive depth, the average dive duration and the total number of
dives for each 6 hour-period and 2) a randomly transmitted subset of dives for which a dive
profile (based on four inflection points [54]), maximum dive depth and total dive duration are
transmitted. Dive parameters (average maximum depth, average duration, number of dives,
time spent diving, dive time/surface time) were extracted on a daily basis from the summary
data. Only days with a complete record of four summaries were used.

Possible seasonal trends in the dive parameters listed above were explored using Generalized
Additive Mixed effect Models (GAMMs). Date was entered as a smoothed term and a separate
smoothed term was fitted for each year. Penalised regression splines for date and a Gaussian
distribution were used in all the GAMM’s, which were optimised by the restricted maximum
likelihood (REML) method. Animal ID was included as a random effect to take into account
the pseudoreplication affiliated with multiple points from individual animals and a correlation
term was added to take into account the dependence between consecutive days. Possible effects
of sex, age, year, ice concentration and interactions year�ice concentration and age�ice concen-
tration were tested. The optimal model was selected using Bayesian Information Criterion
(BIC) that penalizes overfitting [55] and BIC weight (BICw). The distribution of the response
variables were verified and Gaussian error distributions were used for the GAMMs.

Linear Mixed Effect (LME) models were used to explore the influence of diel periods, year,
age, sex and their interactions on the dive depth, dive duration (both log transformed) and
number of dives per 6 h period. Sex and diel period and sex and year interactions were only
tested for September through December due to the low number of females still transmitting
data by January. Similar to the GAMM analyses, animal ID was entered as a random effect and
a correlation term was included. Selection of the optimal model was again done using BIC and
BICw.

Several metrics were calculated for each of the individually transmitted dives. Bottom time
was defined as the time spent at a depth exceeding 80% of the maximum depth reading for a
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specific dive [56]. However, for deep dives, the transit times to and from the bottom are longer
and the amount of time that can be spent at the bottom, within the animal’s physiological con-
straints, is therefore less than for shallower dives; so bottom time cannot be compared directly
between dives of different depths and durations. In order to account for depth and duration of
a dive in the bottom time, a multiple regression was fitted between these three parameters fol-
lowing [57] for each individual animal independently. The standardized residuals from this
regression were then extracted. Positive residuals indicate dives with a longer bottom time than
average for a given depth and duration while negative residuals indicate a shorter bottom time
than average, which suggests a decrease in diving effort. In order to identify favoured habitat
(s), areas where the animals spent greater amounts of time were identified using the time spent
in area (TSA) method following [34]. Areas corresponding to the top 25% of the distribution of
TSA for each individual were defined as areas of high usage. Dives located in these areas were
extracted, separating them from dives occurring during transit phases and standardized residu-
als corresponding to these dives in high usage areas were then modelled using GAMMs (see
above).

Environmental data extraction
Daily ice maps constructed by the Norwegian Meteorological Institute were used to determine
sea ice concentration categories (http://polarview.met.no/): 1) Open water = 0/10–1/10; 2)
Very open drift ice = 1/10–4/10; 3) Open drift ice = 4/10–7/10; 4) Close drift ice = 7/10–9/10;
5) Very close drift ice = 9/10–10/10 and; 6) Land fast ice (ice that makes contact with shore).
Ice concentration was extracted at the estimated geographical location of each dive using the R
package “Raster” [58].

Bathymetry was extracted for each dive location from a 0.5 km x 0.5 km resolution data set
from the International Bathymetric Chart of the Arctic Ocean (IBCAO version 3.0, 2012,
http://www.ibcao.org [59]). Dive types were assigned using the definition from [60] with
respect to bathymetry. Dives occurring in waters shallower than 50 m were classified as
“coastal” and dives in waters deeper than 50 m were classified according to what part of the
water column was used (dive depth divided by bathymetric depth). If the ratio was>0.95 the
dive was classified as “benthic” and if the ratio was<0.95 it was classified as “pelagic”. A multi-
nomial model was fitted to explore the relationship between the dive type, month, year and
age. Selection of the optimal model was done using BIC.

Visualization of oceanographic data was done using Ocean Data View (ODV) 4.5.1 [61]
using raw data sent by the tag. No post-processing of the CTD data was performed because
the precision of these data were sufficient for comparing characteristics of known water mas-
ses (see [43] for details). Individual points belonging to each CTD cast collected by all the
individuals within a geographical region were interpolated using the Data-Interpolation Vari-
ational Analysis (DIVA) gridding method in order to create isosurfaces of the different vari-
ables [62].

Temperature and salinity were extracted for each dive at the surface (i.e. 6 m corresponding
to the first data point within a dive) and at the maximum depth using information collected by
the CTD-SRDLs. CTD profiles were not available for every dive and the daily number of casts
per animal varied greatly (Table 1). However, all of the animals stayed within a limited geo-
graphical region on the shelf (Fig 1b) so temperature, salinity and distance to the mixed layer
depth (see below) could be ascribed to each dive using the entire CTD dataset. An interpolation
method based on a weighted running average using the distance and time between a dive and
the neighbouring CTD casts was implemented. The weights were based on a standardized
Gaussian distribution with a standard deviation of three days and 25 km for the time and
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distance respectively with the mean of the distribution falling at the time of the dive of interest
and its location. In addition, a vertical weighting with a standard deviation of 5 m (twice the
sensor resolution) was used so that each temperature and salinity value was a result of an inter-
polation incorporating 3D spatial and time dimensions.

Table 1. Summary statistics for harbour seal dives and CTD casts collected by animal borne CTD-SRDLs.

Dives CTD casts

Year Seal
ID

AvDepth SDdepth MaxDepth AvDur SDdur MaxDur AvBott SDbott MaxBott %
transm

Tot. nb.
Casts

Nb.
casts/
day

AvDepth SDdepth

2009 F41 19 19 186 137 77 1020 86 61 433 26.0 183 0.7 50 43

2009 F44 35 27 148 161 72 780 110 54 413 21.5 206 1.4 50 29

2009 F47 15 8 90 116 55 780 79 51 368 31.1 53 0.4 29 43

2009 F48 10 3 33 96 38 300 56 35 211 30.5 4 0.0 20 8

2009 F60 23 14 176 167 64 750 124 62 456 21.8 284 1.4 30 30

2009 F66 15 10 85 141 58 2235 98 57 395 19.6 61 0.6 22 14

2009 F74 13 8 110 149 74 570 97 61 425 19.0 28 0.2 27 20

2009 F76 41 32 241 285 101 870 219 105 672 30.9 661 2.4 36 34

2009 M43 37 23 186 168 79 600 112 67 467 24.1 382 2.2 44 33

2009 M51 72 51 316 258 121 1020 152 85 802 35.2 716 2.6 88 58

2009 M52 61 36 271 223 90 660 148 75 605 29.3 683 2.5 65 42

2009 M56 70 55 301 231 115 1740 134 83 859 28.8 526 1.9 98 60

2009 M64 58 45 296 231 107 1020 150 82 774 29.7 587 2.3 74 56

2009 M65 56 39 326 239 99 930 159 87 641 24.2 593 2.2 69 48

2009 M77 17 12 100 140 66 570 91 58 429 22.7 62 0.6 32 17

2010 F42 13 4 24 153 56 405 122 59 379 3.8 21 0.1 29 17

2010 F44 25 19 283 187 55 425 128 59 403 6.0 314 2.2 33 20

2010 F50a 11 4 26 132 32 245 98 43 222 4.4 1 0.0 NA NA

2010 F53 46 34 189 260 128 855 187 99 642 6.0 560 3.6 51 36

2010 F58a 34 23 177 178 61 775 119 52 385 4.8 285 3.4 48 32

2010 F58b 79 62 299 309 152 1875 181 114 664 9.1 1325 4.5 115 59

2010 F59 21 13 81 195 61 495 160 59 395 3.7 204 2.0 24 14

2010 M41 73 55 331 235 104 775 122 71 491 6.6 1427 5.0 94 66

2010 M45 16 10 69 127 58 385 79 51 367 3.3 94 0.6 40 31

2010 M48 42 29 283 240 93 775 171 83 511 6.8 1156 4.0 44 40

2010 M53a 58 38 387 270 111 2235 187 94 800 8.1 1421 4.9 59 43

2010 M53b 74 57 403 242 127 975 125 77 496 7.7 846 4.8 113 67

2010 M57 57 41 307 267 109 1475 192 92 765 8.5 1350 4.5 58 44

2010 M64 92 61 363 301 133 935 167 92 613 10.4 1482 5.1 124 73

2010 M65 44 32 195 317 120 935 234 114 709 10.0 1127 4.8 41 37

The information presented is for 30 adult and juvenile harbour seals equipped with Conductivity-Temperature-Depth Satellite-Relay-Data-Loggers

(CTD-SRDLs) in Svalbard, Norway during 2009/2010 and 2010/2011. AvDepth average depth (m), AvDur average duration (sec), AvBott, average time

spent at the bottom of the dive (sec) during the tagging period; MaxDepth maximum depth (m), MaxDur maximum duration (sec), MaxBott maximum time

spent at the bottom of the dive (sec), SDdepth standard deviation for depth (m), SDdur standard deviation duration (sec), SDbott standard deviation time

spent at the bottom of the dive (sec) during the tagging period. % transm represents the percentage of dives that were transmitted during the tagging

period. Seal ID contains information on the sex and weight. If two or more animals had the same sex and weight and were tagged the same year,

alphabetic indices were used (ex: F58a F58b).
a Only one cast was collected by this instrument and it was therefore not used in the analysis.

doi:10.1371/journal.pone.0132686.t001
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Three geographical regions were defined where most of the CTD casts were collected by the
seals in order to construct meaningful time series for temperature and salinity between the two
years of the study: box A in the northwest corner of Spitsbergen; box B west of PKF and; box C
south of PKF (Fig 1c and 1d). This focussed the analyses on relatively homogenous oceano-
graphic regions, essentially removing the few points collected in fjords, beyond the shelf edge
and between PKF and Spitsbergen, which all belong to different oceanographic domains. Tem-
perature data points were smoothed using a moving Gaussian weighted average with a window
of 2 days.

Analyses within the water column were conducted to determine the depths at which water
masses changed, so that seal diving could be linked to specific (or mixed) water masses. The
mixed layer is defined as a surface layer where there is nearly no variation in density with
depth, i.e. the layer represents a quasi-homogeneous region [63]. The maximum depth of this
layer was calculated based on the density profiles method, using a sharp change in the relation-
ship between seawater potential density and depth as being indicative of the change to another
water mass [63]. The sea water potential density was determined for the first data point in a
dive (6 m) in order to avoid turbulence inherent in surface processes such as wave action. It
was calculated according to McDougall et al. [64] using the R package “OCE” [65].

Linking oceanographic and dive data
To explore the influence of dynamic oceanographic features such as the mixed layer depth on
dive behaviour, daily differences between dive depth and the mixed layer depth were calculated.
As done previously, only dives occurring over the shelf were used, not those few that occurred
beyond the shelf edge or in the fjords. The difference in depth between the bottom of the
mixed layer and the daily average dive depth was calculated and modelled using Generalized
Additive Models (GAMs) including an interaction between the date (entered as a smooth
term) and the year of tagging. Change point analysis was used to determine the date at which a
significant change in the difference in depth occurred [66].

Coastal upwelling can be wind-induced through Ekman drift [67]. This phenomenon has
been described recently for the WSS, where northerly/northeasterly winds cause cross-shelf
exchanges [46,47,68]. Therefore wind stress from the north or north-east was used as a proxy
for upwelling. The influence of wind speed was tested on average daily dive parameters (dive
duration, dive depth, time spent at the bottom and temperature and salinity at the maximum
dive depth). Average wind speed from the north or combined north and east directions preced-
ing the dive was used as a covariate for the GAMs. Several time lags were explored (1–7 days).
Date and wind speed were entered as smooth terms with an interaction with the year of tag-
ging. Model selection was done by BIC. Wind stress data were obtained from the Norwegian
Meteorological Institute (www.met.no) for a grid point at 78.5° N and 12.0° N (West of PKF),
which has been shown by correlation studies to give a good representation of the wind stress
field over the WSS [68,69].

Results
The 30 CTD-SRDLs deployed on adult and juvenile harbour seals in this study provided data
for periods ranging from 54 to 298 days with an average data record lasting 200 ± 79 days (S1
Table). Twelve animals had records that extended into June the year following tag deployment;
but all tags ceased to function before July. Year of tag deployment (ANOVA F1,58 = 2.14,
p = 0.15) and seal maturity class (ANOVA F1,58 = 0.92, p = 0.40) had no effect on the duration
of the tracking records; but males had longer data records than females in both years (ANOVA
F1,58 = 6.62, p<0.01). The percentage of transmitted dives varied greatly between individuals
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(range 3.3%- 35.2%) and between years (mean ± SD) (mean 2009 = 26.3% ± 4.8; mean 2010 =
6.6% ± 2.3) due to a different sampling protocol for dives and CTD casts in the two consecutive
seasons (Table 1). Similarly, the number of CTD casts per day varied between individuals
depending on their diving behaviour (range 0.1–5.1 casts/day) and between years (mean 2009 =
1.4 casts/day ± 0.9; mean 2010 = 3.3 casts/day ± 1.8) (Table 1). One instrument collected only 1
cast (F50-10) over a 54 day period so the information from this cast was not used in subsequent
analyses, but dives belonging to this individual were assigned oceanographic information (tem-
perature and salinity) based on information collected by neighbouring individuals.

A total of 189,104 dives (143,168 in 2009/2010 and 40,736 in 2010/2011) were recorded by
the 30 instrumented seals during the two years of the study. Individual animals dove to a mean
depth of 41 m ± 24 (SD) with a maximum dive depth range of 24–403 m. Dives lasted on aver-
age 204 s ± 121 with maximum durations ranging between 245–2,235 s (Table 1). A total of
5,028 CTD casts (mean depth 63 ± 51 m) were collected in 2009/2010 and 11,612 (mean depth
76 ± 62 m) in 2010/2011.

All average daily dive parameters analysed (depth, duration, diving time and dive time/sur-
face time) as well as the total number of dives per day were influenced by date, while sex, age,
sea-ice concentration and their interactions were not particularly influential (Table 2). Daily
maximum dive depth, dive duration, time spent diving and the dive/surface ratio increased
through the winter with a marked maximum for 2010/2011 occurring in January/February.
The maximum was less pronounced in 2009/2010 and occurred later in the season (March/
April) (Fig 2). The total number of dives per day followed an inverse trend compared to the
other dive parameters, decreasing during the winter and early spring in both years.

Diel patterns were apparent in dive duration and depth during the autumn (Fig 3, Table 3).
Dives that occurred during the night (0–6 h and 18–24 h) were deeper, slightly longer and
more numerous than during daytime (6–18 h). This diel pattern disappeared during the Polar
Night and did not reappear during spring or early summer. A diel period/year interaction was
significant in a few months but this was mainly because animals dove slightly longer and
deeper in the second year of the study. In both years, diel period had similar influences on dive
parameters, with the greatest impact on the number of dives performed (Fig 3).

Sixty-eight percent of the total number of transmitted dives were performed in coastal
waters (<50 m) while the remaining 32% occurred in water of greater depth. Of this 32%, 21%
were classified as pelagic and 11% as benthic. The proportion of dives in the various categories
varied by month, with the proportion of coastal dives decreasing through the winter (Fig 4)
and the proportion of benthic dives increased slightly through the winter, while pelagic dives
were most numerous from March through May in 2009/2010 and from January through April
in 2010/2011. The optimal multinomial model included month�year (S2 Table) showing an
influence of the year of tagging on the calendar month.

There was a significant seasonal change in diving effort for dives located in areas of high use
(Fig 5). Diving effort was influenced by date and year of tagging, while age and sex were not
retained in the optimal model linking these parameters (Table 4). Animals spent a smaller
amount of time at the bottom of a dive with respect to depth and duration in winter compared
to early autumn. This seasonal variation was more evident in 2010/2011 than in 2009/2010.

The warmest water temperatures were documented in September in both years (2°- 5°C),
within the surface layers. These layers cooled progressively and reached a minimum (- 1.9°C)
in February—March (Fig 6). However, at greater depths (�100 m) surges of warmer water
(between 3°C and 4.8°C) occurred during winter, from December until April in both years.
These influxes of warmer water occurred at depths between 100 and 150 m, but they had influ-
ence throughout the entire water column up to the surface. Temperatures greater than 3.5°C at
depths� 100 m were only recorded in January—February in both years. Salinity changed
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concomitantly with temperature (Fig 7). The influxes of warmer, more saline AW occurred
over the entire study area, covering the WSS (S1 Fig).

There was a strong relationship between mixed layer depth, calendar month, year of tagging
and the average daily dive depths performed by the seals over the shelf (Fig 8). The difference
between the depth of the mixed layer and the average daily dive depth was dependant on date
and year (GAM - Fs(date, 2009) = 72.11 p< 0.001; Fs(date,2010) = 26.45 p< 0.001). However, indi-
viduals dove consistently down to the MLD during the autumn and early winter during both
years of the study. Change point analysis showed that a deviation from the mean occurred first
on the 3rd of April 2010 in the first year of the study and on the 27th of December 2010 for the
second year of the study. After these dates, the seals started diving deeper than the MLD.

There were positive relationships between weekly-averaged northerly or north-easterly
wind stress and dive parameters (Table 5), most influentially in the model when using the aver-
age wind speed the week before a dive. Temperature and salinity at the bottom of a dive and
mean dive duration increased with wind stress from northerly directions. Three competing
models with Δ BIC< 1 were selected to explore the relationship between mean dive depth and
wind stress. Two of them included average north-easterly wind stress (Table 5). Interaction

Table 2. Selection table for Generalised Additive Mixed Models exploring the variation in dive parameters and activity budget.

Response variable Model structure BIC BICw Δ BIC

Max depth/ day f(date,by=year), cor=corAR1(), random=1|ID 39514.56 0.47 0.00

family=gaussian f(date,by=year)+sex, cor=corAR1(), random=1|ID 39514.77 0.42 0.21

f(date,by=year)+year, cor=corAR1(), random=1|ID 39519.18 0.05 4.62

f(date,by=year)+sex+year, cor=corAR1(), random=1|ID 39519.19 0.05 4.64

f(date,by=year)+age, cor=corAR1(), random=1|ID 39522.79 0.01 8.23

f(date,by=year)+age+sex, cor=corAR1(), random=1|ID 39523.02 0.01 8.47

Max dive duration/day f(date,by=year)+year, cor=corAR1(), random=1|ID 52247.11 0.80 0.00

family=gaussian f(date,by=year)+year+age, cor=corAR1(), random=1|ID 52251.53 0.09 4.42

f(date,by=year), cor=corAR1(), random=1|ID 52252.14 0.06 5.03

f(date,by=year)+sex+year, cor=corAR1(), random=1|ID 52253.03 0.04 5.92

f(date,by=year)+sex+year+age, cor=corAR1(), random=1|ID 52256.77 0.01 9.66

Average Nb dives/day f(date,by=year)+year, cor=corAR1(), random=1|ID 581.02 0.89 0.00

family=poisson f(date,by=year)+sex+year, cor=corAR1(), random=1|ID 586.39 0.06 5.38

f(date,by=year), cor=corAR1(), random=1|ID 587.66 0.03 6.64

f(date,by=year)+year+age, cor=corAR1(), random=1|ID 589.28 0.01 8.26

Average time spent diving/day f(date,by=year)+year, cor=corAR1(), random=1|ID 581.02 0.89 0.00

family=gaussian f(date,by=year)+sex+year, cor=corAR1(), random=1|ID 586.39 0.06 5.38

f(date,by=year), cor=corAR1(), random=1|ID 587.66 0.03 6.64

f(date,by=year)+year+age, cor=corAR1(), random=1|ID 589.28 0.01 8.26

Dive/surface f(date,by=year)+year, cor=corAR1(), random=1|ID 11889.82 0.80 0.00

family=gaussian f(date,by=year)+year+age, cor=corAR1(), random=1|ID 11893.32 0.14 3.50

f(date,by=year)+sex+year, cor=corAR1(), random=1|ID 11895.51 0.05 5.69

f(date,by=year)+sex+year+age, cor=corAR1(), random=1|ID 11899.08 0.01 9.26

The models presented best fitted daily maximum dive depth, number of dives, time spent diving, dive duration and dive/surface for 30 adult and juvenile

harbour seals equipped with Conductivity-Temperature-Depth Satellite-Relay-Data-Loggers (CTD-SRDLs) in Svalbard, Norway during 2009/2010 and

2010/2011. Each model was fitted with a random (animal ID) and a first-order autocorrelation term (corAR1). Only models with a BICw �0.01 are

presented and were selected using BIC. Top-ranked models are in bold.

doi:10.1371/journal.pone.0132686.t002
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between wind stress and the year of tagging was only significant for temperature at the bottom
of the dive.

Discussion
Harbour seals occur throughout the North Pacific and North Atlantic and thus occur in a wide
variety of habitats, leading to high levels of variation in behaviour at local or regional scales

Fig 2. Mean daily dive parameters as a function of date. Predicted GAMM curves (solid lines) ± 95%CI (dotted lines) for (a) maximum dive depth (b)
maximum dive duration (c) average number of dives (d) time spent diving (e) and dive/surface time as a function of the date for 30 adult and juvenile harbour
seals equipped with Conductivity-Temperature-Depth Satellite-Relay-Data-Loggers (CTD-SRDLs) in Svalbard, Norway during 2009/2010 and 2010/2011.
The model is comprised of a random term (animal ID), a different smooth term fitted for each year and a first order correlation term (corAR1).

doi:10.1371/journal.pone.0132686.g002
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Fig 3. Influence of the time of day on dive parameters as a function of the season.Mean and 95% bootstrapped CI of (a) average dive depth (b)
average dive duration and (c) average number of dives per 6 hour period for each month made by harbour seals instrumented with Conductivity-
Temperature-Depth Satellite-Relay-Data-Loggers (CTD-SRDLs) on Svalbard, Norway during 2009/2010 and 2010/2011.

doi:10.1371/journal.pone.0132686.g003
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[70], rendering it challenging to identify general species-specific patterns. In addition, this spe-
cies shows high site fidelity and regionally specific prey utilisation [71,72] which pose a chal-
lenge in terms of global assessment of potential impacts of climate change [73]. Identifying
population-specific patterns in relation to environmental conditions is therefore crucial. This
study presents novel telemetry data spanning from the early fall (post-moulting) to the follow-
ing breeding season in early summer, in combination with small-scale hydrographic data col-
lected by the seals themselves, allowing for exploration of water masses in relation to quite
fine-scale movements for two successive years. Despite significant inter annual variation, this
extensive dataset permitted the exploration of small-scale variation in diving behaviour
throughout a seasonal range of environmental conditions in the most extreme conditions

Table 3. Structure of LMEmodels exploring the influence of diel pattern.

Response variable Month Model structure BIC weight

Dive depth September period 4131.03 0.85

October period+sex+period*sex 4961.57 0.91

November Null model 4519.58 0.71

December Null model 4473.66 0.85

January Null model 4267.91 0.77

February year 3187.50 1.00

March Null model 3233.45 0.57

April Null model 3192.80 1.00

May Null model 2922.38 0.70

June Null model 1067.21 0.53

Dive duration September period+year+period*year 2178.73 0.90

October period 2513.37 0.58

November period 2506.07 0.52

December year 2894.42 0.74

January year 2503.54 0.84

February year 1409.69 0.65

March Null model 1066.85 0.87

April Null model 1650.88 0.93

May year 1264.78 0.49

June year 598.65 0.48

Number of dives September period+year+period*year 23938.44 0.88

October period+year 23533.71 1.00

November period+year 20522.43 0.95

December Null model 18989.04 0.75

January Null model 19114.79 1.00

February Null model 14392.01 1.00

March Null model 12830.28 0.93

April Null model 11284.07 0.91

May year 10596.32 1.00

June year 4162.48 0.94

BIC and BIC weight of Linear Mixed Effect models (LME’s) which best fitted average dive depth, duration and number of dives per 6 hour periods within

each month for 30 adult and juvenile harbour seals equipped with Conductivity-Temperature-Depth Satellite-Relay-Data-Loggers (CTD-SRDLs) in

Svalbard, Norway during 2009/2010 and 2010/2011 are presented. Each model was fitted with a random (animal ID) and a first-order autocorrelation term

(corAR1).

doi:10.1371/journal.pone.0132686.t003
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Fig 4. Dive type as a function of the date. Predicted probabilities of belonging to a dive category with respect to bathymetry (coastal, benthic, pelagic)
based on the optimal selected multinomial model (dive category ~ month*year) for 30 adult and juvenile harbour seals equipped with Conductivity-
Temperature-Depth Satellite-Relay-Data-Loggers (CTD-SRDLs) in Svalbard, Norway during 2009/2010 and 2010/2011.

doi:10.1371/journal.pone.0132686.g004
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Fig 5. Seasonal pattern of foraging effort. Predicted GAMM curves (mean (solid lines) and ± 95%CI (dotted lines)) for foraging effort by 30 adult and
juvenile harbour seals equipped with Conductivity-Temperature-Depth Satellite-Relay-Data-Loggers (CTD-SRDLs) on Svalbard, Norway during 2009/2010
and 2010/201. Foraging effort is defined as the bottom time corrected for depth and duration and is represented by the standardized residuals resulting from
the multiple regression (bottom time ~ dive depth + dive duration). The dives used in this analysis are located in areas of high usage (defined as dives located
in areas where individuals spent most of their time). The model is comprised of a random term (animal ID), a first order correlation term (corAR1) and a
different smooth term is fitted for each year.

doi:10.1371/journal.pone.0132686.g005

Table 4. Generalised Additive Mixed Models exploring the variations in diving effort.

Model structure BIC BICw Δ BIC

f(date,by=year), cor=corAR1(), random=1|ID 60872 0.98 0.46

f(date,by=year)+age, cor=corAR1(), random=1|ID 60881 0.01 9.39

f(date,by=year)+sex, cor=corAR1(), random=1|ID 60882 0.01 10.46

f(date,by=year)+sex+age, cor=corAR1(), random=1|ID 60891 0.00 19.36

Candidate models which best fitted the standardized residuals obtained from the multiple linear regression

(bottom time~ dive depth + dive duration) for 30 adult and juvenile harbour seals equipped with

Conductivity-Temperature-Depth Satellite-Relay-Data-Loggers (CTD-SRDLs) in Svalbard, Norway during

2009/2010 and 2010/2011. Each model was fitted with a random (animal ID) and a first-order

autocorrelation term (corAR1()) and the best fitted model was selected using BIC. Top-ranked models are

in bold.

doi:10.1371/journal.pone.0132686.t004
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Fig 6. Temperature according to depth and date for three geographical regions.Weighted average daily temperature from the surface to 150 m depth
for both study years (left 2009/2010; right 2010/2011) within each geographical region (see Fig 1). The black arrows show the most prominent upwelling
events. Note that there was no measurement at 150 m in Box A during the first season.

doi:10.1371/journal.pone.0132686.g006
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Fig 7. Temporal changes in temperature and salinity in the water column on theWest coast of Prins
Karl Forland (PKF) derived from CTD profile data. Temperature and salinity profiles show a vertical
stratification occurring during the winter months with warmer and more saline water occupying the bottom
part of the water column. The dive panels on the right represent the vertical profiles of dives occurring in the
correspondent area during the same month. Only selected months are presented to reduce the number of
Figures, while still capturing the temporal oceanographic variability.

doi:10.1371/journal.pone.0132686.g007
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Fig 8. Diving depth in relation to the mixed layer depth (MLD). Depth of the mixed layer (in blue), daily average dive depth (in red) and daily maximum
dive depth (in grey) as a function if the date for harbour seals instrumented with Conductivity-Temperature-Depth Satellite-Relay-Data-Loggers
(CTD-SRDLs) in Svalbard, Norway during 2009/2010 and 2010/2011. All of the dives presented were located over the shelf. The bottom panel represents the
difference in depth between the MLD and the average dive depth for both study seasons. All curves are smoothed with a moving, weighted mean which has a
window of 3 days.

doi:10.1371/journal.pone.0132686.g008

Oceanographic Drivers on Svalbard Harbour Seals' Diving Behaviour

PLOS ONE | DOI:10.1371/journal.pone.0132686 July 21, 2015 18 / 28



experienced by this species, providing significant insight into the behavioural plasticity and
likely responses to climate change by this species.

Harbour seals are shallow, coastal divers with individuals normally using only the top 50 m
of the water for dives of a few minutes duration, within 50 km of their haul-out sites
[34,56,71,72,74]. However, according to local prey availability, bathymetry, bottom sediment
types and local hydrographic conditions, dives parameters are variable [40,72]. Only two earlier
studies have focused on diving behaviour of adult and juvenile harbour seals from the Svalbard
population; Gjertz et al. [30] deployed 14 SRDLs and Krafft et al. [29] report records from 3
Time Depth Recorders. Both of these studies were shorter than the present study and focussed
solely or mainly on the immediate post-moulting period. In the present study, dives were shal-
low (50% of the dives shallower than 30 m) and short (50% of the dives shorter than 3 min)
similar to dive parameters reported by Gjertz et al. [30], but both average depth and duration

Table 5. Generalised Additive Mixed Models exploring the variations in diving parameters.

Response variable Model structure BIC BICw Δ BIC df

Tmax f(date,by=year)+f(North,by=year) 1407.64 0.96 0.00 16.90

f(date,by=year)+ North 1415.26 0.02 7.62 10.03

f(date,by=year)+f(North) 1415.31 0.02 7.67 16.13

f(date,by=year) 1431.53 0.00 23.89 9.31

f(date,by=year)+ NorthEast 1434.35 0.00 26.71 10.30

f(date,by=year)+f(NorthEast,by=year) 1439.78 0.00 32.14 13.95

f(date,by=year)+f(NorthEast) 1442.13 0.00 34.48 14.92

Smax f(date,by=year)+ North 792.50 0.45 0.00 9.34

f(date,by=year) 792.90 0.37 0.41 8.34

f(date,by=year)+f(North) 795.11 0.12 2.62 15.00

f(date,by=year)+ NorthEast 798.00 0.03 5.50 9.43

f(date,by=year)+f(NorthEast) 798.00 0.03 5.50 9.43

f(date,by=year)+f(North,by=year) 806.92 0.00 14.42 13.37

f(date,by=year)+f(NorthEast,by=year) 816.68 0.00 24.19 15.98

Mean dive depth f(date,by=year) 4790.60 0.36 0.00 9.67

f(date,by=year)+ NorthEast 4790.75 0.34 0.15 10.71

f(date,by=year)+f(NorthEast) 4791.29 0.26 0.68 10.84

f(date,by=year)+f(NorthEast,by=year) 4795.98 0.02 5.37 11.73

f(date,by=year)+ North 4796.54 0.02 5.94 10.64

f(date,by=year)+f(North,by=year) 4801.05 0.00 10.45 14.38

f(date,by=year)+f(North) 4820.59 0.00 29.99 17.85

Mean dive duration f(date,by=year)+ North 5796.55 0.92 0.00 10.33

f(date,by=year) 5802.05 0.06 5.50 9.39

f(date,by=year)+f(North,by=year) 5804.90 0.01 8.35 13.17

f(date,by=year)+ NorthEast 5806.69 0.01 10.14 10.37

f(date,by=year)+f(NorthEast) 5813.99 0.00 17.44 14.53

f(date,by=year)+f(NorthEast,by=year) 5814.23 0.00 17.67 11.79

f(date,by=year)+f(North) 5816.17 0.00 19.61 16.99

Generalised Additive Models which best fitted (estimated using Δ BIC) daily temperature at the bottom of the dive (Tmax), salinity at the bottom of a dive

(Smax), maximum dive depth and dive duration as a function of the date and averaged weekly northerly (North) or north-easterly (NorthEast) winds the

precedent week for 30 adult and juvenile harbour seals equipped with Conductivity-Temperature-Depth Satellite-Relay-Data-Loggers (CTD-SRDLs) in

Svalbard, Norway during 2009/2010 and 2010/2011. Top-ranked models are in bold.

doi:10.1371/journal.pone.0132686.t005
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were greater than those reported in Krafft et al. [29], likely because the latter study included
only data collected in September for three juvenile females.

Harbour seals generally display strong seasonal patterns to their annual behavioural/physio-
logical cycles [18,75]. They haulout onto solid substrates regularly and for long periods during
the breeding and moulting seasons in summer and early autumn. During these times they
depend heavily on their body reserves and thus lose mass. The period of intense feeding that
follows the moult is vital to replenish their body stores before the winter [18]. In the present
study, diving behaviour changed markedly on a seasonal basis, with several dive metrics show-
ing concomitant changes which are likely linked to seasonal changes in prey distribution and
type [70,76–78] as well as changes in the seals’ energy requirements [79]. In the autumn, ani-
mals dove to moderate depths (less than 50 m) for moderate durations (ca 3 min), but did so
rather intensively with a maximum number of dives/day occurring in October for both study
years (Fig 2). Animals also spent more time at the bottom of their dives at this time compared
to the annual average (Fig 5), again showing intense diving effort. Most of the diving in this
period of the year occurred during the night.

Across their range, harbour seals consume a wide variety of prey including invertebrates
and both benthic and pelagic fish. In Svalbard fish dominate the diet, but squid, crustaceans
and polychaetes are also eaten in small quantities [43,44]. In the autumn Atlantic cod (Gadus
morhua), and polar cod (Boreogadus saida), followed by shorthorn sculpin (Myoxocephalus
scorpius) are the main prey items of these harbour seals [43,44]. Atlantic cod concentrates
around the PF in both benthic and pelagic habitats from the surface down the bottom (down to
600 m as the water gets deeper westward over the shelf slope; (see [80] for details) in the vicin-
ity where all of the instrumented harbour seals remained after the moult. Although Atlantic
cod is a largely temperate species, it is increasingly common on the WSS in Svalbard due to an
increase in the influx of AW through the WSC [68,81–83]. Atlantic cod and haddock (Melano-
grammus aeglefinus) tend to stay at depths close to the seabed during the day and move
upwards in the water column during the night, where they become more accessible to the seals
[84,85]. This is consistent with the observed diel patterns in the seal’s diving patterns; dives are
more numerous at night. Polar cod is considered to be a semi-pelagic species that exhibits size/
depth segregation, but it is mainly linked to ArWmasses [86]. Large schools have been
observed in shallow water (<10 m) during the autumn in northern Canada [85], and also in
late summer in Svalbard (pers. obs.) which could make shallow foraging profitable for the seals
at this time of the year. Polar cod, similar to Atlantic cod, undertake diel vertical migrations
during the period of the year that has light/dark cycling [83,85].

In the winter, dives performed by the harbour seals in Svalbard were longer, deeper and less
numerous. The total time spent diving per day and the ratio of dive time to surface time
increased (Fig 2), while the foraging effort within individual dives decreased (seals spent less
time at the bottom of dives when correcting for depth and duration) (Fig 5). Gjertz et al. [30]
have previously shown that dives were longer and deeper in December through February com-
pared to October for this population. Similar observations of seasonal influences on diving
behaviour have been made in some other harbour seal populations, such as in Alaska where
seals also dived deeper in the winter compared to summer. In this case the deeper diving was
associated with prey availability [86], but physiological and behavioural constraints might also
play roles in seasonal patterns [87,88,89]. Winter and spring diets of harbour seals in Svalbard
are currently not known, however, the available information from fish surveys conducted in
the winter in the Barents Sea and Svalbard waters show that young Atlantic cod (age group
1–3) are present in the WSC through the winter [82,83]. Polar cod are resident in arctic waters
year-round. The vertical diel migration pattern disappears during the Polar Night for both of
these fish species [83,85]. Concomitantly, the seals diel diving pattern also disappears during
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the Polar Night suggesting that they adjust to their prey’s change in behaviour [83,85]. Surpris-
ingly, the seals did not resume a diel diving pattern when the light reappeared in March (Fig 3).
This suggests that the seals might utilize another prey type or another gadoid age class that
does not exhibit diel vertical migration during the spring. Unfortunately, recent attempts to
sample diet using scats analysis at this time of year failed, because the haul-out sites were
heavily iced and the seals remained in the water or on drift ice. The strong seasonal changes
observed in foraging effort (Fig 5) are likely linked to the prey distribution, type or aggregation.
Direct observations of prey capture events with cameras have shown that harbour seal prey
handling time varies according to the size and species being taken; with large fish being more
likely to be consumed at the surface than small prey which can be swallowed hole at depth
[78]. Consequently, the time spent at the bottom of dives might be shorter for large prey com-
pared to small schooling fish which are consumed at depth.

Dives also changed throughout the year with respect to bathymetry; less diving took place in
shallow coastal areas (<50 m) in the winter while pelagic diving in deeper areas increased and
in fact became predominant (Fig 4). These dives over deep water were likely influenced by
larger oceanographic processes instead of more local currents occurring in coastal areas. Fish
species’ distributions are tightly linked to water temperature and salinity [80]; thus many fish
species are limited to certain water types and are therefore influenced by these same oceano-
graphic processes [81,90]. The distribution of fish species around Svalbard is a complex patch-
work because the climate and oceanographic conditions surrounding the archipelago change
on a relatively fine scale, particularly on the west coast [68]. Frontal regions, such as the PF that
occurs on the west coast of Spitsbergen, are generally very productive areas that concentrate
phytoplankton, zooplankton and in turn their predators [2,14,91,92]. This seems to be the case
along the west coast of Spitsbergen, at least for part of the year where harbour seals concen-
trated their activity just West of PKF at the PF located about 50 km offshore. Some harbour
seals were resident in the area immediately west of PF all year round while others dispersed
within the WSS following moulting (Fig 1b).

Concentration of nutrients and plankton also occur within the water column in areas where
two water masses are layered and top predators are known to exploit the resulting inter-layer
aggregations of prey [93]. Harbour seals in Svalbard seemed to follow this foraging strategy for
at least part of the year. They dove down to, or just below, the MLD through the autumn and
early winter. But, from set points in the winter or spring (April 2010 and December 2011) in
the two study years, respectively, the seals began to dive deeper than the MLD targeting a dif-
ferent water mass (Fig 8). During these periods the recorded dive parameters were at their
extremes in terms of duration and depth. This type of diving occurred intermittently, and was
likely linked to transient oceanographic features.

The WSS is a particularly dynamic region that is dominated by Atlantic-modified water in
the summer/early autumn and by ArW in the winter [47]. This cycle is clearly seen in the CTD
data collected by the seals (Figs 6 and 7, S1 Fig). Surface waters become colder due to surface
heat loss to the atmosphere when winter approaches and get warmer when air temperature
increases again in the spring. This cycle is also apparent to some extent at greater depths where
water temperature slowly decreases. However, throughout the winter sharp increases in tem-
perature and salinity occur at irregular intervals at depths of 100–150 m (Figs 6 and 7) via
influxes of AW (which is the sole source of heat at depth in this region [82]). AW is typically
restricted to ~ 500 m depth in the WSC with strong density gradients at the PF acting as a bar-
rier that generally prevents exchanges between the AW and ArWmasses [46]. However, under
certain conditions AW can penetrate onto the shelf through upwelling, carrying with it AW-
associated fish species [68,83]. Two mechanisms are thought to drive upwelling of AW onto
the shelf, wind-driven surface offshore Ekman transport and to a lesser extent instability of
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barotropic or baroclinic gradients along the front leading to the formation of localised eddies
[68,83,94]. These cross-shelf exchanges make this region of Svalbard very dynamic and pro-
ductive through mixing phenomenon between nutrient-rich AW and local Arctic-like waters
[46,81]. Wind-driven upwelling events have been found to be associated with protracted strong
northerly or easterly winds occurring mainly in the winter [45,68]. In the present study, north-
erly or easterly winds occurring the preceding week were found to be correlated with dive
parameters of the harbour seals, essentially showing that the animals reacted to upwelling
events by altering their diving behaviour. When the WSS was dominated by ArWmasses or
modified AWmasses, the seals mainly targeted the MLD, but when influxes of AW water
flooded the WSS, they preferentially targeted this water mass. The seals were likely preying on
young Atlantic cod within the AW, brought into their foraging depth range through the
upwelling events on the WSS. This would also explain why harbour seals in Svalbard seldom
enter deep fjords which are under normal conditions dominated by ArW, and why they seem
to avoid the east coast of the archipelago even during periods when it is ice free.

Ice concentration was not retained in any of the top-ranked models describing environmen-
tal impacts on the diving behaviour of the seals. However, drift ice is most certainly affected by
winds and it has been suggested that influxes of warm AWmight impact sea ice formation and
enhance melting processes when the heat contained in the water column is released at the sur-
face [68,94]. Additionally, changes in ice concentration and upwelling do not necessarily oper-
ate on the same time scale; drift ice in light to moderate concentrations reacts almost
immediately to wind forcing, while sustained winds are needed to trigger upwelling [68]. This
likely explains why the seals’ diving behaviour was not directly influenced by sea ice concentra-
tions independently, although they do actively avoid areas with very high ice concentrations
[34].

Climate change has already had a major impact on air and surface temperatures and sea ice
thickness and extent in Svalbard [32,83,95]. The warming of the Svalbard region is predicted to
continue and even intensify in the coming years and changes such as higher sea surface tem-
peratures, increased frequency of strong winds and increased temperatures of the core AW are
expected [46,83]. Less ice on the west coast of Spitsbergen will further enhance the effect of
wind-induced mixing of the water column and will cause stronger upwelling events [96]. Such
events have already been observed; in 2012 during a winter cruise at the ice edge North of Spits-
bergen an open water area that would have normally have been ice-covered, was flooded by
AW [46]. Increased mass transport of AW by the WSC will lead to an increase in the presence
of temperate species on the west coast of Svalbard and induce major changes in the food web
[81,82]. Typical Atlantic species such as Atlantic cod, haddock, Atlantic salmon (Salmo salar),
capelin (Mallotus villosus) and mackerel have already been observed in the fjords on the west
coast of Spitsbergen [82,97]. These temperate species are now co-occurring on the WSS with
typical arctic species such as polar cod leading to potential new ecological interactions.

Conclusions
This study presents novel telemetry data from harbour seals spanning from post-moulting to
the next breeding season in combination with small-scale hydrographic data collected by the
seals themselves allowing for exploration of fine-scale movements in comparison to environ-
mental conditions. Behavioural data from the CTD-SRDLs instrumented seals showed that
their diving patterns were affected by seasonally changing environmental parameters. Dives
were deeper, longer and less numerous, with a proportionally shorter bottom time under con-
ditions created by wind-driven upwelling events in winter. During these events the WSS was
flooded with warm saline AW bringing AW-associated prey species into reach of the harbour
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seals. This seal species is essentially a temperate species that is not normally found in High Arc-
tic regions. But, the presence of AW and the lack of land-fast ice, combined with the richness
and productivity of the WSS arising from the intense mixing of water masses in this region, are
factors that make it possible for a population of harbour seals to be resident at this high lati-
tude. The local oceanographic features and processes also explain why this population is lim-
ited to the west coast of Spitsbergen within the Svalbard Archipelago. Increased influxes of AW
and decreased sea-ice cover that are predicted to occur in the future are likely to enhance the
mixing in the water column and increase the abundance of Atlantic fish and zooplankton spe-
cies, which in turn is likely to favour growth of this harbour seal population.
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S1 Fig. Temporal changes in temperature at different depths across the study region from
September through May for both study years. The monthly temperature profiles were col-
lected by 30 adult and juvenile harbour seals equipped with Conductivity-Temperature-Depth
Satellite-Relay-Data-Loggers (CTD-SRDLs) during 2009/2010 and 2010/2011 in Svalbard,
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