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Abstract 

This paper explores the issue of using marine reserves in combination with quotas as 

fisheries management tools using a patchy environment model as the biological 

foundation.  The rent generated by fishing on the total population, using optimal 

quotas as a management tool, is compared to the rent from the fishery when managed 

with quotas and a marine reserve.  This is done under different assumptions regarding 

the type of dispersal mechanisms between the sub-populations in the different patches 

and under two different assumptions regarding the harvest function.  It is shown that 

the profitability of reserve creation depends on the migration rate relative to the 

intrinsic growth rate and the cost / price ratio and that the choice of harvesting 

function is of particular importance when the costs of fishing are high.   

 

KEY WORDS: fishing the line, marine reserves, metapopulation models, optimal 

quotas. 
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INTRODUCTION 

 

Marine reserves are zones in the marine habitat in which fishing is prohibited for 

certain parts of the time, or at all times. As conventional fisheries management has 

been shown to suffer obvious shortcomings such as cheating, high management costs 

and bycatch problems (for instance, Guénette et al. 1998), attention has been drawn 

towards alternative methods of management, marine reserves being one of them (see 

Sumaila 1998a and Conover, et al. 2000).  Reserves may have several potential 

benefits (see for instance Bohnsack 1993, and Roberts & Polunin 1993); protection of 

spawning biomass, provision of recrutment sources for the surrounding areas, 

supplemental restocking of fished areas through emigration, maintenance of natural 

population age structure and sex ratio, maintenance of undisturbed habitats and 

insurance against management failures in fished areas.  Conservation biologists have 

been enthusiastic about reserves, but the question whether marine reserves may 

enhance fisheries or not is still much disputed as empirical evidence is scarce.  A few 

studies that do not contradict the theory do however exist (McClanahan & Kaunda-

Arara 1996, Russ & Alcala 1996, Roberts et al. 2001).  

 

Some theoretical bioeconomic studies have been made on the effectiveness of marine 

reserves.  Hannesson (1998) found that a reserve combined with open access would 

result in a lower stock size, lower catches and a higher exploitation rate than optimal 

quotas for all relevant sizes of reserves and migration rates.  Armstrong and Reithe 

(2001) found that these results are modified if management costs are included in the 

calculations.  Both Sumaila (1998b) and Conrad (1999) compared the use of 

optimally set quotas only, to marine reserves in combination with quotas, finding that 
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in a deterministic setting, optimally set quotas alone is the rent maximizing strategy.  

In all of the work mentioned above, it is assumed that the fish is homogeneously 

distributed over an area.  It is further assumed that the reserve may be of size 0 to 100 

% of this area, measured on a continuo scale, and that the sub-stocks and their growth 

will be proportional to the size of the area they live in. 

 

Sanchirico & Wilen (2001) also compare solely open access to a marine reserve 

combined with open access, but as opposed to the above-mentioned studies their work 

includes the spatial dimension is included both in the biological and economic part of 

the model.  In this type of model the management unit is the metapopulation, which is 

assumed to consist of a group of linked sub-populations distributed across a set of 

spatially discreet habitats or patches.  The reserve consists of the patches of one or 

more sub-stocks.  Each sub-stock has its own population dynamics, but some or all 

are connected though different dispersal mechanisms. Sanchirico & Wilen (2001) 

show that when patches are linked through unidirectional flow of individuals (sink 

source system) or density dependent migration, reserve creation may increase stock 

and harvest if the cost / price ratio is low and for given values of the intrinsic growth 

rate / migration rate ratio. Brown and Roughgarden (1997) use a metapopulation 

model to find optimal management of barnacles.  The barnacle has a two-stage life 

cycle, the first lived in a common oceanic larval pool, the second at a local coastal 

site. They show that the optimal strategy, in terms of maximizing discounted net 

benefits, is to harvest on one patch only, setting the other patches off as nurseries or 

reserves.  Hence, it seems as if reserves may have the greatest potential as a rent 

maximizing strategy in the management of species whose population dynamics may 

be described with metapopulation models.  
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In the following, the biological part of the type of metapopulation model applied by 

Sanchirico & Wilen (2001) will be used to compare the per period equilibrium rent of 

a fishery managed by the use of quotas solely and quotas in combination with a 

reserve.  The economic part of the model is however formulated differently as other 

issues are addressed here.  Hence, this work differ from previous theoretical 

bioeconomic studies of marine reserves in that a metapopulation model applied in the 

analyses of reserves combined with optimal quotas.  It also differs in that two 

different harvest functions are considered under the reserve regime; in the first 

scenario a standard Schaefer catch function, in the second a new harvesting function 

meant to mimic the situation where much of the fishing occurs at or near the boarder 

of the reserve (a situation often referred to as “fishing the line”).   

 

Several studies reports that fishing the line is a common practice in fisheries where 

manrine reserves are implemented.  For example, satellite transponders on boats in the 

New England scallop fisheries have shown vessel tracks clustered close to the 

boarders of areas that are closed to ground fish trawling (Morawski, 2000).  Bohnsack 

and Ault (2002) reports that in the fishery for lobster outside the Sambos Ecological 

Reserve in the Florida Keys fishermen prefer to put the traps close to the boarder of 

the reserve.  Shorthouse (1990) interviewed fishermen trawling in the area close to the 

Great Barrier Reef Park in Australia and they reported increased catches from fishing 

the line.  It may therefore be reasonable to assume that the catch per unit effort 

(CPUE) could be higher near the boarder when there is a net flow of fish from the 

reserve, than would otherwise be the case.  Hence, fishing the line may be an 

important factor when estimating the profitability of reserves in terms of rent from 
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fisheries and an attempt to model this type of behavior is made in this paper. The 

results from using the “fishing the line” function and a standard Schaefer catch 

function are then compared.  In order to keep the modeling framework simple, 

benefits from the fishery are restricted to account for any rent generated.    

 

The analysis is conducted under two different assumptions regarding migration; a 

sink-source system and a system with density dependent migration.  It is shown that 

in the sink-source case the profitability of reserve creation depends on the migration 

rate relative to the intrinsic growth rate and the cost / price ratio.  Furthermore, the 

higher the costs and the higher the intrinsic growth rate the wider the range of 

migration rates that allows for profitable implementations of reserves.  In the case 

where the patches were assumed to be linked through density dependent migration the 

profitability of a reserve depends on the rate of migration back to the reserve, the 

migration from the reserve relative to the intrinsic growth rate in the reserve and the 

level of costs.  For a given set of assumptions regarding the biology it is shown that 

the rent of the reserve case is lower when the Schaefer harvest function is used than 

for the alternative catch function.  

 

The next part will introduce the general modeling framework and is followed by 

results from applying the model to the two-patch case under quota and quota 

combined with a reserve regimes and various assumptions regarding migration and 

harvest functions.  Finally a summary and some concluding remarks are given. 
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THE  MODEL 

 

The biology 

 

This section provides a brief presentation of the general modeling framework.  The 

biological model is based on Sanchirico and Wilen (1999 and 2001) and is in line 

with the works of Levin (1974, 1976), Hastings (1982, 1983), Vance (1984) and Holt 

(1985). For a more in depth discussion of this model and general aspects concerning 

metapopulation modeling, see the above references.  

 

The following equation describes the instantaneous net change in density1 of sub-

population i. 

 

( 1 )                                      ∑
≠
=

++=
n

ii
j

jijiiiiii xdxdxxfx
1

)(&  

The dynamics of n sub-populations may be expressed in matrix form: 

 

( 2 )                                      DxF(x)xx +=&  

 

Where 

x& = n × 1 vector of  the instantaneous change in density ( ix& ) in patch i at time t  

F(x) = n × n diagonal matrix where the average growth of patch i (f(xi)) constitute the 

diagonal elements  

x = n × 1 vector of the level of biomass in patch i at time t expressed as relative 

densities.  The sum of this vector is the size of the metapopulation.  
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D = n × n matrix of dispersal rates (dij) 

 

The growth process of the sub-stocks will be expressed by the logistic growth 

function.  The restriction 0
1

=∑
≠
=

n

ik
i

ikd is imposed on the dispersal matrix and implies 

that no death or birth occurs during migration, or in other words, the same amount 

that leaves one patch shows up in another.  It is further assumed that dii ≤ 0 is 

emigration from patch i and dij ≥ 0 is immigration to patch i from patch j.  With this 

type of model it is possible to describe the most commonly observed links and 

dispersal mechanisms between the sub-populations (Sanchirico & Wilen 1999): fully 

integrated systems, closed patches, sink-source and spatially linear systems.  Fully 

integrated systems are systems in which all sub-populations are linked through some 

dispersal process, while closed systems are comprised of sub-population between 

which no migration occur.  Sink-source systems consist of local populations that are 

linked through a unidirectional flow of individuals.  The last category mentioned, a 

linearly linked system, is one in which migration only occurs between neighboring 

patches.  This case nests other spatial configurations of patches, such as a circle and a 

square.  The migration may be unidirectional or density dependent. The simplest 

example of density dependent migration is a two patch system in which d12 = d21, that 

is, migration rates from both patches are equal.  In this case net migration will always 

go from the patch with the highest density towards the patch with the lowest density.  

 

 

 

 



 9

The economics 

 

The quota case 

In the quota case the harvest function is defined as the standard Hi = qiEixi, where Ei 

is the fishing effort in patch i, xi the stock level in patch i and qi is a constant of 

proportionality between an increase in effort or stock level and an increase in harvest.  

We shall assume that qi = 1 in all cases. If one further assumes a patch specific 

constant cost of effort ci, and a linear cost function equal to TCi(Ei) = ciEi, the cost per 

unit harvest becomes ci/xi.  With no growth or death occurring during migration, the 

migration terms will cancel out when adding the growth of all the stocks.  Hence the 

per period equilibrium rent from the fishery when managed by quotas alone may be 

expressed by the following function: 

 

( 3 )                                  ∑
=

−−=
n

i
iii

i

i
Q xxr

x
cp

1
))1()((π                        i = 1, 2, ….., n 

  

Where p is a constant price and the term in the last parenthesis is the equilibrium 

harvest and n is the number of patches in the system.   

 

 

The reserve case 

In the reserve case we look at two scenarios regarding the harvest function.  In the 

first case we use the standard Schaefer catch function as in the quota case described 

above.  The variables used in this case will be identified by superscript S.  Unlike the 

quota case, the migration terms does not cancel out in the reserve case and the rent 

function alters to  
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Where m is the number of patches in the system in which fishing is allowed, n the 

total number of patches in the system. 

 

In the case where the harvest function is intended to mimic situations when the 

fishermen are fishing the line it is assumed that the harvest in patch i at time t depends 

both on the stock level and the net migration from the reserve at that given point in 

time.  Superscript L identifies variables of this case.  Thus, harvest in patch i is 

defined as Hi
L = qiEi(xi + diixi + ∑

≠
=

n

ji
j

iij xd
1

) .  With a the cost function TCi(Ei) = ciEi, the 

cost per unit of harvest now becomes ci/(xi + dii + ∑
≠
=

n

ji
j

iij xd
1

).  Where subscript i 

denote stock level in the fishable area and subscript j the stock level in the reserve and 

the two last terms in the parenthesis express the net immigration to the fishable area.  

The per period equilibrium rent expressed as a function of stock level then becomes 
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Irrespective of assumptions regarding the harvest function, reserve creation is 

profitable if ∆π = π*
R - π*

Q > 0, where the stars are used to indicate that it is the 

maximum rent possible under reserve and quota regimes.  Two main factors 

determine the sign and size of ∆π.  First we have what will be called the dispersal 

effect, namely the new equilibrium level of immigration from the reserve to the 

fishable area due to a larger source stock minus the pre-reserve catch from the closed 

area.  If the net migration from the reserve to the fishable area is greater than the loss 

of pre-reserve catch, the dispersal effect is positive.  The second part is here called the 

cost effect of reserve creation and is caused by the trade off between a higher harvest 

(the highest harvest is obtained when stock density is 0.5) and a lower cost per unit 

harvest (the higher the stock density the lower the cost per unit harvest).  In the 

reserve case, with a net flow of fish from the reserve to the fishable area, some of the 

harvest is “for free”, implying that it is unnecessary to reduce stock density to the 

same extent as in the quota case in order to achieve a given level of harvest.  As a 

result, the cost effect will always pull towards a higher optimal stock level in the 

fishable area of the reserve case than optimal stock levels of the quota case.  The 

terms will be discussed more thoroughly below.  In the following two cases regarding 

the dispersal process will be examined: A two-patch source-sink system and a two-

patch system with density dependent migration.     
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THE TWO PATCH CASE 

 

Managing the fishery with quotas  

 

For simplicity we shall first assume that the biological and the economic 

characteristics of the patches are identical.  That is, they have the same intrinsic 

growth rate, carrying capacity, prices and costs. With the biological and economic 

parameters of the different patches being equal and the restriction that requires the 

dispersal vector to sum up to zero, the problem of maximizing equilibrium profits 

from a fishery consisting of two patches becomes 

 

( 6 )                        
21 ,xx

Max )1()1(
2

1

2

1
ii

i ii
iiQ xrx

x
cxrxp −−−= ∑∑

==

π                  i = 1, 2 

 

Which is a standard, well-known problem in bioeconomics.  Differentiating the profit 

function with respect to x1 and x2, equating these differentials to zero and solving for 

the x’s gives the optimal stock levels  

 

( 7 )                                    x1, MEY = x2, MEY = 0.5(1 + c/p) 

 

 

As the cost parameter approaches zero, the optimal stock level (XMEY) in both patches 

will approach that giving maximum sustainable yield (XMSY = 0.5).  The greater the 

cost parameter is compared to the price, the greater the difference between XMEY and 
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XMSY.  If one allows for different harvesting costs in the two patches, optimal stock 

levels will differ, depending on the patch specific c/p ratio.  Differences in the 

intrinsic growth rate will only affect the level of rent, not the optimal stock level.  

 

 

 

Managing the fishery with quotas and a marine reserve 

 

Sink-source dynamics 

 

Also here it is first assumed that patches are homogeneous.  The two-patch sink-

source system may then be described by the following system of equations: 

 

( 8 )                              111111 )1( xdxrxx −−=&          Source 

                                         121222 )1( xdxrxx +−=&         Sink 

 

Where substock 1 would be the source and substock 2 the sink.  The parameter d11 

denotes the migration rate from the source to the sink. But as d11 = d21  let for 

notational simplicity d = d11 = d21 in the following.  Since the profitability of marine 

reserves depends on spillover or migration from the reserve to the fishable area, 

closing the sink in a sink-source system never pays (Sanchirico & Wilen 2001).  

Assume therefore that we close the source. The equilibrium stock level in the reserve 

is found by equating 1x& to zero and solving for x1.  This gives 

 

( 9 )                                              rdx /1~
1 −=  
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With harvesting the equilibrium stock level of patch 2 is determined by solving the 

following maximizing problem: 

 

( 10 )                            
2x

Max  )~)1()(
)(

( 122
2

xdxrx
x
cpS

R +−−=π  

 

for the case where the Schaerfer catch function is used, and 

 

( 11 )                         
2x

Max  )~)1()(
)~(

( 122
12

xdxrx
xdx
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R +−

+
−=π  

 

for the case where the fishing fleet is assumed to be fishing the line.  The analytical 

solution to theses problems are hard to interpret and it is difficult to isolate the effects 

of a change in any of the parameters.  Hence the discussion below is based on 

numerical estimates3.  The equilibrium properties in terms of stability are listed in the 

appendix.  Table 1 gives the parameter values used in the numeric calculations. 

 

Table 1 

 

The numerical estimates show that the optimal stock level in the fishable area depends 

the c/p and d/r ratios.  As in the quota case, when the costs of harvesting are very low 

compared to the price, optimal stock level is close to XMSY and increasing with 

increasing costs, other things equal. This is illustrated in figure 1 where the profit 

from the fishery when managed with quotas alone is compared to that obtained when 

managed with both quotas and a marine reserve.  The intrinsic growth rate r is set 
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equal to 0.4.  The cost parameter is adjusted to exhibit three situations.  Panel A 

shows the situation that will be referred to as the low cost case.  Here the per unit 

profit in the quota case is 84.4 % of the price.  Panel B illustrates the medium cost 

case where the per unit profit in the quota case is 50 % of the price.  Panel C exhibit a 

situation were the fishery managed with quotas alone is no longer profitable while the 

per unit profit as % of the price when managed with quotas and a reserve is 13.6.    

 

The solid black line refers to the quota case, the black line with markers to the reserve 

case where a Schafer harvest function is used and d = 0.2, r = 0.4.  The stippled line 

reserve(line 1) refers to the case when d = 0.2, r = 0.4. and fishermen are assumed to 

be fishing the line.  The gray solid line reserve(line 2) refers to the case when d = 0.1, 

r = 0.4.     The line reserve(Schaefer) refers to the case where a standard Schaefer 

catch function is used and the biological parameter values are the same as for 

reserve(line 1).  Subscript is used to identify stock levels under different management 

regimes, where Q denotes the case of quotas and R the case of quotas and a reserve, 

superscript to identify sub-populations. 

 

Figure 1 

 

In the sink source case the dispersal effect will be constant for a given cost level, as 

the flow of individuals is unidirectional.  At zero costs the loss of pre-reserve catch is 

exactly offset by the dispersal from the reserve at optimum.  As c increases the 

dispersal effect becomes positive, or said in an other way, a lower d is required to 

make the dispersal effect equal to zero.  Hence, for a given d an increase in costs 

causes the dispersal effect to increase.  This because while migration from the reserve 
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remains constant, the loss due to reserve creation in terms of pre reserve harvest 

decreases4.  The cost effect is reflected in the as costs increase, the optimal stock level 

of the reserve case increase with more than that of the quota case. 

 

∆π will always have its' maximum value when d = r/2, as this gives the maximum 

migration from the reserve to the fishable area (see(9)).  If d > r/2, the stock level in 

the reserve becomes lower and so do the migration measured in absolute numbers.  

 

We also see from figure 1 that the difference between the results of using a Schafer 

harvest function and a catch function that mimics a fleet fishing the line is small for a 

low unit cost of effort, but increasing with increasing cost.  In the following the 

discussion of the sign and magnitude of ∆π will be base on the case where the fishing 

fleet is assumed to be fishing the line. 

 

For any combination of r and level of harvesting cost, there is one low (dl < 0.5r) and 

one high value (dh > 0.5r) of d, that gives ∆π = 0.  The value of dl decreases with 

increasing harvesting costs and increases with increasing r.  The value of dh increases 

with increasing c and r.  This is illustrated in figure 2.  For all dl < d < dh, ∆π > 0, 

corresponding to the areas between the gray lines with squared markers in the high 

cost case, and the black lines with circular markers in the low cost case in figure 2.  

For d < dl or d > dh, ∆π < 0.  We see that the range of migration rates leading to ∆π > 

0 increases with increasing r and c, everything else constant. Hence, for a specie with 

a low intrinsic growth rate and/or low harvesting costs (relative to price) marine 

reserves will have small chances of being profitable, whereas for species with high 
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intrinsic growth rates and/or high harvesting costs, the chances that reserve creation 

may pay are much greater. 

 

Figure 2 

 

It is also the case that the absolute value of ∆π increases with increasing c and r.  This 

is illustrated in figure 3 where ∆π is plotted for the three cost levels and d = r/2. 

 

Figure 3  

 

Allowing for heterogeneity between patches does not alter the qualitative nature of the 

results only the absolute level of rent generated from the fishery. 

   

 

Density dependent migration 

 

We first assume that patches are homogeneous in terms of intrinsic growth rates and 

harvesting costs.  The population dynamics of the two-patch system with density 

dependent migration is described with the following equations: 

 

( 12 )                             
222121222
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As in the sink source case, d11 = d21 and d12 = d22.  For notational simplicity let 

therefore d = d11 = d21 (the migration rate from patch 1 to patch 2) and a = d12 = d22 



 18

(the migration rate from patch 2 to patch 1) in the following.  Closing area 1 gives 

equilibrium stock size )~( 1x  equal to 

 

( 13 )                                    
r

arxdrrd
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4)(~ 2

2

1

+−−−
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The maximizing problems in this case are  

 

( 14 )                             
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( 15 )                      
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Optimal stock levels were derived by differentiating (14) and (15) with respect to x2, 

equating the differentials to zero, and using the answer to calculate 1
~x and x2 

numerically.  Table 2 gives the parameter values used in the numeric calculations. 

 

Table 2 

 

In figure 4 the equilibrium rent for the different stock densities for both management 

strategies are shown for the three different cost levels. The stippled curve, reserve(line 

1), refers to the case when a = d = 0.2 and r = 0.4.  The gray curve, reserve(line 2) 

refers to the case when a = 0.2, d = 0.4 and r = 0.4.  In panel A the reserve case where 

a Schaefer harvest function was used is excluded because it coincides with the 

reserve(line 2). 
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Optimal stock levels and rent now depends on the parameters a and d relative to r, 

and the c/p ratio. Panel A shows the low cost case, panel B the medium cost case and 

panel C the high cost case. First of all we should observe that reserve creation is 

unprofitable when the dispersal rates a and d are equal, unless costs are very high (the 

situation is not pictured in the figure, but just as in the sink source case, there are 

situations in which the reserve case is still profitable, but the quota case is not).  

Secondly, if d > a it may be profitable to create a reserve.  Further we see from panel 

A that for low levels of costs and a low value of the parameter d (compared to a) the 

optimal stock level in the reserve is lower than xMSY.  This is a result of the dispersal 

effect, which is no longer constant.  When d is low, the stock in the reserve is large.  

Hence it pays to keep the stock level in the fishable area low to ensure a high net 

migration in absolute numbers.  As the value of d increases, the stock level within the 

reserve decreases and the gain in harvest in terms of net migration from the reserve is 

offset by an increase in the stock level in the fishable area with the following increase 

in catch and the cost effect.  In the low cost case (panel A) we have that when d = 

0.38 and a = 0.2 the loss of pre-reserve catch is exactly offset by the net migration 

from the reserve.  The corresponding values of d in the medium and high cost case are 

0.34 and 0.26 respectively.   

 

We also see that the difference in using a Schaefer harvest function and the alternative 

catch function in the reserve case increase with increasing costs as in the sink-source 

case.   

 

Figure 4  
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The trend regarding the change in ∆π following an increase in r and c were also found 

to be similar to that of the sink source case (see figure 3).  Given the value of a, as r 

or c increases, the relative profitability of reserve creation increases.  Also similar to 

the sink-source case, for a given value of a there is an upper and lower limit to d that 

makes ∆π = 0 and the range between dl and dh where ∆π > 0 increases with increasing 

r and c (see figure 2). 

 

If we allow for different harvesting costs in the two patches and density dependent 

migration the question becomes; which patch should be closed to fishing?  Numerical 

estimates show that it is optimal to close the patch that has the lowest per unit profit 

as % of the price.  This is the opposite result of what Sanchirico & Wilen (2000) 

found for marine reserves and open access.  They found that closing the patch with 

the highest cost / price ratio would be optimal in the sense of increased harvest.  This 

because with a high cost / price ratio and open access the stock level and hence also 

equilibrium harvest is low and the loss of pre-reserve catch is less than that for 

patches with a lower cost / price ratio.  In the case of optimal quotas, closing the patch 

with the highest harvesting costs and thereby the lowest per unit profit, would give the 

lowest loss of pre-reserve catch.  An other interesting result is that with different cost 

levels and a common migration rate between the patches (a = d) reserve creation may 

be profitable.  We have e.g. that if the cost levels are low and medium, or high and 

medium in the two patches, ∆π > 0 when the patch with the highest level of 

harvesting costs is closed.  This result contradicts the conclusions of Sumaila (1998b) 

and Conrad (1999) that stated that reserve creation was unprofitable in a deterministic 

setting and density dependent migration with a common migration rate, but in these 
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works differences between the cost levels of the two patches was not taken into 

consideration.        

 

 

SUMMARY AND CONCLUDING REMARKS 

 

In this paper the potential for an increase in rent due to reserve creation in a fishery 

already managed by optimally set quotas has been assessed.  This has been done by 

comparing the per period rent the fishery yields in equilibrium under the two 

management strategies, assuming two different dispersal mechanisms between the 

patches; unidirectional and density dependent.  Further, two different catch function 

where used under the reserve case, a standard Schaefer harvest function and a new 

catch function meant to mimic the behavior of a fishing fleet fishing the line.  

Through numeric calculations it has been shown that under certain biological and 

economic circumstances the use of quotas and a marine reserve may be the rent 

maximizing management strategy.   

 

In the sink-source case it has been shown that the profitability of reserve creation 

depends on the migration rate relative to the intrinsic growth rate and the cost / price 

ratio.  Furthermore, the higher the costs and the higher the intrinsic growth rate the 

wider the range of migration rates that allows for profitable implementations of 

reserves.  The profitability of a reserve was also seen to increase with increasing unit 

cost of effort and intrinsic growth rate.   In the case where the patches were assumed 

to be linked through density dependent migration the profitability of a reserve 

depends on the rate of migration back to the reserve, the migration from the reserve 
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relative to the intrinsic growth rate in the reserve and the level of costs.  It was also 

shown that reserves where more profitable if the actors where assumed to be fishing 

the line than when a Schaefer harvest function was used, particularly if unit cost of 

effort is high. 

 

The results in this paper depend on both on the assumptions made on the biological 

conditions and the the way the harvesting cost function is formulated.  This highlights 

the need for empirical research; what are the true functional form and parameter 

values of the harvesting costs function after a reserve has been implemented?  An 

attempt has been made here to mimic what seems to be a common behavior among 

fishermen participating in fisheries where reserves are part of the management 

scheme, but the functional form has yet to be tested.  Also on the biological side there 

are some major questions that need to be addressed: What are realistic ranges of 

values of migration and the intrinsic growth rate?  And do the values of the 

parameters found to make reserve creation profitable fall within the realistic intervals?  

In addition, there are several complicating factors concerning reserve creation that are 

not included in this analysis.  First we have multispecies dynamics.  Assume closing a 

patch containing both a prey and its predator completely to fishing in order to protect 

the prey specie.  Would there be any gain in terms of spillover of prey, or would it be 

eaten by an increased predator stock?  As an example, Boncoeur et al. (2002) showed 

that in the case of a reserve containing both a pray, targeted by the fleet, and a 

predator that is not harvested, the benefits from a reserve in terms of fisheries 

enhancement are less that the case where multispecies interactions where ignored.  

Second, the value of catch in an area prior to reserve creation, versus the value of 

spillover from a reserve is issue that has not been discussed in this paper.  Here it has 
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been assumed that these values are equal, although this may not always be the case.  

E.g. if the migratory part of the stock consist of juveniles or parts of the stock that are 

in some other way differ from the targeted group prior to reserve creation, the value of 

the spillover versus pre-reserve catch may be less than what has been pictured here.  

Hence, many more studies are required before the question of whether reserves 

enhance fisheries or not are settled.         

 

NOTES 

1 x = X/K, where X is the absolute stock level and K is the carrying capacity.  In order 

to calculate absolute growth/harvest from the stock size when it is expressed as 

relative density, one must multiply the parameter r with K.  

2 f(xi) = ri(1-xi) in ( 1 ).   
 

3 The numerical estimates were conducted in Excel and the file is available from the 

author at sivr@nfh.uit.no 

4 This is because the optimal stock level is greater than xMSY.  Using the logistic 

growth function to describe population dynamics this implies that an increase in stock 

level results in a decrease in equilibrium catch. 
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APPENDIX.  EQUILIBRIUM CHARACTERISTICS.  

The Jacobian matrix of the sink-source case is 

Ass =  







−

−−

2

1

2
02

rxrd
drxr
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In the density dependent case: 

Add = 







−−

−−
arxrd

adrxr

2

1

2
2

  

 

For all of the parameter values used in this paper we have that the trace of A (tr(A)) is 

less than zero, the determinant of A (A) is greater than zero, tr(A)2 - 4A > 0 and 

the eigenvalues are negative when evaluated in optimum, which are the characteristics 

of an asymptotically stable improper node.  
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Table 1.  Parameter values used quota versus quota s with reserve in a sink-source 

system. 

Parameter Value 

p 10 

c 1000 in low cost case 

3520 in medium cost case 

7200 in high cost case 

q 1 

K1 and K2 1000 

r 0.4 

d11 and d21 0.2 for reserve(line 1) and   

reserve(schaefer) 

0.1 for reserve(line 2) 

(all in figure 1) 

d12 and d22 0 
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Figure 1.  Rent generated from the fishery when managed through quotas alone and 

with quotas in combination with a reserve when unit cost of effort is low (panel A), 

medium (panel B) and high (panel C) and with different assumptions regarding 

migration rates and harvest functions (see text for specifications). 
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Figure 2.  Combinations of the intrinsic growth rate and migration rate that generates 

∆π > 0 under the assumption that the fleet is fishing the line. 
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Figure 3.  Maximum difference in rent generated from a fishery when managed by 

quotas alone and when managed by quotas and a reserve as a function of the intrinsic 

growth rate and for given levels of costs, with migration rate equal to half the intrinsic 

growth rate.   
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Table 2.  Parameter values used quota versus quota s with reserve in a sink-source 

system. 

Parameter  Value 

p 10 

c 870 in low cost case 

3520 in medium cost case 

6400 in high cost case 

q 1 

K1 and K2 1000 

r 0.4 

d11 and d21 0.2 for reserve(line 1) and 

reserve(schaefer) 

0.4 for reserve(line 2) 

(all in figure 4) 

d12 and d22 0.2  
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Figure 4.  Rent generated from the fishery in the medium cost case when managed by 

quotas alone and with quotas in combination with a marine reserve.    
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