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Abstract—A new and robust constant false alarm rate (CFAR)
detector based on truncated statistics (TSs) is proposed for ship
detection in single-look intensity and multilook intensity synthetic
aperture radar data. The approach is aimed at high-target-density
situations such as busy shipping lines and crowded harbors,
where the background statistics are estimated from potentially
contaminated sea clutter samples. The CFAR detector uses trun-
cation to exclude possible statistically interfering outliers and
TSs to model the remaining background samples. The derived
truncated statistic CFAR (TS-CFAR) algorithm does not require
prior knowledge of the interfering targets. The TS-CFAR detector
provides accurate background clutter modeling, a stable false
alarm regulation property, and improved detection performance
in high-target-density situations.

Index Terms—Constant false alarm rate (CFAR), sea clutter,
statistical modeling, synthetic aperture radar (SAR), target detec-
tion, truncated statistics (TSs).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) provides valuable mea-
surements of the Earth surface for many remote sensing

applications, whereof maritime target detection is one common
field of use. The well-known constant false alarm rate (CFAR)
target detectors adaptively determine the detection threshold
based on accurate modeling of the statistical distribution of
local background clutter measurements.1 They are often imple-
mented with the sliding window technique, and the parameters
of the hypothesized model are estimated within this local
reference window. In practice, however, heterogeneous clutter
and interfering targets can often lead to inaccurate estimation
and deceptive modeling. Clutter edges and transitions in clutter
intensity due to meteorological and oceanographic phenomena
is one common cause of heterogeneity, and the effects can
be suppressed by utilizing advanced background estimation
algorithms [1]–[3]. Another problem is statistical contamina-
tion when the sliding window contains one or more interfering
targets, which can result in severe degradation of the CFAR
detector performance. The latter case is the focus of this paper.
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1The term clutter is used in this paper exclusively about backscatter from the
sea, which is also referred to as the background, and not about measurements
that contain energy from any target.

The aim of this paper is to derive a robust CFAR algorithm
that excludes statistical contamination in the reference window
that may occur in dense target situations, such as busy shipping
lines and crowded harbors, and, in a statistically rigorous man-
ner, to model the remaining sea clutter samples. In general, a
raised detection threshold results when there is one or more
unwanted outliers in the reference window in the form of
nonoceanic targets and their sidelobes, or ghosts. This causes
the observed probability of false alarms to drop below the
specified value and lowers the probability of detection, which
is known as the capture effect [4]–[7]. From previous studies
[3], [7]–[14], the primary solution is to remove the outliers,
encompassing both interfering targets and naturally occurring
spikes in the sea clutter, from the background samples, or
to represent the background clutter by a statistic that is less
influenced by the outliers. Outlier removal is usually done by
data ranking or censoring with different restrictions. This paper
proposes a new approach based on data truncation, which em-
ploys a statistically rigorous analysis of the truncated data. The
important distinction between censoring and truncation will be
highlighted after our review of the literature on CFAR detectors.
This review follows after we have defined some key terms.

In the paper, we distinguish between clutter pixels and target
pixels. The term “clutter” is used for any radar measurement of
an ocean surface that is not affected by a target. Hence, clutter
can be interpreted as equivalent of background, consisting of
backscatter from a natural ocean surface. The measurements of
clutter and targets can, in principle, be modeled by respective
statistical distributions. For instance, the gamma distribution
will be assumed as a parametric model for homogeneous clutter,
meaning clutter from an area with constant radar reflectivity. It
is considered, on the other hand, that the target distribution can-
not be identified because of the variable characteristics of po-
tential targets and the unknown influence of viewing angles and
target orientation. Next, an outlier is defined as a measurement
that stands out by its high intensity. It can be either a clutter
realization from the tail of clutter distribution or a measurement
of target plus clutter. Since the target distribution is unknown,
ship detection is performed by identifying outliers with respect
to the clutter distribution. The threshold is determined by the
CFAR approach.

The traditional cell-averaging CFAR (CA-CFAR) detector
[15] represents the background data by an average over the
reference window and assumes a homogeneous clutter environ-
ment. Its variations include the greatest-of CFAR (GO-CFAR)
[2] and the smallest-of CFAR (SO-CFAR) [1] detectors, which
divide the reference window in spatial subsets before averaging.
The GO-CFAR detector represents the clutter by the greatest
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of the subset mean values and the SO-CFAR detector by the
smallest. They deliver improved performance when the refer-
ence window contains clutter intensity transitions or multiple
targets, respectively. In homogeneous clutter, the former suffers
a loss in detection rate and the latter an increased false alarm
rate [3]. In a different manner, the variability index CFAR (VI-
CFAR) detector [3] dynamically selects the particular group
of reference pixels to estimate clutter statistics. The VI is a
test statistic that is used to choose between the CA-CFAR,
GO-CFAR, and SO-CFAR approaches. The VI-CFAR detector
robustly performs in all the common test cases, but it is subject
to inevitable performance loss when the clutter heterogeneities
have a complex distribution that cannot be handled by the
simple spatial subsetting scheme.

The ordered statistic CFAR (OS-CFAR) detector is another
well-known CFAR algorithm that has been studied to deal with
interfering outliers within the reference window [9]. The OS-
CFAR detector rank-orders the background pixel measurements
based on their magnitude. The parameters of the hypothesized
model are estimated from a single value selected from the or-
dered sequence. This value, known as an order statistic, is more
robust to outliers than the mean but provides slightly less infor-
mation for estimation purposes. Hence, the OS-CFAR detector
suffers a small loss in detection rate in homogeneous clutter
relative to the CA-CFAR but maintains a significantly higher
detection rate and a false alarm rate closer to the specified value
in multiple-target situations [16]. The improvement comes at
a higher computational cost. The trimmed mean CFAR (TM-
CFAR) detector was introduced in [11] as a generalization of
the OS-CFAR detector and uses the mean of a set of rank-
ordered values to estimate distribution parameters. It has been
shown to robustly perform only after prior assessment of the
interfering environment [17], and optimal performance relies
on a judicious choice of the trimming parameters [18]. It
notably contains both the CA-CFAR detector and the OS-CFAR
detector as special cases, which are included in the experiments
and comparisons of the paper.

The OS-CFAR and TM-CFAR detectors represent a strategy
of radiometric subsetting of the reference window. To extract
a subset, the pixel values must first be ranked. The subsetting
strategy reflects the particular clutter situation that the method
is aimed at. In addition, there are many hybrid CFAR detectors
designed to accommodate several clutter environments in one
algorithm. These incorporate different strategies and dynami-
cally activate the appropriate one. One example is the censored
mean-level detector (CMLD) [8], which employs both ranking
and censoring techniques to obtain acceptable performance in
the presence of interfering targets. It excludes the largest refer-
ence samples and uses the remaining samples in the parameter
estimation. It suffers some detection loss in a homogeneous
environment and is quite robust in multiple-target situations, as
long as all interfering targets are removed from the reference
clutter [19]. However, without prior knowledge of the inter-
fering targets, the CMLD may lose its robustness and CFAR
properties [6]. Many more hybrid algorithms may be found,
e.g., the automatic CMLD, the generalized two-level CMLD
[7], and the automatic censored CA-CFAR detector based on
ordered data variability [12], [17], [20], [21]. We do not include

any hybrid detectors in the experiments. The reason is that we
focus only on the multiple-target situation and also because we
want to test one single strategy at a time to provide a simple
and clear comparative study. Different strategies can always be
combined at a later stage in a more advanced algorithm.

A different approach to the multiple-target situation is the
iterative censoring (IC) scheme proposed by Barboy et al. [10].
Samples that exceed an adaptive threshold are excluded here,
and the threshold is iteratively updated based on the censored
reference sample. This is repeated until there are no changes
in the threshold and the reference sample, and the detection
result has converged. In more recent articles [13], [14], a similar
mechanism has been implemented by applying an iteratively
updated map of outliers (potential targets). Although the mul-
tistep adaptive detection procedure may need many cycles and
require long calculation time, the IC scheme has shown robust
performance in the dense target situation and can be integrated
with any CFAR algorithm. In this paper, we include the IC
implementation of the CA-CFAR and OS-CFAR detectors in
the comparison of methods. These are referred to as ICCA-
CFAR and ICOS-CFAR, respectively, and represent, in our
view, the state of the art in CFAR detection.

The final algorithm included in the comparison is the trun-
cated statistic CFAR (TS-CFAR) detector, which is proposed
here. First, note that truncation is similar to but distinct from
censoring, and these terms sometimes have been used incor-
rectly in the target detection literature. Both in truncation and
censoring, data points with a value outside specified thresholds
are excluded from the sample or not observed. The difference is
that the number of censored data points is recorded, whereas the
number of truncated data points remains unknown. When high-
intensity outliers are removed from a background sample, they
consist of an indistinguishable mixture of target pixels and sea
clutter spikes. Since we do not know how many target pixels
there are among the outliers, the number of sea clutter mea-
surements removed is effectively unknown. This categorizes
the outlier removal as truncation with respect to the remaining
sea clutter sample, thereby assuming that all target pixels have
been removed. Truncation is therefore the relevant operation
for statistical characterization of sea clutter in a multiple-target
environment.

The distinction between censoring and truncation becomes
important once we start to analyze the reduced sample (with
outliers removed) in a statistically rigorous manner, i.e., when
we model the reduced sample with a truncated distribution
and deduce parameter estimators from this model. A common
simplifying practice has been to maintain the original model
assumption also after outliers have been removed and to apply
standard estimators derived for the untruncated distribution to
the reduced sample, which must clearly produce wrong results.
Specifically, a location or scale parameter is inevitably un-
derestimated after high-intensity outliers (including all targets)
have been removed, unless this is accounted for in the model
and consequently compensated within the estimator. Hence,
apart from correcting the terminology, we also address another
malpractice in the literature: From the perspective of statistical
modeling, the truncated data should be represented by truncated
versions of the hypothesized distribution.
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In this paper, the truncated exponential and the truncated
gamma distributions are proposed to model the truncated sam-
ples of single-look intensity (SLI) and multilook intensity
(MLI) SAR measurements. TS-CFAR algorithms are derived
to handle truncated data in a statistically rigorous manner and
to improve detection performance. The assumption underlying
these models for the SLI and MLI data is that the signal
variation stems from fully developed speckle and that the radar
cross section is locally stationary. It is well known that this
assumption may be violated as the sensor resolution increases
and the sea becomes rough. Hence, more advanced models such
as the K-distribution or the Weibull distribution may be called
for. We nevertheless maintain this distributional assumption
since they make it mathematically tractable to develop the
truncated statistics (TSs) approach to CFAR detection. The
extension to more advanced distributions is deferred until later.
Moreover, our scope is the high-target-density situation and
not high resolution or rough sea. We therefore assume that the
exponential and gamma distributions will provide an adequate
fit to the SLI and MLI data, respectively.

This paper is organized as follows. Section II provides an
introduction to TSs and derives the proposed TS-CFAR detec-
tors for both the exponentially distributed SLI and the gamma
distributed MLI measurements of sea clutter. The usefulness
of TS is demonstrated by showing the loss in parameter esti-
mation accuracy caused by the presence of interfering targets.
In Section III, the false alarm regulation property and the
receiver operating characteristic (ROC) of the CFAR detector
are examined based on simulated SLI and MLI measurements
of sea clutter drawn from the exponential distribution and
the gamma distribution, respectively. The TS-CFAR detector
is compared with the conventional CA-CFAR and OS-CFAR
detectors, whose IC schemes are also considered. Monte Carlo
simulations are exploited in the analysis. The detection perfor-
mance is then investigated in a comparative study in Section IV.
Experiments are performed on data composited from real
Radarsat-2 SAR measurements. Finally, Section V presents the
main conclusions and perspectives.

II. TS-CFAR DETECTOR

A. TSs

Outliers are data points that distinguish themselves from the
main group of the data by their extreme values. In the context of
SAR images and ship detection, these are measurements with
unusually high intensity. Remark that we let the outlier term
represent both strong returns from a natural sea surface, formed
by constructive interference between oceanic scatterers, and the
cases when a target return is superposed on the sea clutter. One
of the main purposes when handling the possible occurrence of
outliers is to find rigorous and robust methods to perform sta-
tistical inferences [22, Ch. 14]. The specific problem addressed
here is parameter estimation in distribution models for SAR
data when the sea clutter may be statistically contaminated by
outliers. The proposed solution is to apply a truncation in order
to eliminate possible contamination. The truncated data are then
modeled with the truncated version of the statistical distribution
hypothesized for the untruncated data.

Suppose we have a random variable X , which is distributed
according to a probability density function (pdf) pX(x) and
with a cumulative distribution function (cdf) PX(x). Let X̃ be
the truncated version of X after applying a threshold t, which
is called the truncation depth. A right truncated distribution can
be defined as

pX̃(x; t) = pX(x | X < t) =

{
pX (x)
PX (t) , 0 < x ≤ t

0, x > t.
(1)

The normalization by PX(t) makes sure that pX̃(x; t) integrates
to one. Note that the truncation depth is, in practice, a user-
specified empirical value. It is difficult to estimate the optimal
value from local statistics because of the lack of the knowledge
about the location and the quantity of targets. Therefore, it is
better to fix t to a value that ensures that all possible outliers
are excluded, but be aware that excessive truncation may cause
inaccurate parameter estimation of the distribution.

B. TS-CFAR Detector

In this section, CFAR detectors based on TS are derived
for SLI and MLI SAR measurements, which are modeled
by the exponential distribution and the gamma distribution,
respectively [23]. The intensity measurements are greater than
zero and assumed to be independent and identically distributed.

1) SLI: The SLI measurements are represented by X , which
is assumed to follow the exponential distribution with pdf

pX(x) =
1

μ
e−x/μ (2)

and cdf

PX(x) = 1 − e−x/μ (3)

where μ is the mean value. The truncated version of this pdf is
derived as

pX̃(x) =

{
pX(x)
PX (t) = 1

μ
e−x/μ

1−e−t/μ , 0 < x ≤ t

0, x > t
(4)

where PX(t) is the exponential distribution cdf value at trunca-
tion depth t. The mean value is the only parameter that needs
to be estimated. A maximum-likelihood (ML) estimator for the
mean can be obtained from the likelihood function

L(μ | x̃) =

n∏

i=1

pX̃(x̃i | μ)

=
exp

(
− 1

μ

∑n
i=1 x̃i

)

μn(1 − e−t/μ)n
(5)

where x̃ = [x̃1, . . . , x̃n]′, and {x̃i}n
i=1 is a size n sample of

truncated SLI measurements. From the estimating equation,
∂/∂μ logL(μ|x̃) = 0, the ML estimator is derived as

μ̂ =
t

et/μ̂ − 1
+

1

n

n∑

i=1

x̃i. (6)
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This equation must be solved numerically. Note that μ̂ is equal
to the sample mean (SM) estimator plus a correction term that
accounts for the truncation. The specified false alarm rate PFA

can be related to the cdf, parameterized with the estimated mean
value, as

PFA = 1 − PX(T ) = e−T/μ̂ (7)

where T is the detection threshold that needs to be solved for.
2) MLI: From a set {Xi}L

i=1 of independent and exponen-
tially distributed SLI measurements with mean value μ, an L-
look MLI value can be computed as

XL =
1

L

L∑

k=1

xk. (8)

The MLI variable follows a gamma distribution with order
parameter L and a mean value μ [23]. Its pdf is

pXL
(x) =

(
L

μ

)L
xL−1e−Lx/μ

Γ(L)
(9)

where Γ(a) =
∫ ∞
0 ya−1e−ydy is the gamma function, and its

cdf is

PXL
(x) =

γ
(
L, Lx

μ

)

Γ(L)
(10)

with the lower incomplete gamma function γ(a, b) defined as∫ b
0 ya−1e−ydy. The pdf of X̃L, the truncated MLI, becomes

pX̃L
(x) =

⎧
⎨
⎩

(
L
μ

)L
xL−1e−xL/μ

γ(L, tL
μ )

, 0 < x ≤ t

0, x > t.
(11)

In the SAR context, shape parameter L is replaced by the
equivalent number of looks (ENL), which is a lowered version
of L used pragmatically in the statistical modeling to account
for correlation between the samples in {Xi}L

i=1 [24]. The ENL
can be estimated from the data and is considered an image
constant. We can assume that it is known prior to the ship
detection, and we are left with estimating the mean value μ.

An ML estimator for the mean can be also obtained from the
likelihood function

L(μ | x̃) =

n∏

i=1

pX̃L
(x̃i | μ)

=

(
L

μ

)nL
e− L

μ

∑n

i=1
x̃i

[
γ

(
L, tL

μ

)]n

n∏

i=1

x̃L−1
i (12)

where {x̃i}n
i=1 is a size n sample of truncated MLI measure-

ments. The log-likelihood function is derived as

log L(μ | x̃) = nL log
L

μ
− n log γ

(
L,

tL

μ

)

− nL

μ

1

n

n∑

i=1

x̃i + n(L − 1)
1

n

n∑

i=1

log(x̃i) (13)

where (1/n)
∑n

i=1 x̃i and (1/n)
∑n

i=1 log(x̃i) are SMs of the
original and logarithmic truncated MLI measurements. Thus,
the MLE estimate of the mean is

μ̂ ⊆ argmax
μ

{log L(μ | x̃)} (14)

which must be solved numerically. The specified false alarm
rate PFA can be then related to the cdf with the estimated mean
value as

PFA = 1 − PXL
(T ) = 1 −

γ
(
L, LT

μ̂

)

Γ(L)
(15)

where T is the detection threshold that needs to be solved for.
Since the exponential distribution is a special case of the

gamma distribution, the results in Section II-B.1 are obtained
from those in Section II-B.2 by setting L = 1.

C. Parameter Estimation Performance

All CFAR detectors rely upon accurate parameter estimation,
which determines the goodness-of-fit of the hypothesized back-
ground clutter model. Both for SLI and MLI data, the mean
value is the only parameter that must be estimated locally. The
TS-based ML estimators are proposed in the previous section.
This section provides empirical results that demonstrate how
much loss the TS-based estimators experience due to the reduc-
tion of the estimation sample by truncation and how much the
TS-based estimators gain compared with the conventional ML
estimators designed for untruncated data when the estimation
samples are contaminated.

Two parameters used in the experiments are first introduced
to characterize the simulation of contaminated data and the
operation of the TS-based estimators, respectively. Contamina-
tion ratio Rc is defined as the fraction of contaminated data
points and the truncation ratio Rt as the fraction of truncated
samples, both given relative to the total number of samples
in the estimation window. The mean value estimators are ex-
amined with simulated exponential and gamma distributed sea
clutter for two levels of statistical contamination: Rc = 1%
and Rc = 10%. The contamination samples are drawn from
a uniform distribution whose support is 0.8 to 5 times the
maximum value of the simulated sea clutter samples. Clutter
samples are randomly replaced by the contaminated samples.
The total sample size is held at n = 1024.

The estimator performances are demonstrated by analyzing
the mean squared error (MSE), which is defined as

MSE(μ̂) = Var(μ̂) + Bias(μ̂)2

=E
{

(μ̂ − E{μ̂})2
}

+ E{μ̂ − μ}2

=E
{
(μ̂ − μ)2

}
. (16)

Fig. 1 shows the MSE versus Rt for the exponential distribution
estimator in panels (a) and (c) and for the gamma distribution
estimator in panels (b) and (d). Panels (a) and (b) show the
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Fig. 1. Analysis of MSE versus Rt for three mean estimators: (i) SM estimator without truncation (solid lines with crosses); (ii) SM estimator with truncation
(dashed lines); and (iii) TS-based ML estimators for truncated data (solid lines). Simulated sea clutter is drawn from an exponential distribution (μ = 3) in
(a) and (c) and from a gamma distribution (μ = 3, L = 4) in (b) and (d). Contamination from a high-intensity uniform distribution is inserted with Rc = 1% in
(a) and (b) and Rc = 10% in (c) and (d). The total sample size is held at n = 1024.

results for Rc = 1% and panels (c) and (d) for Rc = 10%.
Three estimators are compared in each plot.

i) The first is the ML estimator as derived for untruncated
data, which is applied to the entire data sample, including
contamination. This is equal to the SM estimator for both
the exponential distribution and the gamma distribution.

ii) The second estimator is again the SM estimator, but it is
now applied to truncated data, for which it is not ML nor
theoretically justified in any other way.

iii) The third is our proposed TS-based ML estimators for
the respective case. It is applied to truncated data, as it
has been designed for.

Estimators (i) and (ii) are included in the comparison to exem-
plify the outcome of a nonrobust approach and a nonrigorous
treatment of truncated data, respectively.

It can be observed throughout all the experiments that the SM
estimator without truncation (solid lines with crosses) does not
vary with Rt and produces a high constant MSE value since it
does not offer any protection against contamination. The SM

estimator with truncation (dashed lines) performs well when
Rt matches Rc, but the performance rapidly gets worse as Rt

grows since the truncation operation has not been accounted for
in the derivation of the estimator. In practice, it is impossible
to know in advance how many contaminated samples there are
within each local estimation window. Therefore, it is difficult
to select an Rt that matches Rc. The proposed estimators
(solid lines) perform much better than the SM estimator with
truncation as Rt grows beyond Rc. Even in the extreme case,
when Rt goes up to 50%, the TS-based ML estimators are
still able to provide reasonable outcomes. The increase in MSE
with Rt is naturally a result of the estimation sample becoming
smaller and smaller. Still, the number of data points that must
be truncated before the MSE exceeds the level of the SM
estimator without truncation is not likely to be reached in
practical applications. Thus, the proposed estimators produce
convincing results.

In summary, despite an inevitable increase in MSE due
to the sample size reduction for the proposed TS-based ML
estimators, the alternative estimators suffer more performance
degradations due to contamination or nonrigorous handling of
the truncated data. The gain of appropriately compensating for
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the truncation operation is such that the proposed estimators
outperform the alternatives for all practically relevant trun-
cation depths. Note that the estimators’ performance rapidly
deteriorates when Rt drops below Rc, which emphasizes the
contamination damage to the parameter estimation and the need
to choose a safe Rt value.

III. CFAR DETECTOR CHARACTERISTICS

In this section, two important CFAR detector characteristics
are investigated, i.e., the false alarm regulation property and the
ROC, with both simulated exponentially distributed SLI clutter
and gamma distributed MLI clutter. The proposed TS-CFAR
detector is compared with the conventional CA-CFAR and
OS-CFAR detectors, whose IC schemes are also considered and
discussed.

A. Definitions of Characteristics

1) False Alarm Regulation Property: The observed false
alarm rate is defined as

Pfa =
nfa

n
(17)

where nfa and n are the number of false alarms and the total
number of samples, respectively. Compliance of the specified
false alarm rate PFA and the observed false alarm rate Pfa is
an indicator of the sea clutter modeling accuracy, but it also
depends on the accuracy in the estimation of model parameters.
A constant Pfa can be approached if the hypothesized statistical
background model and the associated parameter estimates are
accurate. This is a fundamental property that justifies the CFAR
label. Nevertheless, a pragmatic solution is often used when a
detection algorithm does not satisfy the false alarm regulation
property: A PFA is chosen that produces a Pfa that meets
the practical requirements, although the two do not match. In
operational systems, PFA is set according to, e.g., the image
resolution and end application. In practice, PFA is commonly
set to around 0.001% (or 10−5) for fine-resolution SAR images.

2) ROC: The detection rate is measured as

Pd =
nd

nt
(18)

where nd and nt are the number of correctly detected tar-
gets and the total number of target samples, respectively. To
investigate detection performance, the Pd measurements are
usually evaluated at different values of PFA. Pd monotonically
increases with PFA, and a plot of these two properties against
each other is commonly referred to as an ROC curve. It char-
acterizes the tradeoff between Pd and PFA for a given CFAR
detector and is used to compare detector performance. Pd is
sometimes plotted against Pfa instead of PFA. This makes sense
when the false alarm regulation property is not satisfied since
Pfa represents actual performance whereas PFA is merely a
design parameter.

B. Experiments With Monte Carlo Simulations

In this paper, experiments are based on simulated SLI and
MLI measurements of sea clutter drawn from the exponen-
tial distribution (μ = 3) and the gamma distribution (μ = 3,
L = 4), respectively. Random data points in these background
samples are replaced by new values representing the contami-
nation by nonoceanic targets. Like in Section II-C, the contam-
ination samples are uniformly distributed in the range of 0.8 to
5 times the maximum value of the sea clutter data. The contam-
ination ratios considered are Rc = {1%, 5%, 10%, and 20%}.

Monte Carlo simulations are conducted, where each sim-
ulation represents one reference window with a sample size
of 1024 and certain amount of contaminations defined by Rc.
Note that the simulated contaminated pixels also represent the
potential target pixels in each reference window. All tested
CFAR detectors are applied in each simulated reference win-
dow, where the falsely detected clutter pixels and the correctly
detected contaminated pixels are counted. Finally, all those
numbers of falsely and correctly detected pixels are added
together and then divided by the total number of simulated
samples calculated from the product of the total number of
simulations and the sample size of each simulated reference
window. Therefore, the observed false alarm rate Pfa and the
detection rate Pd can be derived as

Pfa =

∑m
1 {nfa}i

m × nwin

Pd =

∑m
1 {nd}i

m × nwin × Rc

where m is the total number of simulations, nwin is the number
of samples of each reference window, and {nfa}i and {nd}i are
the number of falsely detected clutter pixels (false alarms) and
the number of correctly detected contaminated pixels (potential
targets) in each reference window, respectively. In order to
reach the minimum specified false alarm rate level, PFA =10−6,
at least m = 5 × 106 simulations are conducted for all tested
situations.

C. Compared CFAR Algorithms

Before conducting experiments with simulated exponentially
distributed SLI clutter and gamma distributed MLI clutter,
we introduce the algorithms to be compared. The TS-CFAR
detector was presented in Section II. The remaining detectors,
i.e., CA-CFAR, ICCA-CFAR, OS-CFAR, and ICOS-CFAR, are
briefly described in the following.

1) CA-CFAR Detector: This is the simplest detector avail-
able, where an estimate of the mean clutter intensity is produced
by averaging a set of samples surrounding the cell under test
[15]. The conventional algorithm assumes that the background
sample is homogeneous and contains no interfering targets.
Thus, the CA-CFAR offers no protection against target inter-
ference, but it is still used extensively in operational systems.

2) ICCA-CFAR Detector: An IC scheme was proposed by
Barboy et al. [10], and similar versions were repeated in [13]
and [14], where iteratively updated outlier maps are used for
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censoring. The IC scheme is specifically aimed at dense target
environments, and the algorithm is robust even in situations
where targets and associated artifacts take up 30% of the
reference window [10]. One weakness of the IC approach is
that the censoring may remove sea clutter data and targets, thus
removing data in the upper tail of the sea clutter distribution.
This is not accounted for in the parameter estimators, and the
detection threshold is consequently underestimated, although
this effect may be alleviated during iterations. Hence, the
detection procedure may need a number of “spike rejection”
iterations, which requires long computation time. The IC pro-
cess has converged when the outlier map is stable. In the exper-
iments, we have set an upper limit of 30 iterations to avoid an
excessive number of iterations. The IC scheme can be combined
with any CFAR detector, and the ICCA-CFAR detector is the
specific implementation of the IC principle with the CA-CFAR
detector.

3) OS-CFAR Detector: The OS-CFAR trades a small loss
in detection performance under homogeneous background con-
ditions, relative to the CA-CFAR detector, for an improved
performance under less ideal background scenarios. In practice,
the method is performed by rank-ordering the values encoun-
tered in the neighborhood area according to their increasing
magnitude and by selecting a certain predefined value from the
ordered sequence [9]. This can be the median, the minimum,
the maximum, or any other value. Thus, this procedure excludes
the reference samples with larger magnitudes, which may con-
tain contaminating targets, and estimates the background statis-
tics from the remaining samples [18]. Such signal processing
methods are denoted as methods with an ordered statistic.

The central idea of an OS-CFAR procedure is to select one
certain value X(k), k ∈ {1, 2, . . . , N} from the rank-ordered
ascending sequence and to use it as a representation Z = X(k)

of the clutter power level as observed in the reference window.
Since X(k) is the kth value of the ordered statistic for the
random variables X1, . . . , XN , its pdf can be derived as [25]

pX(k)
(x) = k

(
N
k

)
[1 − PX(x)]N−k [PX(x)]k−1 pX(x) (19)

where pX(x) is the pdf and PX(x) is the cdf of the random
variables in the reference window. The specified false alarm
ratio PFA indicates the probability that the value Y0 of the
cell under test is mistakenly interpreted as a target during the
threshold decision, and it is given as

PFA = P [Y0 ≥ KZ]

=

∞∫

0

(1 − PX(Kx)) pX(k)
(x) dx (20)

where K is a scaling factor. Both pdfs of Y0 and Z need to
be known. When the random variables Y0, X1, . . . , XN of the
clutter are assumed to follow an exponential distribution, PFA

can be computed from [9]

PFA = k

(
N
k

)
(k − 1)!(K + N − k)!

(K + N)!
. (21)

When a gamma distributed clutter is assumed, PFA is derived as

PFA = k

(
N
k

) ∞∫

0

(
1 − γ(L, Ky)

Γ(L)

) (
1 − γ(L, y)

Γ(L)

)N−k

×
(

γ(L, y)

Γ(L)

)k−1 yL−1e−y

Γ(L)
dy (22)

where shape parameter L is replaced again by known image
constant ENL, and K needs to be solved numerically. Note that
the scaling factor K , which controls the false alarm probability
PFA, does not depend on the average clutter power μ of the
exponentially or gamma distributed parent population. Thus,
they may be considered as CFAR methods. In the following
paragraphs, they are denoted by the term OS-CFAR. As sug-
gested in a previous study [9], we choose k equal 3N/4.

4) ICOS-CFAR Detector: As for CA-CFAR, the IC scheme
can be also applied to the OS-CFAR detector, and its realization
is, in the following paragraphs, referred to as the ICOS-CFAR
detector.

D. Experimental Results

This section compares all algorithms listed above, but not in
the same figure. If all detectors were compared simultaneously,
the wide range spanned by their performance measures and the
overlap of the many curves would make it difficult to discern
and interpret the details of the experiments. Instead, we first
compare the CA-CFAR detector with the ICCA-CFAR detector,
then the OS-CFAR detector with the ICOS-CFAR detector,
before presenting results for the TS-CFAR detector alone. We
finally compare the best performing algorithms, i.e., the ICCA-
CFAR, the ICOS-CFAR, and the TS-CFAR detectors.

1) CA-CFAR and ICCA-CFAR Detectors: Fig. 2 presents an
analysis of the false alarm regulation property and ROC curves
for the CA-CFAR and the ICCA-CFAR detectors.

Fig. 2(a) and (b) shows the ratio of Pfa to PFA in decibels
against PFA. When Pfa/PFA goes to zero on the logarithmic
scale, Pfa approaches PFA, as desired. Note that no value
is plotted when there are no observed false alarms, i.e., the
logarithm of the ratio goes to minus infinity. It is clear that
ICCA-CFAR, as compared with CA-CFAR, has an observed
false alarm rate closer to the specified false alarm rate PFA. As
expected, we also notice that an increase in the contamination
ratio Rc points toward a larger deviation from PFA. Fig. 2(c)
and (d) presents the detection rate versus the specified false
alarm rate, and it is clear that the ICCA-CFAR detector is much
superior to the CA-CFAR detector at the same contamination
levels. Especially for CA-CFAR, it is also evident that a larger
Rc decreases the detection rate.

2) OS-CFAR and ICOS-CFAR Detectors: Fig. 3 presents an
analysis of the false alarm regulation property and ROC curves
for the OS-CFAR and ICOS-CFAR detectors.

Fig. 3(a) and (b) shows that the ICOS-CFAR detector has
very good false alarm regulation properties. It confirms what
was observed in Fig. 2, i.e., that the IC approach is very robust
with respect to contamination within the reference window.
Fig. 3(c) and (d) presents the detection rate versus the specified

63



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 2. False alarm regulation property and ROC analysis for CA- and ICCA-CFAR in (a), (b) and (c), (d). Simulated SLI and MLI sea clutter are applied
with exponential (μ = 3) and gamma (μ = 3, L = 4) distributions, respectively. The contamination ratios considered are 1%, 5%, and 10%, related to the total
number of reference samples. A log scale is applied on the x-axes in all subfigures and y-axes in (c) and (d).

Fig. 3. False alarm regulation property and ROC analysis for OS- and ICOS-CFAR in (a), (b) and (c), (d). Simulated SLI and MLI sea clutter are applied
with exponential (μ = 3) and gamma (μ = 3, L = 4) distributions, respectively. The contamination ratios considered are 1%, 5%, and 10%, related to the total
number of reference samples. A log scale is applied on the x-axes in all subfigures and y-axes in (c) and (d). (a) Simulated SLI. (b) Simulated MLI (L = 4).
(c) Simulated SLI. (d) Simulated MLI (L = 4).
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Fig. 4. False alarm regulation property and ROC analysis for TS-CFAR in (a), (b) and (c), (d). Simulated SLI and MLI sea clutter are applied with exponential
(μ = 3) and gamma (μ = 3, L = 4) distributions, respectively. The contamination ratios considered are 1%, 5%, and 10%, related to the total number of reference
samples. A log scale is applied on the x-axes in all subfigures and y-axes in (c) and (d).

false alarm rate, and again, we see that the IC scheme improves
the result. Our investigation shows that the OS-based detectors
are able to produce reasonably good results even when the
contamination ratio approaches 20%, which is not the case for
the CA-based detectors.

3) TS-CFAR Detector: Fig. 4 presents an analysis of the
false alarm regulation property and ROC curves for the TS-
CFAR detector, which was introduced in Section II.

To demonstrate the robustness of the proposed TS-based
algorithm, we fix Rt = 25% while varying Rc. In general, the
TS-CFAR detector shows consistent behavior and good per-
formance. An interesting observation is that it achieves higher
detection rate Pd as Rc increases, which should be explained:
The high Rt ensures that all target pixels are removed from
the estimation sample, regardless of Rc. The truncated samples
thus consist of a constant number of sea clutter measurements,
but their distribution and upper bound will vary with Rc. When
Rc is low, many pixels from the sea clutter distribution will be
truncated and the truncation depth t obtains a low value. As Rc

rises, more target pixels and less sea clutter pixels are truncated,
and thus t becomes higher. The ROC curves clearly show that a
high t value is preferred to a lower value of t. This conclusion
would be further strengthened if we evaluated Pd versus the
observed Pfa instead of the specified PFA.

4) Comparative Analysis: The IC versions of the CA- and
OS-CFAR algorithms show superior performance as com-
pared with their conventional detector schemes. Therefore,
for concise comparison, the proposed TS-CFAR detector here

is only compared with the ICCA-CFAR and ICOS-CFAR
detectors. Figs. 5–8 present the comparative analysis of the
false alarm regulation property and ROC curves for different
contamination conditions. Note that the truncation ratio of the
TS-CFAR detector is still set to 25% for all tested cases, which
has similarities to the OS-based algorithm when k = 3N/4
(see Section III-C.3).

The ICCA-CFAR detector shows a large deviation from PFA

and a quick drop in detection rate as a function of increasing
contamination ratio. The ICOS algorithm shows a certain de-
gree of improvement over the ICCA algorithm. However, as
the contamination ratio gets larger, it is obvious that the TS
algorithm still obtains an observed false alarm rate closer to the
specified values and an improved stable detection rate.

So far, two classic CFAR detector performance measures
(characteristics) have been discussed in this section with dif-
ferent specified false alarm rates (PFA), ranging from 10−6

to 10−2. In practice, false alarm rates equal to or smaller
than 10−5 are usually applied. Next, we fix PFA = 10−5 and
present detailed plots of Pd versus Pfa. The experiments are
also conducted through Monte Carlo simulations.

Tables I and II present the CFAR detector characteristics
analysis with the specified false alarm rate at PFA = 10−5.
Results are averaged from 1000 Monte Carlo simulations with
a sample size of 1024. The contamination ratios considered are
1%, 5%, 10%, and 20%, related to the total number of reference
samples. The truncation ratio of the TS-CFAR detector is con-
stant at Rt = 25%. The best results are emphasized in boldface.
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Fig. 5. Comparative analysis of the false alarm regulation property of the best performing detectors. Simulated SLI sea clutter is applied with exponential
distribution (μ = 3). The contamination ratios considered are 1%, 5%, 10%, and 20%, related to the total number of reference samples. A log scale is applied on
the x-axes. (a) Rc = 1%. (b) Rc = 5%. (c) Rc = 10%. (d) Rc = 20%.

Fig. 6. Comparative analysis of the false alarm regulation property of the best performing detectors. Simulated MLI sea clutter is applied with gamma distribution
(μ = 3, L = 4). The contamination ratios considered are 1%, 5%, 10%, and 20%, related to the total number of reference samples. A log scale is applied on the
x-axes. (a) Rc = 1%. (b) Rc = 5%. (c) Rc = 10%. (d) Rc = 20%.
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Fig. 7. Comparative analysis of ROC of the best performing detectors. Simulated SLI sea clutter is applied with exponential distribution (μ = 3).
The contamination ratios considered are 1%, 5%, 10%, and 20%, related to the total number of reference samples. A log scale is applied on the x-axes and y-axes.
(a) Rc = 1%. (b) Rc = 5%. (c) Rc = 10%. (d) Rc = 20%.

Fig. 8. Comparative analysis of ROC of the best performing detectors. Simulated MLI sea clutter is applied with gamma distribution (μ = 3, L = 4).
The contamination ratios considered are 1%, 5%, 10%, and 20%, related to the total number of reference samples. A log scale is applied on the x-axes and y-axes.
(a) Rc = 1%. (b) Rc = 5%. (c) Rc = 10%. (d) Rc = 20%.
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TABLE I
CFAR DETECTOR CHARACTERISTICS ANALYSIS WITH THE SPECIFIED FALSE ALARM RATE AT PFA = 10−5 . SIMULATED SLI SEA CLUTTER IS

APPLIED WITH EXPONENTIAL DISTRIBUTION (μ = 3). RESULTS ARE AVERAGED FROM 1000 MONTE CARLO SIMULATIONS WITH A SAMPLE SIZE

OF 1024. THE CONTAMINATION RATIOS CONSIDERED ARE 1%, 5%, 10%, AND 20%, RELATED TO THE TOTAL NUMBER OF REFERENCE SAMPLES.
THE TRUNCATION RATIO OF THE TS-CFAR DETECTOR IS CONSTANT AT Rt = 25%. THE BEST RESULTS ARE SHOWN IN BOLDFACE

TABLE II
CFAR DETECTOR CHARACTERISTICS ANALYSIS WITH THE SPECIFIED FALSE ALARM RATE AT PFA = 10−5 . SIMULATED MLI SEA CLUTTER IS

APPLIED WITH GAMMA DISTRIBUTION (μ = 3, L = 4). RESULTS ARE AVERAGED FROM 1000 MONTE CARLO SIMULATIONS WITH A SAMPLE SIZE
OF 1024. THE CONTAMINATION RATIOS CONSIDERED ARE 1%, 5%, 10%, AND 20%, RELATED TO THE TOTAL NUMBER OF REFERENCE SAMPLES.

THE TRUNCATION RATIO OF THE TS-CFAR DETECTOR IS CONSTANT AT Rt = 25%. THE BEST RESULTS ARE SHOWN IN BOLDFACE

Note that some ratio values go to minus infinity, which means
that no false alarms are found.

For a fair comparison of detection rates Pd, they should all
correspond to the same observed false alarm rate Pfa. However,
the Pd values are computed based on a specified false alarm rate
PFA since it is impractical to control Pfa, which is a stochastic
variable that depends on the data sample. The approach we
have taken in Tables I and II is to list Pd values (computed for
PFA = 10−5) and 10 log10(Pfa/PFA) values separately and use
the latter in the interpretation of the Pd values.

In the joint analysis of Pd(PFA) versus Pfa/PFA, a value of
10 log10(Pfa/PFA) > 0 signifies that the corresponding value
of Pd is higher than it would have been if Pfa was equal to
the specified PFA, as desired. Therefore, Pd(PFA) overesti-
mates the performance of the algorithm. Conversely, a value of
10 log10(Pfa/PFA) < 0 means that the corresponding Pd(PFA)
underestimates the algorithm performance. This knowledge can
be used to compensate for the inadequacy of Pd(PFA), although
the resulting analysis is only qualitative.

This leads to the following interpretations: Table I shows
that TS-CFAR produces the highest values of Pfa/PFA and also
obtains the highest Pd(PFA) in the exponential case. According
to the joint analysis described above, the TS-CFAR detection
rates are therefore exaggerated, whereas the detection rates
of the other algorithms are underrated. Similarly, we see in
Table II that TS-CFAR has the highest Pd also in the gamma
case. Again, the Pfa/PFA values show that the comparison
unfairly favors the TS-CFAR algorithm and indicates that the
internal ranking of the algorithms based on the desired Pd(Pfa)
might be different than what we obtain from the listed Pd(PFA).

In Figs. 9 and 10, we plot Pd versus Pfa, as desired, but
with an artifact: The Pd values are produced with simulated
data samples that are generated according to a specified PFA

value. Since the data samples are random, so are the Pfa and Pd

values they produce. This is reflected in Figs. 9 and 10, where

a colored cloud of (Pfa, Pd) points represents the stochastic
performance measures obtained at PFA = 10−5 for the different
algorithms. The number of false alarms in a random generated
data sample is known from (17) as nfa = Pfa · n. The discrete
nature of the point clouds at low PFA levels reflects that the
realizations of nfa are small integers, which give rise to the
observed discrete levels. We see again in these figures that
the TS-CFAR algorithm produces the highest Pd, but if all
results were projected to a common Pfa level, their Pd levels
would also change in an unknown manner, and thus, the internal
ranking of the algorithms is not obvious in all cases.

What we can conclude is that the TS-CFAR algorithm per-
forms at least on par with the ICOS-CFAR algorithm, which
we consider as state of the art for the multiple-target situation.
The conventional CA-CFAR detector performs poorly with
contaminated samples, as expected. It is worth noting that the
OS-based CFAR detectors show relatively good detection rates.
However, their observed false alarm rates deviate much from
the specified false alarm rate, particularly when operating with-
out the IC scheme. Overall, the proposed TS-CFAR detector
shows the best false alarm regulation properties and obtains
excellent detection rates without resorting to the IC strategy,
which is inevitably associated with high computational cost.

IV. DETECTION PERFORMANCE WITH

COMPOSITE REAL DATA

In this section, a comparative study of the CFAR detectors
based on example cases is presented. In all cases studied, the sea
clutter statistics are occasionally contaminated by pixels origi-
nating from targets. A proper treatment of the difficulties that
may rise due to clutter edges and transitions in sea state is left
out here and kept for future work. All experiments and exam-
ples discussed are carefully constructed; hence, the background
sea clutter is kept homogeneous without any nonstationary
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Fig. 9. ROC-type plot of observed false alarm rate against detection rate at specified false alarm rate PFA =10−5. Simulated SLI sea clutter is applied with expo-
nential distributed (μ = 3). Monte Carlo simulations are done with a sample size of 1024. Each data cloud is based on 1000 repetitions. Note that, over the selected
range of contamination conditions, not all color clouds are visible due to the chosen intervals on the axes. (a) Rc =1%. (b) Rc =5%. (c) Rc =10%. (d) Rc =20%.

Fig. 10. ROC-type plot of observed false alarm rate against detection rate at specified false alarm rate PFA = 10−5 . Simulated MLI sea clutter is applied
with gamma distribution (μ = 3, L = 4). Monte Carlo simulations are done with a sample size of 1024. Each data cloud is based on 1000 repetitions.
Note that, over the selected range of contamination conditions, not all color clouds are visible due to the chosen intervals on the axes. (a) Rc = 1%. (b) Rc = 5%.
(c) Rc = 10%. (d) Rc = 20%.
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statistics before we superimpose targets. The proposed TS-
CFAR detector is compared with the conventional CA-CFAR
and OS-CFAR detectors and their IC schemes. Note that the TS,
OS, and IC schemes are all proposed to handle multiple-target
situations. The performances of the CFAR detectors are investi-
gated and discussed from three practical perspectives, namely,
the impact of adjusting the design of the sliding window, the
detectors’ behavior in dense target situations, and the target
blurring and merging effect due to multilooking.

The truncation ratio of the TS-CFAR detector is kept constant
at Rt = 25% to allow fair comparison with the OS-based
algorithm at k = 3N/4. It is worth noting that the reference
sample size applied under the sliding window technique di-
rectly affects the parameter estimation of the hypothesized
model and, hence, the statistical analysis of the background
clutter. More samples generally lead to more accurate estimates
and an improved model fit. However, more samples require
larger reference sliding windows, which increases the risk of
including both contamination and nonstationary statistics, e.g.,
outliers and clutter edges. A relatively large reference sample
size is implemented in our experiments, with a total number of
samples set to 1024 before data truncation, and a specified false
alarm rate of PFA = 10−5 is set throughout the performance
evaluation of the CFAR detectors for all example cases.

A Radarsat-2 SLC fine quad-polarization SAR imagery ac-
quired on August 18, 2011, off the south coast of the U.K.
at Portsmouth Harbor is exploited to evaluate the detectors.
The resolution of the imagery is approximately 5.0 and 4.7 m
along the azimuth and range directions, respectively. The scene
is acquired with a mid-swath incidence angle of approximately
38◦, and the test area is characterized by low wind conditions
and a calm-sea state [26]. Portsmouth is one of the most
crowded harbors in the U.K., which provides a good test
opportunity for a wide range of vessel sizes and vessel types,
including several small boats under 10 m in length. The ground
truth is based on Automatic Information System positioning
data and photographic evidence [26]. Three example cases are
composited from the HV polarization SLI and MLI (L = 4)
SAR measurements and utilized in the proceeding experiments.
Note that we perform multilooking in the spatial domain with a
resolution-preserving sliding window, and not with a stepping
window, which is the common practice. This has no impact on
the analysis and the results we obtain, except that it provides
more data that can be used in the evaluation of the algorithms,
and is therefore considered a valid approach.

A. Sliding Window Design

The sliding window technique is commonly applied in CFAR
detection schemes. When the central cell under test contains a
strong target, sidelobe effects may contaminate the background
sample in both the azimuth and range directions. A common
and pragmatic solution to this problem is to define a guard area
and confine the selection of background data to the four corners
of the sliding window. A schematic of this approach is given
in Fig. 11(a). An alternative method is shown in Fig. 11(b),
where a block estimation window centered at the cell under
test is chosen.

Fig. 11. Alternative ways of selecting the estimation window for sea clutter
statistics. The cell under test is marked in black, and the estimation sample is
shaded. In the study, four 16 × 16 windows in (a) and a 32 × 32 window in
(b) are applied.

The choice of sliding window design naturally affects the
detection results of CFAR detectors. In our implementation of
the design illustrated in Fig. 11(b), a 32 × 32 window is applied
to provide a total of 1024 reference samples before we exclude
the central test cell. For the corner approach, 16 × 16 samples
are drawn from each of the four corners, providing the same
total number of reference samples.

Both block and corner sliding window designs are investi-
gated here. A comparative analysis of the CFAR detectors is
shown in Figs. 12 and 13. The composited SLI and MLI scenes
contain one target. The IC schemes take approximately nine
iterations to reach convergence on average.

In general, with the corner approach, bright pixels originat-
ing from the target are excluded from the background clutter
sample, which leads to more accurate parameter estimation
and more beneficial thresholding. In the composite case shown
in Figs. 12(a) and 13(a), excessive energy from the target
gives a blurred impression along the azimuth direction due to
the sidelobe effect. Note that both pixels originating from the
vessel and its smeared-out energy are treated here as target
pixels. In Figs. 12(b) and (c) and 13(b) and (c), it is clear that
CA-based CFAR detectors relay on a proper design of sliding
window for various background clutter conditions, which is due
to a lack of accommodating contaminating targets in the sea
clutter estimation window. The OS-based CFAR detectors in
Figs. 12(d) and (e) and 13(d) and (e) offer some improvements
in this regard, and we note that the corner estimation approach
yields superior results. As shown in Figs. 12(f) and 13(f), it
is obvious that the proposed TS-CFAR detector produces the
best detection results without additional iterative processing
and has a robust performance regarding the choice of estimation
window approach. Hence, reference window designs incorpo-
rating guard areas are made superfluous, as the TS-CFAR de-
tector can be readily implemented based on the block approach,
thus collecting the reference samples from a more confined area
centered at the cell under test.

B. Interfering Targets

Target suppression in CFAR detection is an adverse effect due
to densely located targets. When a target lies within the refer-
ence window of the target under test, the resulting overestimated
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Fig. 12. Comparative analysis of detection results with block and corner sliding windows. Composite SLI HV polarization SAR image is applied with the
specified false alarm rate at PFA = 0.001%. The color bar in (b)–(f) represents detected targets using the corner estimation approach (Win-c, white), the block
estimation approach (Win-b, green), and the combined results from both approaches (Win-b&c, red). Black represents pixels detected as background clutter by the
respective CFAR detector. (a) Composite SLI SAR image in decibels. (b) CA-CFAR detection results. (c) ICCA-CFAR detection results. (d) OS-CFAR detection
results. (e) ICOS-CFAR detection results. (f) TS-CFAR detection results (Rt = 25%).

Fig. 13. Comparative analysis of detection results with block and corner sliding windows. Composite MLI HV polarization SAR image with number of looks
L = 4 is applied with the specified false alarm rate at PFA = 0.001%. The color bar in (b)–(f) represents detected targets using the corner estimation approach
(Win-c, white), the block estimation approach (Win-b, green), and the combined results from both approaches (Win-b&c, red). Black represents pixels detected
as background clutter by the respective CFAR detector. (a) Composite MLI SAR image in decibels. (b) CA-CFAR detection results. (c) ICCA-CFAR detection
results. (d) OS-CFAR detection results. (e) ICOS-CFAR detection results. (f) TS-CFAR detection results (Rt = 25%).
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Fig. 14. Comparative analysis of detection results with multiple interfering targets. Composite SLI HV polarization SAR image is applied with the specified
false alarm rate at PFA = 0.001%. The composite example SAR scene contains one large vessel and six small targets. The corner approach for estimating sea
clutter statistics is applied in (b)–(f). (a) Composite SLI SAR image in decibels. (b) CA-CFAR detection results. (c) ICCA-CFAR detection results. (d) OS-CFAR
detection results. (e) ICOS-CFAR detection results. (f) TS-CFAR detection results (Rt = 25%).

Fig. 15. Comparative analysis of detection results with multiple interfering targets. Composite MLI HV polarization SAR image with number of looks L = 4
is applied with the specified false alarm rate at PFA = 0.001%. The composite example SAR scene contains one large vessel and six small targets. The corner
approach for estimating sea clutter statistics is applied in (b)–(f). (a) Composite MLI SAR image in decibels. (b) CA-CFAR detection results. (c) ICCA-CFAR
detection results. (d) OS-CFAR detection results. (e) ICOS-CFAR detection results. (f) TS-CFAR detection results (Rt = 25%).

threshold can cause the target under test to not be detected [1].
In Figs. 14 and 15, the performances of the different detectors
are compared through an example case, where a large vessel
is placed in the center with six small targets lining up on

both sides. Note that all six interfering targets are real targets
composited from other parts of the same source SAR imagery.
The corner approach for sampling sea clutter pixels is applied
for all detectors compared.
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Fig. 16. Comparative analysis of TS-CFAR detection results with multiple small closely located targets. First row (a)–(c): composite example HV polarization
SAR data; one SLI and two MLI images with varying number of looks L. The legends are in decibels. Note that two small targets are placed close together in the
upper central part of the scene, and three small targets are placed on the line in the middle, whereas the target located in the lower central part of the image is likely
to be composed of two vessels. Second row (d)–(f): TS-CFAR detection results on corresponding SLI or MLI images from the first row. The corner approach for
estimating sea clutter statistics is applied. The specified false alarm rate is 0.001%, and the truncation ratio is fixed at 25%.

In Figs. 14(b) and 15(b), the CA-CFAR detector performs
poorly, causing a significant number of undetected target pixels.
The ICCA-CFAR detector in Fig. 14(c) completely misses
the three small targets on the left side of the panel after
10 iterations, and in Fig. 15(c), it performs even worse with
the applied corner sliding window after 12 iterations. It is
obvious from a visual inspection of the results in Figs. 14(f) and
15(f) that the TS-CFAR detector performs best. The TS-CFAR
detector detects pixels from all targets, as does the ICOS-CFAR
detector after seven and six iterations in Figs. 14(e) and 15(e),
respectively. However, the TS-CFAR detector is superior in the
total number of target pixels detected.

C. Blurring and Merging Targets

So far, the proposed TS-CFAR detector shows robust and
outstanding detection results. In addition, we demonstrate how
the TS-CFAR detector behaves with different multilooked SAR
images. A composite example, including small and closely
separated targets, is used in this experiment. As we know, mul-
tilooking is often applied in SAR image processing for speckle
reduction. However, the inevitable blurring effect cannot be
neglected, particularly when aiming at detecting small targets
with weak contrast. In MLI data, when two targets are closely
located, the detections from both targets are likely to be merged.
It is worth noting that the process of multilooking averages
the correlated measurements in real SAR images, which affects
statistical modeling of the resulting multilooked data.

Fig. 16(a)–(c) shows composite example SAR intensity
images with number of looks L = 1, 4, and 9, respectively. It is
clear that the image becomes blurred with an increasing number
of looks. The TS-CFAR detector performance is then examined
with fixed truncation ratio Rt = 25% and specified false alarm
rate PFA =0.001%. For the SLI image, the TS-CFAR detector is

sensitive enough to detect and distinguish all small and closely
located targets, as shown in Fig. 16(d). With the increasing num-
ber of looks in Fig. 16(e) and (f), all detected targets get blurred
as expected; meanwhile, closely located targets are merged.

V. CONCLUSION

In order to reduce the bias of the estimated background
statistics in multiple-target situations, the TS-CFAR detector
has been proposed. The TS-CFAR algorithm is based on TSs
and has a number of advantages. It is designed to accommodate
interfering targets in the reference window. False alarms are
also controlled exceptionally well by the TS-CFAR algorithm.
The comparisons of the different CFAR detectors have clearly
demonstrated the superiority of TS-CFAR processing over con-
ventional CA-CFAR and OS-CFAR processing. TS-CFAR also
performs on par with IC schemes while avoiding the iterations.

In practical CA-CFAR applications, guard cells are used
for separating the cell under test from the reference area in
order to prevent target returns from falsifying the clutter level
estimation. In TS-CFAR processing, guard cells become un-
necessary since a small number of target amplitudes occurring
within the reference area have almost no influence on the clutter
level estimation. Due to the truncation, the TS-CFAR algorithm
can be implemented with a block sliding estimation window
centered at the cell under test, thus collecting the sample in
a more confined area. Therefore, a reference window without
guard cells can be used with TS-CFAR processing.

The TS-CFAR scheme is derived here for exponential and
gamma distributed sea clutter background models with respect
to SLI and MLI SAR measurements. In the future, potential ex-
pansions of the proposed algorithm could be made by deriving
the TS-CFAR detector for other choices of hypothesized sea
clutter models such as the common K-distribution.
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