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Abstract 
This paper analyses the economics of pest and nuisance relating to wild animals. It studies 
stylised models where wild animals represent a direct nuisance to agricultural production 
through grazing and crop damage. Such damage is particularly relevant in poor rural 
communities, where people are dependent on livestock and crop production and at the same 
time are living close to nature and wildlife. The analysis encompasses both situations 
involving nuisance costs only and cases where the wildlife may also have a harvesting value. 
In both instances, the emphasis is on large mammals and criteria for optimal species 
eradication are analysed in particular.  
 
 
 
 ___________ 
*) Corresponding author. 
We are grateful for comments from the participants at the Ulvøn conference, Sweden in June 2000, and the 
Economics and Environmental conference at the Beijer Institute, Stockholm in September 2000. Anders 
Skonhoft would like to thank the Norwegian Research Foundation for their financial support via the 
‘Biodiversity, Threats and Management’ programme and The European Commission for their financial support 
via the ‘BIOECON’ programme. 
 
 
 
 

1. Introduction  
In many cases, wild animals are of benefit to humans. Quite frequently, however, we also find 

that wild species are a nuisance. This is often the case in poor rural communities where 
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people are dependent on livestock and crop production and at the same time are living close to 

wildlife and nuisance species. The agricultural damage may take place in a variety of ways, 

including eating crops and pastures; preying on livestock; rooting; tramping; pushing away 

obstructions such as fences; wallowing; and acting as carriers of weeds, parasites and diseases 

(Hone 1994).  

 

The control of agricultural pests such as insects, mites and weeds has been the main focus of 

literature in this field (Carlson and Wetzenstein 1993 provides an overview), whereas 

analyses of the damage caused by large mammals are relatively few in number. Tisdell (1982) 

provides a detailed study of the damage and control costs relating to feral pigs in Australia. In 

addition, the cost and benefits of feral pigs causing damage on Californian range-land has 

been studied by Zivin et al. (2000) using a bio-economic model and optimal control. The 

management of an African elephant population causing grazing damage, but at the same time 

representing consumptive as well as non-consumptive values, is analysed within the same 

framework by Horan and Bulte (2004). Among others, Kiss (1990) and Swanson and Barbier 

(1992) give descriptive overviews. For a more recent overview, see Graham et al. (2005). 

 

The present analysis follows up these studies of nuisance and damage caused by large wild 

animals in a developing country setting where a stylized and traditional bio-economic 

modelling approach is used. The basic questions analysed are how to define a nature stock as 

an ‘economic nuisance’; to what extent it is economically reasonable to harvest from a 

nuisance stock; and when it is optimal to exterminate the nuisance. A classic analysis of the 

bioeconomics of extermination is Clark (1990) while Schulz (1996) discusses the economics 

of the extermination of terrestrial animal species. See also Swanson (1994). Our analysis 

builds to some extent on Zivin et al. (2000), but the conditions for extermination or for living 

with the nuisance are discussed in a more fundamental way. Hence, contrary to their analysis, 

the possibilities of extermination or of not trapping at all are studied both by looking at the 

conditions when an internal optimal solution approaches the boundaries of zero and the 

carrying capacity, and by comparing the present-value profit of the programmes of an interior 

solution with that of these boundary solutions. These present-value comparisons are the main 

contribution of this paper. In Section 2 we analyse first the pure nuisance case, with no 

benefits related to the wild species. As a next step, in Section 3, an income stream of the 

wildlife when harvested, or cropped, is introduced. This case is analysed first without 

harvesting costs and then with costs added.  We are presuming throughout that management is 
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taking place at a farm level, or village level, with no positive non-consumptive value (e.g. 

existence value) of the species included. The present notion of ‘optimal extermination’ 

therefore has a clearly restricted meaning. 

 

2. No value to the wild species, just nuisance 

2.1 The model 

Like Zivin et al. (2000), we consider a landowner operating a piece of land with A >0 as the 

crop profit in the absence of damage. A population of wild animals X (measured in number of 

individuals) at time t  (the time notation is omitted) is eating up, or damaging, the yield. The 

damage is given by ( )N N X= , with (0) 0N =  and / 0XN X N∂ ∂ = > . When normalizing the 

damages to the crop profit (see e.g. Carlson and Wetzstein 1993), the net agricultural profit 

reads 

 

(1)      (1 ( )) 0U A N X= − ≥ .   

 

The cost of controlling the nuisance depends on the number of trapped (or harvested) 

animals h  and the stock size. The cost function is formulated as  

 

(2) ( )C c X h= .     

 

The cost is therefore assumed to be linear in the harvesting, while the unit trapping cost 

( ) 0c X >  decreases in the stock abundance as trapping becomes progressively more difficult 

as the animal population becomes small, 0Xc < . In addition, we have 0XXc > . 

 

The population grows according to the density dependent natural growth function ( )F X : 

 

(3)  ( )dX F X h
dt

= −  

 

Throughout, we are considering the natural growth function as a logistic-type model with 

(0) ( ) 0F F K= = , where 0K >  is the carrying capacity and 0XXF < , and where XF  is 

positive for a stock size below that of Xmsy and negative when X >Xmsy. 

 



 5

When the species has no harvesting value, the management problem is to balance the crop 

benefit (decreasing with the species abundance) with the control costs (increasing with the 

number of species removed). The optimization problem is thus to maximize the present-value 

net benefit  

 

(4) 
0

[ (1 ( )) ( ) ] tPV A N X c X h e dtδ
∞

−= − −∫  

 

under the constraint (3) and (0)X given, and where 0δ > is the discount rent, i.e. the return on 

alternative capital assets.1  

 

We start by solving the model when assuming an interior solution. Next, we consider 

extermination, and living with nuisance in its starkest form, i.e. keeping the wildlife at its 

carrying capacity in the long term.   

 

2.2. Controlling the nuisance, but living with it 

The current-value Hamiltonian of the above problem is 

(1 ( )) ( ) ( ( ) )H A N X c X h F X hλ= − − + − , whereλ is the shadow price of the wild animals. 

When we have an interior solution, i.e. a positive stock size, and harvesting taking place at the 

steady state, the first order conditions for maximum are 

 

(5) ( ) 0c X λ− − =  

 

and 

 

(6)    ( ) ( ) ( )x x x
d AN X c X h F X
dt
λ λδ λ= + + − . 

 

Equation (5) states clearly that when only a nuisance, the shadow price of the animals will be 

negative.  

                                                 
1 In the present problem A is fixed, and hence there is no trade-off between effort use in crop production and 
trapping (see e.g. Schulz and Skonhoft 1996). The present problem is equivalent to the problem of minimizing 

the present-value cost
0

[ ( ) ( ) ] tAN X c X h e dtδ
∞

−+∫ .  



 6

 

When combining the first order conditions and using the natural growth function (3), we 

obtain the reduced form first order condition as 

 

(7)  
* * * * *

*

( ) ( ) ( ) ( ) ( )
( )

X X XAN X c X F X c X F X
c X

δ + +
=  

 

which determines the steady-state equilibrium stock *X . In the next step, the number of 

animals trapped follows from equation (3) when / 0dX dt = , * *( )h F X= . Thus, equations (7) 

and (3) represent a singular system because the Hamiltonian is linear in h . The above control 

problem is therefore of the ‘bang-bang’ type, and the transitional dynamics must obey a 

MRAP-strategy (Most Rapid Approach Path). 

 

It is obvious that an optimal managed stock will never be larger if a nuisance effect is linked 

to it than without this effect: wild animals without value will be left uncontrolled if they have 

no negative influence on crop production. When controlled, however, equation (7) states that 

the opportunity cost of capital should be equal to the marginal natural growth plus the 

marginal stock effects. Two marginal stock effects are present, the cost effect 
* * * *( ) ( ) ( ) ( )X Xc X F X c X F X+  and the marginal damage effect *( )XAN X . The cost effect 

depends on the marginal unit control term *( )Xc X  and if its absolute value is large, it is 

optimal to have a small number of animals, *( ( )) 0XF Xδ − < . This is sustained because the 

trapping cost decreases, while the damage cost increases with the number of animals.  

 

By introducing shift factors for the cost and damage functions, and taking into account the 

total differential of equation (7), it may be confirmed that more nuisance as well as a more 

valuable crop means a smaller stock. A higher harvesting cost, on the other hand, means more 

animals. These effects may seem to contrast with the above condition for a small steady-state 

stock when the marginal control effect dominates the marginal nuisance effect, i.e. 
*( ( )) 0XF Xδ − < . However, the marginal trapping cost can only be large for a small stock 

size. The effect * / 0X δ∂ ∂ > differs from the standard harvesting model (see e.g. Clark 1990), 

and the reason is that there is no direct benefit from harvesting in the present model. Indeed, 
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the situation is the opposite, as effort must be made to keep the stock small and the 

opportunity cost for this effort increases with a higher rate of discount. 

 

The solution (7) may be illustrated using the standard Gordon-Schäfer approach. The natural 

growth function then reads ( ) (1 / )F X rX X K= − , where 0K >  (as mentioned) is the carrying 

capacity, 0r >  is the maximum specific growth rate, and the unit trapping cost function is 

specified as ( ) /c X a X=  with 0.a >  When assuming a linear damage function 

( )N X Xα= with 0α > , the model has the same specifications as Zivin et al. (2000). Given 

these functional forms, the RHS of equation (7) yields (1/ )( / )a A ra K Xα − . To obtain an 

interior solution, the RHS as well as the LHS of (7), i.e. the rate of discount, must therefore be 

positive. Under these conditions the steady-state stock reads2 * /( / ) 0X a A ra Kδ α= − > . 

Because Aα  yields the marginal stock damage cost, while ( /ra K− ) gives the marginal 

trapping cost, an interior solution is therefore characterized by marginal damage dominance. 

X* approaches zero when the rate of discount becomes small. If, on the other hand, the unit 

trapping cost is large and the marginal damage is low, it may be optimal to keep the species 

uncontrolled. We shall now analyse these boundary solutions more closely. 

 

2.3. Extermination of the nuisance, or leaving it unexploited 

Clark (1990, Section 2.8) analyses the economic and ecological conditions leading to 

extinction in the standard harvesting model. Using a purely compensatory natural growth 

function (as here), he finds that extinction is optimal if the harvesting price is higher than the 

(constant) unit harvesting cost when the stock size is close to zero, and if the rate of discount 

is substantially higher than (twice as high as) that of the maximum specific growth rate of the 

species.  

 

Clark analyses a nature asset stock, which will be left unexploited for a negative harvesting 

profit. Our case is opposite. We analyse a nuisance species where the stock is a liability to the 

manager, and we study the conditions for the steady-state stock to approach * 0X = when 

initially assuming a positive stock. To find the more precise conditions for extinction being an 

optimal policy, however, this possibility should be viewed from two different angles: 

(i) looking at the conditions for *X approaching zero when initially having *0 X K< < , or 

(ii) comparing the present-value profit of driving the species to extinction with that of keeping 
                                                 
2 Zivin et al. (2000) incorrectly states this condition as X*= δa(αA-ra/K) 
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a positive stock size. As the management goal is present-value profit maximizing, the latter 

evaluation method dominates the former (further details below).  

 

Not living with the nuisance at all and making the species extinct is optimal if the net 

discounted profit from doing so exceeds the net discounted profit from the internal optimal 

solution characterized by equation (7). When assuming that extermination takes place 

immediately, and hence neglecting the extinction time (but see below), the present-value 

profit of no species left is ** 0

0

[ (1 ( ))] ( , )tPV A N X e dt W X Xδ
∞

−= − −∫ 0/ ( , )A W X Xδ= − . 

0( , ) 0W X X > is the extermination cost function, generally dependent on the initial 

stock 0X and the stock size X determining extinction. When X is measured by the number of 

individuals (as here), X is conventionally set to one (see e.g. Lande et al. 2003, Ch. 2).  

 

On the other hand, for an internal solution *0 X K< < , the present-value profit reads 

* * * * 0 *

0

[ (1 ( )) ( ) ( )] ( , )tPV A N X c X F X e dt W X Xδ
∞

−= − − −∫
* * * 0 *(1/ )[ (1 ( )) ( ) ( )] ( , )A N X c X F X W X Xδ= − − −  when still assuming the steady state to be 

approached immediately (zero MRAP-time) and where 0 *( , ) 0W X X ≥ , as above, represents 

the cost of reaching the steady state. 0 *( , ) 0W X X =  if 0 *X X< , otherwise it is positive. The 

difference between these two harvesting programmes is accordingly 
** * * * * 0 * 0(1/ )[ ( ) ( ) ( )] ( , ) ( , )PV PV AN X c X F X W X X W X Xδ− = + + − . 

As 0( , )W X X > 0 *( , )W X X always holds, extermination is optimal either if this difference is 

small combined with a modest present-value cost of the nuisance stock, or if the present-value 

cost of the nuisance stock * * *(1/ )[ ( ) ( ) ( )]AN X c X F Xδ +  is large. This may happen when 

δ is small, or when the current cost is high. Hence, under these conditions, equation (7) with 
* 0X >  does not represent the optimal solution. This is a far more general conclusion than 

Zivin et al. (2000) and is stated as  

 

Result 1:  Extermination of a pure nuisance species is optimal if the cost of extermination is 

small. Extermination is also optimal if the nuisance cost and/or the control cost is high for a 

positive internal solution.  
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When, like Zivin et al., we use the linear damage function combined with the Gordon-Schäfer 

assumptions, it is possible to draw a somewhat more definitive conclusion. We then find 
* 0 *(1/ )[ ( )] ( , )PV A a r W X Xδ δ= − + −  when inserting for * /( / )X a A ra Kδ α= − (see above). 

The present-value profit difference becomes now 
** * 0 * 0( / )( ) ( , ) ( , )PV PV a r W X X W X Xδ δ− = + + − . On the assumption of zero 

extermination time, the extermination cost function reads 
0 0

__ __

0 0( , ) ( ) ( / ) ln
X X

X X

W X X c X dX a X dX a X= = =∫ ∫ when 1X = (see above). If the initial stock is 

above that of the interior steady state, 0 *X X> , we find in the same manner 
0 * 0 *( , ) ln( / )W X X a X X= . The present-value profit difference 

** * *( / )( ) lnPV PV a r a Xδ δ− = + −  is positive when *(1/ )( ) ln 0r Xδ δ+ − > .3 When 

inserting for *X , ** * 0PV PV− > implies (1/ )( ) ln[ /( / )] 0r a A ra Kδ δ δ α+ − − > . In contrast 

to Zivin et al., we can therefore conclude that extermination may be optimal for a positive rate 

of discount. This is stated as 

 

Result 2: Using the Gordon-Schaefer assumptions combined with a linear damage function, 

extermination may be optimal for a positive rate of discount.  

 

Table 1 demonstrates this result with a numerical example. It is seen that ** * 0PV PV− > for a 

discount rent up to about 10 %. However, as has already been made clear, these calculations 

build on the assumption that the steady states are approached immediately. The realism of 

reaching the steady state immediately may be questioned. Amongst other things, it requires a 

large trapping capacity, and the time used for eradication leads to some additional nuisance 

costs. On the other hand, the present-value trapping costs will be somewhat reduced due to 

discounting.  However, such additional extermination costs need to be quite significant to 

change the qualitative content of the calculations in the table. 

 

 Table 1 about here 

 

To complete the analysis, the profitability of the other extreme solution (not trapping at all 

and living with the nuisance in its starkest form) must also be found. Starting from 0X K= ,  
                                                 
3 When starting with 0 *X X< ,  0ln X replaces *ln X in this present-value profit difference. 



 10

the present-value profit of keeping the stock uncontrolled is 

***

0

(1 ( )) tPV A N K e dtδ
∞

−= −∫ (1/ ) (1 ( ))A N Kδ= − . When, as an initial stage, the cost of 

reaching the steady state *( , )W K X in the internal solution is neglected, the present-value 

profit difference is *** *PV PV− * * *(1/ )[ ( ) ( ) ( ( ) ( ))]c X F X A N K N Xδ= − − .  Using the linear 

damage function together with the Gordon-Schäfer approach, this reads 
*** * (1/ )[( ) / ]PV PV a r AK aδ δ α− = + − . When keeping the species controlled in the internal 

local optimal solution, the stock is * 0X >  together with * /( / )X a A ra K Kδ α= − ≤ . The last 

inequality may also be written as ( ) / 0r AK aδ α+ − ≤ . It is thus seen that 
*** * 0PV PV− = when *X K= and *** * 0PV PV− <  when *X K< . Hence, in the Gordon-

Schäfer case, starting with 0X K= and neglecting the cost of reaching the steady state, the 

condition for keeping the stock uncontrolled is equal to the condition for *X K= in the 

internal solution. However, two factors work in the direction of increasing the present-value 

difference *** *PV PV− . Firstly, we have the cost of reaching the internal steady state. 

Secondly, if 0X K< , the nuisance cost of the option of keeping the species uncontrolled 

reduces over a time interval until the stock reaches K . We can therefore state 

 

Result 3: Keeping the stock uncontrolled may be the best solution, even if there exists a local 

internal optimal solution *X K< . 

 

In Table 1 we have also included a calculation for ***PV . Because we are starting with 
0X K= , this example confirms that we have *** * 0PV PV− <  for all *X K< .  

 

2.4. Other control measures 

The pure nuisance model may be extended along different lines reflecting other types of 

nuisance control. One obvious way is to introduce a control measure that influences the 

fertility and hence the natural growth of the wild animals (see e.g. Levhari and Withagen 

1992).4 When V  is the control measure affecting natural growth at a cost of q per unit, and 

hence ( , )F X V  replaces ( )F X  with 0VF < , the present value reads 

 

                                                 
4 Influencing the natural growth function may also be interpreted as if selective trapping takes place. 
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(8) 
0

[ (1 ( )) ( ) ] tPV A N X c X h qV e dtδ
∞

−= − − −∫  

 

when we also have trapping. The Hamiltonian is now H = A(1- N(X))- c(X)h  - qV + λ(F(X,V) 

– h). When it is profitable to trap but not exterminate the species, and use the new control 

measure as well, V* >0, the first order conditions for maximum are  –q + λFV(X,V) =0 

together with (5) and (6), except that ( , )XF X V replaces ( )XF X  in (6). The reduced form 

steady-state conditions are therefore now 

 

(9)  
* * * * * * *

*

( ) ( ) ( , ) ( ) ( , )
( )

X X XAN X c X F X V c X F X V
c X

δ + +
=  

 

and  

 

(10)  ( ) ( )*
* *,v

q c X
F X V

− =  

 

in addition to * * *( , )h F X V= . Condition (10) simply states that the marginal cost of using the 

new control measure should be equal to the marginal trapping cost.5 

 

When the new control measure is profitable to use, the present-value profit is obviously 

higher than without it. The suspected result of  a smaller pest stock when having an additional 

control available is not, however, necessarily present. Hence, when taking the total 

differential of equation (9), we find that the condition for a smaller stock size when using the 

new control is * * * * * *( ) ( , ) ( ) ( , ) 0X XVc X F X V c X F X V+ > . Only when * *( , ) 0XVF X V ≥  is the 

nuisance stock therefore unambiguously smaller through having the additional control 

measure. The comparative statics in the extended model are the same as in the basic model 

analysed above. Only a new controlling measure has been added, and we find a trade-off in 

the cost of the two controlling measures, as demonstrated in equation (10).  In addition, 
* / 0X q∂ ∂ >  holds. 

 
                                                 
5 The dynamics of this control problem is also of the ‘bang-bang’ type for the control h. The dynamic path of V 
adjusts accordingly through equation (10). 
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Result 4: A situation where the nuisance species is controlled by influencing its natural 

growth may be analysed in a similar way to a case of control by trapping. 

 

3. The nuisance also represents a value 

3.1 No harvesting costs 

In the above analysis, wild animals represent only nuisance. However, in many instances 

animals, when removed, also yield a value in the form of meat, or trophies. This is often true 

of elephants and other large mammals (cf. Introduction). When wild animals have a hunting 

value, the management problem is to balance the crop benefit, decreasing the size of the wild 

species, and the control benefit, increasing the number of animals hunted. Consequently, 

when hunting permits are sold at the price 0p > , assumed to be fixed and independent of the 

offtake and size of the population, the problem is to maximize 

 

(11) 
0

[ (1 ( )) ] tPV A N X ph e dtδ
∞

−= − +∫  

 

subject to the constraint / ( )dX dt F X h= − .  

 

The first order conditions are 0p λ− =  and / ( ) ( )X Xd dt AN X F Xλ λδ λ= + − when there is 

an interior solution. The shadow price is therefore now positive, irrespective of the fact that 

the wild species also represents a nuisance.6  

 

The reduced form long-term equilibrium condition yields  

 

(12)        
( )* *( )X xAN X pF X

p
δ

− +
= . 

                                                 
6 Assuming the harvesting price to be unaffected by the number of animals harvested and that the size of the 
stock is clearly unrealistic in some instances. If the price depends on the number of animals removed and we 
have ( )p p h= with 0hp < , the control condition reads (1 / )hp p h p λ+ =  Hence, the shadow price may, 
depending on the size of the demand elasticity, be negative. If so, the optimal nuisance may be at a point where 

*( ( )) 0F Xδ − >  holds (see main text). This case is considered in Zivin et al.(2000). When a higher stock 

density makes harvesting more valuable, we also have ( , )p p h X=  with 0Xp > .  
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The location of *X will now always be at a point characterized by *( ( )) 0XF Xδ − < , 

determined by the size of the marginal nuisance relative to the harvesting price, and the stock 

will be smaller compared to a situation without any nuisance. It is hence always optimal to 

remove animals and the stock will never be left unexploited. This result may also be 

confirmed by calculating the present-value profit. When the time taken to reach the steady 

state is now also ignored, we find * * * 0 *(1/ )[ (1 ( )) ( )] ( )PV A N X pF X p X Xδ= − + + − , where 

the last term replaces the previous extermination cost function and represents the immediate 

harvesting value gain of reaching the steady state (when still starting with 0 *X X> ). 

Compared with keeping the stock uncontrolled, the difference is now 
*** * * * 0 *(1/ )[ ( ( ) ( )) ( )] ( ) 0PV PV A N K N X pF X p X Xδ− = − − + − − < . This result is obvious 

as harvesting now represents profit, and at the same time reduces the nuisance cost. This is 

stated as  

 

Result 5: A nuisance stock with a harvesting value but no controlling cost will never be left 

unexploited. 

 

While the stock will never be left unexploited, it may, as in the pure nuisance model, be 

optimal to exterminate it. From condition (12) it is evident that a low harvesting price works 

in the direction of a low X*, and this is the opposite result of the traditional Clark (1990) 

model. A valuable crop, together with high marginal damage, works in the same direction. As 

in the pure nuisance model, however, extinction may represent the overall optimal policy 

even if X* is positive. The present value of extinction is now ** 0/ ( )PV A p X Xδ= + − , when 

again neglecting the extinction time, and 
** * * * *(1/ )[ ( ) ( )] ( )PV PV AN X pF X p X Xδ− = − + − .  

 

When again using the Gordon-Schäfer model combined with the linear damage function, we 

find * ( / 2 )[( ) ]X K pr r p Aδ α= − − , i.e. * 0X = if ( )A r pα δ> − .  Inserting for *X , the present-

value profit difference reads ** * *( / 2 )[ ( ) ]PV PV X A r p pXδ α δ− = − − − after some small re-

arrangements. Ignoring the (very small) income term pX , the condition for extinction is 

therefore the same, achieved either by evaluating the present-value profit difference or by 

finding the condition for *X approaching zero.  
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Result 6: Extermination of a nuisance stock with a harvesting value but no control cost is 

always optimal if the current nuisance cost exceeds the current harvesting value in the 

internal optimal solution. In the Gordon-Schäfer case, the conditions of extinction may be 

found by examining when the optimal internal stock approaches zero. 

 

3.2 Harvesting costs   

The present case, with a species value, may be analysed somewhat more generally when 

harvesting costs are also included. The net hunting benefit is then 

 

(13) ( ) ( )B p c X h b X h= − =     

 

with ( )b X as the unit profit, increasing in the stock size, 0X Xb c= − > . Observe that having 

0Xb >  may also be interpreted as a situation where increased stock makes the hunting 

permits more valuable for larger stocks. Contrary to the standard harvesting problem (with no 

nuisance), ( )b X  can be either positive or negative. The two models above are therefore 

nested by this one, with the pure nuisance case as ( ) ( ) 0b X c X= − <  and the value case as 

( ) 0b X p= > .  

 

The present value benefit reads 

 

(14) 
0

[ (1 ( )) ( ) ] tPV A N X b X h e dtδ
∞

−= − +∫ , 

 

with first order conditions b(X) - λ = 0 and / ( ) ( ) ( )X X Xd dt AN X b X h F Xλ λδ λ= + − − when 

an interior solution is present. The shadow price may therefore now be positive or negative, 

depending on the stock size and unit harvesting cost, and hence the wild animals may be 

either a value or a nuisance. 

 

The reduced form steady-state equilibrium follows as 
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(15) 
( )

* * * * *

*

( ) ( ) ( ) ( ) ( )X X XAN X b X F X b X F X
b X

δ − + +
= .  

 

The location of *X is more complicated than above and, depending on the cost and benefit 

structure, there are several possibilities. When the marginal harvesting benefit *( )b X is 

positive, *( ( )) 0XF Xδ − >  holds when the cost term * *( ) ( )Xb X F X dominates the nuisance 

term *( )XAN X .  Hence, this will be an outcome when it is optimal to keep a large stock size. 

On the other hand, we have *( ( )) 0XF Xδ − < and few animals when the shadow price is 

positive and the nuisance term dominates. This is the opposite of the situation analysed above 

without harvesting benefit. However, when the marginal cost effect exceeds the harvesting 

price and we have *( ) 0b X < , the location of the equilibrium stock size, depending on cost or 

nuisance dominance, will be as in section 2.2 (see also Horan and Bulte 2004). 

 

By differentiating condition (15), we find that the comparative static effects of the crop value 

and the harvesting and damage costs will be just as in the pure nuisance model. However, the 

price effect depends on the location of *X , and * / 0X p∂ ∂ > holds when the harvesting profit 
*( )b X is positive; the nuisance term dominates the cost term and it is a small stock 

size, *( ( )) 0XF Xδ − < . On the other hand, for a negative harvesting profit and a dominating 

nuisance term, we find * / 0X p∂ ∂ < and a higher price make it less costly to deplete a non-

valuable stock. When *( ) 0b X <  the stock is again a net liability, and effort must be used to 

keep the stock small and * / 0X δ∂ ∂ >  When, on the other hand, *( ) 0b X > , we have the 

standard result of * / 0X δ∂ ∂ < . 

 

It may offer additional insight to illustrate this solution by using the Gordon-Schäfer approach 

combined with the linear damage function ( )N X Xα= . The steady-state stock then yields  

2
* [ / ( ) ] [ / ( ) ] 8 /

4 /
ra K A r p ra K A r p rpa KX

rp K
α δ α δ δ− + − + − + − +

= . There must be 

restrictions on the damage cost and the value of the crop to obtain an interior solution in this 

model as well. Moreover, the unit trapping cost must be neither too small nor too large. 
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Again, these conditions become apparent by finding the conditions for approaching 
* 0X = and *X K= , respectively, when initially assuming an interior solution.  

 

However, just as in the previous models, the present value of the various programmes has to 

be compared, in order to find more precise conditions for the optimal strategies. Using the 

same assumptions as above, we now find 
* * * * 0 * 0 *(1/ )[ (1 ( )) ( ) ( )] ( ) ( , )PV A N X b X F X p X X W X Xδ= − + + − −  and 
** 0 0/ ( ) ( , )PV A p X X W X Xδ= + − − . The difference reads 
** * * * * * 0 * 0(1/ )[ ( ) ( ) ( )] ( ) ( , ) ( , )PV PV AN X b X F X p X X W X X W X Xδ− = − + − + − . If the 

shadow price is negative and *( ) 0b X < , we therefore obtain more or less the same result as in 

the pure nuisance case. This is stated as 

 

Result 7: Extermination of a valuable species with a negative shadow price is optimal if the 

cost of extermination is small.  

 

4. Concluding remarks 

We have studied three different models of ecological nuisance. The analysis has been at a 

farm or village level, in a developing country setting, based on a large wild mammal species 

causing agricultural crop damage. Our analysis demonstrates that a nuisance resource will be 

managed quite differently from a valuable resource. Firstly, it is obvious that the farmers will 

deplete the nuisance stock compared to a situation where there is no crop damage. Secondly, 

the stock will be left unexploited only if the damage effect is small and if harvesting yields a 

negative profit. Thirdly, at a farm or village level it may very well make sense to eradicate the 

nuisance species. Two main problems have been highlighted. Firstly, the nature of a nuisance 

species as a nature liability has been discussed. Secondly, a nuisance species needs to be 

eradicated because of its effect on agriculture, and we specify the criteria for this decision. 

 

However, as the present management problem is analysed at a farm (or village) level, the 

present notion of optimal extinction should be interpreted with care, and values reflecting 

existence value, or biodiversity, should be included from a social point of view. Extinction, or 

small and threatened stock sizes, will then rarely represent an optimal social solution.  This 

gives room for introducing policy measures to increase the wildlife stock due to its social 
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value. Moreover, to safeguard a small nuisance stock from extinction, it should always be 

ensured that wild animals have a net value at a farm or village level. 

 

The value of crop production is also important for the management of the nuisance, since the 

economic damage of the nuisance stock increases when agriculture becomes more profitable. 

Hence, policies of making agricultural production more profitable will never increase the 

number of wild animals. This supports the conclusions from Schulz and Skonhoft (1996) 

analysing the conflicting land-use for agricultural production and habitat purposes. 
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Table 1. Pure nuisance model. Stock size internal solution *X , present-value profit internal 
solution *PV , present-value profit extermination **PV and present-value profit no control 

***PV  
δ  0.01 0.05 0.09 0.13 0.17 0.20 

*X  5 25 45 65 85 100 
*PV  66.0 11.6 6.0 4.0 3.0 2.5 

**PV  95.4 15.4 6.5 3.0 1.3 0.4 

***PV  50.0 10.0 5.6 3.9 2.9 2.5 

Table note. Parameter values: K =100, r =0.3. A =1, a =1, 0.005α = . Initial stock size: 
0 100X K= =  

 


