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1. Introduction 

      Fish farming have been considered the importance resource for supplying food for global 

requirement (1). Norway by far is the country that produce the most salmon in the world, and 

virus disease is one of the major problems that causes the economic loss in fish farming. For 

combating the diseases, vaccines have been developed.  

      In Norway, traditional vaccines based on inactivated virus are available against IPN, PD 

and ISA, but do not appear to give adequate protection. IPN and vaccine based on 

recombinant VP2 is the only commercial available subunit vaccine in Norway that provide 

high and long-lasting protection (2). There is thus a clear need to develop effective vaccines 

against these and other virus caused diseases of Atlantic salmon. To develop improved 

vaccines and other prophylactic methods, it is important to increase the understanding of the 

interaction of viruses with the immune system of Atlantic salmon.  

      This doctoral thesis encompasses studies include the function of salmon type I interferon 

(IFN-I) in vivo, the use of IFN-I in vaccine study. How IFN-I triggering both innate and 

adaptive immune response gives protection against virus infection. 

    In the introduction, I will first give a brief over view of the virus disease from salmon 

farming in Norway and then introduce two important viruses ISAV and SAV3 that were used 

in this thesis. IFN-I activated in innate and adaptive immune system are separated and 

described in two major sections. In the sub-sections, antiviral response and proteins 

expression triggered by IFN-I are reviewed and described. The effect of IFN-I in immune 

cells and the use of IFN-I as vaccine adjuvant have also been discussed. In last few sections I 

will focus on how IFN-I contributed as vaccine adjuvants and the effect of IFN-I in immune 

cells. 

 

 

 



Introduction 

 

2 
 

1.1 Virus diseases in Atlantic salmon farming and the demand for effective virus   

      vaccines 

       Atlantic salmon is an important aquaculture species globally. Farmed salmon is, however, 

attacked by several viruses, which represent a continuous threat to the aquaculture industry 

and cause large economic losses.  

      Infectious salmon anemia (ISA) is caused by ISA virus (ISAV), which belong to the 

Orthomyxoviridae family (3). Fish infected by this disease show anaemia in blood system and 

the virulence varies depends on the strain of infection. Outbreaks of ISA have declined from 

2008 in 17 cases to 1 cases in 2011. However, the numbers of outbreaks were increased from 

2012 in 2 cases to 15 cases in 2015. Most outbreaks have occurred in specific areas in 

Northern Norway in recent years and have start with low mortality. ISA has been combatted 

by separation of generations and stamping out of fish in affected areas (4).  

      Pancreas disease (PD) is caused by salmonid alphavirus (SAV) which belong to 

Togaviridae family (3). Fish infected by this disease show reduced food consumption and 

growth. PD currently is the most important virus disease in salmon farming in Norway with 

137 new cases registered in 2015. SAV subtype 3 (SAV3) causes the epidemic western 

Norway that usually cause low to moderate mortality while SAV2 causes the epidemic in mid 

Norway that often cause low mortality (4). This leads to serious economic losses in salmon 

farming industry (4). 

      Infectious pancreatic necrosis (IPN) is caused by IPNV which belong to Birnaviridae 

family(3). IPNV can infect a wide range of fish species in the worldwide and cause significant 

problems in Atlantic salmon farming. IPNV-infected salmon post-smolts show reduced food 

consumption and increased mortality. The outbreaks of IPN cases in salmon have shown a 

reduction in cases from 223 cases in 2009 to 30 cases in 2015. The selection of fish that 

genetic associated to infectious disease resistance using DNA marker identification have been 

developed, using IPNV resistance Atlantic salmon in the farming was considered the reason 

for the reduction of outbreaks (4, 5).  

     The increased cardiomyopathy syndrome disease (CMS) caused by PMCV which belong 

to Totiviridae family (3) and the Piscine myocarditis virus was first described in 2010 and 

considered as the main agent causing cardiomyopathy syndrome disease.  Fish infected with  
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this virus usually develop circulatory disorder and large inflammatory changes at heart. The 

CMS disease mainly occurs to a large fish before harvesting, thus resulting in a substantial 

economic impact (4). Heart and skeletal muscle inflammation (HSMI) caused by PRV which 

belong to Reoviridae family (3). Increased numbers of HSMI cases have been recorded in past 

few years, 135 new cases outbreaks were register in Norway in 2015 and mortality is highly 

associated with other factors such as stress caused by transportation, routine management or 

the control of sea lice. Piscine orthoreovirus (PRV) was first identified from HSMI inflicted 

tissues and considered to be significantly associated with this disease that causes clinical sign 

of circulatory disturbance. Heart is the organ that shows the most changes after virus infection, 

and inflammation with pathological changes are usually displayed in the skeletal muscle, and 

may also discover in liver and other tissues as well.  

      Infectious hematopoietic necrosis disease (IHN) caused by IHNV (Rhabdoviridae) (3). 

IHNV is commonly found in salmonid species in Canada and the USA, and causes a 

significant economic problems but has never been detected in Norway. IHNV caused a 

serious epidemic in Atlantic salmon farming in British Columbia in 2001-2003 (6), which has 

been defeated by the use of a DNA vaccine (7). 

 

 

Figure 1. The outbreaks of ISA, PD, HSMI, IPN and CMS from 2006 to 2015 in Norwegian 

salmonid farming (4). 
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1.2  Characteristics of ISAV and SAV3 

Infectious salmon anaemia virus (ISAV) 

      Infectious salmon anaemia virus (ISAV) is the only aquatic orthomyxovirus described and 

belongs to the genus of Isavirus (8). This enveloped virus consists of eight negative sense 

single–stranded RNA (ssRNA) segments (9), which encode at least ten proteins (10, 11) as 

shown in Fig. 2.  The virus segment 1 encodes viral RNA polymerase (PB2) (12), segment 2 

encodes RNA-dependent RNA polymerase core motif (PB1) (13), segment 3 encodes 

nucleoprotein (NP) (12, 14, 15), segment 4 encodes RNA polymerase (PA) (15), segment 5 

encodes fusion protein (F) (10, 16), and segment 6 encodes the haemagglutinin-esterase (HE), 

which is a glycoprotein containing both receptor-binding and receptor-destroying enzyme 

domains (17-20).  Segment 7 encodes two small ORF (ORF1, ORF2); s7 ORF1 has IFN-I 

antagonist activity and s7 ORF2 appear to be a nuclear export protein (NEP) (21-24). Like s7, 

segment 8 encodes two ORFs; ORF1 encodes surface protein Matrix (M) while ORF2 has 

IFN-I antagonist activity that modulates s7 ORF1 (21, 25). Recently, s7ORF1 and s8ORF2 

have been shown to have IFN-I antagonist activities whereby they inhibit induction of IFNa 

mediated by interferon regulatory factors (IRFs) (26).  

 

 

Figure 2. ISAV and Genome derived from http://viralzone.expasy.org/all_by_species/95.html 

Source: ViralZone:www.expasy.org/viralzone,SIB Swiss Institute of Bioinformatics and used 

under a Creative Commons Attribution-Non Commercial 4.0 International License. (adapted 

and simplified by Chia Jung Chang)

http://viralzone.expasy.org/all_by_species/95.html
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      Two major groups of ISAV have been described, one from Europe and one from North 

America (27). The genotype of European ISAV is spread more widely and shows greater 

variation in genetic and virulence than North American genotype (28). However, the whole 

genome in ISAV is considerably conserved. The region with the highest variation called the 

high polymorphism region (HPR) was found near the transmembrane domain of HE protein 

(29, 30). The full length segment 6 of ISAV HPR0 was suggested to be the precursor for other 

HPR-deleted ISAV (ISAV-HPRΔ) strain. However, due to lack of direct evidence, the 

association between HPR0 and other virulent ISAV remains unclear (29, 31, 32). In addition 

to the deletion of HPR region in segment 6, the insertion of a sequence in the Fusion protein 

of segment 5 has been considered necessary in determining the pathogenicity of the virus (33, 

34).  

      Gills was considered as a major entry port for ISAV (35). The infection of ISAV through 

other entry ports of the mucosal systems like eye, pectoral fin, skin and GI tract have also 

been identified (36). ISAV initiatially infects the epithelial cells at mucosal barriers and later 

infection of endothelial cells occurs systemically following the circulatory infection (36, 37). 

ISA symptoms include severe anemia, hemophagocytosis, ascites, petechial and hemorrhagic 

necrosis in the liver and congestion in multiple organs (38-41). The function of 

Haemagglutinin (HA) is important for host specificity and tissue tropism for influenza virus. 

Haemagglutinin-esterase (HE) from ISAV consist of receptor-binding and receptor-destroying 

enzyme (RDE) activities (17, 42, 43),  which is similar to the hemagglutinin-esterase-fusion 

(HEF) protein from influenza C virus that has functions in binding to the host cell receptor 

glycoprotein, virus and cell membrane fusion and receptor destruction (44-47). The binding of 

ISAV HE and cell receptor has also been identified as important for the infection in Atlantic 

salmon (42, 43). In addition, the surface HA protein from influenza A virus or the HEF 

protein from influenza C virus are commonly use for vaccine study (48), Surface protein HE 

and F protein from ISAV have also been studied that shows some protection in fish against 

ISAV infection with HE encoded DNA vaccine, or yeast expressed HE and F protein 

embodied oral vaccine (49, 50).  
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Salmonid alphavirus (SAV) 

  

      Salmonid alphavirus (SAV) is an enveloped virus with a genome consisting of one 12 kb 

positive-sense ssRNA molecule (51, 52). The genome has two ORF; one which encodes five 

structural glycoproteins included E1, 6K, E2, E3 with capsid protein, and one ORF, which 

encodes the four non-structural proteins nsp1-nsp4 as shown in Fig. 3 (53). Like alphavirus 

from other species, glycoprotein E2 from SAV is suggested to interact with cellular receptors 

and seems to contain a virus neutralizing site for antibodies (53).  The relatively conserved E1 

protein is required for trafficking and cell surface expression of E2 protein (54).  

 

Figure 3. Alphavirus and Genome derived from http://viralzone.expasy.org/all_by_species/625.html 

Source: ViralZone:www.expasy.org/viralzone,SIB Swiss Institute of Bioinformatics and used 

under a Creative Commons Attribution-Non Commercial 4.0 International License. (adapted 

and simplified by Chia Jung Chang) 

 

 

    Phylogenetic analysis based on sequence analysis of E2 and nsp3 has led to the 

identification of six subtypes of SAV (SAV1-SAV6) (55, 56).  SAV3 was first identified at 

2005 in Norway and share 91.6% and 92.9% similarity in nucleotide sequence compared to 

SAV1 and SAV2, respectively (57). Different geographic locations of the PD epidemics are 

associated with different strains of SAV. SAV1 is the main problem in Ireland and Scotland 

while SAV3 is the cause of the PD epidemic in western Norway and a marine SAV2 is 

causing the epidemic in mid-Norway (58).  

      Histology of SAV infected fish shows severe degeneration, necrosis and inflammation in 

pancreas, heart and skeletal muscle (59-62). The virus can be detected in brain, gill, 

http://viralzone.expasy.org/all_by_species/625.html
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pseudobranch, heart, pancreas, kidney, skeletal muscle and also in mucus and faeces of 

infected fish. At early virus infection, the histopathological changes appears only as focal 

necrosis in exocrine pancreatic tissues and variable inflammation in peripancreatic fat tissue. 

Myocyte degeneration and focal necrosis were developed at the same stage. Soon after, the 

infection causes multifocal and severe necrosis with total loss of exocrine pancreas and 

appearance of myocardiocyte necrosis and increased inflammation. Ordinarily, the 

development of skeletal muscle degeneration, inflammation and fibrosis appear 3-4 weeks 

after virus infection (53, 63). Organs and tissues like gill, heart and mid-kidney are commonly 

used for analysis of samples from the disease outbreak while serum is used for detecting the 

virus with Real-time PCR in early infection at the initiatal phase of viraemia (64). 

 

1.3     The importance of type IFNs in innate and adaptive immunity against virus infection 

 

      The immune response against virus infection consists of both innate and adaptive immune 

defense mechanisms. The innate immunity against virus infection is activated when virus 

related particles are recognized by receptors, this trigger immediate and short defense system. 

Type I interferon (IFN-I) is one of the major cytokines and is secreted from virus infected 

cells. The secreted IFN enters the blood stream and activates antiviral signaling pathway 

(JAK/STAT signaling pathway) in other cells. If an early antiviral immune response is not 

able to eliminate virus replication, then the second line of defense, the adaptive immune 

response, is activated. Activity of adaptive immunity include activation of many adaptive 

immune related cell types and secretion of antibody (Ab) against the virus.    

      Ordinary, the engagement of innate and adaptive immunity require communication from 

various immune cells and cytokines. The immune cells such as dendritic cells (DCs), B and T 

lymphocytes are important in this process. Upon infection, virus components such as RNA or 

DNA are recognized by pattern recognition receptor (PRRs) from cells. Activated Dendritic 

cells after infection secrete IFN-I and different cytokines which regulate lymphocytes via 

MHC molecules and co-stimulators. B and T lymphocytes are then activated and turn into 

effector cells such as antibody producing cells or cytotoxic cells. Modulation of IFN-I in DCs, 

B and T lymphocytes will be further discuss in later sections. 
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Interferons 

 

       Interferons (IFNs) are cytokines that interfere with virus infection by inducing an anti-

viral state in cells. Three families of IFNs (type I, type II and type III) can be distinguished by 

sequence, gene structure and synteny, and receptor specificity (65). Type I IFN (IFN-I) and 

type III IFN (IFN-III) play a pivotal role in innate immune responses against virus infections, 

whereby host cells produce and secrete IFNs upon recognition of viral nucleic acids. These 

IFNs protect other cells from further viral infection by binding to cell surface receptors, which 

result with induction of hundreds of IFN stimulated genes (ISGs) (66-69) . The ISGs, several 

of which encode antiviral proteins such as Mx, ISG15, and viperin. Importantly, IFN-I also 

stimulates adaptive immune responses, which is described in later sections. Mammals possess 

multiple subtypes of type I interferon which bind to the same heterodimeric receptor 

composed of the polypeptide chains IFNAR1 and IFNAR2. Receptors for type I interferon are 

present in most cell types (70, 71). IFN-II is IFN-γ and is produced by natural killer cells (NK 

cells) and T lymphocytes and binds to the receptor composed of IFNGR1 and IFNGR2, which 

is present in a broad range of cell types (72). IFN-γ is important in T-cell mediated adaptive 

immunity and its function is different from IFN-I and IFN-III. All three IFN types have 

identified in mammals, birds, and amphibians, while only IFN-I and IFN-II have been found 

in fish. The thesis thus focuses on the function of type I interferon. 

      The following sections will first describe IFN-I triggered innate immune system and the 

function of antiviral proteins mainly in mammals but also in fish. Second, the thesis will 

describe the role of adaptive immunity in combating viruses and the role of type I interferon 

in connecting both innate and adaptive immune systems. Third, the thesis will describe the 

use of type I interferon in vaccine study and derived outcomes.      

 

1.4 Type I IFNs in mammals and fish 

 

     In mammals, IFN-I is a multigene family with at least 9 subclasses including IFN-α, IFN-β, 

IFN-ε, IFN-κ and IFN-ω, which has been found in most species that have been studied. 

Besides, IFNδ, IFN-ζ, IFN-τ and IFN-ω are more distinct than others and have been found in 

pig, mice, cattle and horse (73). IFN-I are encoded by intron-less genes and bind to the same 
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heterodimeric receptor containing the IFNAR-1 and IFNAR-2 subunits in mammals. Fish 

type I IFNs were first discovered in 2003 and have been cloned from several different fish 

species, among those zebrafish, pufferfish, channel catfish and Atlantic salmon. Unlike 

mammalian IFN-I, fish IFN-I genes are interrupted by introns and signal through at least two 

heterodimeric receptors (74-76). The largest IFN-I family has been found in salmonids and 

comprise at least six subtypes including IFNa, IFNb, IFNc, IFNd, IFNe and IFNf, several of 

which are encoded by multiple genes (77). IFN-I differ in the number of disulfide bridges 

formed by cysteine residues. In mammals, IFNα possesses four cysteines while two cysteines 

were present in IFNß. These cysteines residues have been found to be essential for protein 

conformation and biological activity (78-81). Likewise, conserved region of cysteines 

residues have been found in fish and have been used for classifying fish IFN-I into two groups. 

Group I IFN-I contain two cysteine residues with one disulfide bridge while group II IFN-I 

contain four cysteine residues with two disulfide bridge as shown in Table 1 (77, 82-84). 

However, a recent IFN-I found in turbot reveals that the group system based on cysteines 

residues may not suitable for all the fish species (85).   

 

Table I : Classification of type I interferon in teleost 

Species Group I IFN-I 

(2 cysteines) 

Group II IFN-I 

(4 cysteines) 

 Atlantic salmon (Salmo salar) IFNa, IFNd IFNb, IFNc 

 Rainbow trout (Oncorhynchus mykiss) IFNa, IFNd, IFNe IFNb, IFNc, IFNf 

 Zebrafish (Danio rerio) IFN1, IFN4 IFN2, IFN3 

Species that IFN-I found not belong to any groups 

Turbot (Scophthalmus maximus), IFN2 (5 cysteins), IFN1 (6 cysteins) 

The table was made mainly according to a previous phylogenetic tree analysis (77) and IFN-I 

from Turbot (86).  

 

      In salmonids, IFNa and IFNd contain two cysteines, IFNb and IFNc contains four 

cysteines and form one and two disulfide bridges respectively (87, 88). Antiviral activity has 

so far only been proved for the IFNa, IFNb and IFNc subtypes (89).  Therefore,  our work 

focuses on  these three salmon IFN-I subtypes, (IFNa, IFNb and IFNc) especially the antiviral 

immune response in salmon pre-smolt. 
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1.5  Induction of IFNs with virus infection 

      The central role of IFN-I is induction of an antiviral state in cells through interaction of 

IFN with interferon receptors, resulting in induction of IFN-stimulated genes (ISGs) some of 

which inhibit virus replication (90, 91).  In order to combat virus infection, virus must be 

detected through several virus sensors in the cell. The sensors for virus RNA includes RIG-I 

Like receptors (RLRs), Toll like receptors (TLRs) and virus DNA-receptors as described 

below.  

 

RIG-I like receptors (RLR) and Toll-like receptors (TLR) for RNA viruses 

 

       In mammals, receptor responsible for virus-RNA recognition is localized in the 

cytoplasm and belongs to the RIG-I-like family (RLR) (92). These cytosolic receptors; RNA 

helicases retinoic acid-inducible gene I (RIG-I), Melanoma differentiation-associated gene 

(MDA5) identify  and bind to viral RNA  (93). Signaling through the adaptor protein IPS-1 

(also named MAVS) leads to activation of Interferon Regulatory Factor 3 (IRF3), Interferon 

Regulatory Factor 7 (IRF7) and Nuclear factor-κB (NF-κB) and transcription of IFN-I genes 

(94). Laboratory of genetics and physiology 2 (LGP2) is another cytosolic receptor and was 

found play a role as a downstream regulator for RIG-I and MDA5 (93). In some cell types, 

virus dsRNA is recognized by Toll-like receptor 3 (TLR3). TLR3 is embedded in the 

membrane on the cell surface and/or in endosomes and signals through the TIR-domain-

containing adapter-inducing interferon-β (TRIF) protein. Signaling through TRIF results in 

activation of TANK-binding kinase 1 (TBK1), which activate IRFs and  NF-kB as shown in 

Fig. 4 (95). In mammals, plasmacytoid dendritic cells (pDCs) are super-producers of IFN-I. 

pDCs recognize viral ssRNA through TLR7 in endosomes and signals through the adaptor 

protein MYD88 (96). This process activates IFN-I transcription through IRF7 (96). 

      Although less studies have been done in fish, fish appear to possess similar IFN induction 

pathways as mammals. Similar signaling members have been found in fish as in mammals (8, 

23-29). The RLRs RIG-I, MDA-5, LGP2 have been found in salmonid fish (82, 97, 98). The 

Toll-like receptors  TLR3, TLR22, TLR7, TLR8 and TLR9, TLR21, which all recognize virus 

RNA, have also been identified in salmonids  (99-104). TLR22 has only been found in fish, it 

is expressed on the cell surface  and recognizes long dsRNA molecules (105). In Atlantic 

salmon, specialized leucocytes have been detected in head kidney and spleen that produce 
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high levels of IFNb and IFNc in response to a TLR7 ligand (89). Homologs of MAVS which 

is an adaptor protein in the RLR-pathway and MyD88 which is an adaptor protein in the 

TLR7/8 and TLR9 pathways have been identified in salmonids (98, 101, 106, 107). The 

adaptor TRIF (TICAM-I) protein was found  to be associated with TLR3 and activate NF-kB 

response in zebrafish (108, 109). 

      

 

Figure 4. Signaling of virus RNA mediated type I interferon and antiviral response. RIG-I and 

MDA5 recognize 5’ triphosphate uncapped single stranded RNA and double-stranded RNA, 

they signal via IPS-I (MAVS) and TBK1 leading to activation of IRF-3/7 or NF-kB and IFN-I 

production. TLR3 recognizes short dsRNA, fish TLR22 recognizes long dsRNA, TLR7/8 

recognize ssRNA and TLR9 recognizes CpG containing dsDNA. These TLRs signal through 

the adaptor proteins MyD88 or TRIF for further downstream signaling. IFN-I is released and 

bind to IFN-receptors on the surface of cells resulting in triggering of the JAK-STAT pathway 

leading to antiviral protein production. Some elements in this drawing was derived from 

Biomedical-PPT-Toolkit-Suite of Motifolio Inc., USA. 

 

      In addition to the sensors that recognize virus RNA, IFN-I synthesis may also be induced 

by recognition of viral DNA. In mammals, several DNA sensors from host cells have been 

discovered recently.  Cytosolic DNA such as DNA-dependent activator of ifn-regulatory 
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factors (DAI), DEXD/H box helicases, and cytosolic GAMP synthase (cGAS) recognize B-

DNA and TLR9 recognizes DNA containing unmethylated CpG motifs and their activation 

leads to IFN-I production (110-112).  So far DDX41 in olive flounder is the only fish 

homolog for cytosolic DNA sensor identified (113).   

 

1.6 IFN-I receptors and induction of interferon stimulated genes (ISGs) 

 

      IFN-I bind to IFN-I receptors that are composed a heterodimeric receptor of class II 

cytokine receptor family member (CRFB), which results in signaling through the JAK/STAT 

pathway and activate downstream antiviral protein production (75). In mammals, IFN-I 

receptor is comprised of the IFNAR1 and IFNAR2 chains (114). Upon binding to IFN-I, 

IFNAR1 and IFNAR2 receptors are associated with the Janus family tyrosine kinases Tyk2 

and Jak1 respectively (114). The transcription factors STAT1 and STAT2 are phosphorelated 

by IFNAR1 and IFNAR2 associated tyrosine kinases and then form homo or heterodimers.  

The dimer of phosphorylated STAT1 and STAT2 associates with IRF9 and form the 

transcriptional activator protein complex3 (ISGF3). ISGF3 then translocates into the nucleus 

and activates transcription of hundreds ISGs by binding to the interferon-stimulated signaling 

element (ISRE) in their promoters (114, 115).  

      Like mammalian interferon receptors, the conserved sequences are first found between 

pufferfish (Tetraodon) and mammals as CRFB and IFN receptor genes (75). Sequence 

analysis suggested that pufferfish CRFB1 and CRFB2 were IFNAR2 homologs while CRFB5 

is an IFNAR1 homolog. So far, the receptor for two-cysteine IFNs are found to be  composed 

of CRFB1 and CRFB5, while  receptor for four-cysteine IFNs is composed of CRFB2 and 

CRFB5 in zebrafish. Characterization of IFN-I receptors in salmon requires further studies. A 

hypothetical model for receptors of Atlantic salmon IFNs have been described recently. IFNa 

is proposed to bind to a receptor composed of CRFB1a combined with CRFB5a, CRFB5B or 

CRFB5c (116). IFNc is proposed to bind to a receptor composed of CRFB2 coupled with 

CRFB5a or CRFB5c (116). IFNb is suggested to signal through a receptor composed of 

CRFB2 and CRFB5X (116). Functional studies of STAT protein have shown association of 

Tyk2-STAT molecules and the subcellular localization of IRF9 and ISG3 proteins complex in 

carp and salmon (117-121). The expression of antiviral Mx protein triggered by Tyk2-STAT 

signaling in salmon (117) and the conserved region of ISRE between fish and higher 
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vertebrates indicates  similarity in IFN-I mediated signaling between fish and mammals (117, 

119, 122-126).  

 

1.7 Antiviral proteins induced by IFN-I  

      IFN-I induce several hundred different ISGs in mammalian cells (66-69). More than 380 

of these human ISGs have been shown to be involved in antiviral activity (127), but only a 

limited number of IFN-I induced proteins have been shown to directly inhibit replication of 

viruses. The most studied IFN-I induced antiviral proteins include the GTPase Mx (myxovirus 

resistance gene), ISG15 (IFN-stimulated protein of 15 kDa), protein kinase R (PKR), 

ribonuclease (RNAase) L and oligoadenylate synthetases (OAS).  More recent studies have  

added some other ISGs to the list, proteins such as virus inhibitory protein, endoplasmic 

reticulum-associated, interferon-inducible (Viperin, Vig-1 in fish), IFN-induced proteins with 

tetratricopeptide repeats (IFIT) and IFN-induced transmembrane proteins (IFITM), some of 

which are described below. Many interferon-inducible genes have been discovered from 

various fish species such as ISG15 (128-130), IFIT5 (131) and Mx protein (132-136). 

Additionally, homologs of Vig-1 protein that was first identified in rainbow trout and 

renamed as Viperin after being identifed as a IFN-I inducible protein in human fibroblasts 

(137-139).  These proteins inhibit different stages of virus replication, which in concert create 

the antiviral state induced in cells by IFN-I.  

 

Myxovirus resistance protein (Mx) 

 

      The first IFN-I induced antiviral protein which was discovered was the Myxovirus 

resistance protein (Mx1) (140, 141). Mx belongs to the GTPase family and exists in most 

vertebrates. The main structural domains of the protein are the large N-terminal GTPase 

domain (G domain), the middle domain (MD), the GTPase effector domain (GED) and the 

stalk region that is formed between MD and GED domain. G domain is associated with GTP 

hydrolysis while protein oligomerization is mediated by MD, GED domain and stalk region. 

      Studies have shown that GTP hydrolysis and oligomerization are crucial for antiviral 

activity. Experiments with human MxA that targets viral nucleoprotein from La Crosse virus 

(142) and form MxA-N complex which lead the depletion of the nucleoprotein from viral 
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replication sites (143). It was suggested that oligomeric rings from MxA surround the viral 

nucleoprotein, and later GTP binding and hydrolysis lead to conformation changes and the 

disintegration of the viral N protein (144). In mammals, the antiviral activity of Mx protein 

has been shown against the orthomyxoviruses influenza A, influenza B, influenza C virus, and 

Thogotovirus (THOV) in addition to hepatitis B virus and Semliki Forest virus (145). In fish, 

multiple Mx proteins were also found in rainbow trout (146-148) and in Atlantic salmon (132). 

Atlantic salmon Mx1 protein constitutively expressed in CHSE-214 cells showed inhibition of 

IPNV replication (149). Experiments with constitutive expression of Atlantic salmon Mx1 

(AsMx1) in chinook salmon embryo (CHSE-214) cells shows reduction of cytopathic effects 

with ISAV infection (150). Studies of antiviral activity of IFNs shows IFNa, IFNb and IFNc 

provide transient inhibition of ISAV replication in TO cells, and IFNa induced Mx expression 

is correlated to reduce virus load at early ISAV infection time point (151).  

 

Interferon-stimulated gene 15 (ISG15) 

 

      Another notable antiviral protein induced by IFN-I is the Interferon-stimulated gene 15 

(ISG15). ISG15 is an ubiquitin-like protein that possesses a C-terminal LRLRGG motif, 

which is essential for its antiviral activity. ISG15 is present in the cells either in free form or 

covalent-bound to  substrate proteins during post-translational process (152). The C-terminal 

glycine (LRLRGG) from ISG15 covalently binds to the lysine residues derived from target 

proteins (ISGylation) and forms the ISG15-substrates protein conjugations. The conjugations 

with substrate proteins such as MxA, PKR, and RNaseL extends the function of virus 

inhibition by increasing their stability, activity, or the interaction with other proteins (153). 

Additionally, ISG15 has been shown to increase the antiviral response via counteraction of 

Newcastle disease virus-induced IRF3 degradation (154).  ISG15 has been shown to restricts 

influenza virus replication by targeting the virus NS1 protein directly and to inhibit HIV-I 

virus release by influencing protein trafficking within the cellular endosomal pathway (155, 

156). Homologs of ISG15 is well conserved in many vertebrate species and share the 

conservative of sequences of mammalian ISG15 (128, 129, 157-160). The consensus LRGG 

Protein motif at C-terminal and ISGylation have been identified to be associated with the 

antiviral activities in fish (129, 160).  
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      Virus inhibitory protein, endoplasmic reticulum-associated, IFN-inducible (Viperin) is an 

ER-associated protein, which uses lipid rafts to interfere  with viruses such as influenza and 

hepatitis C virus infection during their entry, budding, and release (161). IFIT protein family 

(interferon-induced proteins with tetratricopeptide repeats), that IFIT1 (ISG56) recognize 

viral RNA that contains 5’-triphosphate moiety or lacks 2’-O-methylation thus inhibit RNA 

translation (162). Experiments show that IFIT5 (ISG58) enhance the innate immune response 

upon interacting with RIG-I and MAVS and co-mediate with IRF3 and NF-κB in innate 

immune response (163). In Atlantic salmon IFNa, IFNb and IFNc induce expression of ISG15, 

Viperin, and ISG58 in salmon cell line that against IPNV.  IFNa gives similar antiviral 

activity as IFNc and greater than IFNb. IFNd  shows no antiviral activity with in vitro 

antiviral assay (89). IFNa have also shown antiviral activity against SAV3 replication (164, 

165). In the present study we have used Mx, ISG15, Viperin and IFIT5 (ISG58) as markers 

for antiviral gene induction by IFN-I, and use antibody against Mx and ISG15 for protein 

induction analysis. 

 

1.8 The use of IFN-I in protection of vertebrates against virus infection 

 

      IFN-I (IFN-α and IFN-β) has been used for treatment of humans against hepatitis B virus 

either alone or in combination with nucleos(t)ide analogues  (166). Protective effects of IFN-I 

against influenza A virus has been shown in guinea pig, ferrets and chicken (167, 168). 

Protection of live fish with recombinant IFN-I has been tested against infectious spleen and 

kidney necrosis virus (ISKNV) in zebrafish, but showed only protection in the first week after 

injection probably due to the short life time of IFN-I in vivo (169). The short duration of 

protection and the high cost of production make IFN-I less interesting for prophylaxis of fish. 

On the other hand, studies of DNA vaccination of salmonids with the G-protein from the 

rhabdoviruses VHSV or IHNV have demonstrated systemic up-regulation of Mx and other 

antiviral proteins accompanied by protection against virus infection in the first weeks after 

vaccination (170).  This has inspired the studies in the present thesis where we tested the in 

vivo antiviral effects of IFN-I expressing plasmids in Atlantic salmon.  A recent study in 

turbot gives similar evidence as our paper I and II that protection against VHSV virus after 

intramuscular delivered of turbot IFN-I DNA plasmid (85). 
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1.9. Adaptive immune responses against viruses 

 

      The second line of defense against viruses is the adaptive immunity, which in contrast to 

innate immunity is very specific and long lasting. Activation of innate immune response to 

virus infection is required for initiation of adaptive immune response (171). Cytokines and 

ISGs that induced by rapid inflammatory response which eliminate the virus infection, and 

mediate macrophage activation, and dendritic cells maturation (172).   DCs are professional 

antigen presenting cells that are responsible for initiating adaptive immune response.         

      Adaptive immunity engages B and T lymphocytes. B cells are involved in humoral 

immunity, they produce and secrete virus-specific antibodies whereas virus-specific CD4+ 

and CD8+ T cells mediate cellular immunity. B cells and T cells originate from bone marrow 

and mature in spleen and thymus respectively in mammals.  Dendritic cells express MHC-I 

and MHC-II molecules coupled with antigen peptides which are presented to naive T-

lymphocytes. This process lead to maturation of naïve T-cells and formation of CD4+ and 

CD8+ effector cells. The encounter of antigen presenting cells with lymphocytes are shown in 

Fig. 5 (173-176). 

      While both B and T cells are found in fish and activation of adaptive immunity seems to 

happen in similar manner, head kidney and thymus are the primary hematopoietic organs. B-

cell production and maturation as well as immunoglobulin production are localized in head 

kidney (177, 178). Spleen is the house organ for lymphocytes, macrophages and plasma cells 

development, while thymus is the organ that produce and develop T cells (179, 180). 

Interestingly, fish have a unique T-cell rich organ at the base of the gills (181). Like mammals, 

a lineage of B cells is also found in fish that produce the mucosal specific antibody IgT/Z, and 

T cells are also found in mucosal- associated tissues (182-184).  

      The following sections will describe the role of DCs and B and T lymphocyte mediated 

humoral and cellular immune response, and information available about these cells in fish.
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Figure 5. Humoral and Cellular immune response eliminate virus infection. Step 1. Virus recognition 

through direct infection or phagocytosis of dendritic cells (DCs). Step 2. Antigen peptides that derived 

from viruses are presenting and activate CD8+ T cells via MHCI molecules/peptides complex. 

Activated CTL are mediating the cytotoxicity of killing virus infected cells. Step3. The antigen 

peptides are presenting and activate CD4+ T cells via MHC II molecules/peptides complex. T helper 

(Th) cells are secreting cytokines and mediating humoral response. Step 4. B cells differentiate into 

antibody productin plasma cells after antigen recognition and stimulated by T cells-derived cytokines. 

Step 5. Virus-specific antibody recognize virus epitopes and eliminate virus infection. Some elements 

in this drawing was derived from Biomedical-PPT-Toolkit-Suite of Motifolio Inc., USA. 

 

Humoral immune response  

 

The role of B cells 

 

      Activation of humoral immunity requires the interaction of virus antigens and B cell 

receptors (BCR) which leads to the maturation of naïve B cells.  After maturation and class 

switching, naïve B cells are turned into memory B cells and produce high-affinity antibodies 

that recognize virus antigens from blood and infected cells in the plasma thus eliminate virus 

infection (176).  
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      In placental mammals, five isotypes of immunoglobulins (IgG, IgE, IgA, IgM and IgD)  

with distinct structures and biological activities have been found (176). The major isotypes of 

IgG are present in serum and play an important role against infection with virus and bacteria 

(176). IgA is responsible for mucosal immunity, against for example influenza virus (185). In 

fish, three Ig isotypes (IgM, IgT, IgD) have been discovered. Secreted IgM is the main 

immunoglobulin in the blood stream and mucus, and is important in systemic immunity, 

whereas secreted IgT is more important in mucosal immunity (186). However, there is no 

evidence of class switch recombination have observed in fish (187, 188). Additionally, the 

finding of phagocytic B cells in fish, suggests that this cell type may play a similar role as 

dendritic cells in mammals in connecting innate and adaptive immunity (189). 

 

The role of antibody in elimination of virus 

 

      The main function of virus specific antibodies is neutralization of the virus. Neutralization 

refers to the binding of antibody to viral particles without other assistance, which lead to loss 

of infectivity by virus (190).  Passive immunization is a method, which shows neutralizing 

activity of antibody by transfer of virus-specific antibody to naïve animals leading to 

protection against infection by the virus (191). Even though the mechanism remains unclear, 

it is hypothesized that antibodies neutralize free virus via direct contact (Fig. 6). It has been 

shown that neutralizing antibodies block conserved epitopes of hemagglutinin of influenza 

virus  or envelope protein of HIV-I  and as a result prevent virus from attaching and entering 

the cells (192, 193).  

Alternatively, antibody may also provide protection through antibody-directed complement-

dependent cell lysis (CDCC), Fc receptor-mediated phagocytosis and antibody-dependent 

cellular cytotoxicity (ADCC).  Cell lysis is caused by formation of membrane attack complex 

formation as result of CDCC mediated complement cascades. Fc receptors expressed on 

macrophage and natural killer cells are important for phagocytosis and release of perforin and 

granzymes for cytotoxicity. Both the CDCC and ADCC lead to the destruction of cells as 

shown in the Fig. 6 (190). Antibody can also inhibit virus release and transmission from the 

cell surface (194). Passive immunization have shown to protect against IHNV, ISAV and 

SAV3 after naïve fish received the virus-specific antisera (195-197). Serum with neutralizing 

activity has been shown to inhibit infection of cells by IPNV, SAV3 and ISAV (198-200). 
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Complement-dependent neutralization of virus with antibody have been demonstrated against 

VHSV in rainbow trout (201, 202).  

 

 

Figure 6. Neutralizing antibodies and antibody-directed complement-mediated cytotoxicity (CDCC), 

Nature killer cell with Fc receptor-mediated antibody-dependent cytotoxicity (ADCC), Macrophage 

with Fc receptor-mediated phagocytosis. Some elements in this drawing was derived from 

Biomedical-PPT-Toolkit-Suite of Motifolio Inc., USA. 

 

Cellular immune response 

 

The role of DCs  

 

      In mammals, dendritic cells (DCs) are members of APC family, and are derived from 

hematopoietic tissue in bone marrow.  Two major DC subsets, plasmacytoid DCs (pDCs) and 

conventional DCs (cDCs) have been identified (203). pDCs are the main IFN-I producing 

cells (204), while cDCs are divided into several subpopulations including resident DCs (205). 

The contribution of DCs in virus clearance is as follows.  When DCs are infected by influenza 

virus or take up virus antigens from infected cells, chemokine receptor CCR7 is up-regulated 

and modulate migration of  DCs to lymphoid tissue for maturation (206). The cytosolic virus 

proteins taken up by DCs are processed and degraded into peptide fragments by the 

proteasome or endosome/lysosome. These peptides are bound to and translocated by MHC I 
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or MHC II molecules and presented on the cell surface. The combination of MHC/virus 

peptide complex on DCs surface is identified by CD8+ and CD4+ T-cells and this leads to 

their activation (207, 208). Besides, activated  pDCs secrete  IFN-I  which prolong CD4+ and 

CD8+ T cells survival and differentiation (209).  

      Dendritic cell like features such as surface MHC II molecules and TLRs have been found 

in hematopoietic tissues from rainbow trout (210). Similar features like MHCII, CD83 

molecules have identified in DC-like cells in Atlantic salmon and the up-regulation of IFN-I 

can be induced in these cell types by stimulation with TLR ligands and co-stimulatory 

CD40L-like molecules (211, 212).  

 

The role of T helper cells 

 

       CD4+ T cells can differentiate into two helper T cell subsets that Th1 and Th2 cells. As 

shown in Fig. 4, CD4+ Th1 cells recognize peptide/MHC class II complex presented by APCs. 

Th1 cells produce IFN-γ and IL-2 cytokines which participate in adaptive immunity by 

activating cytotoxic T lymphocytes and B cells. Th2 cells produce IL-4, IL-5, IL-13 cytokines 

that promoting B cell response and also regulate Th1 cells (213). 

 

The role of Cytotoxic T-cells 

 

            CD8+ T cells are cytotoxic T lymphocytes (CTL) that eliminate virus replication 

through secreting IFN-γ or lysis of virus-infected cells through release of cytolytic mediators: 

perforin and granzymes (214). IFN-γ induces synthesis of interferon-stimulated genes (ISGs) 

gives direct interfere in virus replication (215). CD8+ T cells secreted IFN-γ also improving 

CD4+ Th1 cells differentiation (216, 217). The function of perforin is permeabilization  of 

virus-infected cell membrane and induction  of cell apoptosis through granzymes. Granzymes 

further induce pro-inflammatory cytokines production and influence protein synthesis in 

virus-infected cells (218).  

        CD4+ T helper cells and CD8+ cytotoxic T cells have been identified in fish, (219, 220). 

In ginbuna crucian carp transfer of virus sensitized donor cells with CD4+ T cells to naïve 

fish was shown to induce a more rapid and stronger antibody response (221). Cytotoxicity of 
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fish T cells has been proved by using clonal fish with cell-mediated cytotoxicity assays in 

ginbuna crucian carp (222) and rainbow trout (223). In those experiments, cytotoxic T cells 

recognized intracellular peptides and destroyed infected cells through CD8 T cells receptor 

and MHC I molecules. In ginbuna carp, a recent study showed that CD8α+ lymphocytes are 

using perforin and granzyme for eliminating virus-infected cells (224).  

 

 1.10 Vaccine against fish virus 

 

Traditional vaccines 

      Live attenuated viruses have been considered to be the most effective virus vaccines since 

they trigger both humoral and cellular adaptive immunes in the host. Live vaccine in human 

such as poliovirus vaccine (225) and yellow fever vaccine provides long lasting protective 

immunity (226, 227). Similarly, greater efficacy was found in live attenuated influenza 

vaccine compared to inactivated vaccine (228, 229). However, due to the risk of using a live  

virus as vaccine, alternatives like inactivated whole virus vaccines and subunit vaccines have 

been developed.  Define subunit vaccines! Additionally, DNA vaccines have been studied 

intensively in last decades since they are safe and elicit both humoral and cellular immune 

responses (230, 231). 

      In fish, several inactivated vaccine and subunit vaccine are used commercially while only 

one attenuated virus vaccine, and one DNA vaccine have been licensed (232). Inactivated 

virus vaccine against IPNV, ISAV and SAV3 have been shown to promote humoral response 

and protection against virus infection in a dose-dependent manner (198, 233, 234). The 

problem with inactivated virus vaccines for fish is that relatively high doses are needed to 

obtain sufficient protection and such vaccines may be too expensive to be used for farmed fish. 

Subunit vaccines, like recombinant VP2 from IPNV, can improve the IPNV-specific antibody 

response, and recombinant HE and F from ISAV that improve the ISAV-specific antibody 

response and protection against ISAV (235, 236). Besides, subunit vaccines using E2 and E1 

protein from SAV3 give some protection against SAV3 in salmon (237). The problem with 

subunit vaccines is that it is very difficult to obtain correct folding of recombinant virus 

proteins.
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DNA vaccines for fish 

 

       The advantages of DNA vaccines include that they are safe, give less side effects and are 

easier and less expensive to produce compared to traditional vaccines (238). In addition, they 

may be produced against viruses that cannot be cultured. DNA vaccines are plasmids that…. 

Synthesis of the virus protein antigen by the host cell provides correct folding and elicits both 

cellular and humoral response similar to a virus infection (239). After DCs have taken up the 

DNA vaccine plasmid via intramuscular injection, peptide fragments of the virus protein 

antigen are presented to immune cells by DCs via both MHC I and II molecules (240). 

Plasmid encoded protein may also be secreted by transfected cells or released from apoptotic 

transfected cells and taken up by DCs for presentation to T cells as describe before of DCs 

maturation (240, 241). 

      DNA vaccines against the rhabdoviruses VHSV and IHNV consist of a plasmid encoding 

the virus G protein and were shown to provide higher neutralizing antibody response than 

inactivated and subunit vaccine in fish (242, 243). The upregulation of MHC II molecules at 

muscle injection site indicated the involvement of DCs after vaccination (244). Cellular 

responses triggered by rhabdovirus DNA vaccine have been described that VHS virus 

infected cells were killed by MHC I coordinated cytotoxicity (245, 246). Protection derived 

from cellular response was illustrated in a long term study after two years IHNV DNA 

vaccination study (247). A DNA vaccine against IHNV has been licensed for use in Canada 

and  provides remarkable protection against virus infection (7). A DNA vaccine encoding the 

polyprotein from IPNV has shown moderate protection. that protection was suggested derived 

from vaccine induced neutralizing antibody and cellular response (248). Interestingly, the 

same IPNV polyprotein DNA vaccine also shows upregulation of IFN-I, Mx, MHC molecules 

and T cells at muscle, head kidney and spleen after vaccination (248). Besides, moderate 

protection against ISAV was obtained by vaccination with a plasmid expressing HE, and the 

protection was suggested to be mediated by cellular immune responses (49, 249).  In addition, 

challenge experiments of alphavirus replicon-based DNA vaccine encoded with SAV3 E2 

virus protein illustrated that the protection was derived from the correct folding and 

expression of E2 protein on the cell surface (54). 
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1.11 Type I IFN as adjuvant 

 

      In general, subunit vaccines show less immunogenicity than inactivated whole virus, 

which is due to the absence of intrinsic components that act as pathogen-associated molecular 

patterns (PAMPs). PAMPs interact with pattern recognition receptors (PRRs) such as TLRs 

and RLRs for activating not only innate immune responses, but also for activating adaptive 

immune responses (250, 251). Adjuvants are used for solving the problems by enhancing the 

immune response in vaccination. Many adjuvants contain TLR or RLR ligands, which 

stimulate maturation of APCs and next activate B- and T-cells (252). 

 

IFN as adjuvant 

 

Several lines of evidence demonstrate that IFN-I function as adjuvants. The TLR9 ligand CpG 

and TLR7/8 ligand R848, have been shown to act as adjuvants through induction of IFN-I and 

show adjuvant activity with hepatitis B virus surface antigen in mice by enhancing the 

antibody response (253).  Experiments using chicken gammaglobulin as antigen showed a 

clear increase in specific antibody response when using the synthetic double-stranded RNA 

polyinosinic:polycytidylic acid (poly IC) as adjuvant (254). The antibody enhancement by 

poly IC was shown to be due to IFN-I which using IFN-I receptor knockout mice (254). 

Potent adjuvant effect of IFN-I was also shown in influenza vaccine experiments in mice with 

enhanced antibody response and protection against virus infection (255). Similarly, 

experiments using IFN-I receptor knockout mice have shown that endogenous IFN-I is the 

main mediator in the Th1-type immune response derived from wide range adjuvants 

(255).The adjuvant effect of fish IFN-I has apparently not been demonstrated until our work 

in this thesis.  
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Mechanism of action of IFN-I as adjuvant 

 

Effect of IFN-I on DC 

 

      IFN-I have been shown to stimulate maturation and activation of DCs. Peripheral blood 

monocytes were turned into antigen presenting cells after co-incubation of IFN-α and 

granulocyte-macrophage colony-stimulating factor (256). The monocytes developed dendritic 

cells like morphology and expressed high levels of the MHC I and II molecules, B7 co-

stimulatory molecules, adhesion proteins and CD40, which are considered as DCs features 

(256). Moreover, low level IFN-α treatment of peripheral blood mononuclear cells has been 

shown to up-regulate the co-stimulator CD86 (B7.2) and accelerate the maturation of 

dendritic cells (257). In human, IFNα/ß promotes dendritic cells trafficking and maturation 

(258).Experiments using TLR7 and TLR9 ligands illustrated that pDCs activation depends on 

the induction of IFN-I (258). After activation via TLR ligands, IFN-I also induces the 

expression of CXCR3 ligands in pDCs in response to CCR7 ligands and improve the 

migration of pDCs (258). 

 

Effect of IFN-I on B-cells 

 

      Type I IFN produced by pDCs have been shown to enhance B-cell differentiation  into 

plasma cells (259). As described above, IFN-I was shown to influence DCs maturation, which 

lead the enhancement of  B cells isotype switching and antibody levels (254). Experiments 

with co-administration of chicken gamma globulin (CGG) and IFN-α were conducted using 

IFN-αβR-deficient B and T cells (260). IFN-α was unable to increase the CGG-specific 

antibody response in IFN-αβR-deficient B cells which illustrated the requirement of IFN-α for 

antibody production in B cells (260). Moreover, the experiment also showed that CGG-

specific antibody response also required the direct influence of IFN-α on T cells (260). A 

possible explanation for the positive affect of IFN-I in humoral response might be due to its 

role in improvement of B cells differentiation and proliferation, and the protection of B cells 

and T cells from apoptosis (260).  
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Effect of IFN-I on cytotoxic T cells 

 

 

      The activated DCs are the powerful APCs thus initiate T cells response (173). Naïve 

CD8+ T cells require the third signal for fully activation (261). Experiments using IFN 

receptor deficiency CD8+ T cells that illustrated the direct effect of IFN-α (261). IFN-α that 

provide a third signal for CD8+ T cells responding to antigen and costimulatory B7-1 

complex and stimulate T cell clonal expansion, differentiation and the development of 

cytolytic function (261). Likewise, IFN-I have shown that improve the cross-priming of 

CD8+ T cells by providing the third signal to T cells without involving signal 2 interaction 

(CD40 ligand /CD40) provided from DCs (262).   

 

Effect of IFN-I on CD4+ T cells 

 

      IFN-I can directly improve the lifespan and clonal expansion of CD4+ T cells and CD8+ 

T cells, prolong the survival of memory T cells and promote the differentiation of CD4+ T 

cells (263-266). An indirect effect of IFN-I was observed in IL-15 secreting cells such as 

antigen presenting cells or inflammatory monocytes, which upon stimulation with IFN-I 

prolong the survival of memory T cells or increase the number of Th1 cells (267, 268). 

 

1.12  The role of IFN-I in DNA vaccines 

 

      One weakness of DNA vaccines is poor immunogenicity due to low level of protein 

expression caused by the low amount of plasmid injected, codon usage from target protein 

and choice of promoter (239). Therefore, like other vaccines, DNA vaccines also require 

adjuvants for improving the immune response. However, DNA vaccines have a “build-in” 

adjuvant activity triggered by the plasmid DNA, which in part is due to unmethylated CpG 

motifs (269). It has been shown that CpG motifs in the DNA backbone is important for 

promoting T cells response (269). This motif was considered to be a TLR-9 ligand and trigger 

the corresponding immune response (270). However, experiments with TLR9-deficient mice 

showed that TLR9 ligand is not the only mediator for triggering the plasmid adjuvant activity 

(271-273). Experiments, by intracellular delivery of double-strand B-form DNA plasmid 
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illustrated that the TLR-independent response was dependent on TBK-1 and IRF3 (274-276). 

The TLR9-independent response was further investigated by IFNαβR receptor-deficient mice, 

this confirmed the importance of IFN-I which is essential for DNA vaccine-induced 

immunogenicity (277).  

      Some examples exists where IFN-I has been used as DNA vaccine adjuvant in mammals 

and chicken. Co-administration of bovine IFN-α as adjuvant with Foot-and-mouth disease 

virus (FMDV) in pcDNA3.1 backbone plasmid shows IFN-α elicited higher antigen-specific 

antibody titer, virus specific T cells proliferation and protection in guinea pigs (278, 279). 

Similar experiment has been done in mice, use of IFN-alpha as an adjuvant for adenovirus-

vectored FMDV subunit vaccine showed upregulation of IgG antibodies and generation of T 

follicular helper cells (280). Likewise, recombinant IFN-I protein or DNA plasmid encoded 

with IFN-I from chicken used as adjuvant with Infectious bursal disease virus antigen 

increased both primary and secondary antibody response in chicken (281).        

      Altogether this inspired us to investigate the adjuvant effect of IFN-I in vaccines against 

virus in Atlantic salmon. We decided to study the adjuvant effect of IFN-I in DNA-vaccines 

because recombinant IFN-Is are rapidly degraded in vivo. We decided to use ISAV as a model 

because the DNA vaccine against ISAV previously was shown to give low protection and 

because ISAV gives high mortality in challenge exeriments. 
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2.1  Aim of the study 

 

      Function of type I interferon has been studied and described previously in salmonid cell 

lines. The goal of this project was to investigate the antiviral activity of IFNa, IFNb, and IFNc, 

against virus infection in vivo. To achieve this, we injected salmon pre-smolts with expression 

plasmids for each of the three IFNs and measured induction of antiviral genes and protection 

against infection with ISAV and SAV3. We also investigated the adjuvant activity of IFNa, 

IFNb, and IFNc co-injected with hemagglutinin-esterase from ISAV as DNA vaccine against 

ISAV in vivo. To achieve this, we injected salmon pre-smolts with plasmids encoded 

hemagglutinin-esterase from ISAV and IFNa, IFNb, IFNc, and measure the induction of 

antibody response and protection against infection of ISAV. 

 

Primary goal I:  

      To study the antiviral effects of IFN expression plasmids injected i.m. into Atlantic 

salmon. 

Subgoals: 

1) Measure the antiviral protein response mediated by IFN expression plasmids at liver, heart 

and pancreas, and the kinetic response of IFNc plasmid injection. 

 

2) Measure the protection against ISAV and SAV3 after IFN plasmid injection. 

 

Primary goal II:  

      To study the adjuvant effects of IFN expression plasmids injected i.m. together with a 

plasmid expressing the Haemagglutinin-esterase (HE) ISAV protein into Atlantic salmon. 

Subgoals:  

1) Measure the antibody response modulated by co-injection of IFN expression plasmids and 

ISAV HE plasmid and the protection against ISAV. 

2) Determine the immune cells at muscle injection site attracted by IFN-I after IFN plasmids 

injection. 

3) Measure the long term antibody and antiviral protein response after co-injection of IFN 

plasmids with or without ISAV HE. 
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3 Summary of papers 

Paper I 

Protection of Atlantic salmon against virus infection by intramuscular injection of IFNc 

expression plasmid. Chia-Jung Chang, Camilla Robertsen, Baojian Sun, Børre Robertsen. 

Vaccine. Volume 32, Issue 36, 6 August 2014, Pages 4695–4702. 

 

      In this work we have tested the in vivo antiviral activity of type I interferons (IFNs) in 

Atlantic salmon by injecting presmolts intramuscularly (i.m.) with plasmids encoding IFNa1, 

IFNb or IFNc under the control of a CMV promoter, and measured expression of antiviral 

genes in organs and protection against infection with infectious salmon anemia virus (ISAV) 

infection. All three IFN plasmids induced expression of antiviral genes (Mx, Viperin, ISG15 

and IFIT5) at the muscle injection site while the control plasmid had little effect. Only IFNb 

and IFNc plasmids induced expression of antiviral genes in head kidney, liver and heart. This 

suggests that IFNb and IFNc are distributed systemically while IFNa1 is active only at the 

injection site. Injection of IFNc plasmid was found to induce expression of antiviral genes and 

receptors for virus RNA (RIG-I, TLR3 and TLR7) in head kidney from 1 to at least 8 weeks. 

Immunoblotting showed increased expression of ISG15 and Mx protein in liver with time 

during this time period. Challenge of presmolts with ISAV 8 weeks after injection of IFN 

plasmids, showed strong protection of the IFNc plasmid injected fish, low protection of the 

IFNb plasmid injected fish and no protection of the IFNa1 plasmid injected fish. Clues to the 

difference in protection obtained with IFNb and IFNc plasmids were found by 

immunohistochemical and immunoblot studies of Mx protein, which indicated that IFNc 

plasmid stimulated stronger Mx protein expression in heart tissues and liver endothelial cells 

than IFNb plasmid. Taken together, these data suggest that i.m. injection of the IFNc 

expression plasmid may be a new method for protecting Atlantic salmon against virus 

infection. 
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Paper II 

Protection of Atlantic salmon against salmonid alphavirus infection by type I interferons 

IFNa, IFNb and IFNc. Chia-Jung Chang, Iris Jenssen, Børre Robertsen. Submitted on May. 

2016 

 

      Salmonid alphavirus 3 (SAV3) causes pancreas disease (PD), which is a major problem in 

Norwegian aquaculture of Atlantic salmon. In this work we studied antiviral activities of 

salmon type I interferons IFNa, IFNb and IFNc against SAV3 infection in cell culture and in 

live fish to increase the understanding of the innate immunity of salmon against this virus. 

Recombinant IFNa, IFNb and IFNc all induced antiviral activity against SAV3 in ASK cells. 

For in vivo studies, we injected salmon presmolts intramuscularly with plasmids encoding 

salmon IFNa, IFNb and IFNc or a control plasmid and measured expression of the antiviral 

protein Mx in pancreas after 2 and 10 weeks and protection against SAV3 infection after 10 

weeks. IFNb and IFNc plasmids, but not IFNa plasmid induced Mx expression in pancreas as 

shown by RT-qPCR and immunohistochemistry. A high level of protection against SAV3 

infection by IFNc plasmid was observed by a strong reduction of virus load in serum and by a 

marked reduction in pathology of pancreas and heart compared to control fish. Lesser but 

significant protection was observed with IFNb plasmid while no protection was observed after 

treatment with IFNa plasmid. Taken together, this work suggests that IFNa provides 

protection of salmon against SAV3 locally in an infected area while IFNb and IFNc provides 

systemic protection against the virus. 
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Paper III 

Adjuvant activity of fish type I interferon shown in a virus DNA vaccination model.     

Chia-Jung Chang, Baojian Sun, Børre Robertsen. Vaccine.Volume 33, Issue 21, 15 May 2015, 

Pages 2442–2448. 

 

      There is a need for more efficient vaccines to combat viral diseases of Atlantic salmon and 

other farmed fish. DNA vaccines are highly effective against salmonid rhabdoviruses, but 

have shown less effect against other viruses. In the present work we have studied if type I 

IFNs might be used as adjuvants in fish DNA vaccines. For this purpose we chose a DNA 

vaccine model based on the hemagglutinin-esterase (HE) gene of infectious salmon anemia 

virus (ISAV) as antigen. Salmon presmolts were injected with a plasmid encoding HE alone 

or together with a plasmid encoding Atlantic salmon type I IFN (IFNa1, IFNb or IFNc). Sera 

were harvested after 7-10 weeks for measurements of antibody against ISAV and the fish 

were challenged with ISAV to measure protective effects of the vaccines. The results showed 

that all three IFN plasmids delivered together with HE plasmid potently enhanced protection 

of salmon against ISAV mediated mortality and stimulated an increase in IgM antibodies 

against the virus. In contrast, HE plasmid alone gave low antibody titers and a minor 

protection against ISAV. This demonstrates that type I IFNs stimulate adaptive immune 

responses in fish, which may be a benefit also in other fish DNA vaccines. Quantitative RT-

PCR studies showed that the salmon IFNs caused an increased influx of B-cells and cytotoxic 

T-cells at the muscle injection site, which may in part explain the adjuvant effect of the IFNs. 
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Paper IV 

IFN-adjuvanted DNA vaccine against infectious salmon anemia virus: Antibody kinetics 

and longevity of IFN expression. Børre Robertsen, Chia-Jung Chang and Lisa Bratland. Fish 

Shellfish Immunol. 2016 Apr 20. pii: S1050-4648(16)30178-4. doi: 10.1016/j.fsi.2016.04.027. 

 

      Plasmids expressing interferon (IFN) have recently been shown to function as adjuvants in 

Atlantic salmon when co-injected with a DNA vaccine encoding hemagglutinin-esterase (HE) 

from infectious salmon anemia virus (ISAV). In this work we have compared the antibody 

kinetics and the systemic Mx/ISG15 response of fish vaccinated with HE-plasmid using either 

IFNa plasmid (pIFNa) or pIFNc as adjuvants over a longer time period, i.e. 22 weeks post 

vaccination (pv). The results showed that the antibody response against ISAV with pIFNa as 

adjuvant arose earlier (7 weeks pv) than with pIFNc as adjuvant (10 weeks pv), peaked at 

week 10 and declined at week 22. The antibody response with pIFNc as adjuvant peaked at 16 

weeks and kept at this level 22 weeks pv. Fish injected with pIFNc alone expressed high 

levels of Mx and ISG15 in liver throughout the 22 week period. In contrast, fish injected with 

pIFNc together with HE-plasmid expressed high levels of Mx and ISG15 in liver for the first 

10 weeks, but at week 16 this response was absent in two of three fish at week 16 and was 

absent in all tested fish at week 22 pv. This suggests that cells expressing HE and IFNc are 

intact at week 10 pv, but are eliminated by adaptive immune responses after week 10 due to 

recognition of HE. The longevity of the Mx/ISG15 response in pIFNc treated fish is likely 

due to the fact that IFNc is a self-antigen of salmon and is not attacked by the adaptive 

immune system. 
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4. Discussion 

 

Induction of ISGs and antiviral proteins Mx and ISG15 by IFN-I plasmids at the muscle 

injection site and in internal organs. 

      Previous work has shown that recombinant IFNa1, IFNb and IFNc protect salmon cells 

against IPNV and ISAV infection in vitro, IFNa1 and IFNc having similar and stronger 

antiviral activity than IFNb (282, 283). In paper II we tested the antiviral activity of these 

three IFNs against SAV3 in ASK cell and showed all three IFNa, IFNb and IFNc induce 

similar protection against SAV3 in salmon cell line. 

      In paper I and paper II we studied the in vivo antiviral activity of these IFNs against ISAV 

and SAV3 when delivered as genes in expression plasmids by intramuscular injection. The 

results demonstrated unexpected differences between IFNa1, IFNb and IFNc with the ability 

to induce systemic up-regulation of antiviral genes in Atlantic salmon. Paper I revealed that 

all three IFN expression plasmids induced similar levels of ISG transcripts at the muscle 

injection site, which suggests that similar amounts of IFNa1, IFNc and IFNb were produced 

by the transfected muscle cells. In contrast, only IFNb and IFNc plasmids induced antiviral 

genes in head kidney, liver, heart (paper I) and pancreas (paper II). Similar levels of ISG 

transcripts were, however, induced in head kidney leucocytes treated with recombinant 

protein IFNa1 and IFNc. Taken together, this suggests that IFNc and IFNb travel with the 

blood stream after being expressed at muscle injection site and induce antiviral genes 

systemically in fish, while IFNa in only active locally at the production site. Thus, during 

virus infection, IFNa is probably mainly important at the infection site, while IFNc and IFNb 

are distributed that throughout the fish body and trigger synthesis of antiviral proteins in cells 

systemically. Previous work showed that IFNc is produced by a variety of cell types in live 

Atlantic salmon, is induced by both viral dsRNA and ssRNA analogs and has equally strong 

antiviral activity as IFNa1 (282). Altogether this suggests that IFNc has a crucial role in innate 

immunity against virus infection in Atlantic salmon. IFNb is also distributed systemically, but 

has less antiviral activity than IFNa and IFNc, and is produced mainly by specialized 

leukocytes in response to an ssRNA analog (282). 

      The difference in distribution properties of IFNa compared to IFNb and IFNc may be due 

to that IFNa is a 2C-IFN, which contains one disulphide bridge, while IFNb and IFNc are 4C-

IFNs, which contain two disulphide bridges (284).  As mentioned above, the number of 
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disulphide bridges might influence the half-life of the IFNs. Besides, the isoelectric points of 

IFNa1 (pI 9.2) and IFNb/IFNc (pI 6.9/pI 5.1) are also quite different and might influence their 

distribution and degradation properties. 

 

Kinetics of ISG expression induced by the IFNc expression plasmid at the muscle 

injection site and internal organs. 

 

      The time course study from the paper I showed that IFNc plasmid induced up-regulation 

of not only antiviral genes (Mx, ISG15, Viperin, IFIT5), but also genes for receptors of virus 

RNA (RIG-I, TLR3 and TLR7, TLR8) in head kidney throughout the 8 week experimental 

period. The expression of antiviral genes in head kidney was highest 5-7 days after injection 

of IFNc plasmid, dropped at week 2, but slowly increased during the following weeks. 

Increased expression of Mx and ISG15 protein was confirmed in liver, head kidney and heart 

of IFNc plasmid injected fish 8 weeks after injection (paper I). In paper II we showed that 

pIFNb and pIFNc induced similar levels of Mx transcripts in pancreas after 10 weeks 

interferon DNA plasmid injection. As expected from paper I, pIFNa had no effect on Mx 

expression in pancreas. This was confirmed by immunohistochemistry of Mx in pancreas. 

Injection of pIFNc resulted in a long-lasting expression of  Mx and ISG15 in liver, which 

lasted at least 22 weeks (paper IV). It is thus highly likely that injected pIFNc may continue to 

provide systemic expression of antiviral genes beyond 22 weeks.  

 

Protective effects of IFN-I expression plasmids against ISAV and SAV3 in vivo 

 

The long-lasting induction of antiviral genes by pIFNc injection in salmon, inspired us to 

study whether this treatment might provide protection of the fish against virus infection.  

      In paper I, we chose an ISAV infection model since ISAV causes high mortality in 

Atlantic salmon pre-smolts. In paper II, we chose SAV3 as the model since the virus cause 

significant economic loss in salmon farming and the challenge model has been established 

and studied (199). The results of the challenge experiments showed that pIFNa and control 

plasmid provided no protection as expected from the ISG expression studies. In contrast, 

pIFNc provided a high level of protection of salmon against ISAV infection 8 weeks after 
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pIFNc injection and against SAV3 infection 10 weeks after pIFNc injection. Although pIFNc 

injected fish showed a high level of protection against both ISAV and SAV3 infection, pIFNc 

did not completely eliminate ISAV in head kidney or eliminate SAV3 in serum or SAV3 

mediated pathological changes in pancreas and heart. Whether the viruses would be cleared or 

would replicate beyond the sampling time points is thus uncertain.  

 

Differences in antiviral activity between IFNb and IFNc 

 

      Interestingly, pIFNb and IFNc plasmid induced comparable amount of Mx and ISG15 

protein in liver (Paper I) and pancreas (Paper II) while IFNb only gave a low level of 

protection against both ISAV and SAV3 infection. This may be due to that IFNb and IFNc 

use different receptors and consequently induce antiviral proteins in different cell types. IFNb 

may thus not induce antiviral proteins in cells that are crucial for infection by ISAV and 

SAV3. This hypothesis is supported by the fact that IFNb showed less antiviral activity than 

IFNc in TO cells (Svingerud et al, 2012), by the finding in paper I which showed that Mx in 

endothelial cells in liver was more strongly stained in IFNc treated fish compared to IFNb 

treated fish and by the IFN receptor study done by Sun et al (2014). Moreover, heart tissue 

showed stronger Mx staining throughout in fish treated with IFNc plasmid compared to IFNb 

plasmid and this was confirmed by immunoblotting of Mx (paper I). This suggests that IFNc 

induces antiviral proteins more strongly than IFNb in several different cell types in heart, 

which is a target organ for both ISAV and SAV3. 

 

Adjuvant activity of IFNs in DNA vaccination against ISAV  

 

     In Paper III, we provide evidence that fish IFN-I also has a major role in kick-starting the 

adaptive immune responses against the virus. This was shown by demonstration of adjuvant 

effect of the salmon IFN-I plasmids in DNA vaccination against ISAV. Previous research had 

shown that DNA vaccines are highly effective against salmonid rhabdoviruses, but are less 

effective against other viruses. In this work we decided to study if IFN-I plasmids might be 

used as adjuvants in DNA vaccines against virus in fish since it is known that IFN-I enhance 
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the adaptive immune response in mammals as described above. Previous work had shown that 

a DNA vaccine against ISAV based on the virus hemagglutininesterase (HE) only gave a 

modest increase in antibody response and protection against infection (49). We therefore 

decided to test if IFNa, IFNb or IFNc delivered as expression plasmids together with the HE 

plasmid might increase the protective effect of the vaccine and thus function as adjuvants in 

the vaccine. Salmon presmolts were injected with a plasmid encoding HE alone or together 

with a plasmid encoding Atlantic salmon IFNa1, IFNb or IFNc. Sera were harvested after 7-

10 weeks for measurements of antibody against ISAV and the fish were challenged with 

ISAV to measure protective effects of the vaccines. The results showed that all three IFN 

plasmids delivered together with HE plasmid potently stimulated an increase in IgM 

antibodies against the virus and strongly enhanced protection of salmon against ISAV 

mediated mortality. In contrast, HE plasmid alone gave low antibody titres and a minor 

protection against ISAV. Besides, we have also observed adjuvant effect of recombinant IFNc 

when delivered i.p. together with inactivated ISAV as vaccine. Recombinant IFNc enhanced 

the IgM antibody response ISAV. Taken together, the results from Paper III demonstrated that 

the IFN-I function stimulate adaptive immune responses in fish and thus function as adjuvants.  

The present work thus shows that the link between type I IFNs and the adaptive immune 

system was established in fish several hundred million years ago. This finding may hopefully 

be beneficial for developing more potent vaccines against other fish viruses as well. 

The present studies lend support to the hypothesis that the potency of DNA vaccine based on 

VHSV and IHNV G proteins may in part be due to their ability to induce IFN-I (170, 285). 

 

The mechanism of action of IFN-I as adjuvants 

 

      The fact that IFNa, IFNb and IFNc all showed similar adjuvant effects was surprising 

since they have quite different properties in Atlantic salmon. The three IFNs are induced 

through different signaling pathways and show different expression in cells and tissues (282).  

Recent work has shown that salmon IFNa, IFNb and IFNc utilize different receptors (116). 

The immune cells that contribute to the adjuvant effect of IFN-I in Atlantic salmon must thus 

have receptors for all three IFN subtypes since they all show similar adjuvant properties. The 

IFNa1 plasmid was shown to induce antiviral genes only at the muscle injection site, while 

the IFNb and IFNc plasmids induce antiviral genes systemically in the fish (paper I). This 
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means that the adjuvant effect of the IFNa plasmid is caused by stimulation of immune cells 

at the muscle injection site since IFNa does not induce antiviral genes systemically in salmon. 

Accordingly, the adjuvant activity of IFNb and IFNc is also likely to occur at the muscle 

injection site. As described in the Introduction, mammalian studies suggest that adjuvant 

activity of IFN-I is pleiotropic and due to direct stimulatory effects on T cells, B cells as well 

as dendritic cells, which are the main antigen presenting cells  (254, 286-288). IFN-I have 

been shown to be important for clonal expansion of CD4 and CD8 T-cells and for initiation of 

cross-priming of CD8 T cells (261-263). In addition, IFN-I have been shown to promote 

survival of B-cells by inhibition of apoptosis (289). The effect of IFN-I on fish immune cells 

is unknown, but the RT-qPCR studies showed that injection of all three IFN plasmids caused 

an increase in transcripts for IgM and IgT, which suggest an increased influx of B-cells, and 

an increase of CD8, perforin and granzyme A transcripts, which suggests an increased influx 

of cytotoxic T-cells. This might be explained by the fact that the IFNs induce several 

chemokine genes in the muscle tissue.  We did not observe increased transcript levels of CD4, 

MHCII or CD86, which suggests no increased attraction of CD4 T cells or professional 

antigen presenting cells at the muscle injection site. It is possible, however, that antigen 

presenting cells are still involved in the adjuvant activity of the IFNs since they may be 

resident or attracted by the wounding caused by injection or by the vector. 

 

The mechanism of protection of the IFN adjuvanted DNA vaccine against ISAV is 

unknown 

 

      The mechanism of protection obtained by injection of IFN-plasmid together with the HE-

plasmid is uncertain since the antiserum from the vaccinated fish showed low neutralizing 

activity against the virus, which was not significantly different from serum of fish injected 

with control plasmids. Poor ISAV-neutralizing activity was also observed by antiserum from 

Atlantic salmon immunized with a high dose of inactivated ISAV (198). Non-neutralizing 

antibodies may contribute to protection by increased phagocytosis and destruction of virus 

with antibody-dependent or complement-mediated cytotoxicity (ADCC, CDCC), but this has 

yet to be shown for fish antibodies. The role of cytotoxic T-cells in the protective immune 

response has to be examined in future studies.
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Kinetics of the antibody response against ISAV upon vaccination with DNA vaccine  

containing IFNa and IFNc plasmids as adjuvants  

 

      In paper IV, we compared the kinetics of the antibody response against ISAV in DNA 

vaccines using pIFNa or pIFNc as adjuvants over a period of 22 weeks after plasmid injection. 

The results showed that pIFNc caused a delayed increase in antibody response compared to 

pIFNa as adjuvant.  

      Similar antibody kinetic studies have not yet been performed in DNA vaccinated 

salmonids earlier. However, high titres of neutralizing antibodies were found in rainbow trout 

after multiple DNA vaccinations against VHSV and IHNV 38 and 45 days after vaccination 

(244). In another study, neutralizing antibodies were observed in trout 3 months after DNA 

vaccination against IHNV, but not at later time points although protection was observed 3 to 

25 months after vaccination (247). In carp, DNA vaccination with a β-galactosidase construct 

showed appearance of antibodies against β-gal at day 7 pv, which increased until day 14 pv 

and kept at this level throughout the 70 day trial period (290). The earlier antibody response in 

carp is likely to be due to the higher temperature (22° C) used for this fish species. 

 

Longevity of the injected IFN plasmids in the fish muscle.  

 

      The innate immune response of pIFNc triggered Mx protein in liver shows strong and 

slightly increase after fish injected with pIFNc during the whole 22 week trial period. This 

suggests that cells transfected with pIFNc may express IFNc for an even longer time period. 

Longevity of IFNc expression is probably due to the fact that IFNc is a self-antigen in salmon. 

Cells transfected with pIFNc are thus not likely to be attacked by the adaptive immune system 

of salmon. The long-lasting expression of a transgene after DNA vaccination has also been 

shown for luciferase in Atlantic salmon, glass catfish and mice (291-293). In addition, the 

luciferase activity in salmon muscle was highest at day 10 after injection then declined, but 

was still detectable 535 days after injection (291). Taken together, the longevity of luciferase 

in plasmid-injected fish and mice suggests that cells expressing luciferase are not attacked by 

the immune system the due to the poor immunogenicity of luciferase or its intracellular 

localization(294).
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Evidence for elimination of cells expressing the HE construct by the adaptive immune 

system 

 

       In contrast to the long-lived systemic expression of Mx and ISG15 in fish injected with 

IFNc plasmid alone, fish co-injected with pIFNc and pHE showed disappearance of Mx and 

ISG15 expression in liver at 16 and 22 weeks after injection.  This observation suggests that 

transfected cells at the muscle injection site have taken up both pIFNc and pHE plasmids and 

that the HE-expressing cells were destroyed by HE-specific adaptive immune response after 

16 weeks immunization. Another possible explanation for destruction of HE-expressing cells 

could be that IFNc mediated attraction of natural killer cells (NK cells) , which attacked HE-

expressing cells. If so, however, the disappearance of Mx/ISG15 should have happened before 

week 7 post plasmid injection since the HE is expressed in fish at week 1 post vaccination 

(295).  

      Information from other DNA vaccination studies may give some explanation for the 

mechanisms involved in immune mediated destruction of HE-expressing cells. In rainbow trout, 

the decrease of luciferase activity was observed when plasmid coding for luciferase was co-injection 

with G-protein encoded plasmid (296). It was suggested that plasmid transfected host cells were killed 

by the raised cellular immune response (296). Moreover, myocytes expressing G-protein 

declined rapidly at day 31 to 38 post vaccination (297). Taken together, this suggested that 

cells expressing antigen were destroyed by adaptive immune mechanisms (296, 297).  

Cytotoxic T-cells might be involved in this, but antibody dependent mechanisms could not be 

excluded.  The macrophages, B-cells and activated T-cells with the complement system might 

also have  been attracted to the injection site and eliminated the expression of G-protein (297).  

      In mice DNA vaccinated with luciferase- and HBsAg-expressing vectors, the destruction 

of HBsAG-expressing myocytes was found to be dependent on MHC II restricted CD4+ T 

cell activation, but was not mediated by MHC I restricted or perforin-mediated lysis (294, 

298). Destruction of HBsAg -expressing myocytes was suggested to be antibody dependent 

since HBsAg was expressed on the cell surface and since myocyte destruction was associated 

with an HBsAg specific antibody response (298). Therefore, the mechanism of antibody-

directed complement-mediated cytotoxicity and Fc receptor mediated antibody-dependent 

cytotoxicity (ADCC, CDCC) as shown in Fig. 6 that were suggested for the destruction of 

cells expressing HBsAg protein (299, 300). This leads to the hypothesis that DNA vaccination 
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of Atlantic salmon with ISAV HE is associated with an antibody dependent process since HE 

is expressed on the surface of muscle cells and the disappearance of Mx-expression in fish 

vaccinated with pIFNc + pHE occurred concomitant with occurrence of peak antibody levels. 

      The role of T-cells has to await development of adequate assays for Atlantic salmon. At 

present little is known about induction of cytotoxic T-cell responses upon vaccination of 

salmonids and other fish species. However, cell-mediated cytotoxicity has been detected in 

rainbow trout after vaccination with the VHSV G-protein plasmid (301). The disappearance 

of the HE/IFNc construct occurred much later than the reported disappearance of G-protein in 

DNA vaccinated rainbow trout is uncertain whether this difference is due to the antigen itself 

or the way expression has been measured.  
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5. Future studies  

 

      There are a lots more to study of IFN-I in innate and adaptive immunity. Functional study 

of the role of disulfide bridge that compare to mammalian IFN-I could be important for 

understanding the stabilization of IFN-I protein. The finding of paring of IFN-I and receptors 

in different organs could possibly explain the regulatory effect of IFN-I in response to virus 

infection. As described above, interferon receptor knockout cells have been used as a 

powerful tool for investigating the function of IFN-I in mammals, thus if we could establish a 

similar IFN-I receptor deficiency models which would be beneficial in study both innate and 

adaptive immunity. In mammals, the IFNR deficient cell could be used for study the 

correlation of IFN-I triggered antiviral activity (302). Besides, lymphocytes with IFNR 

deficiency could be used for study the effect of IFN-I in antibody production and T cells 

activation (303). 

      For the understanding of what mechanism are involved and of which cells are play the 

major role in triggering humoral or cellular immune response. It would be interesting to know 

which immune cells are attracted by IFN-I expressed plasmid at muscle injection site, this 

could be done by microarray or by RNA-Seq analysis. Immunohistochemistry would be a 

necessary tool for characterization of cells that are involved. Use of antibodies against 

markers of different immune cells such as B and T lymphocyte or antigen presenting cells 

would be important tools for analysis of cell population after interferon treatment. Clonal 
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salmon could be beneficial for cytotoxicity study in T cells, that was considered the major 

response triggered by DNA vaccine. 

      In addition, regional B or T cells have been found in the mucosal system, thus study of 

IFN-I in regional lymphocytes could be important for investigating of the early response after 

virus infection and the link of innate immunity with antibody response.  
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6. Prospects of applications  

 

      The results from paper I and paper II suggest that i.m. injection of IFNc plasmid might 

possibly be used as a new method to combat virus infections in farmed salmon since it 

induces antiviral genes in the fish over a relatively long time period that would at least cover 

the release of smolts into the sea, which is a critical period in the production. 

     The benefit of using IFNs in prophylaxis against virus infections is that they induce genes 

with a broad spectrum of antiviral properties while conventional DNA vaccines are directed 

towards specific pathogens. Interestingly, DNA vaccines against the G-protein of salmonid 

rhabodviruses also gives non-specific protection against virus-infection, which was suggested 

to be caused by IFN-induction (304). However, the non-specific protection obtained in these 

G-protein vaccines only lasts a few weeks and then disappears. 

      The present demonstration of adjuvant effects of IFN expression plasmids provides a 

novel method for improving DNA vaccination of fish. This is important since only DNA 

vaccines against fish rhabdovirus based on the G-protein have until now shown satisfactory 

protection against virus infection. A benefit of DNA vaccines is that they induce both humoral 

and cell mediated adaptive immune responses because the protein antigens are produced 

within the host cells (305). Moreover, they are easy to accommodate to various virulent virus 

strains and can be prepared even against viruses that cannot be grown in culture. DNA 

vaccines are also safe to use and show less side effects than traditional fish vaccines, which 

have to be delivered in oil adjuvants to give a protective effect. Besides, our results of using 

IFN-I as adjuvant reveal the possibility of using IFN-I in both traditional and DNA 

vaccination.  
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