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The time may come when penicillin can be bought by anyone in the shops. Then there 

is the danger that the ignorant man may easily underdose himself and by exposing his 

microbes to non-lethal quantities of the drug make them resistant. 

Alexander Fleming in his Nobel lecture, December 1945 [133] 
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SUMMARY 

 

Haemophilus influenzae is a major pathogen, with the ability to cause a wide spectrum 

of invasive and non-invasive infections. Beta-lactams are first-line drugs but beta-

lactam resistant strains are common. Beta-lactamase (bla) producing isolates emerged 

in the 1970s, and non-bla-mediated resistance due to mutations in the ftsI gene 

encoding penicillin-binding protein 3, denoted ‘rPBP3’ in this project, has increased in 

recent years. Low-rPBP3 H. influenzae are defined by the absence of the S385T 

substitution and the presence of R517H (group I) or N526K (group II); these 

genotypes predominate in Europe, North America and Australia, whereas high-rPBP3 

isolates (defined by the additional S385T substitution) are common in Japan and 

Korea. Data from the Norwegian Surveillance System for Antimicrobial Drug 

Resistance (NORM) suggest that rPBP3 H. influenzae emerged in Norway in the early 

2000s. In this project, two cross-sectional (I and II) and one longitudinal study (III) 

were performed to explore the resistance mechanisms, epidemiology and clinical 

characteristics of H. influenzae with non-bla-mediated beta-lactam resistance. The 

project was the first to characterize the resistance mechanism in Nordic H. influenzae 

with this phenotype.  

Study I encompassed 46 respiratory H. influenzae from NORM 2004, including 23 

isolates with phenotypes suggesting the presence of non-bla-mediated beta-lactam 

resistance mechanisms and 23 susceptible control isolates. Study II encompassed 196 

respiratory isolates from NORM 2007, including 177 with non-wild type susceptibility 

to beta-lactams not explained by bla, and 19 susceptible controls. Characterization 

included pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), 

ftsI sequencing with deduction of PBP3 substitution patterns (PBP3 typing), and 

susceptibility testing by determination of beta-lactam MICs.  

The prevalence of rPBP3 isolates in 2007 was 14.6%. The exact prevalence in 2004 

could not be calculated (≥4.8%), but was estimated to 5.7% based on NORM data and 

the rPBP3 prevalence / amoxicillin-clavulanic acid resistance rate ratio in 2007. These 

results indicate that the rPBP3 prevalence increased significantly in Norway from 
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2004 to 2007. Estimated rPBP3 prevalences in more recent NORM populations 

suggest a further increase to 16.6% in 2014. Enhanced selection pressure due to a 76% 

increase in amoxicillin usage between 2000 and 2012 may have contributed to the 

increased frequency of rPBP3 H. influenzae in Norway.  

Isolates with group II low-rPBP3 genotypes accounted for most (96%) of rPBP3 H. 

influenzae in NORM 2007, and four clones with unique combinations of MLST allelic 

profiles and ftsI alleles accounted for 61% of all rPBP3 isolates. Analyses of clonality 

and comparison with other investigations showed that rPBP3 clones might persist over 

several years. The ST14/PBP3 type A clone appears to be particularly persistent, 

widespread and virulent. A few (n=13) bla-negative isolates with non-wild type beta-

lactam susceptibility lacked rPBP3-defining substitutions in Study II, suggesting the 

existence of additional resistance mechanisms. 

Study III encompassed 30 high-rPBP3 H. influenzae from Norway (2006-2013). 

Characterization included MLST, PFGE, ftsI sequencing, PBP3 typing and 

determination of broth microdilution (BMD) MIC for a wide range of agents. The 

strain collection is unique outside Japan. Of particular notice is the large number 

(n=23) of group III isolates (N526K + S385T), including 12 isolates with the 

additional L389F substitution associated with increased resistance. We suggest adding 

the suffix ‘(+)’ for L389F positive isolates. The resistance rates for extended-spectrum 

cephalosporins were high in Study III, varying from 47% (ceftriaxone) to 97% 

(cefixime). Among the isolates were the first reported invasive group III(+) H. 

influenzae from Europe, and an extensively multi-drug-resistant (MDR) group III(+) 

high-rPBP3 ST159 strain, resistant to all extended-spectrum cephalosporins tested, and 

four classes of non-beta-lactams. This remarkable resistotype is previously unreported. 

The MDR strain was isolated from three patients at the same hospital within a period 

of four days, illustrating the potential for nosocomial spread. 

Study III documented the emergence and spread of high-rPBP3 H. influenzae in 

Norway during the 2000s. A contribution of selective antimicrobial pressure is 

suggested by a 158% increase in extended-spectrum cephalosporin usage from 2000 to 

2012, further underlining the importance of rational use of antibiotics. 
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This project was the first to report identical ftsI alleles in rPBP3 strains unrelated by 

MLST, suggesting that horizontal transfer of rPBP3-encoding ftsI gene sequences 

contributes to the evolution of new rPBP3 strains in vivo. The situation calls for 

improved surveillance. The MLST-ftsI typing approach, developed and validated in 

Study II, is a powerful tool for global molecular surveillance of rPBP3 H. influenzae. 

MLST-PBP3 typing offers lower resolution but may be used as a surrogate approach.  

In Study IV, 154 bla-negative H. influenzae from Study II were used to evaluate nine 

disks as screening for isolates with rPBP3 genotypes, and Etest and EUCAST disk 

diffusion were evaluated for categorization of susceptibility to beta-lactams with BMD 

MICs as the gold standard. The benzylpenicillin 1 unit disk, recommended for 

screening by EUCAST and first evaluated in this project, detected rPBP3 H. influenzae 

with high sensitivity (96.2%) and specificity (94.0%) but is unsuitable for screening of 

bla-positive isolates. The cefuroxime 5 μg disk demonstrated high sensitivity (94.2%) 

and acceptable specificity (88.0%) and was superior to previously evaluated disks with 

bla-stable agents, including cefaclor 30 μg and cefuroxime 30 μg. Cefuroxime 5 μg 

appears to be the best current option for screening of bla-positive H. influenzae but the 

disk is not available from all manufacturers.  

False susceptible rates were high with ampicillin Etest (88%) and disk diffusion with 

ampicillin 2 μg (EUCAST zone breakpoints, 77%; adjusted breakpoints, 28%). The 

poor performance may in part be explained by poor calibration of Etest and 

methodology-dependent test variation, but also reflects that current clinical 

breakpoints for aminopenicillins divide the low-rPBP3 population, making 

susceptibility categorization vulnerable to day-to-day variation. Breakpoint changes 

may improve agreement with reference methodology, but clinical data to support 

breakpoints for H. influenzae and beta-lactams are insufficient.  

To minimize the clinical consequences of very major errors, a warning comment 

should be added for rPBP3 screening positive isolates susceptible to aminopenicillins 

by disk diffusion and gradient tests. H. influenzae positive by rPBP3 screening should 

be reported ampicillin resistant in cases of meningitis, irrespective of results by agent-

directed testing.  
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PREFACE 

 

Just like a snowman starts with a snowflake, this project started with a single isolate 

(chapter 9). The project idea was born when we isolated a cefotaxime-resistant 

Haemophilus influenzae in a nasopharynx sample from a two-year old child with 

leukemia and otitis in May 2006.  

We had just implemented a screening method for detection of non-beta-lactamase-

mediated beta-lactam resistance in H. influenzae. Such isolates, often denoted ‘beta-

lactamase-negative ampicillin-resistant’ (‘BLNAR’), were considered rare and of little 

clinical relevance at the time, and resistance to extended-spectrum cephalosporins was 

almost unthinkable – as indicated by the term ‘BLNAR’. The almost immediate 

detection of a cefotaxime-resistant isolate – the first of its kind in Norway – inspired 

us to initiate a project on non-beta-lactamase-mediated resistance in H. influenzae, 

based on isolates from the Norwegian Surveillance System for Antimicrobial Drug 

Resistance (NORM) (Study I, II and IV).  

The project was met with interest. As soon as a method for characterization of the 

most important resistance mechanism (altered penicillin-binding protein 3) was 

established, we started receiving H. influenzae isolates with unusual resistance profiles 

from Norwegian and Swedish routine and reference laboratories. In 2013, the number 

of cefotaxime-resistant isolates reached 30, and we decided to expand the project with 

a study on H. influenzae with high-level non-beta-lactamase-mediated beta-lactam 

resistance (Study III).  

The complete project is presented in Part II of this thesis (chapters 9-15).  

Part II rests heavily on Part I (chapters 1-8), in which previous research relevant for 

the project is critically reviewed, and current knowledge is summarized and put in a 

historical context. In addition, topics needing further elucidation are identified, and 

research ideas and hypotheses for future projects are presented.  
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Part I describes the universe of knowledge to which the project relates – or the 

disciplinary matrix, as Thomas S. Kuhn (1922-1996) might have expressed it. The 

voluminicity of Part I allows a considerably briefer and more to-the-point approach in 

Part II, and was found necessary due to the width and complexity of the issues 

elucidated in this thesis. 

Studies on beta-lactam resistance require detailed understanding of the effect 

mechanism of beta-lactams, which in turn requires insight in the role of penicillin-

binding proteins for the biosynthesis of peptidoglycan and cell division, and of course 

knowledge on beta-lactam resistance mechanisms in general. These topics are 

addressed in chapters 5-6, with particular emphasis on resistance caused by alterations 

in penicillin-binding protein 3 (chapter 6.3). As an introduction to multi-drug 

resistance, resistance to non-beta-lactams is briefly presented in chapter 7.  

An adequate susceptibility test report starts with correct species identification and 

assessment of clinical relevance. As most H. influenzae isolates are sampled from non-

sterile sites, reliable discrimination between H. influenzae and commensals, including 

closely related species and taxa within the Haemophilus influenzae group, is crucial. 

Current knowledge on phylogeny and pathogenicity, as well as approaches to species 

identification and epidemiological typing, are summarized in chapters 2-4. The 

principles, strengths and limitations of methods for phenotypic susceptibility testing of 

H. influenzae are presented in chapter 8. 

But let us start with the beginning – in Berlin, 1891 (chapter 1). 
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PART I. BACKGROUND 

 

  

  

Figure 1 Research pioneers on H. influenzae in the 19th and 20th centuries. Upper row: 

Richard Friedrich Johannes Pfeiffer, approximately 1894 (left) and Shibasaburo Kitasato in 

his forties (right); lower row: Theodor Thjøtta (left) and Margaret Pittman (right) in their 

laboratories. The respective pictures are used with permission from the copyright holders: 

Robert Koch Institute; the Kitasato Memorial Museum, Kitasato University; the University of 

Bergen; and the U.S. Food and Drug Administration 
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1 HISTORY 

 

The bacterium we know as Haemophilus influenzae was described by the German 

physician and bacteriologist Richard Friedrich Johannes Pfeiffer (1858-1945) in 1892 

[373]. Pfeiffer was head of the Scientific Section at the Berlin Institute for Infectious 

Diseases. The institute (today the Robert Koch Institute, www.rki.de) was founded in 

1891 by the German physician Robert Koch (1843-1910), famous for his postulates on 

causal relationship between microorganisms and disease [235] and by many 

considered the founder of modern bacteriology  [82].  

In the spring of 1889, Europe was hit by the last influenza pandemic of the 19
th

 

century, denoted the ‘Russian flu’ due to the original peak in St. Petersburg in 1889 

and probably caused by an H3N8 virus [535]. Inspired by the great achievements of 

Koch and other bacteriologists in the 1880s, with isolation of the bacilli of diphtheria, 

anthrax, tuberculosis and cholera [82], several researchers had tried to identify the 

etiological agent of influenza but with little success [190]. In 1891, at a late stage in 

the pandemic, Pfeiffer examined bronchial secretions from patients with influenza, 

pneumonia and ‘ordinary bronchial catarrh’ and observed large quantities of Gram-

negative ‘very tiny rodlets’ in all 31 patients with influenza but none of the ‘very 

numerous’ control patients. Pfeiffer reported that inoculation experiments gave 

positive results with monkeys and rabbits but not with guinea-pigs, rats, pigeons or 

mice and drew the famous conclusion: ‘In view of these results I consider myself 

justified in pronouncing the bacilli just described to be the exciting causes of 

influenza’ [373].  

The inoculation experiments were crucial in the chain of evidence, as they were 

needed to meet Koch’s third postulate of ability to reproduce disease. Pfeiffer only 

referred to the experiments as ‘positive’ in the preliminary report but described the 

monkeys’ reactions to inoculation in detail in the final report [374]. Retrospectively, 

his conclusion had obvious weaknesses: he managed to produce infectious processes 

in monkeys but the disease was not ambiguously influenza. However, Pfeiffer was 

http://www.rki.de/
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considered an authority in the field and the Koch Institute was one of the world’s 

leading research institutions at the time, and the misinterpretation that the novel 

bacterium was the etiological agent of influenza was widely accepted [81,118,207]. In 

1896, Pfeiffer was officially credited for the discovery when the bacterium was 

denoted Bacillus influenzae [257]. 

Pfeiffer had not yet succeeded in cultivating the bacterium beyond the 2
nd

 generation 

when he published his preliminary results in The British Medical Journal in 1892 

[373]. In the very same issue, the Japanese physician and researcher Shibasaburo 

Kitasato (1852-1931), since 1885 a visiting researcher at the Koch Institute, claimed to 

have cultivated the influenza bacillus to the 10
th

 generation using glycerine agar [233]. 

Kitasato described the colonies as ‘extremely small points like droplets of water, 

recognisable during the first twenty-four hours only with the aid of a lens’, suggesting 

they might have been overseen by previous investigators (e.g. Pfeiffer). Convinced 

neither by Kitasato’s observations nor by his method, Pfeiffer continued his efforts to 

culture the bacteria and soon discovered its requirement for blood. In his final report, 

Pfeiffer concluded that haemoglobin was the single crucial component and showed no 

mercy when he characterized the previously published observations of his visiting 

colleague: ‘Die Angabe Kitasato’s, dass es ihm gelungen sei, die Influenzabasillen auf 

einfachem Glycerinagar bis zur 10. Generation fortzupflanzen, muss ich jetzt nach 

diesen Resultaten definitive als irrig zurückweisen’ [374].  

During his time at the Koch Institute, Kitasato had become a skilled and respected 

bacteriologist. Not only was he the first to grow the tetanus bacillus in pure culture: 

together with the German physiologist Emil von Behring (1854-1917) he discovered 

and characterized the tetanus exotoxin and demonstrated neutralization of toxins in 

vivo in 1890 [33]. Kitasato ended his visit at the Koch Institute and returned to Japan 

in 1892. Probably inspired by his stay, he founded the Kitasato Institute for Infectious 

Diseases in Tokyo in 1914 [232]; today a leading research institution on antimicrobial 

resistance in H. influenzae (chapter 6.3.3).  

The recognition of blood as an essential factor for bacterial growth gave rise to the 

term hemophilic (or hemoglobinophilic) bacilli, or simply hemophili (hemo-, from 
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Greek: haima, blood; -philos, Greek: dear, beloved). In 1917, the American 

Committee on Classification and Nomenclature introduced the generic name 

Hemophilus (sic) for small, non-motile Gram-negative rods that required blood or 

other body fluids for growth, with Hemophilus (sic) influenzae, ‘the influenza 

bacillus’, as the type species [560]. The genus also encompassed the ‘Bordet-Gengou 

bacillus’ (now Bordetella pertussis, the etiological agent of whooping cough), and the 

‘Koch-Weeks bacillus’, today denoted H. aegyptius or ‘H. influenzae Biogroup 

aegyptius’ (chapter 2.2.2). Despite the assignment to genus Hemophilus (the official 

spelling was later changed to Haemophilus), designations based on Pfeiffer’s name, 

e.g. ‘Pfeiffer’s bacillus’ and ‘Bacillus Pfeifferi’, and hybrid designations such as 

‘Haemophilus influenzae Pfeiffer’ [265] were commonly used for decades.  

Notably, H. aegyptius was described by Koch [236] nine years before Pfeiffer 

announced his discovery of the influenza bacillus and validly named Bacillus 

aegyptius by the Italian botanist Count Vittore Benedetto Antonio Trevisan di Saint-

Léon (1818-1897) as early as 1889, seven years ahead of Bacillus influenzae. Thus, as 

the first validly published species, H. aegyptius should have been designated type 

species of genus Haemophilus instead of H. influenzae [581]. A reproduction of 

Trevisan’s original treatise was printed in 1952 [195]. 

The requirement for growth factors was further explored by the Norwegian physician 

and microbiologist Theodor Thjøtta (1885-1955) [183], also known for his studies on 

dysentery and tularemia, and the Canadian bacteriologist and physician Oswald 

Theodore Avery (1877-1955) [332], who discovered that DNA serves as genetic 

material, at the Rockefeller Institute for Medical Research in New York. Through a 

series of experiments, Thjøtta and Avery identified two substances in red blood cells 

that were essential for growth. These were denoted the X factor, ‘intimately associated 

with or a derivate of hemoglobin’, and the V factor, which also could be extracted 

from bacterial and yeast cells and from fresh vegetables [503]. The letter V was 

chosen because the substance resembled vitamins, whereas the letter X reflected that 

the substance was ‘less easily defined’. Later studies showed that factor X is identical 

to hemin [265] whereas factor V is nicotinamide adenine dinucleotide (NAD or 

NADP) [266]. The terms factor X and factor V are still used today (chapter 2.4). 
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The novel species designation H. influenzae reflects the organism’s standing as the 

commonly accepted etiological agent of influenza in 1917. Although an increasing 

amount of research suggested that the organism was merely a secondary invader, the 

notion survived beyond the Spanish flu (1918-1919) [7,118,207]. A ‘pseudo-influenza’ 

bacillus was hypothesized to explain the presence of organisms morphologically 

identical to Pfeiffer’s bacillus in patients without influenza. Typing studies did not 

confirm this hypothesis but significantly improved the understanding of the role of H. 

influenzae in disease other than influenza, such as meningitis [7]. In 1931, the 

American bacteriologist Margaret Pittman (1901-1995) at the Rockefeller Institute 

observed that strains with a smooth colony appearance (‘S strains’) were encapsulated 

and more virulent compared to strains with rough colony appearance (‘R strains’) 

[380]. By precipitation reactions with antisera, establishing the principle of serotyping 

(chapter 2.8), Pittman divided S strains into types a and b and found that all meningitis 

isolates in her study were type b. Pittman concluded that H. influenzae strains differ in 

pathogenicity and immunological specificity, similar to pneumococci [380]. Later 

studies revealed four additional serotypes (c-f) [238].  

Despite increasing evidence for a small ‘filter-passing micro-organism’ as the 

etiological agent [259], Pfeiffer defended ‘his’ bacteria as the likely cause of influenza 

as late as 1931 [207]. Two years later, when influenza was established as a viral 

disease [472], H. influenzae was finally dethroned as the cause of influenza and the 

species designation instantly turned into an anachronism. Once characterized as ‘a 

pathogen in search of a disease’ [81], the organism is currently considered a major 

pathogen and a significant contributor to the global burden of disease by causing a 

variety of infections, many far more serious than influenza [208,537]. 
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2 TAXONOMY, IDENTIFICATION AND CHARACTERIZATION  

 

2.1 GENUS HAEMOPHILUS 

Bergey’s Manual of Systematic Bacteriology places genus Haemophilus [560] in the 

family Pasteurellaceae; order Pasteurellales; class Gammaproteobacteria; phylum 

Proteobacteria [357]. The genus consists of fastidious, facultatively anaerobic, Gram-

negative, pleomorphic rod-shaped bacteria. With the exception of H. ducreyi, which 

requires special media and grows better at 33ºC, Haemophilus species are easily 

cultivable on sufficiently rich media, with optimal growth in air supplemented with 5-

10% carbon dioxide at 35-37ºC [229,256]. Haemophilus species may be distinguished 

from other bacteria with similar morphology, such as Bordetella species and 

Cardiobacterium hominis, by their ability to reduce nitrate [228]. 

The systematics of the genus is a continuing process. According to the ‘List of 

prokaryotic names with standing in nomenclature’ (LPSN, www.bacterio.net) [115], 

23 Haemophilus species have been validly published, but several species have later 

been reclassified. The genus currently includes 13 formally validated species [263], of 

which nine have specificity for humans [351]: H. influenzae, H. aegyptius, H. ducreyi, 

H. haemolyticus, H. parahaemolyticus, H. parainfluenzae, H. paraphrohaemolyticus, 

H. pittmaniae and H. sputorum (Figure 2). In addition, the genus includes four species 

with host specificity for animals: H. felis (cats) [196], H. haemoglobinophilus (dogs) 

[417], H. paracuniculus (rabbits) [501] and H. parasuis (pigs) [34].   

The most recent changes include the addition of the novel species H. sputorum [348] 

and H. pittmaniae 2005 [352], and the transfer of H. aphrophilus, H. paraphrophilus 

and H. segnis to the novel genus Aggregatibacter, with the former species H. 

aphrophilus and H. paraphrophilus merged into the novel species A. aphrophilus 

[353]. The International Committee on Systematics of Prokaryotes, Subcommittee on 

the taxonomy of Pasteurellaceae has decided to conduct a taxonomic investigation 

with the aim of proposing a new genus that would include H. ducreyi, as this taxon is 

only distantly related to the type species of genus Haemophilus [67,227].  

http://www.bacterio.net/
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Figure 2 Phylogenetic relationship between Haemophilus and Aggregatibacter species with 

host specificity for humans, with Escherichia coli as outgroup. The dendrogram is based on 

concatenated sequences of near-full-length 16S rRNA genes and fragments of the 

housekeeping genes infB, pgi and recA of type strains. H. influenzae, H. aegyptius, H. 

haemolyticus and ‘H. intermedius’ form a distinct phylogenetic group: the Haemophilus 

influenzae group. Reproduced from [351], with permission 
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2.2 THE HAEMOPHILUS INFLUENZAE GROUP  

The three species H. influenzae, H. aegyptius and H. haemolyticus constitute a distinct 

phylogenetic clade of closely related organisms, denoted the Haemophilus influenzae 

group or ‘Haemophilus sensu stricto’ [351] (Figure 2). According to Kilian in 

Bergey’s Manual of Systematic Bacteriology, Haemophilus species not part of the H. 

influenzae group may from a phylogenetic view be considered as misclassified [227].  

Recent investigations have significantly improved our understanding of the population 

structure within the H. influenzae group; this insight has revealed limitations and 

inconsistencies of current species designations [351,388]. A genomic analysis of 246 

global isolates belonging to the H. influenzae group showed a population structure 

with four major branches: one consisting of H. influenzae phylogenetic division I, 

which includes H. aegyptius; one consisting of H. influenzae phylogenetic division II; 

one consisting of H. haemolyticus and related taxa (see below); and one consisting of 

‘fuzzy’ isolates with genetic characteristics (fucK and fucP negative) separating them 

from typical H. influenzae [388] (Figure 3). Notably, the H. haemolyticus branch 

shares a node with H. influenzae phylogenetic division I, and the branch with the 

‘fuzzy’ isolates shares a node with H. influenzae phylogenetic division II.  

A similar population structure was suggested by a phylogenetic analysis based on 

concatenated partial sequences of six housekeeping genes (adk¸ atpG, frdB, mdh, pgi, 

and recA) from three type strains and 935 clinical isolates [351]. In that investigation, 

the H. haemolyticus branch, also denoted the ‘variant cluster’ [349], encompassed 

strains belonging to the non-validated taxa ‘non-haemolytic H. haemolyticus’, ‘H. 

quentini’, and ‘H. intermedius’.  

The close phylogenetic relationship between the species and taxa in the H. influenzae 

group complicates exact delineation of species borders within this group, and reliable 

species identification may be extremely difficult. Important clinical and 

epidemiological characteristics that may be helpful in recognizing and separating the 

various taxa are presented below. 
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2.2.1 Haemophilus influenzae 

H. influenzae [560] is the type species and the primary pathogen in genus 

Haemophilus [560], and the primary focus of this thesis. The clinical and 

epidemiological characteristics of H. influenzae are presented in detail in chapter 4. 

 

Figure 3 Population structure within the H. influenzae group. Phylogenetic analysis based on 

single-nucleotide polymorphisms in orthologous core genes in the genomes of 246 global 

isolates. Blue, H. influenzae (phylogenetic division I); purple, H. influenzae (phylogenetic 

division II); green; ‘fuzzy’ isolates (fucK and fucP negative); red, H. haemolyticus. Shading 

indicates isolates possessing capsular loci (irrespective of expression). ATCC 11116 H. 

aegyptius is located within phylogenetic division I (between the branches containing 

encapsulated isolates). Reproduced from [388] according to the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) 

http://creativecommons.org/licenses/by/4.0/
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2.2.2 Haemophilus aegyptius 

H. aegyptius was first described by Koch in 1883 as a cause of purulent conjunctivitis 

in Egypt [236] and by Weeks in the US three years later [553]. Hence, the organism 

was first known as ‘Koch-Weeks bacillus’, a designation initially used for all 

haemophilic bacteria isolated from conjunctiva [337,382]. The name Bacillus 

aegyptius was introduced by Trevisan in 1889 [195].  

It has been debated whether the organism should be classified as a species in genus 

Haemophilus or as a biogroup of H. influenzae [176,256,337,351,382]. Strains within 

this taxon are indistinguishable from H. influenzae by phylogenetic analyses based on 

housekeeping genes [351], 16S rRNA [351,357], and complete genomes (Figure 3) 

[362,388]. A formal obstacle to merging the two taxa into one species H. influenzae is 

that the epithet H. aegyptius has priority [581]. A pragmatic solution suggested by 

Nørskov-Lauritsen may be ‘to accept H. aegyptius as a validly named species that 

designates a group of strains related to H. influenzae isolated during a short period 

from a single geographic region and to refrain from wider use of the name’ [351].  

According to Kilian in Bergey’s Manual of Systematic Bacteriology [227], H. 

aegyptius is a frequent cause of conjunctivitis in hot climates, but due to the 

difficulties in separating these isolates from (other) H. influenzae, the natural history of 

such infections is not completely understood. In Brazil in 1984, a clone of H. 

aegyptius caused a novel syndrome denoted Brazilian Purpuric Fever (BPF) [175]. The 

illness was characterized by purulent conjunctivitis preceding bacteremia with septic 

shock and purpura, clinically resembling acute meningococcal disease. Sporadic cases 

of BPF have been reported in Australia, the US and Europe [176].The latest outbreak 

of BPF was reported in Brazil in 2007 [441].  

Hemagglutinating factor has been suggested to be a major virulence determinant of the 

BPF clone [23]. Both conjunctival and BPF strains of H. aegyptius possess genes 

encoding IgA1 protease and homologs of high-molecular-weight (HMW) and Hia 

adhesins in H. influenzae, and several genes encoding novel adhesins and invasins 

[489]. BPF strains also possess the HP2 bacteriophage, associated with increased 
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virulence in nonencapsulated H. influenzae [557], and the HadA adhesin, which 

promotes adhesion and invasion of endothelial cells in vitro [452].  

The phylogenetic relationship between the BPF clone and other strains of H. aegyptius 

is a matter of debate. The BPF clone is recognizable by multilocus enzyme 

electrophoresis (MLEE) pattern and rRNA gene restriction patterns (ribotyping) [176]. 

The multilocus sequence typing (MLST) allelic profile of the BPF clone (ST65) differs 

from the profiles of conjunctivitis strains (ST70 to ST77) and analysis of MLST 

sequences suggested only remote phylogenetic relationship [102], whereas genomic 

analysis has indicated close relationship [489].  

 

2.2.3 Haemophilus haemolyticus 

H. haemolyticus is the original representative and the only validated species of the 

variant cluster of the H. influenzae group [349]. The taxon was originally denoted 

‘Bacillus X’ [389]. The species designation H. haemolyticus was introduced in the first 

edition of Bergey’s manual of Determinative Bacteriology in 1923 [31]. When Pittman 

proposed the factor X-independent species H. parahaemolyticus in 1953, H. 

haemolyticus was redefined as haemolytic, XV-dependent Haemophilus [381].  

Haemolysis is still part of the official species definition of H. haemolyticus. When 

present, this trait reliably separates the species from H. influenzae [229,288,321,349] 

but the ability to cause haemolysis may be lost during subculture [256] and non-

haemolytic H. haemolyticus are frequent [288,321,347]. Such strains do not fit the 

original species description and may be considered an unnamed taxon [349,351]. In 

one study, 40% of sputum isolates and 27% of nasopharyngeal isolates of presumably 

H. influenzae were H. haemolyticus [321]. In two later investigations, 0.5-1.5% of 

phenotypically identified H. influenzae isolates were identified as H. haemolyticus by 

molecular methods (chapter 2.10) [126,579]. In a recent investigation using MALDI-

TOF (with updated reference spectra; chapter 2.9) for identification, 81% and 4% of 

respiratory Haemophilus were H. influenzae and H. haemolyticus, respectively [280]. 

Notably, the two species were equally frequent in genital samples. 
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H. haemolyticus belongs to the human oral microbiota and is generally considered 

commensal. As opposed to H. influenzae, the acquisition of a new strain of H. 

haemolyticus is not associated with exacerbations of chronic obstructive pulmonary 

disease (COPD) [321]. Both H. haemolyticus and ‘non-haemolytic H. haemolyticus’ 

have been reported as causes of invasive disease [8].  

Another recently discovered important feature of this species is the ability to exchange 

sequences of the ftsI gene, encoding penicillin-binding protein 3 (PBP3), in an inter-

species manner with H. influenzae by horizontal gene transfer (HGT) and 

recombination [499,565]. H. haemolyticus plays an important role in the development 

and spread of PBP3-mediated resistance to beta-lactams (chapter 6.3.8). 

 

2.2.4 ‘Haemophilus quentini’ 

‘H. quentini’ [227], also referred to as ‘Haemophilus cryptic genospecies biotype IV’ 

[351], denotes a distinct group of XV-dependent Haemophilus strains associated with 

genito-urinary and neonatal infections [161,545]. As part of the variant cluster of the 

H. influenzae group, ‘H. quentini’ are closely related to H. haemolyticus but the taxa 

are distinguishable by 16S rRNA PCR [402]. ‘H. quentini’ strains have unique 

multilocus enzyme electrophoresis patterns, outer membrane protein profiles and 

fimbrial protein gene sequences [273], and a characteristic adhesin (Cha) [285].  

During the 1980s there was an increase in serious mother and infant infections 

(including bacteremia and meningitis) caused by H. influenzae with biotype IV [545]. 

Quentin et al. characterized genital, obstetric and neonatal non-encapsulated isolates 

from France and the U.S. and identified several genetically distinct biotype IV isolates 

with <70% similarity with H. influenzae by DNA-DNA hybridization and proposed a 

previously unrecognized (cryptic) Haemophilus species [401]. The taxon was later 

assigned the (non-validated) species name ‘H. quentini’ by Kilian in Bergey’s manual 

of systematic bacteriology [227].  
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2.2.5 ‘Haemophilus intermedius’ 

The variant cluster also includes the non-validated taxon ‘H. intermedius’ [227,351].  

The clinical relevance is unknown. The species designation was suggested by Burbach 

in 1987, based on DNA-DNA hybridization studies and phenotypic characteristics 

[47]. Two subspecies were described: the X-independent and sucrose-fermenting 

subsp. intermedius; and the subsp. gazogenes, capable of producing gas from glucose. 

The latter may be separated from ‘Non-haemolytic H. haemolyticus’ by the ability to 

ferment mannose [351].  

Early taxonomic studies based on analysis of quinone composition and polyamine 

patterns [54] indicated that H. intermedius was closely related to H. parainfluenzae. 

However, multilocus sequence phylogeny places both subspecies in the variant cluster, 

closely related to H. haemolyticus. By near-full length 16S rRNA phylogeny, ‘H. 

intermedius subspecies gazogenes’ are located on a branch separated from the main 

variant cluster, adjacent to phylogenetic group II of H. influenzae [351]. 

 

2.3 OTHER HAEMOPHILUS SPECIES IN HUMANS 

The remaining Haemophilus species with host specificity for humans include H. 

ducreyi, H. parainfluenzae, and the haemolytic species H. parahaemolyticus, H. 

paraphrohaemolyticus, H. pittmaniae and H. sputorum (Figure 2). The sexually 

transmitted chancroid-causing H. ducreyi [514] forms a separate phylogenetic entity; 

the other species belong to the Haemophilus parainfluenzae group [351].  

The species in the H. parainfluenzae group are generally commensal, but may 

occasionally have clinical relevance: H. parainfluenzae is the most frequent 

Haemophilus species causing infective endocarditis [44,86]. H. sputorum is the only 

species except H. influenzae for which a complete polysaccharide capsule biosynthesis 

locus has been observed [351]. Finally, H. parahaemolyticus express the virulence 

determinant IgA1 protease [227] and an association with acute pharyngitis has been 

suggested [381]. The clinical significance of the H. parainfluenzae group and H. 

ducreyi is outside the scope of this thesis and will not be further discussed. 
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2.4 FACTOR X AND FACTOR V DEPENDENCY 

The variable requirements of Haemophilus species for factors X and V is a cornerstone 

in identification of H. influenzae and related species [503] (Table 1). The three valid 

species H. influenzae, H. aegyptius and H. haemolyticus, and most of the non-

validated taxa in the H. influenzae group, require both factors X and V for growth. 

Table 1 Requirement for factors X and V and haemolytic activity of various groups of 

Haemophilus species and former Haemophilus species transferred to genus Aggregatibacter. 

The dashed line separates the H. influenzae cluster and the variant cluster of the H. influenzae 

group. +/-, factor dependent/independent or haemolysis present/absent; d, delayed. Compiled 

from [47,196,228,256,321,348,351,353,353,402,501]  

Groups, species and taxa Factor X Factor V Haemolysis 

Haemophilus influenzae group    

H. influenzae + + - 

H. aegyptius + + - 

H. haemolyticus + + + 

‘H. haemolyticus, non-haemolytic’ + + - 

‘H. intermedius subsp. gazogenes’ + + - 

‘H. intermedius subsp. intermedius’ - + - 

‘H. quentini’ + + - 

Haemophilus parainfluenzae group    

H. parainfluenzae - + - 

H. parahaemolyticus - + + 

H. paraphrohaemolyticus - + + 

H. pittmaniae - + + 

H. sputorum - + + 

H. ducreyi + - - 

Animal-associated Haemophilus species    

H. felis - + d 

H. haemoglobinophilus + - - 

H. paracuniculus - + - 

H. parasuis - + - 

Aggregatibacter species    

A. actinomycetemcomitans - - - 

A. aphrophilus - - - 

‘A. aphrophilus, factor V-dependent’ - + - 

A. segnis - + - 
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Hemin (factor X) is a crucial intermediate in the biosynthesis of respiratory 

cytochromes in bacteria [506]. Factor X-independent Haemophilus species form hemin 

by the biosynthetic pathway δ-aminolevulinic acid (ALA) → porphobilinogen → 

porphyrins → protoporphyrin IX → hemin [228]. Factor X-dependent organisms lack 

the enzymes for conversion of ALA into protoporphyrin and grow only on media 

containing sufficient concentrations of hemin (factor X), e.g. blood and chocolate agar. 

Growth may be obtained on hemin-deficient media if a hemin source is provided, e.g. 

via a paper disk [116]. Factor X requirement may also be demonstrated by the 

porphyrin test [225]. A positive result shows the ability to synthesize porphyrins from 

ALA, i.e. factor X is not required. H. influenzae is capable of anaerobic metabolism. 

Under anaerobic conditions, respiratory cytochromes are not formed and the hemin 

requirement is significantly reduced [228].  

Factor V (nicotinamide adenine dinucleotide, NAD or NADP) is a coenzyme for a 

group of oxidation-reduction enzymes and is present in blood and yeast cells. 

Staphylococcus species and some other bacteria produce and excrete NAD, allowing 

factor V-dependent species to grow near staphylococcal colonies on NAD-deficient 

media (e.g. blood agars with intact erythrocytes). This ‘satellite phenomenon’ also 

provides an opportunity to assess the haemolyc abilities of V-dependent bacteria. Most 

species have similar haemolytic abilities on sheep, horse and bovine blood agars [229]. 

As satellite growth around a bacterial colony may be due to excretion of other 

substances than factor V, use of paper disks impregnated with NAD is more specific 

[116,228]. It has been claimed that H. haemolyticus, in contrast to H. influenzae, do 

not form satellites around Staphylococcus colonies [256]. The authors did not provide 

a reference for this observation, which is incompatible with the growth requirements 

of H. haemolyticus and therefore should be considered uncertain. 

 

2.5 PHENOTYPIC CHARACTERISTICS  

In addition to growth requirements and haemolysis (Table 1), Haemophilus species 

differ by a variety of phenotypic properties. Key biochemical reactions are 

fermentation of sucrose, lactose, mannose and xylose; presence of catalase and β-
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galactosidase, H2S production, and production of gas from fermentation of glucose. 

Additional phenotypic traits traditionally used for species identification include IgA 

cleavage and hemagglutination [87,501]. The typical profiles of H. influenzae, H. 

aegyptius and H. haemolyticus are presented in Table 2.  

It should be noted that traditional approaches to separate H. aegyptius from H. 

influenzae, such as distinct morphology, growth characteristics in semifluid media, 

inability to grow on tryptic soy agar, inability to ferment xylose and the ability to 

hemagglutinate [176,284,382] have been demonstrated to be of limited value [58,351]. 

In addition, several of the characteristics typical for H. haemolyticus vary within the 

variant cluster, with lack of haemolysis [321] and the ability to cleave IgA in some 

strains [349] as the most notable examples. 

Table 2 Typical phenotypic profiles of the validated species in the H. influenzae group. 

Compiled from [227-229,288,349,351] 

Characteristic H. influenzae H. aegyptius H. haemolyticus 

Haemolysis - - + 

Sucrose fermentation - - - 

Mannose fermentation - - - 

Lactose fermentation - - - 

Xylose fermentation + - + 

Catalase activity + + + 

β-galactosidase activity (ONPG) - - - 

H2S emission - - + 

Gas from glucose - - + 

IgA cleavage + + - 

Hemagglutination - + - 

 

2.6 BIOCHEMICAL IDENTIFICATION SYSTEMS 

Identification systems based on biochemical profiles may be useful for species 

identification of Haemophilus isolates but should always be combined with 

determination of factors XV requirement to avoid misidentification.  

Frequently used systems are API NH (manual) and Vitek 2 NH (automated) from 

bioMérieux (www.biomerieux.com).  Vitek 2 NH is based on colorimetric technology 

http://www.biomerieux.com/
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and compares the results from 30 biochemical reactions with reference profiles. The 

list of Haemophilus species (current and former) identified by Vitek 2 NH are H. 

influenzae, H. haemolyticus, H. parahaemolyticus, H. parainfluenzae, A. aphrophilus 

and A. segnis [38]. The API NH kit includes eight enzymatic reactions, tests for 

fermentation of glucose, fructose, maltose and sucrose, and a test for penicillinase. The 

organisms identified by API NH include H. influenzae, H. parainfluenzae and A. 

aphrophilus. In addition to species identification, API NH may also be used for 

biotyping of H. influenzae and H. parainfluenzae (see below) [317]. 

API NH showed good performance for the species included in the API NH database 

but misidentified H. haemolyticus as H. influenzae in an early study [21]. H. aegyptius 

was identified as H. influenzae. In a more recent investigation using 16S rRNA 

sequencing as the gold standard, the test correctly identified H. influenzae but 

misidentified ‘H. quentini’ (belonging to the variant cluster, Table 1) as H. influenzae 

and failed to identify a H. haemolyticus-like isolate beyond genus level [271]. In 

another study, API NH identified a clinical ‘H. quentini’ isolate from China as 99.5% 

H. influenzae biotype IV [273]. 

The performance of Vitek 2 NH for identification of Haemophilus species has been 

evaluated with 16S rRNA sequencing as gold standard [408,479]. In one study, the test 

misidentified H. haemolyticus as H. influenzae; H. influenzae was misidentified as H. 

parainfluenzae and vice versa; and H. aphrophilus (A. aphrophilus) and H. 

parahaemolyticus were misidentified as H. segnis (A.segnis) and Actinobacillus ureae, 

respectively [408].  In another investigation, the test misidentified H. haemolyticus (as 

H. parainfluenzae) and the haemolytic species H. parahaemolyticus and H. pittmaniae, 

and A. ureae was misidentified as H. influenzae [479].  

 

2.7 BIOTYPING 

H. influenzae may be divided into eight biotypes based on the three simple 

biochemical tests indole, urease and ornithine decarboxylase (ODC) [226]. There is a 

distinct relationship between biotypes, capsular serotypes, and population structure 
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(chapter 3.9). Encapsulated strains with serotypes a, b and f are biotype I; serotype c 

strains are usually biotype II; serotype d and e strains are biotype IV; and most 

nontypeable isolates associated with respiratory, ear and eye infections are biotype II 

or III. Biotyping is a useful supplementary tool for species identification within the H. 

influenzae group (Table 3). H. aegyptius, ‘H. quentini’ and H. haemolyticus have the 

reaction patterns of biotypes III [21,229], IV [401], and II/III [228], respectively. 

Table 3 Biotypes of species and taxa in the H. influenzae group. The dashed line separates the 

H. influenzae cluster and the variant cluster. Compiled from [226,228,229,256,349]

Species and taxa Biotypes Indole Urease ODC 

H. influenzae I + + + 

II + + - 

III - + - 

IV - + + 

V + - + 

VI - - + 

VII + - - 

VIII - - - 

H. aegyptius III - + - 

H. haemolyticus II/III +/- + -

‘H. quentini’ IV - + + 

‘H. intermedius subsp. gazogenes’ VIII - - - 

‘H. intermedius subsp. intermedius’ I/II/III/IV +/- + +/-

Biotyping may be misleading due to false positive or negative results, in particular for 

ODC. By two H. influenzae external quality assurance schemes distributed to 

European national reference laboratories by the European Centre for Disease 

Prevention and Control (ECDC), discrepant ODC results were reported by one or more 

laboratories for five of six strains in 2011 [104] and for all five strains in 2012 [105]. 

Similar observations have been made in studies on clinical isolates [273].  

ODC, an enzyme involved in the synthesis of DNA-stabilizing polyamines, is 

regulated by a number of mechanisms [258]. It is not clear whether diverging test 

results are solely due to suboptimal test properties or if biological variation may 

contribute. Therefore, biotyping results should be interpreted with caution and other 

methods are necessary for strain discrimination. 
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2.8 CAPSULAR SEROTYPING 

H. influenzae may possess polysaccharide capsule of one of six types (a through f) or

be nonencapsulated [380]. Encapsulation is an important virulence determinant 

(chapter 4.2.1). The capsular serotype is traditionally determined phenotypically by 

slide agglutination serotyping (SAST) with serotype-specific antisera [380]. 

The cap locus contains genes needed for capsule production and expression in H. 

influenzae [238,443]. Except for H. sputorum, which carries a complete capsule 

biosynthetic locus, a polysaccharide capsule has not been reported in other 

Haemophilus species [351]. The cap locus consists of duplicated (Hib) or single-copy 

(Hia, Hic and Hid) ~17 kb DNA segments with three regions. Region II contains 

serotype-specific genes, whereas regions I and III are common in all encapsulated 

strains. Region I contains the bexA gene needed for capsule expression. In Hia, Hib, 

Hic and Hid strains in phylogenetic division I, the segments are flanked by the 

insertion sequence IS1016. Due to a 1.2 kb IS1016–bexA partial deletion at the 5’ end 

of the cap locus, only one complete copy of bexA is present in Hib strains [238,443]. 

Curiously, the deletion is associated with increased pathogenicity [239]. 

Hib mutants with single copies of the DNA segment produce capsular material but do 

not export it to the surface of the bacteria due to the lack of bexA. Such strains, 

denoted Hib
- 
(‘Hib minus’), are nontypeable by phenotypic methods. Thus, molecular 

methods detecting both bex and cap genes are necessary for correct serotype 

assignment. Single-copy Hib variants possessing the bexA gene have been observed; 

such strains produce lower amounts of capsular material and may also be false 

negative by phenotypic tests [442,443].  

A widely used molecular methodology for capsular serotyping, with amplification of 

bexA and serotype-specific cap genes by PCR and gel-based confirmation of the PCR 

product was developed by Falla et al. [119]. Due to mismatches between the original 

bexA, cap e and cap f primers and more recently added sequences in the EMBL 

database that may affect sensitivity; primer modifications may be necessary for 

optimal test performance. A real-time multiplex PCR methodology for capsular 

serotyping designed by Maaroufi et al. [268] showed 98.5% concordance with 
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conventional PCR as described by Falla et al. [119]; among 14 tested strains, two were 

typeable (Hib and Hie) by real-time PCR but could not be typed by conventional PCR. 

Both methods were superior to SAST, consistent with other reports [243,442].  

Phenotypic tests may produce false negative/positive results due to cross-reaction, 

auto-agglutination and observer error, but such errors may be reduced with systems for 

standardization and quality control [243]. Among European reference laboratories 

participating in an external quality assurance scheme distributed by ECDC, the 

proportions of laboratories reporting the intended result by phenotypic serotyping 

ranged from 67% to 96% in 2011 [104] and from 73% to 96% in 2012 [105].  

The term ‘nontypeable H. influenzae’ (abbreviated NTHi) is a commonly used 

designation for isolates lacking a capsule biosynthetic locus, although 

‘nonencapsulated’ would be a more precise designation when the absence of a cap 

locus has been confirmed by molecular methods. Both terms are used in this thesis.  

2.9 MALDI-TOF 

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) offers 

significantly reduced analysis time for identification compared to conventional 

phenotypic methods and has become widely used in routine laboratories in recent 

years [450]. Identification of whole-cell bacteria is based on generation of a spectral 

profile of abundant bacterial proteins from the test strain, which is compared to 

profiles of bacteria of known identity in a reference database (‘library’) [253].  

In a proof-of-concept study, Haag et al. demonstrated the differences between mass 

spectra of H. influenzae, H. parainfluenzae, H. aphrophilus (now A. aphrophilus) and 

H. ducreyi [168], but Seng et al. failed to identify two of seven Haemophilus species

beyond genus level in a later study [450]. Recent investigations have indicated that 

MALDI-TOF may be used to identify H. influenzae, H. parainfluenzae, H. 

haemolyticus and H. parahaemolyticus [138], and to distinguish between H. influenzae 

and H. haemolyticus [46,580].  
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The ability of the approach to distinguish between test strains and type strains of H. 

influenzae and related species and taxa was investigated by Nørskov-Lauritsen in a 

recent review [351]. In contrast to previous studies [46,138,580], mass spectrometry 

analysis with calculation of log score similarities (Biotyper 3 software, Bruker 

Daltronic, www.bruker.com) gave insufficient resolution within the H. influenzae 

group, although comparison of strains of H. influenzae and H. aegyptius with reference 

spectra of H. haemolyticus, ‘H. quentini’ and ‘H. intermedius’ gave slightly reduced 

similarity log scores (1.63 – 1.90). There was also low resolution for separating H. 

parahaemolyticus from H. paraphrohaemolyticus, and H. parainfluenzae from H. 

pittmaniae. The author suggested that the discrepancy might be due to methodological 

bias, as the reference databases in previous investigations [138,580] partly were 

constructed using profiles of test strains [351]. 

In conclusion, MALDI-TOF may to some extent discriminate between the H. 

influenzae cluster and the variant cluster in the H. influenzae group, provided that the 

reference database contains a representative H. haemolyticus reference spectrum 

[46,138,351,580]. No study has thus far shown that the approach may be used to 

distinguish H. influenzae from H. aegyptius, or to separate H. haemolyticus, ‘H. 

quentini’ and ‘H. intermedius’ [351]. 

  

2.10 MOLECULAR METHODS FOR SPECIES IDENTIFICATION 

DNA analysis is considered the gold standard for definitive species identification. 

Species identification may be performed by analysis of DNA sequences for single 

genes, multiple genes or the complete genome. According to the current species 

definition, a bacterial isolate can be assigned to a species if ≥70% DNA similarity with 

the species type strain can be demonstrated by DNA-DNA hybridization [485,551].  

Whole genome sequencing (WGS) represents a modern approach to DNA analysis and 

has the advantage of offering identification, typing (chapter 3) and detection of 

virulence (chapter 4.3) and resistance genes (chapters 6-7) in one operation [367]. 

WGS technology has developed dramatically since H. influenzae became the first 

http://www.bruker.com/
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bacterial species undergoing whole genome sequencing, through a 13-month analytic 

process performed by Fleischmann et al. in 1995 [131]. The development of 

commercial platforms for WGS has substantially reduced time and costs and bench-

top instruments are available in an increasing number of routine laboratories [513].  

Nucleic acid amplification tests (NAAT) such as polymerase chain reaction (PCR) are 

suitable for species identification in pure culture and for qualitative or quantitative 

detection of H. influenzae in respiratory tract secretions [1,2,142,216,403] and 

cerebrospinal fluids (CSF) [306,539,548]. Several genes have been suggested as 

targets for molecular tests but evaluations have shown that designing sensitive and 

specific NAAT for H. influenzae is challenging [186,351,378,388]. Discrimination 

between nontypeable H. influenzae (including H. aegyptius) and the variant cluster is 

particularly difficult.  

Frequently used targets include cap genes (encapsulated isolates), the 16S rRNA gene; 

ompP2 and ompP6 (outer membrane proteins P2 and P6); hpd (Protein D); the 

lipooligosaccharide (LOS) genes licA, lic2A and lgtC, igaA (IgA1 protease); hap 

(adherence and penetration protein); the housekeeping genes frdB, recA and fucK; and 

sodC (Cu,Zn-superoxide dismutase). The fucK gene (fuculokinase) is absent in H. 

haemolyticus but also in some strains of H. influenzae [89,347,415]. Similarly, hpd is 

lacking in some H. influenzae strains [473]. The sodC gene is associated with H. 

haemolyticus [141], ‘H. quentini’ [250] and both subspecies of ‘H. intermedius’ [349] 

but may also be present in H. influenzae [126]. In addition, characteristic adhesins are 

present in the BPF clone of H. aegyptius (hadA) [452] and ‘H. quentini’ (cha) [285]. 

The performance of molecular methods for species identification, with emphasis on 

differentiation between H. influenzae and H. haemolyticus, were summarized in three 

recent reviews [186,351,378]; the reader is referred to the papers for detailed 

description of performance and references. Of particular note is the poor performance 

of single PCR assays based on the 16S rRNA gene [1,37], ompP6 [1,37,388,539], 

ompP2 [37,388] and hpd [377,388]. In short, the authors of all three reviews concluded 

that no single target or methodology published so far accurately identify or 

discriminate between H. influenzae and H. haemolyticus, and multiple targets are 
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required for reliable identification. Accordingly, an algorithm based on real-time PCR 

assays for hpd, fucK and sodC identified H. influenzae and H. haemolyticus with 100% 

sensitivity and specificity [251].  

Two most recent investigations evaluated novel genes as targets for molecular 

identification of H. influenzae. Reddington et al. found 100% concordance between a 

real-time PCR assay targeting the smpB gene and the gold standard (MALDI-TOF and 

fucK) for a collection of 44 clinical Haemophilus isolates [403]. Price et al. used 

comparative genomics comprising 246 Haemophilus isolates from various 

geographical locations to identify genetic loci specific for H. influenzae and to design 

a PCR assay targeting the fucP gene [388]. The test had 100% specificity but failed to 

detect isolates within a distinct phylogenetic group sharing a node with phylogenetic 

division II of H. influenzae (Figure 3). The cluster also also lacks fucK but groups 

with phylogenetic division II by housekeeping phylogeny with six alleles [89]. 

Previously assigned ‘fuzzy species’, such strains represent a particular challenge in 

species identification [37,89]. Although controversial from a phylogenetic point of 

view, Price et al. chose to define ‘fuzzy’ isolates as not H. influenzae [388].  

Selected marker genes and conserved genes useful for discrimination between species, 

groups and taxa within the H. influenzae group are summarized in Table 4. 

Table 4 Selected marker genes within the H. influenzae group and typical patterns in various 

species, groups and taxa. Compiled from [238,285,351,388,452]  

Species and taxa cap fucK fucP lgtC igaA sodC hadA cha 

Encapsulated H. influenzae + + + + + - - - 

NTHi - + + + + - - - 

H. aegyptius - + + + + - + - 

’Fuzzy’ H. influenzae - - - + + - - - 

H. haemolyticus - - - - - + - - 

’H. quentini’ - - - - - + - + 
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3 GENETIC VARIATION AND EPIDEMIOLOGICAL TYPING 

 

3.1 TO HIT A MOVING TARGET 

A method for epidemiological typing should be able to determine if and at which level 

two isolates of the same species are related. Ideally, the results should also be 

unambiguous and easily comparable between study groups.  

The most important methodologies for assessment of genetic relationship between H. 

influenzae isolates (reviewed by Harrison et al. [177]) are described in chapters 3.4 – 

3.9. The various methods differ greatly in terms of resolution, and the reliability is 

variably affected by recombination and mutation rates and the degree of clonality in 

the population. Thus, which approach is the most suitable in each case depends on the 

purpose of typing (e.g. outbreak investigation in a hospital department or studying the 

dissemination of a global clone). In addition, the genetic characteristics of the 

population must be taken into account when selecting a typing method and 

interpretation of the results. The role of transformation and recombination for genetic 

variation in H. influenzae is described in chapters 3.2 – 3.3.  

Irrespective of the typing method used, assessment of relatedness should always be 

supported by epidemiological data. Importantly, proximity in time and space is not 

included in the WHO outbreak definition, and an outbreak may extend over several 

countries and last for several years (www.who.int/topics/disease_outbreaks/en/, 

accessed 2016-01-11).  

 

3.2 HORIZONTAL GENE TRANSFER  

Acquisition of foreign genes by horizontal gene transfer (HGT) is an important 

mechanism contributing to adaptability and diversity in bacteria, including 

development and spread of antimicrobial resistance [184,491]. HGT may occur by 

transduction (transfer of DNA by bacteriophages), conjugation (transfer of DNA by 

cell-to-cell contact) or transformation (uptake of extracellular DNA followed by 

http://www.who.int/topics/disease_outbreaks/en/
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homologous recombination). Mobile genetic elements such as plasmids, integrative 

conjugative elements (ICE), transposons, integrons, insertion sequence elements, gene 

cassettes and genomic islands are important vehicles in transduction and conjugation 

but are not involved in transformation. Genetic variation caused by transformation is 

of particular relevance for this thesis and is further elucidated below. 

According to the distributed genome hypothesis, all genes available to a bacterial 

species constitute the ‘supragenome’, consisting of core genes present in all strains, 

and a pool of non-core genes that may be shared through HGT between naturally 

competent strains [189]. The H. influenzae supragenome has been estimated to consist 

of between 4425 and 6052 genes, whereas the core genome encompasses 1461 to 1485 

genes [114,189]. The 81 H. influenzae genomes currently available at the National 

Center for Biotechnology Information (NCBI) possess between 1749 and 2352 genes 

(www.ncbi.nlm.nih.gov/genome/genomes/165, accessed 2015-10-01). 

 

3.3 COMPETENCE AND RECOMBINATION 

Natural competence is the genetically encoded ability of some bacteria of taking up 

extracellular DNA. This ability varies extensively between H. influenzae strains [283]. 

In competent strains, environmental double-stranded DNA fragments are bound and 

transported through outer membrane type II secretin pores by type IV pseudopili; the 

Rec2/ComF system then translocates single-stranded DNA across the inner membrane 

into the cytoplasm [294]. Recognition and efficient uptake of DNA depends on the 

presence of specific uptake signal sequences (USS) in the donor molecule [471].  

Analyses of the H. influenzae genome identified the nine basepair sequence 5’-

AAGTGCGGT as the probable USS in this species [165,471]. This was confirmed by 

deep sequencing experiments to investigate DNA uptake specificity in H. influenzae, 

in which the same uptake motif was identified in degenerate DNA fragments 

recovered from competent cells [294]. The four bases GCGG were critical for uptake, 

suggesting that these make strong specific contact with the uptake machinery. A USS-

binding protein in H. influenzae has not yet been identified. 

http://www.ncbi.nlm.nih.gov/genome/genomes/165
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A number of genes, playing different roles in regulation and in binding and 

transporting DNA, are required for DNA uptake in H. influenzae [406]. Specific point 

mutations in the essential competence regulator gene sxy (also denoted tfoX) enhance 

spontaneous competence [405].  

Mutations in the murE gene involved in the biosynthesis of peptidoglycan 

[474,515,528] have also been shown to significantly increase competence in H. 

influenzae [267]. This observation is of particular relevance for this thesis, as it 

suggests that transformation and peptidoglycan synthesis, both involved in the 

development of PBP-mediated beta-lactam resistance in H. influenzae, are not 

mutually independent processes.  

Most DNA taken up from the environment undergoes degradation with recycling of 

the components in DNA synthesis and repair. In transformation, the uptake of DNA is 

followed by incorporation of fragments in the chromosome by homologous 

recombination, creating mosaic gene patterns. Homologous recombination requires a 

functional recA protein, encoded by the recA gene [419], a housekeeping gene 

included in the MLST scheme [289]. The recA gene is located adjacent to the sxy 

(tfoX) gene in H. influenzae [131]. RecA also plays an important role in the SOS 

response [461] and is thus involved in the control of cell division (chapter 5.7). 

Increased DNA uptake and higher transformation frequencies are induced by nutrient 

limitation, consistent with the theory that DNA is used as a nutrient source as well as a 

tool for DNA repair [283,406]. 

In contrast to point mutations, homologous recombinational events (HRE) may blur 

the phylogenetic signals obtained by phylogenetic analysis. The standard method for 

detection of HRE is based on comparison of phylogenetic trees; several algorithms and 

software packages are available [185]. Perez-Losada et al. described a statistical model 

for estimation of recombination and mutation rates based on MLST data in H. 

influenzae and other species [368]. In a more recent publication, Wang et al. were able 

to detect 31% to 61% of HRE using an algorithm based on single-nucleotide 

polymorphisms (SNPs) in bacterial genomes [547]; the software is freely available at 

http://sourceforge.net/projects/hrefinder/.  

http://sourceforge.net/projects/hrefinder/


52 

 

Investigations exploring the extent and significance of HRE in H. influenzae by 

analysis of housekeeping gene sequences have provided somewhat conflicting results. 

Feil et al. used five loci (adk, pgi, recA, fucK, and mdh) from a diverse selection of 

NTHi and encapsulated strains and found low recombination rates in H. influenzae 

compared to meningococci, pneumococci, S. pyogenes and S. aureus [124]. A 

comparative analysis based on all seven MLST loci by Meats et al. indicated that the 

impact of recombination is greater in NTHi compared to encapsulated strains [289]. 

This was supported by a later study by Connor et al. applying Bayesian analysis of 

population structure (BAPS) to MLST sequences [79]. By the BAPS approach, 

isolates are clustered based on shared polymorphisms. The polymorphism-population 

association may be used to identify sequences containing polymorphisms 

characteristic for more than one population; such sequences are likely the product of 

recombination [79]. The authors found evidence of recombination in a larger 

proportion of NTHi compared to encapsulated strains, with significant heterogeneity 

between different lineages.  

In contrast, Pérez-Losada et al. [368] did not observe notable variation in average 

recombination and mutation rates between NTHi and encapsulated strains. Average 

recombination rate in H. influenzae was moderate (similar to S. pyogenes; higher than 

E. coli and S. aureus; lower than gonococci, meningococci and pneumococci). There 

was considerable variation between loci, with the highest recombination rates in mdh 

and pgi. Average recombination to mutation ratio was high, consistent with the 

observations in a more recent study by LaCross et al. [244]. The authors used MLST 

sequences to estimate the ratio of the recombination rate to the mutation rate in a 

collection of NTHi strains and concluded that recombination introduces five times 

more nucleotide substitutions than do point mutations. 

WGS studies have revealed that transformation in competent strains of H. influenzae is 

more extensive than previously recognized and may cause allelic variation involving 

complete genes [387]. In one study, the mean length of 16 donor segments was 

8.1±4.5 kb and the longest segment was 16.6 kb, suggesting that recombination of 

very short segments is rare [293].  
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Importantly, recombinational exchange of DNA occurs in an inter-species manner 

within the H. influenzae group, with recombinational exchange of ftsI gene sequences 

between H. influenzae and H. haemolyticus [288,499,565]. These observations are 

relevant for the development and spread of beta-lactam resistance in H. influenzae 

(chapter 6.3.8). 

 

3.4 PULSED-FIELD GEL ELECTROPHORESIS (PFGE)  

By PFGE, total genomic DNA is processed by sequence-specific restriction 

endonucleases (most commonly SmaI) into a variable number of fragments, depending 

on the occurrence of polymorphisms within potential cleaving sites. The fragments are 

then separated by pulsed-field electrophoresis, creating individual patterns 

(pulsotypes). Several methods for pulsotyping of H. influenzae have been described 

[84,262,358,504]. PFGE is highly discriminative and generally considered suited for 

assessment of relatedness between epidemiologically connected isolates, particularly 

in populations with high recombination rates such as NTHi [502,504].  

Tenover et al. proposed criteria for assessment of genetic relationship based on 

comparison of restriction patterns and the number of band differences [502]. Isolates 

with identical patterns are categorized as indistinguishable, isolates differing by 2–3 

bands and 4–6 bands are classified as closely related and possibly related, respectively; 

isolates differing by seven bands or more are considered unrelated.  

A commonly used approach to analysis of restriction patterns of multiple isolates is 

calculation of band similarity coefficients. Carrico et al. defined S. pneumoniae 

isolates with from one to six band differences (i.e. closely or possibly related 

according to Tenover criteria) as a ‘type’ and isolates with identical patterns as a 

‘subtype’ and showed that with the Dice similarity index, 97% and 81% may be used 

as cut-off values for subtype and type assignment respectively [59].  
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3.5 MULTILOCUS ENZYME ELECTROPHORESIS (MLEE) 

Assessment of genetic variation in conserved genes that are involved in central 

metabolic processes, denoted housekeeping genes, is a much used approach to studies 

of population structure and determination of phylogenetic relationship between 

isolates of H. influenzae. MLEE detects allelic variation within a number of 

housekeeping genes on the basis of the differing electrophoretic mobilities of their 

gene products with subsequent assignment of strains to electrophoretic types.  

Musser et al. characterized a collection of 65 NTHi and 177 Hib isolates by MLEE 

with 15 loci and found the nontypeable isolates genetically heterogeneous and distinct 

from Hib strains [325]. Another collection of 2209 encapsulated H. influenzae, with all 

six serotypes represented, was characterized by MLEE with 17 loci and restriction 

fragment length polymorphism (RFLP) of the cap locus; two major phylogenetic 

groups (I and II) with seven (A-G) and five (H-L) major lineages, respectively, were 

identified [327]. Group I comprised strains of serotypes a, b, c, d and e; Group II 

encompassed serotypes a, b and f. The authors concluded that the population structure 

of encapsulated H. influenzae is clonal and suggested that the presence of lineages 

with serotype a and b strains in both major groups is due to horizontal transfer of 

serotype-specific cap sequences [326,328].  

 

3.6 MULTILOCUS SEQUENCE TYPING (MLST)  

By MLST, sequences of internal fragments of housekeeping genes are used to 

unambiguously characterize bacterial isolates of a species. For each gene, different 

sequences are assigned specific allelic numbers, and the allelic profile defines the 

sequence type (ST) [272]. Sequences are given different allele numbers whether they 

differ at a single nucleotide site or at many sites. A single genetic event may result in a 

new allele differing by one nucleotide (point mutations) or by several nucleotides 

(recombinational events). Thus, assessment of relatedness based on the number of 

nucleotide differences between alleles may be misleading. One advantage of MLST is 

that sequence data and allelic profiles are easily compared between study groups via 
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online databases [482]. Another advantage is that allelic profiles can be obtained by 

direct PCR and sequencing of normally sterile material.  

The MLST scheme for H. influenzae was established in 2003 and assigns STs based 

on allelic profiles of the seven housekeeping genes adk, atpG, frdB, fucK, mdh, pgi 

and recA [289]. Notably, some strains lack the fucK gene [89,347,415]. Software for 

phylogenetic analysis and an updated database with STs, serotypes and clinical data 

are available at the PubMLST website http://pubmlst.org/hinfluenzae (previously 

http://haemophilus.mlst.net).   

MLST allelic profiles may be analysed by the eBURST approach [125,480,527]. A 

clonal complex is defined as a group of strains sharing at least six alleles with at least 

one other member of the group. The term ‘eBURST group’ denotes a cluster of strains 

defined by the less stringent criterion of five shared alleles and must not be confused 

with clonal complexes [125]. For each clonal complex, eBURST identifies the ST that 

is most likely to represent the founding genotype (the primary founder) on the basis of 

parsimony as the ST that has the largest number of single locus variants (SLV). A ST 

with at least two descendent SLVs is defined as a subgroup founder.  

By eBURST analysis, the allelic profiles currently (2014-10-28) included in the MLST 

database constitute 165 clonal complexes (of which 51 encompass ≥5 STs) and 371 

singletons. The largest complex consists of Hib strains, with one ST (ST6) accounting 

for 41% (217/526) of the isolates, and encompasses 10.7% (149/1392) of all STs. The 

other serotypes and NTHi isolates cluster in separate complexes. An overview of the 

ten largest clonal complexes with predicted founders and associated capsular serotypes 

is shown in Table 5. The population structure of H. influenzae based on MLST allelic 

profiles, visualized using the eBURST software and setting the criterion for group 

formation to zero, is shown in Figure 4.  

Turner et al. evaluated the performance of eBURST for assessment of phylogenetic 

relationship by using strains with known ancestry and showed that populations with 

high recombination rates relative to mutation can be recognized by their eBURST 

patterns [527]. While a typical clonal population (low recombination rates and genetic 

differences mostly due to point mutations) shows multiple radial groups and the largest 

http://pubmlst.org/hinfluenzae
http://haemophilus.mlst.net/
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group contain a relatively low proportion of the STs, a population with high 

recombination rate typically consists of a large group with multiple linked radial 

groups and long chains of linked STs, where groups of different ancestry may be 

inappropriately linked together. Based on the eBURST population structure pattern for 

H. influenzae, with one large clonal complex and several smaller radial groups, the 

authors concluded that the species has moderate recombination to mutation rate and 

that eBURST performs very well.  

The clonal complexes encompassing NTHi (CC 2, 3 and 6-9) generally tend to form 

chains, whereas the Hib (CC1 and CC10), Hie (CC5) and Hif (CC4) complexes have a 

strict radial appearance (Figure 4). According to Turner et al. [527], this may be 

suggestive of relatively higher recombination rates in NTHi subpopulations, and 

eBURST analysis may be less reliable. Consequently, eBURST analysis of NTHi 

strains should probably be restricted to assignment to clonal complexes, using the most 

stringent (default) criterion of six shared alleles [125]. Results obtained by 

phylogenetic analyses on ‘eBURST groups’ with five shared alleles [102,221] should 

be interpreted with caution. 

Table 5 The ten largest clonal complexes (with predicted founders and associated capsular 

serotypes) by eBURST analysis of all isolates (n=2289) and STs (n=1392) in the MLST 

database (accessed 2014-10-28) using eBURSTv3 (http://haemophilus.mlst.net/eburst) 

Clonal complex Predicted founder No. of sequence types Serotype 

1 ST6 149 b 

2 ST1 40 non 

3 ST3 31 non 

4 ST124 31 f 

5 ST18 29 e 

6 ST584 23 non 

7 ST103 22 non 

8 ST503 20 non 

9 ST57 19 non 

10 ST222 19 b 

 

 

http://haemophilus.mlst.net/eburst
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Figure 4 The population structure of H. influenzae by eBURST analysis of MLST allelic 

profiles using eBURSTv3 (http://haemophilus.mlst.net/eburst). The diagram is based on all 

isolates (n=2289) and STs (n=1392) in the MLST database (accessed 2014-10-28). Dot sizes 

indicate number of isolates. Connected STs indicate clonal complexes. Blue, predicted 

founders; yellow, predicted subgroup founders. The ten largest clonal complexes are indicated 

by numbers; colours indicate capsular serotype (Table 5) 

 

3.7 MULTILOCUS SEQUENCE ANALYSIS (MLSA)  

While eBURST analyses MLST data by comparing allelic profiles, MLSA denotes 

phylogenetic analysis of housekeeping genes by comparing concatenated DNA 

sequences [153,172]. MLSA is suitable for determination of the phylogenetic position 

of new species and the relationships between closely related taxa, species and genera 

as well as typing of isolates belonging to the same species.  

http://haemophilus.mlst.net/eburst
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The most commonly used MLSA scheme for typing of H. influenzae is based on 

MLST sequences. Phylogenetic analysis of the sequences of the 68 STs in the original 

MLST database by Meats et al. largely confirmed the population structure achieved by 

MLEE, with two major groups (phylogenetic division I and II) [289]. The most 

important difference between the two methods was the assignment of lineage F/G 

(Hie) to group/division I by MLEE and to group/division II by MLSA. NTHi strains 

formed several clusters within division I. Software for concatenation of MLST 

sequences and comparison with a reference set of STs (and MLEE lineages) is freely 

available at http://pubmlst.org/hinfluenzae. 

Nørskov-Lauritsen performed MLSA based on six housekeeping genes (fucK excluded 

as the scheme was designed for all species within the H. influenzae group) for 900 STs 

from the MLST database (and 36 strains of H. haemolyticus and related species) and 

confirmed the existence of two major H. influenzae branches, one large branch 

(phylogenetic division I) encompassing the type strain, most NTHi, Hia and Hib 

strains, and all Hic and Hid strains; and a smaller branch (division II) with all Hie and 

Hif strains and some NTHi, Hia and Hib strains [351].  

By maximum-parsimony analysis of concatenated MLST sequences from all isolates 

in the database per 2006 (n=655) and eBURST analysis (with five shared alleles), 

Erwin et al. identified 14 phylogenetic groups (Clades 1-13 and eBURST group 2) 

with different characteristics, including serotypes and virulence determinants [102]. 

Almost all (98%) encapsulated strains and 86% of NTHi strains could be assigned to 

one of the groups. Nine of 14 groups were predominated by NTHi (including one 

group with H. aegyptius) three were serotype-specific (two Hib, one Hid), and two 

groups contained NTHi-specific and serotype-specific clusters (one group with Hia, 

Hie, Hif and NTHi; one with Hic and NTHi). For comparison, Connor et al. analyzed 

concatenated sequences for all STs in the database per 2011 (n=819) using the BAPS 

approach with clustering of isolates based on shared polymorphisms [79]; the authors 

identified 12 clusters but found limited concordance with the groups described by 

Erwin et al. [102]. 

 

http://pubmlst.org/hinfluenzae
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3.8 WHOLE-GENOME SEQUENCING (WGS) 

WGS offers species identification and typing in one operation. Different statistical 

methods may be used for sequence analysis of complete genomic DNA. Phylogenetic 

analysis based on evolutionary stable SNPs is a robust measure for strain relatedness 

even in species with high recombination rates, and is considered the standard method 

for WGS-based phylogenetic analysis in H. influenzae [88,367,388]. The novel 

‘discriminant analysis of principal components’ (DAPC) method correlates well to 

SNP-based phylogeny [88].  

Discrepancies between WGS-based phylogenetic analysis and clustering based on 

MLST sequences have been reported. An unweighted pair group method with 

arithmetic mean (UPGMA) dendrogram based on differences in non-core genes data 

for nine NTHi strains differed significantly from a dendrogram based on MLST 

sequences [189]. The authors suggested that the differences were due to 

recombinational exchange of non-core genes between strains with identical MLST 

sequence types. In another study, Strouts et al. analyzed protein-coding sequences for 

one Hib, three NTHi, two H. aegyptius (one conjunctivitis and one BPF isolate) and 

KW20 and found that BPF and conjunctivitis isolates of H. aegyptius were closely 

related [489]; the same strains were only remotely related according to previous 

MLSA [102].  

Finally, De Chiara et al. identified six statistically supported clades (I-VI) using the 

DAPC method [88]. The collection comprised 90 NTHi, five Hib, one Hif and the 

KW20 strain. The population was bipartite, with Clade I being phylogenetically 

different from clades II-VI. Encapsulated strains were associated with DAPC clades I 

(Hif) and VI (Hib). Consistent with previous observations [102], the clades had 

different characteristics in terms of virulence determinants; for instance, hmw adhesins 

were associated with clades II-V and igaB was restricted to clades II and IV. 

According to the authors, classification of isolates into clades could not be predicted 

using MLST data: clades II-V correlated to some degree with an MLST-based 

minimum spanning tree, whereas no correlation was observed for clades I and VI.  
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3.9 CONSISTENCY BETWEEN TYPING METHODS  

The H. influenzae population structures obtained by different typing approaches share 

important characteristics. First, the population is bipartite, with lineages of NTHi and 

encapsulated strains present in both major branches [88,289,325,351,388]. Second, 

there is a strong correlation between lineages and capsular serotypes, with a high 

degree of clonality among encapsulated strains [41,79,88,102,289,327,328,358]. NTHi 

are generally heterogeneous, but genetically distinct subpopulations exist; the exact 

delineation of these groups differs between methodologies [79,88,102,244,427].  

Figure 5 shows the correlation between serotypes, MLEE lineages [327], phylogenetic 

divisions [289], MLST (ST and CC) [289], MLSA clades [102], and WGS (DAPC) 

clades [88]. DAPC clades and MLST CCs have different resolution levels, but there 

are no conflicts between the approaches for 55 STs assigned to DAPC clades [88]; the 

methods may thus be considered complimentary. The resolution levels of MLEE 

lineages and MLSA clades lie between DAPC clades and MLST CC, with MLSA 

clades being more discriminative than MLEE lineages. DAPC Clade I and MLSA 

Clade 2 correspond to phylogenetic division II, whereas the remaining DAPC and 

MLSA clades correspond to phylogenetic division I. Thus, in terms of resolution 

levels, the approaches may be ranked as follows: phylogenetic division < DAPC clade 

< MLEE lineage < MLSA clade < MLST clonal complex.  

There are notable discrepancies (marked with blue) between population structures 

based on WGS and housekeeping phylogeny. Two NTHi-predominated MLSA clades 

suggest phylogenetic links between separate DAPC clades: MLSA Clade 10 connects 

DAPC clades IV and VI, and MLSA Clade 13 connects DAPC clades II and VI.  

Figure 5 (next page). Consistency between different approaches to phylogenetic analysis and 

typing in H. influenzae. Compiled from [88,102,289,327]. Assignment to MLST clonal 

complexes (CC, named by predicted founder) by eBURST analysis (2014-10-28). The ten 

largest CCs are in bold (Table 5). Information about capsular serotypes was obtained from 

http://haemophilus.mlst.net. Colours and boxes indicate grouping by the respective 

approaches. Colour codes for the WGS-based DAPC clades are according to the original 

publication [88]. Blue marking of MLSA clades indicates conflicts with DAPC clades  

http://haemophilus.mlst.net/
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4 CLINICAL ASPECTS 

 

4.1 COLONIZATION AND TRANSMISSION 

Humans are the only natural host of the three XV-dependent species H. influenzae, H. 

aegyptius and H. haemolyticus. Nontypeable H. influenzae and H. haemolyticus 

colonize the upper respiratory tract in humans and are particularly frequent in children. 

In contrast to many other Haemophilus species, these organisms are exclusively found 

behind the palatine arches and not part of the mouth flora [227,228,321].  

NTHi colonization is dynamic, and most children were occasional carriers in a 

longitudinal study of nasal isolates in healthy children in Korea [16]. Kindergarten 

children were significantly more often long-term carriers than school children. 

Molecular characterization (PFGE and MLST) of strains from long-term carriers 

showed that each child was colonized with different clones over time. Sequential 

colonization with different strains at high turnover rates was also reported in PFGE-

based studies from Japan [181] and Portugal [426], and in a Swedish study using 

MLEE for characterization [524]. In the latter study, several strains were epidemic 

(present in >1 person on a single occasion) or endemic (present on >1 occasion in >1 

person). Transmission is frequent between siblings [262] and between parent and child 

[549]. Extensive sharing of clones in a day-care setting was observed in Japan [181] 

and Portugal [426]. In contrast, the same strain was rarely found in different children 

in Korea [16]. Colonization varied from zero to 95% in a study comparing 

colonization rates and sharing of strains in day-care centers [24]. Colonization rates 

and strain sharing were significantly associated with suboptimal hygiene; colonization 

was also significantly associated with exposure for tobacco smoking.  

Outbreaks of NTHi in respiratory wards and nursing homes (including transmission to 

staff members) have been reported, underlining the importance of hygienic measures 

[9,182,573]. Clones with increased capacity for transmission and/or prolonged 

colonization have been reported [426], consistent with the observations in a population 

study suggesting association between population structure and disease [244].  
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4.2 DISEASE AND EPIDEMIOLOGY 

4.2.1 Encapsulated H. influenzae  

The pathogenicity of H. influenzae depends largely on capsulation status (chapter 2.8). 

The polysaccharide capsule protects against the humoral immune system, including 

opsonophagocytosis [336] and complement-mediated killing [583]. Nasal inoculation 

of rats with transformed strains (identical except for capsular serotype) resulted in 

invasive disease in all animals inoculated with Hib strains and in a proportion of 

animals infected with Hia and Hif strains; no animals infected with Hic, Hid and Hie 

strains developed invasive disease [582].  

Hib is strongly associated with severe infections such as meningitis and epiglottitis and 

was the leading cause of meningitis and other invasive disease in young children 

before effective vaccines were developed in the late 1980s [208,245,380]. Before the 

introduction of vaccines, Hib colonized nasopharynx in 0.5-3% of healthy children but 

was infrequently isolated from adults [61]. Invasive Hib disease occurred in 

approximately 0.5% of all children below the age of 5; two out of three cases occurred 

in children younger than 18 months [3,61,208]. The highest incidence rates were seen 

in Indigenous children in North America, the Arctic and Australia [525]. The pre-

vaccine incidence of invasive Hib disease in Scandinavia was 30-60 cases per 100.000 

children <5 yrs [70]. Age-specific annual incidence of epiglottitis in children 0-15 yrs 

in Sweden between 1971 and 1980 was 14/100.000 [69]. The estimated numbers of 

deaths from Hib disease among children <5 yrs in 2008 were 94.500 in Africa and 

199.000 worldwide.  

According to the World Health Organization (WHO), 189 countries had introduced the 

Hib vaccine by the end of 2013 [570]. Global coverage with three doses was 52% but 

only 18% in the Western Pacific Region and 27% in South-East Asia. In Norway, the 

Hib polysaccharide vaccine caused a rapid decline in invasive disease in children < 7 

yrs when introduced in 1992 (Figure 6). A similar effect was seen in Iceland [32]. 

With the notable exception of Hia emerging as a major invasive disease in the 

Indigenous populations of North America [365,525], there is no convincing evidence 

of serotype replacement after introduction of Hib vaccines [3,32,106,245,537].  
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Figure 6 Annual incidence of invasive H. influenzae disease in Norway 1977-2014 by age 

groups (‘år’). Blue, ≥7 years; red, <7 years. Number of cases on the x-axis. Reproduced from 

[354], with permission 

Hif (72%) and Hie (21%) accounted for most cases of invasive non-Hib disease in a 

European surveillance study comprising 10.081 H. influenzae from 14 countries 1996-

2006 [245]. Invasive Hia disease was rare but stronger correlated to meningitis in 

young children than other non-b serotypes. Hia and Hif strains have been reported as 

the etiological agent in septic arthritis [400], and Hif may cause necrotizing fasciitis 

and myositis [12,412]. 

 

4.2.2 Nontypeable H. influenzae (NTHi) 

The underestimated clinical importance of NTHi was emphasized in recent reviews 

[154,248,537]. Most NTHi infections occur at sites contiguous with the upper 

respiratory tract, e.g. acute otitis media (AOM), sinusitis, conjunctivitis, and upper and 

lower respiratory tract infections [208,323]. There is a close correlation between 

nasopharyngeal colonization, conjunctivitis and AOM in children [222,262,490]. 

NTHi were the most frequent cause of all types of AOM in children and involved in 

70% of clinically problematic AOM in a Spanish study [398]. NTHi was the main 

cause of bacteriological relapse following amoxicillin-clavulanate therapy for AOM in 
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an investigation from the U.S. [220]. In another study, 12 of 13 children with recurrent 

AOM had identical strains in nasopharynx and the middle ear during the first episode 

[262]. Of six children with a second episode, none had recurrent infection with the 

same strain but five had again identical strains in both locations. NTHi is the most 

common cause of COPD exacerbations and an important cause of exacerbations in 

cystic fibrosis [453]; there is a positive correlation between bacterial loads of H. 

influenzae, airway inflammation and COPD symptoms [25].  

A total of 2152 cases of invasive H. influenzae disease were reported in EU/EEA 

countries in 2011 [106]. The highest number of isolates were reported from UK 

(n=746) and France (n=492), whereas Sweden and Norway had the highest 

notification rates (2.16 and 1.73 cases per 100.000/year, respectively) [106].  

NTHi isolates account for the majority of invasive H. influenzae in countries where 

Hib vaccine is introduced [3,106,157,245,246,411,457,526,537]. Resman et al. 

reported a significant increase in invasive disease caused by NTHi and Hif in elderly 

(>60 yrs) in Sweden between 1997 and 2009 [411]. Similar observations have been 

made in Italy [158] and the U.S. [423]. 

Among invasive H. influenzae in Europe 1996-2006 (n=10.081), 44% were NTHi and 

28% were Hib [245]. Case-fatality ratio (CFR) was higher for invasive NTHi (11.5%) 

than for Hib (4.4%) and particularly high for invasive NTHi in patients <1 yr (17.4%) 

and ≥65 yrs (14.9%). Most patients with invasive NTHi (n=3.172) had bacteremia 

(52.8%), pneumonia (12.6%), or meningitis (10.5%). The high meningitis proportion 

is consistent with later reports: NTHi accounted for 17 of 21 non-Hib CSF isolates 

from Portugal 2002-2010 [19] and 22 of 28 non-Hib CSF isolates from Italy 2007-

2009 [158].  

Among 71 invasive H. influenzae from Norway in 2014 (blood, n=67; CSF, n=4), 51 

(71.8%) were NTHi, 12 (16.9%) were Hif, six (8.5%) were Hie, and Hia and Hib were 

represented with one isolate each [354]. All CSF isolates were NTHi. NTHi may also 

cause septic arthritis [400], and H. influenzae is the second most frequent Haemophilus 

species in endocarditis after H. parainfluenzae [44,86]. 
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Perinatal invasive NTHi disease is strongly associated with premature birth and 

increased mortality and morbidity in mother and child [77,78,160,245,500]. In a study 

from Iceland, the risk of invasive H. influenzae was almost 26 times higher in pregnant 

women compared to nonpregnant women [32]. In a recent British study, the incidence 

of invasive NTHi was >17 times higher in pregnant compared to nonpregnant women, 

and infection was associated with poor pregnancy outcome [77]. In another study 

conducted by the same group, comprising 118 live-born neonates with invasive H. 

influenzae disease, 97% of strains were NTHi and 96% were early-onset (<48 h of 

birth) [78]. Only 15% of mothers had signs of infection.  

An intriguing question is whether a proportion of presumably NTHi in perinatal 

disease may be misidentified ‘H. quentini’ [401]. One of ten examined invasive 

presumably NTHi from infants in Italy was identified as ‘H. quentini’ [159]. No 

strains were biotype IV in a Finnish study with eight NTHi (biotypes I-III) from early 

onset neonatal septicemia [500], suggesting that most cases are caused by ‘true’ NTHi. 

In a Spanish investigation, Deza et al. highlighted H. influenzae as a cause of genital 

infections [92]. Among 413 males with acute urethritis, H. influenzae was the only 

detected pathogen in five; however, the method used for identification (API 20E) does 

not differentiate between H. influenzae and ‘H. quentini’ (chapter 2.6). 

 

4.3 VIRULENCE AND PATHOGENICITY 

The ability of crossing the border between colonization and disease, i.e. to migrate 

from the upper respiratory tract to other parts of the body, such as the lungs, 

conjunctiva, paranasal sinuses and the middle ear, and then to survive and grow under 

various environmental conditions, differs between NTHi strains. Pathogenic strains are 

characterized by virulence determinants protecting the strain from the host’s immune 

system, increasing the ability to adhere to and invade epithelial cells, and enabling the 

strain to deal with damaging physical or chemical stressors present within various 

environments [72]. Virulence determinants are variably present in NTHi strains 

[72,97,102,349,484].  
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Monitoring of transcriptional changes in NTHi and infected epithelial cells by dual 

RNA sequencing has provided new insights into the strategies exploited by NTHi to 

cause invasive disease [15] but the molecular aspects of NTHi pathogenesis are 

incompletely understood [202]. 

IgA1 is an important part of the local immune system in the respiratory tract, 

compromised by four variants of IgA1 proteases encoded by igaA and igaB genes; 

igaA is present in most NTHi whereas igaB is frequent in COPD strains and apparently 

important for intracellular survival [73,127,318,322]. Lipopolysaccharides (LPS) are 

involved in colonization and tissue injury and evasion of complement-mediated 

immune clearance [316] The mechanisms used by H. influenzae to evade attack by the 

host’s complement system were reviewed by Hallström and Riesbeck [170].  

The mechanisms by which lipooligosaccharides (LOS) act as virulence factors in 

NTHi are not fully understood but impaired local host defense due to ciliar damage has 

been suggested [413]. The surface lipoprotein Protein D (encoded by hpd) inhibits 

ciliary function [137] and promotes adherence to and internalization into epithelial 

cells [4]. Other major adhesins in NTHi are hemagglutinating pili [155], the low-

molecular-weight lipoprotein Protein E [422], high-molecular-weight adhesins HMW-

1 and HMW-2 [483], the ‘adherence and penetration’ (Hap) protein [128], the outer 

membrane lipoproteins P2 [404] and P5 [14], and H. influenzae adhesin (Hia) [484]. 

Heme acquisition genes are significantly more prevalent in AOM compared to throat 

strains and have been suggested to play a role in pathogenesis [174]. An investigation 

comparing the genomes of clinical NTHi strains identified 149 genes significantly 

associated with virulence or commensality; notably, none of the determinants above 

were among the 28 genes more likely to be present in pathogenic strains [114].   

A notable trait of H. influenzae is the ability to adapt to the environment, evade 

immune attacks and regulate virulence behavior in an on/off manner through phase 

variation [28,316]. This phenomenon is caused by slipped-strand mispairment or other 

mechanisms of reversible genetic variation at ‘contingency loci’, consisting of 

hypermutable tandem repeats located within a promoter or coding sequence [28,197].  
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Colonization, migration and invasion is also regulated by complex interactions with 

competing microbes in the respiratory tract; these were reviewed by Bosch et al. [40]. 

In particular, pneumococci have developed mechanisms to kill and reduce the ability 

of H. influenzae to adhere to the surface of cells the respiratory tract.  

 

4.4 BIOFILM 

The ability to switch from a free-living, planktonic lifestyle with rapid cell division to 

an alternative life form characterized by cell-cell aggregation, surface attachment and 

low growth rate (‘biofilm’) is important for the survival of H. influenzae under 

variable and hostile conditions. The role of biofilm formation in chronic airway NTHi 

infections was reviewed by Swords [495]. The extracellular matrix (ECM) of NTHi 

biofilm contains significant amounts of extracellular, double-stranded DNA [213] and 

virulence determinants such as Hap and HMW adhesins, IgA1 protease and LOS 

[552]. The ECM of an AOM strain contained 265 different proteins [144].  

Biofilm formation varies between strains [319] and is more frequent in NTHi than in 

Hib [399]. Biofilm producers are frequent among invasive [397], AOM [150,314,397] 

and adeno-tonsil isolates [145] but not in conjunctivitis isolates [309,355]. In vitro 

biofilm formation by COPD [319] and cystic fibrosis isolates [486] has been reported 

but is significantly less frequent compared to isolates associated with invasive disease 

and AOM [397]. Formation and maturation of biofilm in vivo is coordinated by 

quorum signaling and sensing, i.e. regulation of gene expression in bacterial 

communities by use of soluble signal substances [493,496]. It has been claimed that H. 

influenzae lack homologues of genes required for quorum sensing [316]; however, the 

genome of H. influenzae contains the luxS gene encoding the interspecies quorum 

signal dihydroxypentanedione (DPD) [493]. Current knowledge on quorum signaling 

and sensing in NTHi was reviewed by Swords [496].  

Environmental factors, including beta-lactams and other antibiotics, may influence 

biofilm formation [198,249,495,572]. Restriction of heme-iron enhance biofilm 

architecture and the ability of NTHi to invade and form intracellular bacterial 
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communities in epithelial cells [498]. This is consistent with observations of NTHi 

within and between respiratory and adenoidal epithelial cells and macrophages, 

challenging the traditional notion of NTHi as an extracellular pathogen [72]. Intra- and 

paracellular communities of viable NTHi have been suggested to serve as seeds for 

recurrent and chronic infections, and may explain reports of antimicrobial therapy 

failure despite in vitro susceptibility [5,72,498,540]. NTHi isolates in biofilm are 

protected against antibiotics in vitro [469,486,572]. ECM destabilizers (e.g. EDTA and 

DNase) increase susceptibility to ampicillin and ciprofloxacin [60]. 

Garcia-Cobos et al. reported that 83% (40/48) of NTHi associated with recurrent 

infection, treatment failure or unresolved AOM produced biofilm [150].  There was no 

association between biofilm production and beta-lactam resistance mechanisms. In 

contrast, Mizrahi et al. characterized 216 NTHi and found no association between 

biofilm production and AOM treatment failure or recurrence [309]. There was a 

significant negative association between altered penicillin-binding protein 3 (PBP3) 

and biofilm production.  

 

4.5 NTHI VACCINES 

NTHi vaccines may reduce the global burden of disease substantially but effective 

vaccines are not available [154,208,320,323,537]. Due to genetic diversity, 

identification of cross-protective candidate antigens is difficult [316]. NTHi vaccines 

based on outer-membrane proteins have been unable to induce protective antibodies 

[39]. Outer membrane vesicles [421] and Protein F are new potential candidate 

antigens [201].  Other candidates are adhesins [561], LOS [65] and Protein D.  

Protein D is the first NTHi antigen that has induced partial protective immune 

responses in humans [137]. A prototype 11-valent S. pneumoniae conjugate vaccine in 

which pneumococcal polysaccharides were conjugated to H. influenzae protein D 

(PHiD-CV11) reduced nasopharyngeal colonization with NTHi by 38.6% [391] and 

NTHi AOM by 35.3% [392]. However, a licensed 10-valent vaccine based on the 

same principles (PHiD-CV10) with protein D as a carrier for eight of ten 
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pneumococcal serotypes (Synflorix, GlaxoSmithKline Inc.) [393] does not seem to 

reduce NTHi carriage in healthy children [390,536]. On-going clinical trials are 

assessing the effect on AOM (NCT01735084, NCT01174849; http://clinicaltrials.gov).  

Although the effectiveness of Protein D-based vaccines is compromised by hpd 

negative NTHi [388,473], they represent a proof of principle and development of 

broadly effective vaccines are expected within the next several years [320]. 

 

4.6 SURVEILLANCE  

Vaccine coverage and the global burden of disease in terms of morbidity and mortality 

for Hib and other vaccine-preventable diseases is monitored by WHO [569].  

In Europe, surveillance of invasive H. influenzae infections was initially (from 1996) 

performed as an EU-funded project, renamed European Union Invasive Bacterial 

Infections Surveillance Network (EU-IBIS) in 1998 (www.euibis.org) [245]. By 2006, 

28 countries reported data to EU-IBIS. A final report with data on 10.081 invasive 

isolates (1996-2006) from the 14 countries where routine vaccination was 

implemented before 2000 and serotyping was performed for >50% of isolates was 

published in 2010 [245]. The responsibilities of EU-IBIS were transferred to ECDC 

(www.ecdc.eu) in 2007. According to the latest annual surveillance report, a total of 

2152 cases of invasive H. influenzae disease were reported in EU/EEA countries in 

2011, and 16 of 27 countries reported more than ten cases [106].  

A recent review addressed the emergence and spread of strains with beta-lactam 

resistance due to altered penicillin-binding proteins and the implications for effective 

empirical therapy [537]. The authors emphasized the importance of standardized 

surveillance protocols and typing methodologies for global monitoring of 

antimicrobial resistance (AMR). WHO initiated the novel Global Antimicrobial 

Resistance Surveillance System (GLASS) in 2015 but whether the programme will 

encompass H. influenzae is unknown [571]. The organism is currently not included in 

the European Antimicrobial Resistance Surveillance Network (EARS-Net) for 

invasive isolates (http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance). 

http://clinicaltrials.gov/
http://www.euibis.org/
http://www.ecdc.eu/
http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance
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The Norwegian Institute of Public Health (www.fhi.no) monitors invasive H. 

influenzae disease in Norway, and the organism has been part of the Norwegian 

Surveillance System for Antimicrobial Drug Resistance (NORM) 

(www.antibiotikaresistens.no) since 2000 for respiratory isolates and from 2012 for 

invasive isolates (chapter 6.6). Finally, the International Circumpolar Surveillance 

(ICS) network has monitored invasive H. influenzae disease in the Arctic Region since 

2000; the surveillance program includes Northern Norway (from 2001) [365].  

http://www.fhi.no/
http://www.antibiotikaresistens.no/
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5 BETA-LACTAM ANTIBIOTICS AND THE CELL WALL  

 

5.1 DEFINITIONS AND CHARACTERISTICS 

Beta-lactams are hydrophilic drugs with a beta-lactam ring as the common structure 

and comprise penicillins, cephalosporins, carbapenems and monobactams 

[237,363,546]. A beta-lactam ring is a four-ring cyclic amide with the nitrogen atom 

adjacent to the carbon atom with the carbonyl group; this C-N-bond is denoted the 

beta-lactam bond and is the target for beta-lactamase enzymes (chapter 6.2). In 

penicillins (also denoted penams), the beta-lactam ring is fused with a saturated five-

membered ring; in cephalosporins (cephems), the beta-lactam ring is fused with an 

unsaturated six-membered ring; in carbapenems, the beta-lactam ring is fused with an 

unsaturated five-membered ring; in monobactams, the beta-lactam ring is not fused to 

another ring (Figure 7). Antibacterial spectra and pharmacokinetic properties may be 

modified by adding different side chains and other chemical alterations.  

 

Figure 7 The core structures of penicillins (A), cephalosporins (B), carbapenems (C) and 

monobactams (D). The beta-lactam bond is indicated (β). Adapted from [237,363,546] 

In addition to the narrow-spectrum benzylpenicillin (penicillin G, parenteral) and 

phenoxymethylpenicillin (penicillin V, oral), the penicillin group includes agents with 

extended spectrum, such as aminopenicillins (ampicillin and amoxicillin), ureido-

penicillins (piperacillin), carboxypenicillins (e.g. ticarcillin) and amidinopenicillins 

(e.g. mecillinam); and penicillinase-stable penicillins (e.g. methicillin and cloxacillin). 

Beta-lactamase-sensitive penicillins are sometimes used in combinations with beta-

lactamase inhibitors. The first beta-lactamase inhibitors developed for clinical use 

were clavulanic acid, sulbactam and tazobactam; these drugs are bicyclic beta-lactams 
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with structural similarities to penicillin and act as ‘suicide inhibitors’ by binding to and 

inactivating beta-lactamase enzymes through modifications of the active site [95].  

Cephalosporins are (mostly) penicillinase-stable oral and parenteral agents. 

Antimicrobial spectra vary between generations; third-generation and upwards are 

referred to as extended-spectrum agents. Carbapenems are parenteral drugs with a 

wider antimicrobial spectrum than other beta-lactams [363]. Imipenem and 

meropenem are the clinically most important carbapenems. Monobactams constitute a 

small class of beta-lactams with aztreonam (parenteral) as the most important agent 

[416]. Importantly, extended-spectrum cephalosporins, carbapenems and 

monobactams exert beta-lactamase inhibitor effect in addition to antibacterial effect, 

through formation of sterically unfavorable acyl-enzyme complexes [95].  

 

5.2 ACTIVITY AGAINST H. INFLUENZAE 

Beta-lactam antibiotics are traditional first choice agents for treatment of H. influenzae 

infections, due to low toxicity and favorable pharmacokinetic and ecologic profiles. 

Ampicillin became available for general use in the early 1960s and revolutionized 

treatment of meningitis and other serious infections [334,455]. Aminopenicillins and 

other extended-spectrum penicillins are still preferred for treatment of infections 

caused by susceptible H. influenzae [516,537]. Aminopenicillins penetrate poorly into 

epithelial cells and are not active against intracellularly located H. influenzae [5,45]. 

Phenoxymethylpenicillin therapy is not recommended for H. influenzae infections, and 

benzylpenicillin therapy is associated with increased mortality compared to 

aminopenicillins and cefuroxime in H. influenzae bacteraemia [505].  

Cephalosporins became widely used for treatment of infections caused by H. 

influenzae after the development of beta-lactamase-mediated resistance to penicillins 

in the 1970s (chapter 6.2). Most cephalosporins (except first-generation agents) are 

active against H. influenzae. The parenteral third-generation agents cefotaxime and 

ceftriaxone penetrate to the CSF [26] and are used for empirical therapy in invasive 

disease in many geographical regions [516]. The fifth-generation cephalosporin 
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ceftaroline is approved by the European Medicines Agency (www.ema.europa.eu) for 

treatment of adults with community-acquired pneumonia. Other beta-lactam treatment 

options include extended-spectrum penicillins combined with beta-lactamase 

inhibitors (e.g. amoxicillin-clavulanic acid and piperacillin-tazobactam), second-

generation cephalosporins (e.g. cefuroxime), and carbapenems, with meropenem so far 

representing the last stand for treatment of beta-lactam resistant H. influenzae.  

Increased prevalence of resistance to extended-spectrum cephalosporins in Japan 

during the 1990s forced a second shift in empirical therapy in severe infections, from 

cephalosporins to meropenem [532]. Meropenem is as effective as cefotaxime in 

meningitis but therapeutic failures have been reported with both agents [346]. Due to 

neurotoxicity, imipenem is not suitable for treatment of meningitis.  

Testing of susceptibility to ceftazidime and monobactams (i.e. aztreonam) is currently 

recommended by CLSI [75] but not by EUCAST [111]. According to EUCAST, H. 

influenzae is not a good target for therapy with ceftazidime, and the evidence for 

clinical efficacy of aztreonam is insufficient. Ceftazidime’s in vitro activity against H. 

influenzae is inferior to cefotaxime but superior to that of second-generation 

cephalosporins [379]. Clinical data are lacking but the in vivo bactericidal activity of 

ceftazidime was equivalent to that of ceftriaxone in a rabbit model of experimental Hib 

meningitis [433]. In a rat model of Hib meningitis, ceftazidime penetrated better to the 

CSF and was significantly more active than ampicillin or chloramphenicol [286]. 

Aztreonam has high in vitro activity against H. influenzae [386,416] and has been used 

with success for treatment of Hib meningitis in children [156]. Aztreonam penetrated 

well to interstitial fluids and fibrin clots and killed H. influenzae more effectively than 

ampicillin and cefuroxime in an in vivo rabbit model [252]. The drug also penetrated 

well to the CSF and reduced bacterial load better than ampicillin or chloramphenicol 

in experimental meningitis in rabbits in vivo [287,446].  

According to wild-type MIC distributions and epidemiological cut-off values 

(ECOFF) for beta-lactams and H. influenzae, piperacillin and the extended spectrum 

cephalosporins cefotaxime, ceftriaxone, cefpirome and ceftaroline are the most active 

beta-lactams in vitro against this organism (Table 6). 

http://www.ema.europa.eu/
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Table 6 Wild-type MIC distributions for beta-lactams against H. influenzae. Horizontal lines 

separate classes and cephalosporin generations. Loracarbef (carbacephem) and cefoxitin 

(cefamycin) are categorized with second-generation cephalosporins. Data from EUCAST 

(www.eucast.org/mic_distributions, accession date 2016-01-12) unless otherwise indicated 

MIC (mg/L) 

Agents .0
0
2
 

.0
0
4
 

.0
0
8
 

.0
1
6
 

.0
3
 

.0
6
 

.1
2
 

.2
5
 

.5
 

1
 

2
 

4
 

8
 

1
6
 

3
2
 

6
4
 

Penicillin G                 

Penicillin V                 

Ampicillin                 

Amoxicillin                 

Piperacillin                 

Ticarcillin
a
                 

Mecillinam
b
                 

Kloxacillin
c
                 

Dikloxacillin
c
                 

Cephalotin
d
                 

Cephalexin                 

Loracarbef                 

Cefoxitin                 

Cefuroxime                 

Cefaclor                 

Cefoperazone                 

Cefpodoxime                 

Cefdinir                 

Cefixime                 

Ceftibuten                 

Ceftazidime                 

Cefotaxime                 

Ceftriaxone                 

Cefepime                 

Cefpirome                 

Ceftaroline                 

Ceftobiprole
e
                 

Aztreonam
f
                 

Doripenem                 

Ertapenem                 

Imipenem                 

Meropenem                 

a
 [439]; 

b
 [507]; 

c
 [120] 

d
 [509]; 

e
 [122]; 

f
 [386] 

http://www.eucast.org/mic_distributions
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5.3 PEPTIDOGLYCAN BIOSYNTHESIS  

The peptidoglycan synthesis is the main target for beta-lactams. Peptidoglycan (also 

known as murein) is the stress-bearing component of the cell wall, and a functioning 

apparatus for peptidoglycan synthesis is vital for growth and morphogenesis in most 

bacteria [528]. In H. influenzae and other Gram-negative organisms, the peptidoglycan 

layer is located in the periplasm, defined as the space between the inner membrane (a 

classical phospholipid bilayer) and the outer membrane (composed of a mixture of 

lipopolysaccharides, lipooligosaccharides, phospholipids and lipoproteins) [261,546]. 

The biosynthesis of peptidoglycan is a complex process following a pathway which 

includes i) synthesis of nucleotide precursors in cytoplasma, ii) assembly of 

peptidoglycan monomers (see below) on the inner side of the cytoplasmic membrane, 

and iii) polymerization in the periplasmic space. A schematic overview of the pathway 

in H. influenzae was provided by Trepod and Mott [515].  

Peptidoglycan biosynthesis has been little studied in H. influenzae but has been 

extensively investigated in E. coli [237,474,481,528,538,542]. The main principles 

are, however, believed to be common in most Gram-negative bacteria [474,528,538], 

and the H. influenzae genome has been shown to encode the same pathways 

characterized in E. coli [6,267,515,542]. Common ancestry and the large number of 

conserved genes in the two organisms [91] support the assumption that peptidoglycan 

synthesis is highly similar in E. coli and H. influenzae. Finally, H. influenzae 

peptidoglycan strongly resembles E. coli peptidoglycan with respect to monomer 

structure, chain lengths and degree of cross-linking [52].  

In H. influenzae and other Gram-negative bacteria, a peptidoglycan monomer consists 

of a disaccharide; N-acetylglucosamine (GlcNAc or NAG) and N-acetylmuramic acid 

(MurNAc or NAM); and a pentapeptide chain linked to MurNAc. The monomers are 

synthesized in a series of enzymatic reactions catalyzed by four ligases encoded by 

murC, murD, murE and murF; these are responsible for the successive additions of the 

amino acids L-alanine, D-glutamate, diaminopimelic acid, and D-alanyl-D-alanine, 

respectively, to MurNAc [267]. The Mur ligases are required for cell viability [542]. 

The membrane steps include two enzymatic reactions catalyzed by the MraY and 



78 

 

MurG transferases, leading to the formation of the intermediates Lipid I and Lipid II; 

the latter reaction includes the addition of the second saccharide unit GlcNAc [538]. 

Lipid II, which includes the complete disaccharide-pentapeptide monomer unit, is then 

translocated (‘flipped’) across the inner membrane into the periplasmic space. The 

identity of the ‘flippase’ has been much debated; the cell division proteins FtsW, 

RodA and MurJ are the most likely candidates [456,474,528].  

The modified monomers are polymerized and assembled into the cell wall structure by 

four membrane-associated reactions: disaccharides are chained into a glycan backbone 

in the transglycosylase (glycosyltransferase) reaction, and the peptide chains are cross-

linked (the position 4 D-alanine of the donor peptide is linked with the position 3 

diaminopimelic acid of the acceptor peptide) to form a mesh-like peptidoglycan layer 

in the transpeptidase reaction. Prior to the latter reaction, the terminal D-alanine 

residue is removed from some peptide side chains in the carboxypeptidase reaction, 

and existing peptide cross-links are broken in the endopeptidase reaction (autolysis) to 

allow insertion of new peptidoglycan.  

The four reactions are catalyzed by enzymes collectively referred to as penicillin-

binding proteins (PBPs) [223,237,474,481,538,544]. Several hydrolases in addition to 

the PBP endopeptidases contribute to autolysis [544]. The activity of PBPs is regulated 

by lipoproteins anchored in the outer membrane [474,528]. 

 

5.4 PENICILLIN-BINDING PROTEINS: BETA-LACTAM TARGETS 

Penicillin-binding proteins differ in localization, size, structure, function and 

essentiality, and the number of PBPs varies between bacterial species. The proteins are 

numbered and categorized according to molecular weight and enzymatic activity. 

High-molecular-weight (HMW) PBPs are divided into two subclasses: class A PBPs 

are bifunctional transglycosylase and transpeptidase enzymes whereas class B PBPs 

have only transpeptidase activity. The low-molecular-weight (LMW) PBPs exert 

carboxypeptidase and/or endopeptidase activity [223,237,474,481,528,544,577]. The 

transpeptidase, carboxypeptidase and endopeptidase activity depends on three 
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conserved motifs Ser-X-X-Lys (SXXK), Ser-X-Asn (SXN) and Lys-Thr-Gly (KTG); 

amino acid sequences at these motifs are crucial for the tertiary structure of the active 

site pocket and have great impact on substrate specificity and enzymatic activity. The 

serine of the SXXK motif is essential for the catalytic mechanism and is the active 

residue. Serine is acylated and deacylated on each catalytic cycle [223,474,577].  

Despite the term ‘penicillin-binding’ is the acyl-D-alanyl-D-alanine part of the 

peptidoglycan monomer the natural substrate for the transpeptidase moiety of PBPs. 

The exact binding location of the donor peptide in the active site pocket is unknown, 

and the transpeptidase reaction is incompletely understood on a molecular level [528]. 

It should also be noted that current understanding of the mechanisms and regulation of 

peptidoglycan synthesis is limited, partly because the different parts of this process 

have been traditionally studied independently rather than as an integrated macro-

molecular machine [474]. PBPs interact with a large number of enzymes and proteins, 

and the activity of PBPs during bacterial growth and cell division is regulated in 

sophisticated ways (chapter 5.7). A schematic illustration of the peptidoglycan 

synthesis complexes and interactions between PBPs and other components in E. coli 

was provided in a recent review article by Typas et al. [528]. 

Beta-lactam antibiotics exert antibacterial effect by inhibiting the transpeptidase, 

carboxypeptidase and endopeptidase (but not the transglycosylase) activities of PBPs 

as substrate analogs of the acyl-D-alanyl-D-alanine component of the peptidoglycan 

monomer [237,481,544,546]. The disturbed balance between peptidoglycan synthesis 

and autolysis (caused by other hydrolases than the LMW PBPs) leads to weakening of 

the peptidoglycan layer, morphological changes and eventually lysis.  

The antibacterial effect of beta-lactams depends on their binding affinity to the active 

site of specific PBPs (chapter 5.4), and the primary target of a beta-lactam may to 

some degree be deduced from the morphological effects. Early studies in E. coli 

identified seven PBPs and showed that simultaneous inhibition of PBP1A and 1B 

resulted in cell lysis, PBP2 inhibition resulted in spherical cells, and PBP3 inhibition 

induced filamentation; all effects were lethal. In contrast, inhibition of LMW PBPs 

(PBP 4-6) was not associated with morphological changes or death [481].  
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According to current knowledge [474,528], PBP1A and PBP2 interact and are central 

in cell elongation in Gram-negative bacteria, with PBP2 being particularly important 

for maintaining rod shape, whereas PBP1B and PBP3 cooperate in the synthesis of 

septal peptidoglycan during cell division. LMW PBPs are involved in control of 

morphology, autolysis and regulation of peptidoglycan synthesis but are generally not 

required for survival [223,237,474,528,544]. The role of LMW PBPs and other 

hydrolases was reviewed by Vollmer et al. [544].  

Early observations suggested that the targets and effect mechanisms of beta-lactams in 

H. influenzae are similar to in E. coli. Klein and Luginbuhl reported that ampicillin 

induced filaments with ‘periodic saccular outpouchings’ in the ampicillin-susceptible 

H. influenzae strain ATCC 19418 (MIC = 0.1 mg/L) [234]. Makover et al. reported 

that exposure of H. influenzae to penicillin G, amoxicillin, cephalexin and 

amdinocillin resulted in morphological effects similar to those previously described in 

E. coli, including formation of spherical cells after exposure for amdinocillin [274].  

 

Figure 8 Collage of microphotographs (100x) showing the morphological effects of 

meropenem (top left) and ampicillin (top right) on H. influenzae. Bottom, cells with no 

exposure for antibiotics. All pictures are the same magnification. See text for details 
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The morphological effects of carbapenems on H. influenzae were investigated in a 

simple experiment for this thesis: three tubes with 5 ml BHI broth supplemented with 

haemin (10 μg/ml) and NAD (2 μg/ml) were inoculated with 2-3 colonies of a beta-

lactamase negative isolate with increased ampicillin gradient MIC (2 mg/L). Paper 

disks with 10 μg ampicillin and 10 μg meropenem were added to separate tubes. Gram 

stained smears of sediment from each tube were examined by microscopy after 18 h 

incubation at 35 ±1ºC in air with 5% CO2 (Figure 8). Filaments with saccular 

outpouchings were observed in the ampicillin tube, consistent with previous 

observations [234], whereas spherical cells were observed in the meropenem tube, 

indicating inhibition of a homologue to PBP2 in E. coli. Lysis occurred in both tubes.  

 

5.5 PENICILLIN-BINDING PROTEINS IN H. INFLUENZAE  

5.5.1 Terminology 

The PBPs in H. influenzae were first studied by Makover et al. [274]. Radiolabeled 

penicillin G was bound to the membrane fraction of the beta-lactamase negative strain 

ATCC 19418 with subsequent gel electrophoresis. Electrophoretic patterns revealed 

eight major PBPs with molecular weights 90-27 kDa, designated PBP 1-8. Binding 

affinities for beta-lactams were determined by competition experiments. A factor 

adding some uncertainty to the results is the reported ampicillin MIC (3.3 mg/L), 

which is significantly higher than the value (0.1 mg/L) reported for this strain by 

others [234] and highly suggestive of acquired beta-lactam resistance mechanisms. In 

the following years, research groups in the U.S., Canada and Japan characterized PBPs 

in ampicillin susceptible isolates [71,276-278,296,298,301,303,304,366,451,530]. 

Variations in estimated molecular weights and numbers of detected PBPs make it 

difficult to compare results and observations from different studies, and the use of 

different numbering systems has caused some confusion. However, harmonization 

with current terminology is possible based on the reported binding affinities and 

morphological effects of PBP inhibition. An overview of reported PBPs in different 

studies and the correlation to current terminology is shown in Figure 9.  
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Figure 9 Penicillin-binding proteins (PBPs) in H. influenzae. Numbering and molecular 

weights (MW) is according to the respective authors. Colours indicate PBP identities 

according to current terminology, as shown to the right (not related to the MW scale). Only 

PBPs for which MW is presented in the original article are shown. The horizontal line 

separates high-molecular-weight and low-molecular-weight PBPs. Compiled from A [274], B 

[301], C [366], D [451], E [278], F [276,277], G  [298], H [71], I [530] 

Current terminology for HMW PBPs (1A, 1B, 2, 3A, 3B) and the LMW PBP with the 

highest molecular weight (PBP4) was proposed by Parr and Bryan in 1984 [366]. The 

two remaining LMW PBPs were assigned their current numbers (PBP5 and PBP6) by 

Malouin and Bryan in 1988 [276]; this terminology is used in most later publications 

(and in this thesis) [71,277,516,530]. In 1995, whole genome sequencing of H. 

influenzae Rd KW20 revealed seven PBP encoding genes: ponA, ponB, pbp2, ftsI, 

dacA, dacB and pbp7 (‘HI0364’) [131]. In 2001, Ubukata et al. [530] showed by 

sequencing and transformational studies that the proteins denoted PBP 3A and 3B by 

Bryan and coworkers [276,277,366] were encoded by the ftsI gene and correspond to 

PBP3 in E. coli. In addition to PBP 3A and 3B, Ubukata et al. described six PBPs (1A, 

1B, 2, 4 5 and 6); exact molecular weights were not presented but comparison of gel 

pictures indicates that these proteins correspond to the PBPs numbered similarly by 

Bryan and coworkers [276,277].  
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Accordingly, in a review on antimicrobial resistance, Tristram et al. stated that H. 

influenzae has eight PBPs, designated 1A, 1B, 2, 3A, 3B, 4, 5 and 6, and that the 

numbering is based on observations that the affinity of each PBP is similar to the 

corresponding PBPs in E. coli [516]. An overview of PBPs in H. influenzae, with the 

corresponding genes and enzymatic activity of the various proteins is presented in 

Table 7. 

Table 7 Penicillin-binding proteins (PBPs) in H. influenzae with corresponding genes and 

functions (partly based on observations and terminology in E. coli). HMW, high-molecular-

weight; LMW, low-molecular-weight; Tp, transpeptidase; Tg, transglycosylase; Cp, 

carboxypeptidase; Ep, endopeptidase. Compiled from 

[6,131,223,237,274,301,481,515,516,528,530] 

PBP 1A 1B 2 3AB 4 5 6 

Gene ponA ponB pbp2 ftsI dacB dacA pbpG 

Class HMW-A HMW-A HMW-B HMW-B LMW LMW LMW 

Enzyme 

activity 

Tp, Tg Tp, Tg Tp Tp Cp, Ep Cp Ep 

Effects on 

morphology 

Cell 

elongation 

Cell 

division 

Rod 

shape, 

Cell 

elongation 

Cell 

division 

None Cell 

shape 

None 

Protein  

homologue 

in E. coli 

(synonymous

gene names) 

PBP1A 

(mrcA, 

ponA) 

PBP1B 

(mrcB, 

ponB, 

pbpF) 

PBP2 

(pbp2, 

mrdA) 

PBP3 

(ftsI, 

pbpB) 

PBP4 

(dacB) 

PBP5 

(dacA, 

pfv) 

PBP7 

(pbpG, 

yohB) 

The terminology implies at least two inconsistencies. First, only one gene (ftsI) 

encoding PBP3 is known in H. influenzae and E. coli, and the correspondence between 

this gene and the two proteins PBP 3A and 3B in H. influenzae is not clear (chapter 

5.6). Secondly, whereas the genome of H. influenzae contains a homologue to the 

pbpG gene encoding PBP7 in E. coli, no homologue to the dacC gene encoding PBP6 

in E. coli has been identified [131,223,515]. Thus, using the genes and PBPs of E. coli 

as reference, the correct designation for the PBP currently designated PBP6 in H. 

influenzae should probably be ‘PBP7’ [223]. Interestingly, PBP6 appears to consist of 

two proteins with slightly different molecular weights [299,530].  
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It should also be noted that other PBPs than the eight described above have been 

reported in H. influenzae. Malouin and Bryan observed a protein between PBP4 and 

PBP5 in the Rd strain (denoted PBP4´ in Figure 9), and Hie ATCC 8142 and Hib 

ATCC 9705 had a protein between PBP3B and PBP4 [276]. The significance of these 

observations is unknown.  

Detection and characterization of PBPs may be affected by several factors. PBP3A and 

PBP4 are not always detectable when cells are in stationary phase [298]. Ubukata et al. 

reported that PBP4 could not be detected in strains with a 7-basepair deletion in the 

dacB gene resulting in a stop codon [530]. Malouin and Bryan reported that PBP 3A 

and 3B in strain Rd were temperature sensitive; at 42ºC the proteins did not bind 

penicillin G, and filamentous cells were formed [276]. These observations suggest that 

temperature may induce the SOS response in H. influenzae (chapter 5.8). The authors 

also showed that alterations in temperature affected the electrophoretic mobility of 

PBP3A and the binding affinity of PBP1A. Whether these observations have any 

clinical significance is not known.  

 

5.5.2 Essentiality 

Studies on essentiality of PBPs in H. influenzae have shown differing results. Akerley 

et al. assessed essentiality of by transposon mutagenesis and genetic footprinting [6]. 

As transposons normally cannot be inserted into essential genes, the number of 

insertions in the open reading frame of each gene (excluding 25% of the open reading 

frame in the 3’ end) was used to assess essentiality. Genes with no insertions (e) or 

single insertions (e1) were considered putative essential for growth or viability, genes 

with two insertions (e2) were scored as equivocal and genes with multiple insertions 

were considered non-essential. Of the seven PBP genes, ponB (e), dacB (e), and pbp2 

(e1) were essential; ftsI (e2) was equivocal; and dacA and pbpG were non-essential. 

The essentiality of ponA could not be determined. These observations are consistent 

with observations in E. coli, where inactivation of PBP 1A and 1B, or PBP2, or PBP3, 

is lethal whereas inactivation of either PBP 1A or 1B is not [481].  
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Trepod et al. assessed essentiality of PBP genes in H. influenzae by insertional 

inactivation of genes using transposon mutagenesis and concluded differently [515]. 

Defining non-essentiality as cellular survival despite inactivation of the gene, the 

authors found that only ftsI was essential. The effect of simultaneous inactivation of 

two or more non-essential PBP genes was not investigated. Categorization of pbp2 as 

non-essential is remarkable, considering the bactericidal effect of carbapenems [363] 

and that PBP2 is the primary target of carbapenems (see below). From these two 

studies it seems clear that ftsI is essential whereas dacA and pbpG are non-essential in 

H. influenzae. For the remaining genes, additional studies are needed. Clarification of 

the essentiality of the pbp2 gene is of particularly importance. 

 

5.5.3 Beta-lactam affinity  

PBP binding affinities of beta-lactams may be determined by competition studies, in 

which whole cells or membrane preparations are allowed to react with beta-lactams at 

varying concentrations, followed by addition of radioactive penicillin G. The amount 

of radioactive penicillin G bound to each PBP (with and without the competing beta-

lactam) is then measured. Binding affinity is expressed as the I50 value, which is the 

concentration of the drug required to reduce the binding of penicillin G by 50% [274]. 

A similar methodology using fluorescent penicillin may be used to calculate the IC50 

value [313]. Low I50 or IC50 values indicate high affinity for the drug. Notably, I50 and 

IC50 values are not directly comparable, and inter-investigator variation must be taken 

into account when comparing results from different investigations.  

Relative binding affinities indicate which PBP is the primary target of the agent but do 

not allow comparison of the activity of different drugs. Absolute binding affinities are 

comparable between agents, and may to some degree be used to predict antibacterial 

activity and vulnerability for resistance development due to target alterations (chapters 

6.3 and 6.4.1). In H. influenzae, most beta-lactams (with carbapenems as a notable 

exception) have highest affinity for PBP1B and PBP3 (3A and/or 3B), but there are 

important differences between and within classes and subclasses (Table 8).  
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Table 8 Relative PBP affinities of beta-lactams in ampicillin-susceptible H. influenzae. The 

numbering of PBPs is harmonized according to current terminology (Figure 9). High-

molecular-weight PBPs are in bold; PBP3A and 3B are highlighted (blue).  

Agents Relative affinities References 

Penicillin G 1B > 4 > 3A = 3B > 2 > 1A = 5 [274] 

 1B > 3B > 3A > 5 > 1A > 2 [298] 

 6 > 4 > 1B > 3B > 3A > 5 > 1A > 2 [299] 

Ampicillin 1B = 3B > 3A > 2 = 4 > 1A = 5 [274] 

 3A > 1B > 4 > 2 > 1A > 3B [301] 

 4 > 3A > 1B = 3B > 6 > 2 > 1A > 5 [298] 

 4 > 1B = 3A = 3B > 2 > 1A > 5 [530] 

Amoxicillin 1B = 4 > 2 > 3AB > 1A = 5 [274] 

Piperacillin 3AB > 2 > 1AB [366] 

 3B > 3A > 2 > 1B > 1A [313] 

Amdinocillin 2 > 1B > 4 > 1A > 3A = 3B = 5 [274] 

Cephalexin 1B > 4 > 3AB > 2 > 1A > 5 [274] 

Cephalotin 1B > 1A > 3B > 3A > 4 > 2 = 5 [274] 

Cefoxitin 1AB > 2 >=< 3AB [366] 

Cefuroxime 1B > 3B > 3A > 1A > 2 [299] 

Ceftibuten 1B > 3B > 3A > 6 > 1A > 5 [303] 

Cefdinir 3A = 3B > 1B > 4 > 1A = 2 = 5 [530] 

Cefditoren 3A = 3B > 1B > 4 > 1A = 2 = 5 [530] 

Cefixime 1B = 3A > 3B > 1A > 2 > 5 [303] 

Cefpodoxime 1B > 3A > 3B > 6 > 2 > 1A > 5 [303] 

 3A = 3B > 1B > 4 > 1A = 2 = 5 [530] 

Cefotaxime 3A > 3B > 6 > 1B > 1A > 2 > 5 [303] 

 3A = 3B > 1B > 4 > 1A = 2 = 5 [530] 

 3A > 3B > 1B > 1A > 2 [313] 

Ceftriaxone 3B > 3A > 1B > 1A > 2 [313] 

Imipenem 2 > 1AB > 3AB [366] 

 2 > 1A > 3B > 3A > 1B > 5 >=< 6 [298] 

 4 > 2 > 1B > 5 > 1A > 3B [217] 

Meropenem 4 > 2 = 1B > 1A > 3A = 3B >= 5 [530] 

 2 > 4 > 3B > 1B > 5 > 1A [217] 
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The strong affinity of cefotaxime and ceftriaxone for PBP3 is consistent with high in 

vitro activity; conversely, the low affinity of cephalexin is consistent with low activity 

of this drug against H. influenzae (Figure 10). Piperacillin has high affinity for both 

PBP3 and PBP2; the latter thus appears to be the secondary target for this drug.  

Carbapenems have higher affinity for PBP2 than PBP3, consistent with the observed 

morphological effects of meropenem (Figure 9). The in vitro activity of these drugs is 

similar to or higher than the activity of ampicillin (Table 6) and they kill H. influenzae 

effectively in vivo [346]. Monobactam affinity studies in H. influenzae have not been 

identified but PBP3 is the primary target of monobactams in E. coli [416].  

 

Figure 10 Absolute and relative binding affinities of beta-lactams for high-molecular-weight 

PBPs in ampicillin susceptible H. influenzae. A (I50, mg/L): ampicillin [301], cephalexin 

[274],  cefuroxime [299], cefotaxime [303], imipenem and meropenem [217]; B (IC50, μM): 

piperacillin, ceftriaxone and cefotaxime [313]. I50 and IC50 values are truncated at 0.3 mg/L 

and 100 μM. Low values indicate high affinity. The affinities of cefotaxime are used to 

harmonize the scales. PBPs are numbered according to current terminology (Figure 9) 
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5.6 PBP3, CELL DIVISION AND THE FTSI GENE 

Because PBP3 is the only PBP so far confirmed to be involved in clinically significant 

beta-lactam resistance in H. influenzae (chapters 6.3 and 6.4.1), this protein is given 

particular attention in this thesis.  

The mature form of PBP3 is a class B HMW PBP with transpeptidase activity and 

essential for synthesis of septal peptidoglycans during cell division. The protein 

consists of a large periplasmic C-terminal transpeptidase domain, a membrane-

spanning segment, and a small cytoplasmic N-terminal domain; the two latter 

constitute the membrane anchor and are necessary for normal cell division [554]. Beta-

lactam affinity and transpeptidase activity depends on the three-dimensional structure 

of the active site pocket, for which the amino acid sequences near the conserved motifs 

S327TVK, S379SN and K512TG are particularly important [530].  

The formation of a septum during cell division is mediated by a multi-protein complex 

of cell division proteins at the division site, denoted the divisome [528]. The first event 

is polymerization of the tubulin-like protein FtsZ into the Z-ring. This is followed by 

recruitment of other division proteins in a particular order, with the incorporation of 

PBP3 as a late event. Several cell division proteins such as FtsA, FtsQ, FtsL and FtsW 

are required for septal localization of PBP3 [305,554]. In the divisome, PBP3 interacts 

particularly close with PBP1B and the cell division protein FtsN [528]. Divisome PBP 

activity is in part controlled by outer membrane-anchored lipoprotein B [474,528]. It 

seems likely that the saccular outpouchings observed after exposure for ampicillin 

[234], depicted in Figure 8, represent dysfunctional divisomes with accumulation of 

cell division proteins.  

The ftsI gene encoding PBP3 in H. influenzae consists of 1833 bp and has 51% 

homology to the ftsI gene (also denoted pbpB) encoding PBP3 in E. coli; for 

comparison, the homology identity between PBP3 in H. influenzae and PBP2X in 

pneumococci is 29% [530]. Comparison of the local context of the ftsI gene shows that 

the clusters of cell division genes (denoted dcw) are structurally similar in H. 

influenzae and E. coli, whereas clusters with the corresponding genes in other 

organisms are organized differently [542]. In addition to ftsI and other cell division 
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proteins, the dcw cluster comprises genes encoding murein ligases used for synthesis 

of peptidoglycan precursors (chapter 5.3), which are needed for biosynthesis of 

peptidoglycan during cell elongation as well as cell division. The genes of the dcw 

cluster in H. influenzae and the functions of the various gene products are presented in 

Table 9.  

The relationship between the ftsI gene and the two proteins PBP 3A and 3B is 

incompletely understood. Ubukata et al. suggested that PBP 3A and 3B in H. 

influenzae are different forms transcribed from the same gene [530]. In E. coli, PBP3 

is synthesized as a precursor which is processed into the mature form by a C-terminal 

protease, encoded by the prc gene (synonym tsp); the precursor and the mature protein 

have different electrophoretic mobilities [173]. The prc gene is present in H. 

influenzae [131] and a similar post-translational modification of PBP3 in this organism 

is likely.  

Table 9 The dcw gene cluster (presented in order from 5’ to 3’) with the corresponding gene 

products and their functions in E. coli and H. influenzae. Compiled from 

[305,474,528,538,542,554] 

Gene Product Function 

mraZ MraZ Unknown 

mraW MraW 16S rRNA methyltransferase; methylates 16S rRNA  

ftsL FtsL Cell division protein 

ftsI PBP3 Transpeptidase; catalyzes cross-linking of peptide sidechains 

murE MurE Ligase; adds the third aa (diaminopimelic acid) to the peptide chain 

murF Mur F Ligase; adds the last aa (D-alanyl-D-alanine) to the peptide chain  

mraY MraY Transferase; converts the disaccharide-pentapeptide to lipid I 

murD MurD  Ligase; adds the second aa (D-glutamate) to the peptide chain  

ftsW FtsW Cell division protein 

murG MurG Transferase, converts lipid I to lipid II 

murC MurC Ligase; adds the first aa (L-alanine) to MurNAc 

ddlB DdlB Ligase; synthesizes D-alanyl-D-alanine from two D-alanine molecules 

ftsQ FtsQ Cell division protein 

ftsA FtsA Cell division protein 

ftsZ FtsZ Cell division protein 



90 

 

5.7 REGULATION OF FTSI TRANSCRIPTION AND CELL DIVISION 

Regulation of transcription of the dcw cluster is poorly investigated in H. influenzae. 

In E. coli, with identical organization of the dcw cluster [542], gene transcription is 

regulated in a sophisticated manner [162,542]. Considering their common ancestry 

[91], it seems likely that mechanisms similar to those regulating gene expression in E. 

coli may be present in H. influenzae; however, this assumption needs to be confirmed. 

Some regulatory mechanisms present in E. coli and their relevance for regulation of 

ftsI transcription and cell division in H. influenzae are described below. 

In E. coli, five promoter sequences initiating transcription have been identified at the 

5’ end, and six promoters have been identified at the 3’ end [542]. The closest 

promoter to the ftsI gene is localized ~400 bp upstream of the start codon, just 

upstream of the neighboring ftsL gene. Promoters of the dcw cluster have to my 

knowledge not been characterized in H. influenzae.  

The pyruvate dehydrogenase complex regulator, PdhR, inhibits transcription of the 

dcw cluster in E. coli [162]. The pyruvate dehydrogenase complex consists of pyruvate 

dehydrogenase (aceE), dehydrolipoate acetyltransferase (aceF) and dehydrolipoamide 

dehydrogenase (lpdA), and catalyses the formation of acetyl-CoA from pyruvate. PdhR 

is inhibited by pyruvate and represents a link between cell division and nutritional 

status. The pyruvate dehydrogenase complex genes (aceE, aceF and lpdA) are present 

in H. influenzae [6] but the existence of a homologue to the gene encoding the 

complex regulator PdhR and the role of this putative gene product in the regulation of 

dcw transcription in this organism are to my knowledge not investigated.  

Transcription of the dcw cluster at the 5’ end is repressed by binding of LexA to at 

least three SOS boxes in E. coli [162,542]. The SOS response, reviewed by Simmons 

et al. [461], is a bacterial defense mechanism induced by DNA damage and other 

stressors. SOS induction leads to up-regulation of several genes, including recA, which 

is essential for DNA repair through recombination (chapter 3.3). RecA binds to single-

stranded DNA (a signal of DNA damage) and forms a nucleoprotein which interacts 

with LexA to activate autocleavage, thereby increasing expression of the dcw cluster 

and other LexA repressed genes, such as sulA (also denoted sfiA, ‘suppress 



91 

 

filamentation inhibitor’). The sulA gene encodes a cell division inhibitor (SulA) with 

the ability to prevent the formation of the Z-ring by blocking FtsZ (also known as 

SulB) [193]. This causes a rapid arrest in cell division. Combined with increased 

transcription of murein ligases, this results in filamentous growth, providing the cell 

with an opportunity to repair chromosomal damages before cell division [461]. The H. 

influenzae genome encodes both sulA and lexA [6], with 67% sequence identity 

between lexA in H. influenzae and E. coli [494]. The sulA gene is located adjacent to 

recA in E. coli, but not in H. influenzae. 

In addition to DNA damage, a variety of environmental factors may induce the SOS 

response. Miller et al. showed that the response is initiated by inhibition of PBP3 by 

beta-lactams in E. coli [307]. The authors demonstrated that strains unable to generate 

an SOS response (mutations in recA or dpiA) or unable to inhibit FtsZ (mutations in 

sulA) were more effectively killed by ampicillin, and concluded that the SOS response 

represents a mechanism that protects against the lethal effects of beta-lactams. 

Observations by Malouin and Bryan suggest that temperature may activate the SOS 

response in H. influenzae [276]. At 42ºC, the authors observed filamentous growth and 

no binding of benzylpenicillin to PBP3, whereas binding to PBP1A was increased.  

SOS boxes are located in the promoter regions of the genes they control 

[461,494,542]. All known SOS boxes in E. coli contain 5’ CTGT alternating with 

(AT)4 [461]. The consensus sequence TACTGTATATATATACAGTA, alternatively 

expressed as TACTG(N)10CAGTA or TACTG(TA)5CAGTA, contains oligonucleotide 

repeats (TA) similar to the ‘contingency loci’ associated with phase variation in H. 

influenzae (chapter 4.3) [28]. Interestingly, induction of the SOS response destabilizes 

dinucleotide repeats in E. coli, with greatly increases replication slippage rates [312].  

Based on these observations, it may be hypothesized that phase variation affecting 

SOS boxes in the dcw promoter region is involved in the regulation of cell division in 

H. influenzae. The correlation between the SOS response and phase variation in H. 

influenzae was explored by Sweetman et al. [494]. By searching for the sequence 

CTG(N)10CAG, based on the consensus sequence for LexA-binding SOS boxes in E. 

coli, the authors identified 25 genes with SOS boxes within 200 basepairs of the start 
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codon in H. influenzae  [494]. No SOS boxes were identified in the promoter regions 

of sulA or the dcw cluster; however, the structure of dcw-associated SOS boxes in E. 

coli (CTG(N)11GAG) differs slightly from the consensus sequence (CTG(N)10GAG) 

[199,542]. Some of the SOS boxes contained repeats, but RecA-dependent induction 

of the SOS response did not affect the frequency of phase variation at these loci. This 

does not, however,  rule out the possibility of phase variation by RecA-independent 

mechanisms (e.g. slipped-strain mispairment) (chapter 4.3) [28].  

Global stress responses other than the SOS response may also be involved in 

regulation of cell division. The stringent response is activated by starvation and other 

stress signals and allows the bacteria to adapt to changes in nutrient availability. The 

response is mediated by the stringent factors (also denoted ‘alarmones’) guanosine 5’-

diphosphate 3’-diphosphate (ppGpp) and guanosine 5’-triphosphate 3’-diphosphate 

(pppGpp) synthesized by Rel/Spo homologues and small alarmone synthetase proteins 

[42]. These molecules downregulate transcription of genes involved in cell growth and 

division and thus interfere with the effect mechanism of beta-lactams. The H. 

influenzae genome encodes the genetic apparatus involved in the stringent response 

[131] and exposure to transcription inhibitors has been demonstrated to cause 

decreased concentrations of ppGpp in H. influenzae [117].  
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6 BETA-LACTAM RESISTANCE  

 

6.1 AMPICILLIN THERAPY FAILURE: EARLY REPORTS 

Beta-lactam resistance in H. influenzae has been reviewed repeatedly 

[164,333,383,410,470,516,537,558,559] since the first report of ampicillin therapy 

failure in H. influenzae meningitis in the New England Journal of Medicine in 1968 

[64]. The authors concluded that the reason for failure was change from i.v. to oral 

therapy after eight days. Similar reports followed during 1969 [76,163,440] but 

therapy failure was in every case attributed to factors other than resistance to 

ampicillin [171,575]. In 1972, Shackelford et al. presented ten cases of H. influenzae 

meningitis initially treated with ampicillin, with slow bacteriological response and 

bacteriological relapse [455]. Two patients received high-dose (200-300 mg/kg/day) 

ampicillin i.v. for ten days but still experienced bacteriological relapse; notably, 

isolates from CSF in both patients had ampicillin MIC within the wild type range (0.37 

mg/L and 0.97 mg/L). Although ampicillin resistance was not documented in that 

study, the authors concluded that therapy failure could be ascribed to dosage or route 

of administration in only three of the ten patients. 

 

6.2 BETA-LACTAMASE-MEDIATED RESISTANCE 

6.2.1 Emergence and spread 

In 1974, resistance to ampicillin was confirmed by in vitro methods for the first time in 

H. influenzae. Nelson reported 17 ampicillin-resistant H. influenzae (mainly Hib) 

during 1972-1974; the first had ampicillin MIC = 20 mg/L and produced beta-

lactamase [334]. In two separate publications, Thornsberry and Kirven reported 

increased ampicillin MIC (≥8 mg/L) in eleven isolates [509] and the presence of beta-

lactamase (detected by an acidimetric test) in 18 of 20 isolates with ampicillin MIC ≥8 

mg/L [508]. Beta-lactamase positive strains spread rapidly. Khan et al. reported 10% 

prevalence of ampicillin resistant Hib in Washington in 1974, confirmed beta-
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lactamase production by a iodometric test in four isolates and showed that the enzyme 

had little or no effect on first-generation cephalosporins [224]. In a study with 1841 

isolates (4.3% encapsulated) from 25 British laboratories in 1981, 106 (5.8%) beta-

lactamase positive isolates were identified [375]. Four of 109 isolates (3.6%) produced 

beta-lactamase in a study from Northern Norway in 1982 [291]. The prevalence 

dramatically increased in many countries during the 1980s [164,559] but there were 

considerable geographical variations. In a study encompassing nine European 

countries in 1986 (n=1961), the mean proportion of beta-lactamase producers was 

10%, with highest and lowest proportions in Spain (30.6%) and West Germany (1.6%) 

[269]. A study from the U.S. the same year showed that 31.7% of Hib (n=757) and 

15.6% of non-b isolates (n=2054) were beta-lactamase positive [94].  

The dissemination of beta-lactamase positive ampicillin resistant strains (often 

abbreviated BLPAR) prompted discussions on the safety of ampicillin for therapy in 

meningitis and other serious H. influenzae infections [334,455]. Therapeutic options in 

meningitis were largely restricted to penicillins and/or chloramphenicol until third-

generation cephalosporins combining high antibacterial activity against H. influenzae 

[447] with penetration to CSF [26] were introduced in 1979 (cefotaxime) [334].  

 

6.2.2 TEM and ROB beta-lactamases 

Beta-lactamases (bla) are enzymes with the ability to inactivate beta-lactams [53]. 

Several schemes are used for classification; e.g. Ambler (based on amino acid 

sequence homology) and Bush-Jacoby-Medeiros (based on substrate inhibitor profile). 

Ambler class A, C and D are denoted serine beta-lactamases because of their active 

site serine; these enzymes attack and acylate beta-lactams (similar to PBPs) and use 

strategically positioned water molecules to hydrolyze the beta-lactam bond [95]. In 

1975, Sykes et al. performed immunoisoelectric focusing and transferability studies 

for bla positive isolates of H. influenzae from the U.K. (n=6) and the U.S. (n=9) and 

showed that the enzyme in all cases was identical to the TEM enzyme (blaTEM) in E. 

coli [497], which belongs to Ambler class A and Bush-Jacoby-Medeiros group 2b 
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[53]. Sykes et al. were also able to demonstrate inter-species transferability of blaTEM, 

suggesting that the gene was acquired from E. coli [497]. 

In a global prevalence study (PROTEKT) encompassing 14870 isolates (1999-2003), 

blaTEM constituted approximately 95% of bla positive H. influenzae [123]. The blaTEM 

gene is carried on transposons (TnA), of which Tn1, Tn2 or Tn3 are most common 

[18]. In H. influenzae, Tn3 is usually located at integrative conjugative elements (ICE) 

[212]. Less frequently, blaTEM is carried by small (4.8-5.5 kB) non-conjugative 

plasmids associated with remnants of Tn2 [523]; three distinct plasmids were 

identified and characterized in 98 Danish blaTEM positive isolates [477]. In a Swedish 

study on respiratory (2009-2011; n=2845) and invasive (1997-2010; n=310) H. 

influenzae, small plasmids accounted for 15.8% of bla positive isolates [134]. Most 

blaTEM positive H. influenzae possess blaTEM-1, but a variant denoted blaTEM-2 

characterized by the A4046C substitution accounted for 12.3% (8/65) of blaTEM 

positive isolates in a Spanish study [311].  

Another Ambler class A, Bush-Jacoby-Medeiros group 2b enzyme, ROB-1 (blaROB) is 

carried by most blaTEM-negative bla-positive H. influenzae [519]. The first reported 

strain (‘Hib-Rob’) with blaROB was isolated from a U.S. child (blood and CSF) in 1981 

[424]. Isolates with blaROB are considered rare outside North America [123], but a 

prevalence of 3.9% (with blaROB accounting for 9.7% of bla-positive H. influenzae) 

was reported in a Spanish study [311]. The enzyme is encoded by 4–5 kb plasmids 

related to plasmid pB1000 [434] and an animal source has been suggested [290]. The 

relatively lower frequency of blaROB compared to blaTEM has been ascribed to higher 

fitness cost [434] and the easier transferability of ICEs [519]. Concomitant presence of 

blaTEM and blaROB occur [519], and blaROB has been reported in strains with PBP3-

mediated resistance [435]. 

Both blaTEM and blaROB mediate high-level resistance to penicillins and are inhibited 

by clavulanic acid, sulbactam and tazobactam [53,95,143]. The ability of the enzymes 

to inactivate cefaclor (second-generation cephalosporin) and loracarbef (carbacephem) 

may vary: Molina et al. reported that 46% (30/65) of blaTEM positive isolates from 

Spain had a 136 bp deletion upstream from the coding region (possibly affecting the 
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promoter region) and significantly higher MICs for cefaclor and loracarbef [311]. It 

should be noted that resistance mechanisms other than bla were not investigated. The 

deletion was also present in 18 of 29 invasive blaTEM positive H. influenzae from 

Sweden [414].  

Farrell et al. reported higher cefaclor MIC levels in blaROB isolates (n=102; MIC50, 4 

mg/L; MIC90, 16 mg/L) compared to blaTEM isolates (n=2885; MIC50, 4 mg/L; MIC90, 

16 mg/L); none of the enzymes were active against cefuroxime or cefotaxime [123].   

Increased prevalence of bla positive H. influenzae has been linked to antibiotic usage. 

Selection of blaROB isolates due to high consumption of cefaclor has been suggested to 

contribute to the high prevalence of this gene in the U.S. and Mexico [143,516]. 

Barbosa-Cesnik et al. studied predictors for NTHi among children in day-care centra 

in the U.S. and found that colonization with bla positive strains was significantly 

associated with previous antibiotic treatment (p=0.02) [24]. In a prospective cohort 

study, Chung et al. assessed the effect of beta-lactams on the presence of ICEHin1056 

in Haemophilus isolates from children and found that amoxicillin increased carriage 

with ICEHin1056 positive strains from 35% to 83% [68].  

It has been suggested that susceptible strains may be protected from penicillins by bla 

produced by other strains in mixed infections. Schaar et al. demonstrated that outer 

membrane vesicles (OMV) from NTHi contain functional bla and were able to protect 

group A-streptococci from amoxicillin in vitro [445]; similarly, amoxicillin susceptible 

NTHi were sheltered in vitro by bla-containing OMV from Moraxella catarrhalis 

[444]. However, Westman et al. previously found that a bla positive NTHi strain did 

not protect pneumococci from amoxicillin in vivo in an AOM rat model [555].  

 

6.2.3 Other beta-lactamases 

Extended-spectrum beta-lactamases (ESBL) and inhibitor-resistant TEM beta-

lactamases (IRT) are derived from Bush-Jacoby-Medeiros group 2b enzymes and 

assigned to groups 2be and 2br, respectively [53]. Neither ESBL nor IRT have been 

confirmed in clinical isolates of H. influenzae, but in vitro studies have shown that the 
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resistance phenotypes of ESBL and IRT positive H. influenzae could easily be 

misinterpreted as concomitant blaTEM/blaROB and PBP3-mediated resistance and such 

strains may have passed unnoticed.  

Tristram and Burdach studied the effects of cloned IRTs on beta-lactam susceptibility 

in H. influenzae and observed increased amoxicillin-clavulanic acid MICs in Rd 

KW20 (up to 4 mg/L) and a strain with PBP3-mediated resistance (up to 8 mg/L), 

whereas cefotaxime MICs remained low (0.008-0.016 mg/L) [518]. In two 

investigations on the phenotypes of recombinant ESBL H. influenzae (TEM-3, TEM-4 

and TEM-5), cefotaxime MIC was higher in recombinants with both ESBL and altered 

PBP3 (up to 8 mg/L) compared to recombinants with ESBL alone (up to 1 mg/L) 

[43,517]. Galan et al. explored the possibility of blaROB derived ESBL and obtained 

cefotaxime-resistant and bla-inhibitor-resistant mutants by transforming a hyper-

mutagenic E. coli strain with a blaROB plasmid from H. influenzae and exposing the 

transformant to beta-lactams [143]. The resistance phenotypes were associated with 

distinct amino acid substitutions in blaROB. 

Two H. parainfluenzae with TEM-15 ESBL and cefotaxime MICs of >16 mg/L were 

observed in South Africa in 2002; unrelated PFGE profiles suggested in vivo transfer 

[521]. Both isolates had altered PBP3. In a study on nasopharyngeal Hib (n=80) from 

children in Delhi, India (2005-2007), Saikia et al. reported high prevalence of 

resistance to extended spectrum cephalosporins (cefotaxime, 36%; cefepime, 45%), 

and that five (6.25%) blaTEM isolates were ESBL-positive by double-disk diffusion 

according to CLSI guidelines [431]. As the agents used for double-disk diffusion were 

not specified, and the enzyme was not further characterized by molecular methods, this 

rather sensational report should be interpreted with caution.  

 

6.2.4 Beta-lactamase detection 

Several phenotypic tests may be used for detection of beta-lactamase activity in H. 

influenzae. These include colometric tests using the chromogenic cephalosporin 

nitrocefin (colour change from yellow to red on hydrolysis); iodometric tests based on 

iodine reduction by penicilloic acid (from hydrolysis of penicillin); and acidimetric 
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tests detecting acidification as a result of hydrolysis of the beta-lactam ring [260,264]. 

According to the latest review article on antimicrobial resistance in H. influenzae 

[516], conflicting information regarding the reliability of nitrocefin-based tests for 

detection of blaROB appears to be related to early works and difficulties related to the 

sensitivity of chromogenic cephalosporins has not been reported in more recent 

studies. Notably, Molina et al. reported that 24.6% (16/65) of blaTEM PCR positive H. 

influenzae were negative by nitrocefin test [311]. The cloverleaf test, described by 

Ørstavik and Ødegaard in 1971 [359], is a reliable test for bla detection in H. 

influenzae [260,264]. The test principle is that bla, if produced by the test strain, 

allows a susceptible indicator strain to grow near a penicillin disk. The test is also 

denoted Hodge test, referring to a later publication by Hodge et al. [188].  

A number of molecular tests have been designed for specific detection of blaTEM and 

blaROB in H. influenzae [93,123,180,311,330,448,520,523]. Isolates positive by 

phenotypic tests and negative by blaTEM and blaROB PCR have been reported 

[93,123,311,414,454,516]. Characterization of one such isolate [454] revealed the 

presence of a blaTEM gene with a 27 bp deletion, interfering with PCR tests targeting 

regions outside the open reading frame (ORF); the authors concluded that PCR tests 

for detection of blaTEM preferably should target regions within the ORF to avoid false 

negative results  [523]. Reports of beta-lactamase-positive isolates negative by blaROB 

PCR and blaTEM PCR with primers within the ORF [93,123] suggest the presence of 

hitherto uncharacterized beta-lactamases [523]. 

 

6.3 PENICILLIN-BINDING PROTEIN 3-MEDIATED RESISTANCE  

6.3.1 Emergence and spread 

Two bla-negative non-b H. influenzae with increased ampicillin MIC (8 mg/L) were 

reported by Thornsberry and Kirven in 1974 [508]. Beta-lactamase-negative 

ampicillin-resistant isolates (traditionally abbreviated BLNAR) attracted little attention 

compared to bla-positive isolates and were for decades considered rare, although they 

in fact accounted for a significant proportion of isolates with resistance to ampicillin.  
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Seven bla negative isolates (7%) with increased ampicillin MIC (1-8 mg/L) and six 

bla positive isolates were identified among 100 consecutive respiratory isolates from 

Australia in 1979 [29]. In 1981, 21 bla negative isolates (1.1%) with ampicillin MIC 

>1 mg/L and 106 bla positive isolates were identified among 1841 H. influenzae from 

the U.K. [375]. Of five ampicillin-resistant isolates in a collection of 109 H. influenzae 

from Northern Norway in 1981, one (0.9%) was bla negative [291]. In a study with H. 

influenzae (n=1961) from nine European countries in 1986, the authors reported that 

‘some isolates, especially from Spain, Belgium and the U.K.’ were bla negative and 

resistant to ampicillin [269]. Finally, 71 of 2811 isolates (2.5%) in a U.S. surveillance 

study from 1986 were bla negative and had ampicillin MIC >1 mg/L [94]. In an early 

review on antimicrobial resistance in H. influenzae, Smith estimated that 5% of 

ampicillin resistant strains were bla negative [470].  

It soon became evident that non-bla-mediated beta-lactam resistance was not restricted 

to aminopenicillins. H. influenzae with cefotaxime MIC up to 3.1 mg/L (six dilutions 

above ECOFF) were reported in 1979, before the drug was commercially available 

[335]. In 1983, Philpott and Williams investigated the activity of cephalosporins 

against H. influenzae from the U.K. and found higher MIC50 for cefuroxime (+3 

dilutions) and cefotaxime (+2 dilutions) in bla negative isolates with amoxicillin MIC 

>0.5 mg/L (n=18) compared to isolates with lower MIC [376]. One isolate in the latter 

group and four bla positive isolates were cefotaxime-resistant by current EUCAST 

criteria [111]. In a 1983 review article, Smith reported four Hib with 1000-fold 

increased MICs to cefamandole and strains with resistance to third-generation 

cephalosporins [470]; the author hypothesized that the mechanism was altered PBPs 

and/or decreased permeability and predicted that resistance to third-generation 

cephalosporins would occur ‘in a few years’ as a result of increased use. As predicted, 

H. influenzae with non-bla-mediated beta-lactam resistance increased particularly 

rapidly in Japan, where the consumption of oral cephalosporins is high [180,532]. First 

reported in 1983, the proportion of respiratory isolates with non-bla-mediated beta-

lactam resistance reached 10% in 1990 and exceeded 50% in 2002 [531].  
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6.3.2 Clinical relevance 

The clinical relevance of non-bla-mediated beta-lactam resistance in H. influenzae has 

been a matter of debate for decades. In 1977, Markowitz isolated a bla negative 

ampicillin resistant Hib (MIC = 6.25 mg/L) from blood and CSF in a patient with 

ampicillin-treated endocarditis and meningitis [279]. Mendelman et al. later reported 

therapy failure with cefuroxime in a child with meningitis caused by a strain with 

PBP-mediated resistance (cefuroxime MIC = 4 mg/L) [299]. In 1986, Mendelman et 

al. stated that the correlation between in vitro and clinical resistance remained to be 

investigated [297]. Similarly, the authors of a 1995 review article concluded that ‘the 

role in therapeutic failure of non-bla-mediated beta-lactam resistance has not been 

clearly established’ [164]. The clinical relevance of non-bla-mediated beta-lactam 

resistance is acknowledged in more recent reviews [154,410,516,537] and is also 

supported by animal studies. In an AOM rat model, Melhus et al. observed delayed 

therapeutic effect of amoxicillin in animals infected with a bla negative NTHi 

transformant with increased amoxicillin MIC (2 mg/L) compared to the susceptible 

recipient strain (MIC = 0.5 mg/L) [292]. However, there is a lack of clinical data on 

the correlation between non-bla-mediated beta-lactam resistance and outcome 

[110,139,516,537]. The clinical relevance of current breakpoints for aminopenicillins 

is debated [537] and the criteria for clinical susceptibility categorization of H. 

influenzae against beta-lactams differ between authorities (chapter 8.1).  

 

6.3.3 Characterization of the resistance mechanism 

Several investigations during the 1980s and 1990s explored the role of target alteration 

in non-bla-mediated beta-lactam resistance in H. influenzae. Most early studies were 

performed by research groups from Canada [71,276-278,366] and the U.S. [298-

300,300,301,303,451]. In 1984, the Canadian group used a previously described 

method [541] to transform broad-spectrum beta-lactam resistance from a bla negative 

isolate with increased ampicillin MIC (1.56 mg/L) into a susceptible strain [366]. 

Comparison of PBP profiles of the transformant and the parent strain showed that 

resistance correlated with the acquisition of low-affinity PBP 3A and 3B. Further 
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analyses using recombinant DNA techniques revealed that resistance was due to two 

distinct chromosomal mutations [275].  

Similarly, the U.S. group used DNA from four bla negative ampicillin-resistant 

isolates (MIC 8-16 mg/L) from New Zealand and managed to transform ampicillin 

resistance into a susceptible strain in three cases and concluded that altered PBP was 

the primary resistance mechanism in these isolates [301]. The Canadian group later 

transformed the Rd strain and found a correlation between decreased affinity of PBP 

3A and 3B, beta-lactam resistance levels and the degree of filamentation [71]. This 

observation indicated that PBP3 alterations resulted in septal dysfunction, consistent 

with the role of PBP3 in the synthesis of septal peptidoglycans in E. coli [481].   

The major breakthrough came as a result of novel molecular technologies and the 

sequencing of the complete genome of H. influenzae Rd KW20 in 1995 [131]. A 

research group led by Kimiko Ubukata, connected to the Kitasato Institute for Life 

Sciences in Tokyo (chapter 1), showed that PBP3 is encoded by the ftsI gene in H. 

influenzae [530], as it is in E. coli (chapter 5.5.1).  

Ubukata et al. sequenced the ftsI transpeptidase region in 22 bla negative H. influenzae 

with ampicillin MIC >0.5 mg/L and found PBP3 substitutions in all of them. 3D 

modeling indicated that substitutions near the 379-Ser-Ser-Asn (SSN) and 512-Lys-

Thr-Gly (KTG) motifs surrounding the active site were associated with resistance, 

consistent with similar observations in penicillin-resistant pneumococci and Neisseria 

spp. [577]. The change from a neutral to a basic amino acid (Asn to Lys) in position 

526 had particularly large impact on the structure of the active site pocket, and on the 

susceptibility to beta-lactams [530].  

The association between altered PBP3 and resistance was supported by transformation 

of mutant PBP3 into an isogenic background. By transformation of the Rd strain with 

2.2-kB fragments containing the ftsI gene (1.8 kB), Ubukata et al. obtained 

transformants with low-affinity PBP 3A and 3B and increased ampicillin, cefotaxime 

and meropenem MICs [530]. The transformants had MICs similar to or 1-2 dilutions 

lower than the donors; the discrepancy was most prominent in transformants with 

PBP3 from high-level resistant strains (group III, see next chapter). 
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6.3.4 Categorization and terminology 

Ubukata et al. categorized strains and transformants as group I (Arg-517 to His; 

R517H), group II (Asn-526 to Lys, N526K) and group III (Met-377 to Ile, M377I; Ser-

385 to Thr, S385T; Leu-389 to Phe, L389F; N526K) according to PBP3 substitution 

patterns and resistance levels [530]. Compared to the recipient strain, MICs increased 

by two (ampicillin), three (cefotaxime) and two (meropenem) dilutions in group I/II 

transformants, and by three (ampicillin), six (cefotaxime) and three dilutions 

(meropenem) in group III transformants.  

The original ‘Ubukata system’ for genotypic categorization of isolates with PBP3-

mediated resistance has later been modified and supplemented. Ubukata and 

coworkers introduced the designation ‘low-BLNAR’ for bla-negative group I/II 

isolates to separate them from group III isolates, denoted ‘BLNAR’ [180]. The term 

‘BLNAR’ (i.e. group III) was subsequently redefined as bla-negative isolates with the 

SSN-near S385T substitution in addition to the KTG-near N526K substitution [178], 

and Garcia-Cobos et al. introduced the designation ‘group III-like’ for isolates with 

S385T + R517H [148].  

This ‘modified Ubukata system’ (Table 10) is currently used by most groups for 

categorization of H. influenzae with PBP3-mediated resistance. However, some 

authors prefer to categorize R517H positive isolates as group I irrespective of S385T 

[17,83], and reserve group III for isolates possessing M377I and L389F in addition to 

S385T and N526K [83]. 

Table 10 The ‘modified Ubukata system’ for genotypic categorization of H. influenzae with 

penicillin-binding protein 3-mediated resistance (rPBP3). Compiled from [148,178,180,530] 

Resistance level Group 
SSN motif  KTG motif 

S385  R517 N526 

Low 
I   H  

II    K 

High 
III-like T  H  

III T   K 
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The traditional terminology distinguishes between bla-negative (‘BLNAR’) and bla-

positive isolates with PBP3-mediated resistance (bla-positive amoxicillin-clavulanic 

acid-resistant; ‘BLPACR’) [180]. Ubukata and coworkers proposed the terms 

‘BLPACR I’ and ‘BLPACR II’ for blaTEM positive strains with the same substitutions 

as low-BLNAR and BLNAR strains, respectively [178]. Hotomi et al. added the prefix 

‘g’ for strains with genetically confirmed PBP3-mediated resistance (e.g. ‘gBLNAR’) 

to separate them from strains categorized by phenotypic criteria [191].  

This use of the originally phenotypic designations BLNAR, BLPACR, BLPAR (bla 

positive ampicillin resistant) and BLNAS (bla-negative ampicillin-susceptible) to 

denote resistance genotypes is problematic for several reasons. First, there is no 

consensus on phenotypic definitions of ampicillin and amoxicillin-clavulanic acid 

resistance. This has resulted in terms like ‘BLNAI’ [414,537] and ‘almost-BLNAR’ 

[180]. Second, discrepancy between phenotype and genotype is common and strains 

with gBLNAR/gBLPACR genotypes may present with BLNAS/BLPAR phenotypes. 

Third, ‘BLPACR’ would be a very precise description of the phenotype of inhibitor-

resistant blaTEM-positive (IRT) strains [518]. Fourth, as the two mechanisms (bla and 

altered PBP3) occur independently, otherwise genetically indistinguishable isolates 

may be categorized as gBLNAR and gBLPACR depending on individual acquisition 

or loss of bla. Finally, the terms give the impression that PBP3-mediated resistance 

affects aminopenicillins only, concealing that many strains are resistant to extended-

spectrum cephalosporins. For clarity and simplicity, the designations ‘rPBP3’ and 

‘sPBP3’ are used in this thesis to denote isolates with (gBLNAR/gBLPACR) and 

without (gBLNAS/gBLPAR) resistance-defining PBP3 substitutions.  

Osaki et al. proposed a slightly different genotypic categorization system [360]. The 

authors explored the impact of PBP3 substitutions on beta-lactam susceptibility using 

recombinants and mutants obtained by transformation of Rd KW20 and site-directed 

mutagenesis. Consistent with previous reports [530], Osaki et al. observed that 

mutagenically introduced S385T and/or L389F substitutions in N526K positive strains 

led to a two- to four-fold additional increase in cephalosporin resistance. Importantly, 

L389F positive recombinants and mutants had higher cephalosporin MICs compared 

to strains lacking this substitution [360]. Accordingly, the authors proposed a three-
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stage categorization system with six classes (I-VI), based on the four substitutions 

S385T, L389F, R517H and N526K. The principal difference compared to the modified 

Ubukata system is that the ‘Osaki system’ distinguishes between group III and group 

III-like isolates with (+) and without (-) the L389F substitution [360]. The two systems 

are combined to form the ‘modified Ubukata-Osaki system’ in Figure 11.  

A large number of PBP3 substitutions occur in addition to S385T, L389F, R517H and 

N526K and might contribute to resistance [516]. Straker et al. used protein modeling 

to demonstrate that an S357N substitution alters the tertiary structure of PBP3 in a way 

that denies certain beta-lactams (e.g. cefuroxime) access to the active site [487]. 

Dabernat et al. suggested subgrouping of group II low-rPBP3 based on the presence of 

N526K (IIa), A502V (IIb), A502T (IIc) and I449V (IId) [84]. The system is widely 

used despite no convincing correlation with phenotypic resistance levels. Garcia-

Cobos et al. reported minor differences between the subgroups, with lower MIC50 

values in subgroup IId compared to IIa-c [148]. Bengtsson et al. observed lower MICs 

in subgroups IIc and IId compared to IIa and IIb [30], whereas no differences were 

found in two studies from Korea [17,364].  

 

Figure 11 The ‘modified Ubukata-Osaki system’ for genotypic categorization of H. 

influenzae with penicillin-binding protein 3-mediated resistance (rPBP3) according to the 

presence of PBP3 amino acid substitutions in four positions. Compiled from 

[148,178,180,360,530] 
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6.3.5 Resistance genotypes and phenotypic susceptibility profiles 

Tristram et al. presented an overview of the correlation between genotypes and 

phenotypic resistance (data from [179,436]) in the latest review on antimicrobial 

resistance in H. influenzae [516]. According to this, the difference between median 

MICs in low- and high-rPBP3 H. influenzae is less marked for ampicillin (1 mg/L 

versus 2 mg/L in bla-negative isolates) than for cefotaxime (0.063 mg/L versus 0.5 

mg/L), whereas meropenem susceptibility is similarly affected in low-rPBP3 and high-

rPBP3 isolates (median MICs of 0.125 mg/L in both groups) [516].  

Table 11 shows beta-lactam susceptibility profiles in clinical isolates according to the 

six defined rPBP3 genotypes (Figure 11). For aminopenicillins and cephalosporins, 

resistance correlates well to genotypes, and group III(+) isolates have the highest 

resistance levels. Practically all low-rPBP3 are susceptible to cefotaxime while most 

high-rPBP3 are cefotaxime-resistant according to EUCAST breakpoints [111], 

supporting the relevance of the categorization system.  

Notably, ceftriaxone activity is less affected by PBP3 alterations compared to 

cefotaxime [178,530], and the activity of piperacillin is less affected than the activity 

of other penicillins and cephalosporins [187,436]. Consistent with the latter 

observation, Morikawa et al. reported that piperacillin was more effective than third-

generation cephalosporins against rPBP3 H. influenzae in a time-kill study; the authors 

suggested that the low impact of PBP3 alterations on piperacillin susceptibility was 

due to its high affinity for PBP2 [313]. 

Early studies by Powell et al. showed that non-bla-mediated mechanisms in H. 

influenzae, conferring resistance to ampicillin, cephalosporins and aztreonam, had 

little or no effect on carbapenem susceptibility, and there was poor correlation between 

increased MICs for imipenem and meropenem [384,385]. Meropenem MIC is only 

slightly increased in rPBP3 isolates, and varies little between genotypes [178,231]. 

While Ubukata et al. obtained 2-3 dilutions increase in meropenem MIC by 

transformation of the Rd strain with ftsI from rPBP3 strains [530], Osaki et al. did not 

manage to transfer reduced susceptibility to meropenem by ftsI recombination or site-

directed mutagenesis [360].  
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Table 11 Beta-lactam MICs for clinical isolates of H. influenzae according to rPBP3 genotype (genotyping based on ftsI sequencing) 

Agents  ECOFF
a
 

Genotypes
b
 and MICs (mg/L)

c
 

References I II III-like III 

(-) (+) (-) (+) 

Ampicillin
d 

1 0.063-0.5 0.5-4 1-2 1 1-4 0.5-16 [360]
 

 1-4 1-4 - - - 2-4 [530]
 

 0.5-2 0.5-8 0.5-2
e
 - - [148]

 

 - 2-4 2 - - 4-8 [17]
 

 0.60 1.29 1.23 - 2.57 5.62 [436]
 

 - - 1 8 2 4 [178]
 

 - 1 4
e
 4 16 [231]

 

Amoxicillin
d 

2 0.5-2 0.5-8 - - - 4 [84]
 

 0.25-2 0.25-4 0.5-2
e
 - - [148]

 

 1.12 2.87 3.25 - 7.05 17.21 [436]
 

 - 4 4
e
 32 32 [231]

 

Piperacillin
d 

0.064 0.060 0.050 0.065 - 0.095 0.084 [436]
 

Cefuroxime 2 1-2 0.25-8 - - - - [84]
 

 0.5-2 0.5-≥16 2-≥16
e
 - - [148]

 

 - 2-16 8-16 - - 4-32 [17]
 

Cefixime 0.125 0.06-0.12 ≤0.001-0.25 0.5-4
e
 - - [148]

 

Ceftriaxone 0.064 0.007 0.003-0.06 - - - - [84]
 

 0.008-0.031 0.008-0.063 - - - 0.25 [530]
 

 - - 0.063 0.25 0.063 0.125 [178]
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Table 11 (continued) 

Agents  ECOFF
a
 

Genotypes
b
 and MICs (mg/L)

c
 

References I II III-like III 

(-) (+) (-) (+) 

Cefotaxime 0.064 0.03-0.12 0.007-0.12 - - - 0.5 [84]
 

 0.031 0.031-0.12 0.063-0.5 0.5 0.12-0.5 0.5-1 [360]
 

  0.063-0.25 0.063-0.125 - - - 1-2 [530]
 

 - 0.063-0.2 0.25 - - 1-2 [17]
 

 ≤0.001-0.12 ≤0.001-0.5 0.25-4 - - - [148]
 

 - - 0.25 1 0.25 0.5 [178]
 

  - 0.063 1 1 1 1 [231]
 

Imipenem 2 0.063-0.5 0.25-8 0.12-0.5 0.12 2-8 1-32 [360]
 

  0.43 1.33 0.76 - 3.76 2.37 [436]
 

Meropenem  0.25 0.016-0.063 0.063-0.25 0.031-0.12 0.031 0.12-0.25 0.031-1 [360]
 

  0.031-0.25 0.063-0.5 - - - 0.125-0.5 [530]
 

  - - 0.125 0.125 0.25 0.25 [178]
 

  - 0.5 0.25 0.25 0.5 0.5 [231]
 

a 
Epidemiological cut-off MIC values (mg/L) (www.eucast.org/mic_distributions/)  

b
 Categorization according to the modified Ubukata-Osaki system (Figure 11) 

c
 Plain text, MIC ranges; italic, geometric mean MIC or MIC50; bold, MIC90

 

d 
Bla negative isolates or tested in combination with a bla inhibitor 

e
 Combined data for group III-like (-) and group III-like (+) isolates  

http://www.eucast.org/mic_distributions/
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The exact mechanism behind increased meropenem resistance needs to be elucidated. 

As meropenem and piperacillin bind strongly to both PBP2 and PBP3 (Figure 10), 

there is a possibility that resistance to these agents requires alterations in both proteins.  

In contrast to meropenem, imipenem resistance does appear to correlate with rPBP3 

genotypes [360,436]. The association was supported by an experiment performed by 

Cerquetti et al., in which resistance to imipenem (MIC 4-8 mg/L) was transferred to the 

Rd strain by transformation with PCR-amplified full-length ftsI (including upstream and 

downstream regions) from a clinical isolate with imipenem MIC ≥32 mg/L [62]. These 

observations contradict previous observations by Powell et al. [384] and are difficult to 

reconcile with the low affinity of imipenem for PBP3 (Figure 10).  

As PBP2 is the primary target for imipenem (Table 8), PBP2 alterations may 

theoretically contribute to reduced susceptibility to imipenem; it could also be 

hypothesized that PBP2-mediated resistance (‘rPBP2’) would affect imipenem more 

than meropenem because of the higher affinity of the latter for PBP3 [217]. This 

intriguing possibility of an additional PBP-mediated resistance mechanism in H. 

influenzae is barely investigated (chapter 6.4.1). 

 

6.3.6 Geographic distribution of rPBP3 genotypes 

Table 12 summarizes the distribution of PBP3 resistance genotypes in clinical isolates. 

Group II low-rPBP3 isolates predominate in Western Europe, North America and 

Australia, whereas high-rPBP3 isolates are prevalent in Japan and Korea. Data based on 

ftsI sequencing of isolates from other regions are not available.  

Respiratory low-rPBP3 H. influenzae increased gradually in Japan during the 1980s and 

1990s [531]. A genotype shift occurred when the prevalence of low-rPBP3 isolates 

approached 20%, and the prevalence of high-rPBP3 isolates increased from zero to 30% 

between 1996 and 2002. This shift was also evident in CSF isolates: the first high-

rPBP3 meningitis case was reported in 2000 and the proportion of high-rPBP3 isolates 

in CSF exceeded 50% only seven years later [532]. A similar development was 

observed in respiratory isolates from Korea 2005-2010 [17,230,364]. 
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Table 12 Geographic distribution of rPBP3 genotypes. Only publications with genotyping based on ftsI sequencing are included 

Country Period Source
a
 

ftsI
b
 

(n) 

rPBP3
c
 

(n) 

Genotypes
c
 (n) 

References 
NS Mis I II III-like (-) III-like  (+) III (-) III (+) 

Japan 2005-2008 MEF 114
d
 111 0 0 0 13 3 9 6 83 [231] 

 2002-2003 Mixed 156 140
e
 49 0 0 0 0 0 0 91 [492] 

 1995-2003 Respiratory 621 277 0 8 65 108 15 4 13 64 [436] 

 1999-2002 CSF 62
d
 62 0 0 0 0 10 2 8 42 [178] 

 1998-2000 No data 279 151 115 0 5 12 3 1 4 11 [360] 

 1997-2000 Respiratory 9 9 0 0 0 4 0 0 1 4 [281] 

 1995-2000 Respiratory 25 20 0 0 0 7 0 0 0 13 [240] 

 1998 Respiratory 30 25 0 0 7 12 2 0 0 4 [530] 

Korea 2010 Respiratory 123 78
e
 0 0 1 48 3 0 0 26 [364] 

 2005-2006 Respiratory 61 59 0 0 0 48 5 0 2 4 [17] 

 2000-2005 Respiratory 175 86 0 1 4 81 0 0 0 0 [230] 

Australia No data No data 18
d
 7 0 0 1 1 0 0 1 4 [562] 

 No data No data 43 36
e
 0 0 3 32 1 0 0 0 [566] 

Spain 2008-2013 Invasive 82 26 0 0 4 22 0 0 0 0 [395] 

 2004-2009 Invasive 162 68
e
 0 0 2 64 2 0 0 0 [146] 

 2000-2009 Respiratory 95 29 0 0 2 27 0 0 0 0 [394] 

 2005-2007 No data 196 159 0 1 1 145 12 0 0 0 [454] 

 2001-2006 Mixed 354 220 0 0 10 198 10 2 0 0 [148] 

Portugal 2002-2010 Invasive 12 11 0 0 1 10 0 0 0 0 [19] 

 2001-2008 Mixed 240 141
e
 0 0 3 136 2 0 0 0 [22] 

Italy 2007-2009 Invasive 78 3 0 0 0 3 0 0 0 0 [158] 

 2004-2009 Invasive 1 1 0 0 0 1 0 0 0 0 [435] 

 2004-2006 Invasive 6 2 0 0 0 2 0 0 0 0 [62] 

 1997-2006 CSF 9 1 0 0 0 1 0 0 0 0 [56] 
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Table 12 (continued) 

Country Period Source
a
 

ftsI
b
 

(n) 

rPBP3
c
 

(n) 

Genotypes
c
 (n) 

References 
NS Mis I II III-like (-) III-like  (+) III (-) III (+) 

France 2001-2008 Mixed 241 241 0 0 11 225 4 0 0 1 [83] 

 1991-2000 Mixed 117 108 0 0 7 101 0 0 0 0 [84] 

Germany 2009-2012 Invasive 157 36 0 0 0 34 0 2 0 0 [247] 

Switzerland 2009-2014 Mixed 32 30 0 0 0 28 1 1 0 0 [63] 

Sweden 2011 Respiratory 14 14 0 0 0 14 0 0 0 0 [9] 

 2006-2011 Respiratory 74 61 0 0 0 61 0 0 0 0 [30] 

 1997-2010 Invasive 36 16
e
 0 0 1 15 0 0 0 0 [414] 

 1991-1996 Respiratory 103 98 0 0 0 97 1 0 0 0 [30] 

Denmark 2007 Mixed 147 47 0 0 2 45 0 0 0 0 [350] 

U.K. Unknown Respiratory 17 13 0 0 1 12 0 0 0 0 [487] 

Europe
f
 2006-2007

g
 Respiratory 60 54

e
 0 0 1 52 1 0 0 0 [204] 

 2004-2005 Respiratory 65 50 0 0 2 48 0 0 0 0 [203] 

 1997-2003 Respiratory 30 26 0 0 1 25 0 0 0 0 [135] 

Canada 2008-2009 Invasive 98 23
e
 3 0 1 18 0 0 0 1 [457] 

 1990-2006 Invasive 21 21 0 0 0 21 0 0 0 0 [458] 

U.S. 1996-2001 No data 12 12 0 0 1 11 0 0 0 0 [214] 

a
 MEF, middle ear fluid; CSF, cerebrospinal fluid 

b
 Number of isolates for which ftsI sequencing was performed 

c
 Number of isolates with rPBP3-defining substitutions according to the modified Ubukata-Osaki system (Figure 11) and assignment to genotypes. 

Mis (miscellaneous), combinations of substitutions not fitting into any of the six genotypes; NS, not specified 
d
 Strain inclusion based on prior PBP3 genotyping by PCR (chapter 6.3.9) 

e
 Most frequent substitution patterns specified in Table 13 

f
 Isolates from Austria, France, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Turkey and the U.K. 

g
 Includes isolates from Canada 
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The majority of high-rPBP3 isolates in Japan and Korea have the group III(+) 

genotype, expressing the highest resistance levels [169,364,532]. In contrast, very few 

group III isolates have been reported in systematic surveys outside Asia; these include 

one invasive group III(+) isolate from Canada [457] and one group III(+) AOM isolate 

from France [83]. Group III-like high-rPBP3 isolates occur more frequently in Europe, 

in particular in Spain [454].  

Subgrouping of group II low-rPBP3 according to Dabernat [84] provides some 

additional epidemiological information in regions with predominance of group II 

isolates. Bengtsson et al. reported that subgroups IIc and IId were the most common 

genotypes in Sweden during 1991-1996, whereas IIa and IIb were most frequent 

during 2006-2011 [30]. Comparison of complete PBP3 substitution patterns offers 

higher resolution than Dabernat subgroups but variable lengths of the sequenced ftsI 

fragments complicate inter-investigation analyses.  

The most common PBP3 substitution patterns (hereafter denoted ‘PBP3 types’) in 

representative surveillance studies from different geographical regions are presented in 

Table 13. PBP3 sequences of different lengths, with identical substitution patterns as 

far as comparison is possible, are in the following denoted ‘compatible’. Of particular 

notice is that the most frequent PBP3 type in respiratory high-rPBP3 isolates from 

Korea in 2010 [364] was compatible with the most frequent PBP3 type in an earlier 

Japanese surveillance study (2002-2003) [492].  

Two PBP3 types are particularly common in low-rPBP3 isolates. PBP3 type A or a 

compatible pattern was present in 19-50% of rPBP3 isolates in surveillance studies 

from Europe [22,63,204,247,394,414], Canada [457], Australia [566] and Korea [364], 

whereas PBP3 type B accounted for >10% of rPBP3 isolates in surveillance studies 

from Sweden [414], Switzerland [63], Canada [457], Australia [566] and Korea [364]. 

Notably, the apparent absence of PBP3 types A and B in a French investigation [83] 

may be due to a typographic error: the two most frequent patterns (aa 350-532) in that 

study corresponded to PBP3 types A and B minus the M377I substitution, and figured 

twice in the results table. 
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Table 13 Most frequent PBP3 substitution patterns (present in >10% of rPBP3 isolates) in selected surveillance studies from different regions 

Country Period Source 
rPBP3 

(n) 
Genotype

a
 

Substitutions
b
 

PBP3 

type
c
 

n (%)
d
 References 

D
3
5
0
 

S
3
5
7

 

M
3
7
7
 

S
3
8
5

 

L
3
8
9

 

I4
4
9

 

G
4
9
0

 

A
5
0
2
 

N
5
2
6
 

A
5
3
0
 

V
5
4
7
 

V
5
6
2
 

N
5
6
9
 

Sweden 2006-2011 Invasive 16 IIb N  I     V K  I  S A 8 (50) [414] 

    IId      V   K  I  S B 2 (11)  

    IIb N  I    E V K  I  S - 2 (11)  

Portugal 2001-2008 Mixed 141 IIb N  I     V K  I  S A 44 (31) [22] 

    IIb N  I    E V K  I  S - 14 (10)  

Spain 2004-2009 Invasive 68 IIb N  I     V K     (A) 13 (19) [146] 

    IIc N       T K     - 12 (18)  

    IIc        T K     (E) 11 (16)  

Europe
e
/ 2008-2009 Respiratory 54 IIb N  I     V K     (A) 11 (20) [204] 

Canada    IIb       E V K     (Q) 6 (11)  

Canada 2008-2009 Invasive 20 IIb N  I     V K     - 5 (25) [457] 

    IIb N  I     V K  I   (A) 4 (20)  

    IId      V   K  I   (B) 3 (15)  

Australia No data Respiratory 36 IIb N  I     V K  I   (A) 8 (22) [566] 

    IId      V   K  I   (B) 4 (11)  

    IIa N      E  K S    (D) 4 (11)  

    IIc N       T K  I   - 4 (11)  

Korea 2010 Respiratory 78 IIb N  I     V K  I  S A 26 (33) [364] 

    III(+) N N I T F    K  I L S 2 15 (19)  

    IId      V   K  I  S B 9 (12)  

Japan 2002-2003 Respiratory 140 III(+) N N I T F    K     (2) 91 (65) [492] 

a
 Categorization according to the modified Ubukata-Osaki system (Figure 11). Subgrouping of group II isolates according to Dabernat et al. [84] 

b
 Shaded area, not sequenced 

 

c
 Letters (low-rPBP3) and numbers (high-rPBP3) correspond to the PBP3 type assignments used in Table 26. Brackets, incomplete patterns 

compatible with a distinct PBP3 type. ‘-‘, not assigned to a PBP3 type. Colours, identical or compatible patterns. Bold, frequent at ≥3 continents  
d
 Numbers and proportions (of all rPBP3 isolates) with each pattern 

e
 Isolates from Austria, France, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Turkey and the U.K. 
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As a distinct PBP3 type may be encoded by different ftsI sequences, DNA sequence 

analysis is necessary to determine whether identical PBP3 types in separate isolates are 

encoded by identical or evolutionary related alleles. Phylograms based on ftsI 

sequences for bla-positive and bla-negative rPBP3 H. influenzae from Spain were 

presented by Sevillano et al. [454]. The two most frequent alleles accounted for 44% 

of bla-negative (n=118) and 71% of bla-positive (n=41) isolates, and the 

predominating ftsI allele in bla-positive isolates (present in 51%) encoded a PBP3 

substitution pattern compatible with PBP3 type A (Table 13).  

Andersson et al. recently reported that 15 isolates of on outbreak strain in a Swedish 

nursing home possessed the same PBP3 type A-encoding ftsI sequence [9]; identical 

ftsI alleles were present in a previously reported cluster of genetically related invasive 

NTHi from other parts of Sweden [414]. 

A notable correlation between PBP3 genotypes and geographical regions at DNA level 

is that the lysine residue in the N526K substitution is encoded by the AAA codon in a 

significant proportion of rPBP3 isolates in Europe and Australia, whereas the AAG 

codon predominates in Japan [532,562]. 

 

6.3.7 Molecular epidemiology and clonal spread  

In contrast to encapsulated strains, NTHi are genetically diverse (chapter 3.9). Thus, 

the presence of identical PBP3 types in rPBP3 NTHi from separate geographical 

regions (Table 13) and identical ftsI alleles in separate isolates [9,454] suggest 

dissemination of resistant clones and/or horizontal spread of ftsI gene sequences 

encoding resistance.  

Karlowsky et al. observed identical PFGE band patterns in all nine ampicillin-resistant 

bla negative H. influenzae in a U.S. surveillance study (2000-2001), collected at two 

different hospitals [218]. The resistance mechanism was not characterized. Limited 

clonal dissemination of genetically confirmed rPBP3 NTHi strains has later been 

observed in surveillance studies from several countries. Hotomi et al. assessed 

clonality among 61 respiratory rPBP3 H. influenzae from Japan (2003) [191]. Three 
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clusters, each consisting of 5-6 epidemiologically unrelated isolates with identical or 

highly similar PFGE band patterns were identified. PCR-based genotyping showed 

that one cluster consisted entirely of group III high-rPBP3 isolates. Garcia-Cobos et al. 

identified 13 PFGE clusters with 2-4 isolates among 72 rPBP3 H. influenzae from 

Spain (2001-2006); all isolates within each cluster had identical PBP3 substitution 

patterns (aa 350-532) [148]. Three clusters consisted of group III-like isolates. 

Similarly, Barbosa et al. observed 12 PFGE clusters with 2-5 isolates among 74 rPBP3 

H. influenzae from Portugal (2001-2008); several clusters consisted of isolates with 

identical PBP3 patterns (aa 350-569) [22].  

Resman et al. reported that seven of 16 invasive rPBP3 H. influenzae in Sweden 

belonged to the same MLSA cluster and had identical PBP3 patterns (PBP3 type A, 

Table 13); the seven clonal isolates were collected during 2008-2010 from three 

separate geographical regions [414]. The same group recently reported an outbreak in 

a Swedish nursing home in 2011, affecting 15 individuals including eight residents; 

the outbreak clone (mainly ST14) was genetically related to the previously reported 

invasive cluster and carrying identical ftsI alleles encoding PBP3 type A [9]. 

Exact knowledge on the global molecular epidemiology of rPBP3 strains is limited, as 

most rPBP3 isolates and clones have been characterized by PFGE or other methods for 

epidemiological typing complicating inter-investigator comparison. In contrast to 

PFGE, MLST provides unambiguous, easily comparable data. Several investigators 

[19,56,146,361,394,395,414,457,458,492] have performed both MLST and rPBP3 

genotyping, but linked MLST data and PBP3 substitution patterns for individual 

isolates are presented in very few publications [9,56,146,394,492]. 

Cardines et al. reported the substitution pattern of a single group II low-rPBP3 ST368 

NTHi meningitis isolate from Italy (1998) [56]. Sunakawa et al. reported MLST allelic 

profiles (but not STs) for 83 respiratory group III(+) high-rPBP3 isolates from Japan 

with identical substitution patterns (PBP3 type 2, Table 13) [492]. The largest cluster 

consisted of seven isolates with a novel allelic profile not assigned to any known ST 

(ST1-DLV); five clusters consisted of four isolates each (ST34; ST107; ST411; 
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ST156-SLV; ST395-DLV), and three clusters encompassed three isolates each (ST57; 

ST855; ST3-SLV). Thus, nine STs accounted for 43% (36/83) of the isolates [492].  

In two more recent publications, Garcia-Cobos et al. [146] and Puig et al. [394] 

reported STs and PBP3 substitution patterns (aa 350-532) for 18 invasive (2004-2009) 

[146] and 29 respiratory (2000-2009) [394] rPBP3 H. influenzae from Spain. The most 

common PBP3 pattern in invasive isolates was compatible with PBP3 type A (Table 

13) [146]. Three (of 13) isolates with this pattern were characterized by MLST; two 

were ST367 and one had a related profile (ST1114, DLV). Five of 12 invasive isolates 

with the second most frequent substitution pattern (Table 13) were characterized by 

MLST; four had related allelic profiles (ST949; ST1123, SLV; ST1122, TLV). In 

addition, two invasive group III-like high-rPBP3 isolates had related STs (ST155; 

ST1118, SLV). 

Respiratory isolates were more genetically diverse [394]. No PBP3 substitution pattern 

was present in more than two isolates of identical STs, but one ST367 isolate and one 

related isolate (ST14, TLV) had a substitution pattern compatible with PBP3 type A, 

similar to two invasive isolates [146]. The two most frequent PBP3 substitution 

patterns in respiratory isolates were distributed to eight isolates/seven STs and seven 

isolates/five STs, respectively. Both patterns were among the three most frequent in 

invasive isolates [146] (Table 13). 

 

6.3.8 Evolution of rPBP3 

The traditional view is that rPBP3 H. influenzae develops through spontaneous point 

mutations [83,516,577]. Consistent with this notion, Takahata et al. showed that ftsI 

sequences encoding the four rPBP3-defining substitutions S385T, L389F, R517H and 

N526K are absent in the type strains of Haemophilus species other than H. influenzae 

(including species transferred to genus Aggregatibacter) [499]. As long as no donor 

(with naturally occurring resistance-encoding ftsI sequences) has been identified, point 

mutations remain the most likely primary cause of these substitutions.  
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However, there is increasing evidence that horizontal gene transfer (HGT) in terms of 

transformation and homologous recombination contributes to the evolution of rPBP3 

strains through spread of mutant ftsI genes [478,499,564,565]. Successful 

transformation of susceptible H. influenzae with ftsI genes from resistant strains in 

vitro [71,301,366] suggest that new rPBP3 strains may evolve in vivo by transfer of 

resistance-conferring ftsI sequences from a resistant to a susceptible strain if both are 

present in the same patient [516].   

Importantly, species barriers within the H. influenzae Group do not restrict HGT. 

Witherden et al. showed that rPBP3-defining substitutions are frequent in H. 

haemolyticus [564] and that ftsI gene sequences are exchanged between H. influenzae 

and H. haemolyticus in vivo, resulting in mosaic patterns [565]. Søndergaard et al. 

made similar observations and found no differences between inter- and intra-species 

transformation frequencies [478]. The authors also reported that the entire ORF of ftsI 

was replaced in eight of 40 transformants. It should be noted that DNA was introduced 

in the recipients by electroporation, and the results may not be fully representative of 

transformation in vivo. It seems likely that the commensal H. haemolyticus is more 

frequently exposed for antibiotics than H. influenzae, and the species may function as 

a birthplace and reservoir for resistance genes, available for its more pathogenic 

relative [321,565]. This is analogous to the development of PBP-mediated beta-lactam 

resistance in pneumococci, gonococci and meningococci through recombination with 

commensal Streptococcus and Neisseria species [577].  

DNA uptake in vivo depends on the presence of specific uptake signal sequences 

(USS) in the donor molecule. The USS in H. influenzae has been identified as the 

nine-bp sequence 5’-AAGTGCGGT (chapter 3.3) [165,471]. H. influenzae Rd KW20 

and H. haemolyticus ATCC 33390 both possess two USS at identical positions in the 

ftsI genes [499]. One copy is located in the middle of the ftsI gen, between the 327-

Ser-Thr-Val-Lys (STVK) and SSN motifs, another is situated 22 bp downstream of the 

ORF [565]. In addition, the ftsI sequence in H. influenzae Rd KW20 [131] contains 

four partial USS (pUSS) with the critical four-bp sequence 5’-GCGG [294]: one at the 

beginning of the ORF, two between the SSN and KTG motifs, and one downstream of 

KTG (Figure 12).  
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Figure 12 Complete and partial uptake signal sequences (USS and pUSS) in the ftsI gene of 

H. influenzae Rd KW20 [131]. Green arrows indicate locations and DNA sequences (reverse) 

of USS and pUSS (brighter green); the critical four-bp sequence [294] (red) and nucleotides 

differing from the complete USS (underscored) are shown. Red boxes, resistance-conferring 

substitutions; blue arrows, conserved motifs surrounding the active site pocket 

The high density of HGT-facilitating USS/pUSS in the transpeptidase region, 

surrounding the SSN and KTG motifs, is consistent with observations that 

recombinational events are particularly frequent at the 3’ end of the ftsI gene in clinical 

H. influenzae isolates [565].  

As shown by Søndergaard et al. [478] and Witherden et al. [565], fragments 

encompassing the complete transpeptidase region, and even the entire ORF, may be 

transferred as the result of a single recombinational event. Considering the short 

distance between the S385T and L389F substitutions of the SSN motif, it seems likely 

that the two are transferred concomitantly if both are present in the donor molecule. 

The transferred sequence may include the KTG motif, with one of the rPBP3-defining 

substitutions R517H and N526K, or combine with the KTG motif of a R517H/N526K 

positive low-rPBP3 strain into a new high-rPBP3 strain.  

In conclusion, rPBP3 strains of various genotypes may evolve stepwise through i) a 

series of point mutations, ii) a combination of recombinational events and point 



118 

 

mutations, or iii) sequential recombinational events, or en bloc, as the result of a single 

recombinational event. 

Clinical isolates with combinations of the substitutions S385T, L389F, R517H and 

N526K other than the six encompassed by the rPBP3 categorization system (Figure 

11) are extremely rare (Table 12), and were not obtained by in site-directed 

mutagenesis experiments (in which all four substitutions occurred) [360]. It seems 

likely that such combinations result in dysfunctional PBP3 proteins incompatible with 

bacterial survival. These observations would suggest that stepwise acquisition of the 

four substitutions follows strict rules: 

1. The presence of N526K blocks the acquisition of R517H and vice versa 

2. The acquisition of S385T requires the presence of N526K or R517H 

3. The acquisition of L389F requires the presence of S385T 

It could be hypothesized that first-stage substitutions (R517H and N526K) increase 

beta-lactam resistance, but represent a fitness cost, and that second-stage (N526K) and 

third-stage (L389F) substitutions are compensatory substitutions, primarily reducing 

fitness cost but also increasing resistance. Second-site compensatory substitutions may 

occur and resistance may be maintained in the absence of selective pressure caused by 

antibiotics [206,270,295].  

Growth rate or ability to compete with other strains in laboratory media are frequently 

used as measures of fitness [295]. Acquisition of non-bla-mediated resistance did not 

affect the growth rate of a H. influenzae strain in a transformation experiment 

conducted by Melhus et al. but the PBP3 substitution pattern was not characterized 

[292]. To my knowledge, the impact of distinct PBP3 substitutions on fitness has not 

been investigated in H. influenzae. 

 

6.3.9 Molecular detection and genotyping 

A multiplex PCR methodology for detection of the rPBP3 genotype was designed by 

Hasegawa et al. [180]. Two primer sets were used: one to detect N526 (wild-type) 

isolates (amplification interpreted as sPBP3) and one to detect N526K + S385T 
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positive isolates (amplification interpreted as high-rPBP3). Non-amplification by both 

primer sets was interpreted as low-rPBP3. A different multiplex PCR entirely based on 

positive amplification was designed by Nakamura et al. [330]. The test included one 

primer set to detect N526K isolates (amplification interpreted as low-rPBP3) and one 

primer set to detect N526K + S385T isolates (amplification interpreted as high-

rPBP3). Non-amplification by both primer sets was interpreted as sPBP3.  

The tests [180,330] have important limitations. First, as they were not designed to 

detect the R517H substitution, both will categorize group I low-rPBP3 and group III-

like high-rPBP3 as sPBP3. Second, Witherden et al. showed that both methods are 

specific for N526K substitutions encoded by the AAG codon and unable to detect 

N526K encoded by the AAA codon, which account for a significant proportion of 

rPBP3 isolates in Europe and Australia [562].  

To avoid false negative results by rPBP3 PCR, Witherden et al. [562] suggested that 

the primer set designed by Hasegawa et al. [180] to detect wild-type isolates (N526) is 

used for screening and that non-amplification is followed by ftsI sequencing. The same 

group later designed new primer sets to amplify N526K in sPBP3 isolates and both 

variants of the N526K substitution (AAA and AAG) in rPBP3 isolates [563]. The tests 

demonstrated high sensitivity (100% and 84% respectively) and specificity (both tests 

100%) by testing of H. influenzae and H. haemolyticus. 

Notably, none of the approaches will prevent false negative results for rPBP3 strains 

with R517H as the first stage substitution. It should also be noted that the limitations 

described above significantly affect the results when rPBP3 genotyping is based on 

PCR alone [166,169,179,180,187,192,361,432,468] or if selection of isolates for ftsI 

sequencing is based on genotyping by PCR [178,231], in particular when older PCR 

assays [180,330] are used.  

 

6.4 OTHER RESISTANCE MECHANISMS 

Altered PBP3 is by far the most important non-bla-mediated beta-lactam resistance 

mechanism in H. influenzae but does not explain phenotypic resistance in all isolates 
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[516]. For instance, Fluit et al. reported two bla negative ampicillin resistant isolates 

(MIC = 8 mg/L) with no PBP3 substitutions [135]. In addition, Ubukata [530] and 

Kaczmarek [214] observed higher resistance levels in clinical rPBP3 isolates 

compared to transformants with identical ftsI genes, and Osaki et al. obtained higher 

resistance levels in transformants with ftsI genes from clinical sPBP3 isolates 

compared to mutants with similar PBP3 substitutions caused by site-directed 

mutagenesis [360].  

These observations suggest one or more additional non-bla-mediated resistance 

mechanisms that may occur independently of PBP3 substitutions or modulate 

resistance in rPBP3 isolates. In this chapter, some possible non-bla-mediated 

resistance mechanisms other than rPBP3 in H. influenzae are presented. 

 

6.4.1 PBP-mediated resistance other than rPBP3 

PBP-mediated beta-lactam resistance was reviewed by Malouin and Bryan [275], 

Georgopapadakou [152], and more recently by Zapun et al. [577]. According to the 

latter, such resistance may be caused by i) alteration of PBPs by spontaneous point 

mutations or homologous recombination, ii) hyperproduction of an endogenous low-

affinity PBP, iii) acquisition of an additional low-affinity PBP, or iv) a combination of 

these mechanisms [577]. Current knowledge regarding alternatives i-iii, with emphasis 

on alterations in PBPs 1A, 1B, 2 and 4-6 (characteristics presented in chapter 5.5), 

regulatory mechanisms (chapter 5.7), and acquisition of additional PBPs as potential 

contributors to beta-lactam resistance in H. influenzae is summarized below.  

PBP1A (ponA) and PBP1B (ponB) are poorly studied in H. influenzae despite the close 

interaction between PBP1B and PBP3 during cell division [528]. Kaczmarek et al. 

sequenced ponA and ponB in four bla negative low-rPBP3 isolates with unusually high 

ampicillin MIC but found no amino acid substitutions in the transpeptidase region 

[214]. The Rd strain and two rPBP3 strains with low-level resistance were transformed 

with full-length ponA and ponB genes but no transformants with increased resistance 

were obtained by selection with ampicillin and cefaclor.  
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PBP2 (pbp2) interacts with PBP1A during cell elongation and is important for 

maintenance of rod shape [528]. PBP2 deserves special attention as an important target 

for carbapenems and piperacillin in H. influenzae (Table 8 and Figure 10).  

As described in chapter 6.3.5, there is some evidence that carbapenem resistance is 

associated with PBP3 alterations, but data are conflicting and the mechanism is 

incompletely understood. Theoretically, it would make sense to characterize PBP2 in 

isolates with resistance to piperacillin and/or carbapenems, in particular in the absence 

of resistance to ampicillin and cephalosporins. To my knowledge, such investigations 

have not been performed.  

In an early study, Mendelman et al. reported that I50 for PBP2 could not be determined 

in H. influenzae transformants with DNA from isolates with non-bla-mediated 

resistance and hypothesized that this was due to protein loss or reduced affinity [301]. 

In a later investigation, the same group observed that two transformants with 

alterations in PBP2 and PBP3 had higher ampicillin MICs than to transformants with 

PBP3 alterations only, and concluded that PBP2 is associated with resistance [298].  

Powell et al. described resistance to imipenem without cross-resistance to ampicillin 

and meropenem but did not perform sequencing of PBP genes [384-386]. Cardines et 

al. reported 17.7% imipenem resistance among 79 H. influenzae from Italian cystic 

fibrosis patients [57]. The collection included imipenem-resistant, ampicillin-

susceptible isolates but the resistance mechanism was not characterized.  

High-level resistance to imipenem [308] and meropenem [180] has also been reported 

in bla-negative ampicillin-resistant H. influenzae from Japan. In one study [180], 

sPBP3 isolates with remarkably high meropenem MICs (32 mg/L) were reported. As 

PBP3 genotyping was performed by PCR, these isolates may represent miscategorized 

group III-like high-rPBP3 isolates (chapter 6.3.9). PBP2 was not characterized. 

Kaczmarek et al. sequenced pbp2 in four bla-negative low-rPBP3 H. influenzae with 

unusually high ampicillin MIC but found no amino acid substitutions in the 

transpeptidase region of PBP2 [214]. The Rd strain and two rPBP3 strains were 

transformed with full-length pbp2 but no transformants with increased resistance were 
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obtained by selection with ampicillin or cefaclor. The effect on susceptibility to 

carbapenems was not investigated.  

In conclusion, carbapenem resistance in H. influenzae is incompletely understood and 

the hypothetic resistance mechanism altered PBP2 (‘rPBP2’) is barely investigated.  

PBP4 (dacB), PBP5 (dacA) and PBP6 (pbpG) are LMW PBPs with carboxypeptidase 

and/or endopeptidase activity (chapter 5.5). Reduced affinity for LMW PBPs has been 

observed in H. influenzae with non-bla-mediated beta-lactam resistance [300,301,530]. 

In an early study, Mendelman et al. reported that PBP4 was detectable only during 

growth but found no uniform relationship between PBP4 affinity and resistance [298]. 

Similar conclusions have been drawn in later investigations on the correlation between 

PBP4 and PBP5 alterations and beta-lactam resistance in H. influenzae.  

Ubukata et al. sequenced dacB in 25 rPBP3 and five sPBP3 isolates and identified 

substitutions in the transpeptidase region of PBP4 in two group II low-rPBP3 isolates; 

no substitutions were observed close to the conserved SDN and KTG motifs [530]. A 

seven bp deletion downstream of SDN caused a stop codon in two isolates with 

undetectable PBP4 by fluorography but did not correlate to beta-lactam resistance.  

Straker et al. sequenced dacB and dacA in 14 cefuroxime-resistant and three 

susceptible H. influenzae [487]. Several PBP4 substitutions were present in susceptible 

and resistant isolates, whereas no PBP5 substitutions were detected. The authors 

concluded with no obvious correlation between PBP4 alterations and resistance. 

Similarly, Cerquetti et al. detected several PBP4 substitutions in the transpeptidase 

region of two low-rPBP3 isolates with heterogeneous imipenem resistance and four 

sPBP3 isolates, but found no correlation between substitutions and resistance [62].  

Investigations on the effect of PBP6 alterations in H. influenzae have not been 

identified during the work with this thesis. 

Acquisition of additional PBPs has not been described as a mechanism of PBP-

mediated resistance in H. influenzae. However, PBP binding assays have suggested the 

presence of additional PBPs in strains with non-bla-mediated resistance in several 
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investigations. Mendelman et al. reported marked PBP profile heterogeneity with 

detection of 5-10 PBPs in individual resistant isolates [300]. Makover et al. reported 

an extra HMW protein between PBP2 and PBP3A, and that PBP5 appeared to consist 

of at least two proteins in the (normally) ampicillin susceptible strain H. influenzae 

ATCC 19418 [274]; however, ampicillin MIC (3.3 mg/L) suggests acquired resistance. 

Serfass et al. observed 1-2 additional LMW proteins between PBP5 and PBP6 in two 

bla negative isolates with decreased PBP3 affinity and ampicillin MIC 4-8 mg/L 

[451]; similar observations were made by Mendelman et al. in two cefuroxime-

resistant CSF isolates [299].  

Whether these observations represent known PBPs with altered electrophoretic 

mobilities and/or acquired additional PBPs, and the relevance for beta-lactam 

resistance, is unknown. 

Hyperproduction of low-affinity PBPs may confer beta-lactam resistance [577]. The 

mechanism has not been described in H. influenzae, but increased ftsI transcription and 

PBP3 hyperproduction would theoretically enhance the impact of PBP3 alterations and 

increase beta-lactam MICs. Several promoter sequences controlling transcription of 

the dcw cluster (including the ftsI gene) are described in E. coli (chapter 5.7); the 

corresponding promoters in H. influenzae have to my knowledge not been 

characterized. Kaczmarek et al. sequenced a 225 bp region upstream of the ftsI start 

codon in four bla negative low-rPBP3 isolates with unusually high ampicillin MIC but 

found no alterations compared to the Rd strain [214]. Cerquetti et al. sequenced a 166 

bp region upstream of ftsI and a 100 bp region downstream of the ftsI stop codon; 

except for one nucleotide (upstream) no differences were observed compared to the Rd 

strain [62]. Notably, the sequenced regions would not encompass promoters with 

locations similar to promoters in E. coli (approximately 400 bp upstream of ftsI) [542]. 

As described in chapter 5.7, activation of the SOS response in E. coli (and likely H. 

influenzae) leads to increased transcription of the dcw cluster and a concomitant arrest 

in cell division, resulting in filamentous growth [542]. As inhibition of PBP3 by beta-

lactams may initiate the SOS response, it has been suggested that the response may 

protect bacteria against beta-lactams [307]. The SOS response is suppressed by the 
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binding of LexA to SOS boxes located in the promoter region of the dcw cluster in E. 

coli [162,542]. The SOS box consensus sequence in E. coli contains TA repeats, 

resembling the contingency loci associated with phase variation through slipped-strain 

misplacement in H. influenzae (chapter 4.3) [28]. If the SOS response in H. influenzae 

is regulated in similar manners, and SOS boxes in the dcw promoter region contain 

contingency loci, an intriguing hypothesis might be that phase variation is involved in 

the regulation of ftsI transcription and cell division in H. influenzae.  

Not only does this hypothesis suggest that the SOS response may be initiated through 

reversible mutations affecting LexA-binding SOS boxes; it also raises the possibility 

that ftsI transcription (and PBP3 production) may be switched on and off through 

reversible mutations (e.g. slipped-strain misplacement) affecting promoter sequences.  

These hypothesized mechanisms of PBP3 hyperproduction are relevant for future 

investigations on some well-known, incompletely understood phenomenons:  

Paradoxical effect, also referred to as ‘the Eagle effect’, was described by Eagle in 

1948 [96]. Eagle observed that penicillin was optimally effective at a certain 

concentration and that killing rates were reduced at higher concentrations. Consistent 

with Eagle’s observations in other organisms, Woolfrey et al. reported that killing of 

H. influenzae decreased rapidly at ampicillin concentrations 2-4 times MIC [567,568].  

Bacterial persistence, first described in 1944 [35], denotes the ability of a 

subpopulation (‘persisters’) of susceptible bacteria to survive exposure to bactericidal 

antibiotics [20]. The persister phenotype is characterized by slow growth and acquired 

through a reversible switch [242]. Persistence has not been described in H. influenzae.  

Heteroresistance denotes variable expression of a resistance mechanism within an 

isogenic population. The phenomenon has been known since 1947 but the mechanisms 

are incompletely understood and the clinical relevance uncertain [98]. Heteroresistance 

to imipenem in rPBP3 H. influenzae was reported by Cerquetti et al. [62].  

Theoretically, bacteria with increased tolerance to beta-lactams due to PBP3 

hyperproduction would be expected to have normal cell morphology, whereas 

filamentous forms would be expected in bacteria surviving beta-lactam exposure due 
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to activated SOS response and inhibited cell division. Woolfrey et al. described hazy 

growth of H. influenzae on agar dilution plates and within inhibition zones by disk 

diffusion [567]. The resistance mechanisms were not characterized, but the phenotypes 

of some of the study isolates (ampicillin MIC = 2 mg/L) strongly suggest altered 

PBP3. Gram staining revealed filamentous forms with outpouchings at concentrations 

immediately above the MIC, and variously sized and shaped cells at higher 

concentrations. In both cases, cellular morphology normalized in subcultures. Whether 

H. influenzae strains use phase variation to increase beta-lactam tolerance and/or to 

regulate resistance levels in rPBP3 strains remains to be investigated. 

Interaction between PBP3 and other cell division proteins is crucial for cell division 

[528]. Gene products interacting with PBP3 in E. coli and likely in H. influenzae 

include the cell division protein FtsA, which plays a structural and regulatory role in 

peptidoglycan synthesis and is encoded by the ftsA gene, located at the 3’ and of the 

dcw cluster (Table 9). Tormo et al. reported that ftsA mutations was associated with a 

significant decrease in the binding of ampicillin to PBP3 and with resistance to lysis 

by beta-lactams in E. coli [512]. The interaction between FtsA and PBP3 and the 

relevance for phenotypic resistance has not been investigated in H. influenzae. 

 

6.4.2 Impermeability 

The outer membrane of Gram-negative bacteria represents a barrier for beta-lactams 

and other hydrophilic drugs. For these targets, access to target depends on the presence 

of outer membrane proteins (OMP) forming permeable channels, denoted porins [534]. 

Porin loss or alterations might lead to reduced permeability and increased resistance to 

beta-lactams. Assays for measurement of permeability and OMP profiling were 

described by Mendelman et al. [301] and Sanchez et al. [438]. 

The lower beta-lactam MICs in H. influenzae compared to Enterobacteriaceae has 

been ascribed to a higher degree of penetration of the outer membrane [80,438]. It is 

generally accepted that OMP2, encoded by the omp2 gene, is the only porin in H. 

influenzae [437,534]. The porin function of OMP2 was demonstrated by Burns et al., 
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who showed that transformants lacking this protein had higher MICs to hydrophilic 

drugs such as chloramphenicol and beta-lactams [49].  

There is considerable variation in omp2 sequences and the size (35-42 kDa) of OMP2 

in NTHi [136]. The correlation between composition and pore function of OMP2, PBP 

affinities and beta-lactam susceptibility in NTHi was investigated by Regelink et al. 

[407]. The authors found that ampicillin MIC differed significantly between isolates 

with different variants of OMP2 with different pore function; the observations could 

not be explained by differences in PBP affinity profiles.  

Early investigations suggested that OMPs with sizes different from OMP2 may act as 

porins and be involved in beta-lactam resistance in H. influenzae. Mendelman et al. 

reported significantly reduced permeability in a ampicillin resistant transformant (MIC 

= 8 mg/L) with concomitantly reduced affinity for PBP3; notably, the transformant 

lacked a 27-kDa OMP which was present in the recipient strain [301]. In another 

study, Parr and Bryan observed significantly lower permeability in an ampicillin 

resistant isolate (MIC 1.56 mg/L) with low affinity for PBP3 compared to a 

susceptible isolate (ampicillin MIC = 0.185 mg/L) [366]. The authors also noted 

different OMP profiles, with a 45-kDa protein in the resistant strain, but not in the 

susceptible strain nor in the Rd strain. The low-affinity PBP3 and the resistance 

phenotype were transferred by transformation of the Rd strain, but not the 45-kDa 

protein nor the reduced permeability.  

The observations of Mendelman et al. [301], Parr and Bryan [366], Burns et al. [49] 

and Regelink et al. [407] were not addressed by Tristram et al. in the latest review on 

beta-lactam resistance in H. influenzae [516]. Instead, the authors referred to negative 

observations made by Clairoux et al. [71] and Kaczmarek et al. [214], and concluded 

that a role of altered outer membrane proteins and impermeability has not been 

demonstrated. Further investigations are needed to clarify whether impermeability due 

to porin alterations may contribute to beta-lactam resistance in H. influenzae. 
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6.4.3 Increased efflux 

The concentration gradient of beta-lactams across the outer membrane may be 

expressed as the balance between influx (through porins) and efflux. The genome of 

H. influenzae contains homologs of several multi-drug efflux pumps [131,437]. The 

acrRAB gene cluster contains genes encoding the AcrAB efflux pump and the acrR 

suppressor gene [131]. Sanchez et al. found that this efflux pump was important for 

baseline susceptibility to erytromycin and rifampicin in H. influenzae, but disruption 

of the pump in the Rd strain did not affect susceptibility to beta-lactams, quinolones, 

tetracycline and chloramphenicol (in contrast to in E. coli) [437]. The effect of AcrAB 

derepression on beta-lactam susceptibility was not investigated.   

Kaczmarek et al. demonstrated that four low-rPBP3 isolates from North America 

(1996-2001) with unusually high ampicillin MICs (8-16 mg/L) had increased efflux 

due to frame shift insertions in acrR [214]. The authors obtained significantly higher 

ampicillin and erythromycin MICs by transformation of the Rd strain with acrR genes 

from clinical isolates, and also reduced mean ampicillin MIC from 10.3 mg/L to 3.67 

mg/L (typical for low-rPBP3) through an acrR knock-out experiment. OMP 

characterization showed no differences between resistant isolates and control strains or 

transformants. The authors concluded that regulation of AcrAB might increase as well 

as decrease ampicillin MIC in rPBP3 H. influenzae, challenging the traditional view 

that efflux does not affect the activity of beta-lactams in this organism [437]. 

The conclusions of Kaczmarek et al. were questioned by Garcia-Cobos et al. in a later 

study [148]. Characterization of the acrR genes of 72 H. influenzae from Spain 

revealed acrR mutations predicting early termination of the ORF in eight isolates, but 

none of these had ampicillin MIC exceeding 2 mg/L. Transformation experiments 

were not conducted in that study. With conflicting observations in the two studies, the 

impact on acrR mutations on beta-lactam susceptibility in H. influenzae needs further 

elucidation. An attractive hypothesis might be that a third, unknown mechanism is 

required to increase beta-lactam MICs in rPBP3 isolates with increased efflux due to 

acrR mutations. 
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6.5 NON-BLA-MEDIATED RESISTANCE AND PATHOGENICITY 

Several investigations have addressed the association between beta-lactam resistance 

and pathogenicity. Peptidoglycan from H. influenzae mediates inflammation in 

experimental meningitis, and peptidoglycan from strains with non-bla-mediated 

resistance mediates as stronger inflammatory response compared to peptidoglycan 

from susceptible strains [50]. Burroughs et al. found different peptidoglycan structures 

in susceptible and resistant strains [52] and suggested an association between 

peptidoglycan structure and pathogenicity [51].  

Rubin et al. found that H. influenzae transformants with non-bla-mediated resistance 

were associated with lower mortality and reduced ability to cause bacteremia in a rat 

model [425]. The authors suggested that reduced pathogenicity was due to reduced 

growth rates, i.e. that acquisition of resistance was associated with a fitness cost [295]. 

However, in a transformation experiment by Melhus et al. [292], reduced 

susceptibility to amoxicillin was transferred but the growth rate remained unchanged 

after transformation of a susceptible recipient strain with DNA from a strain with non-

bla-mediated resistance and lower growth rate. The authors also concluded that the 

transformant expressed no obvious alterations in virulence in a rat model of acute otitis 

media. The exact resistance mechanism was not characterized in the two studies. 

Clinical studies have shown no significant association between non-bla-mediated 

resistance and disease severity in patients with H. influenzae pneumonia [331] and 

other respiratory disease [169]. Okabe et al. reported increased ability of an NTHi 

strain with PBP3-mediated resistance to invade bronchial epithelial cells in vitro and 

hypothesized that altered PBP3 may enhance virulence by acting as an adhesion 

molecule [157]. In a later investigation, Atkins et al. confirmed an increased capacity 

of some clinical rPBP3 strains to invade respiratory epithelial cells but transformation 

experiments showed that this was not related to the altered PBP3 [13]. Strain 

characterization by molecular methods for epidemiological typing was not performed 

in either of the studies referred above.  
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6.6 BETA-LACTAM RESISTANCE EPIDEMIOLOGY 

Table 14 shows global beta-lactam susceptibility rates according to current EUCAST 

breakpoints [111], and Table 15 summarizes beta-lactam susceptibility from the 

Norwegian Surveillance System for Antimicrobial Drug Resistance (NORM) (2000-

2014) [339-345].  

Bla positive H. influenzae are less prevalent in Europe compared to other regions, and 

susceptibility rates for amoxicillin-clavulanic acid and ceftaroline suggest that non-

bla-mediated resistance in general and high-rPBP3 isolates in particular are more 

frequent in the Asia-Pacific region and South Africa compared to Europe and the 

Americas. A global surveillance study comparing the periods 2004-2008 (n=8732) and 

2009-2012 (n=6038) indicated increasing prevalence of bla negative, ampicillin-non-

susceptible H. influenzae in Latin America (3.3%/4.0%), Asia/Pacific region 

(1.1%/2.9%) and North America (1.0/1.3%), and decreasing prevalence in Africa 

(2.5%/1.6%) and Europe (1.9%/1.3%) [511].  

In Norway, both bla positive H. influenzae and isolates with non-bla-mediated 

resistance increased considerably in frequency between 2000 and 2014. With the 

notable exception of cefuroxime, suggesting that the prevalence of rPBP3 H. 

influenzae is higher in Norway compared to the rest of Europe, beta-lactam 

susceptibility rates for non-invasive isolates from Norway in 2011 [343] were largely 

comparable to the rates for respiratory isolates from Europe in the period 2009-2012 

[121,428].  
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Table 14 Beta-lactam susceptibility of H. influenzae isolates in surveillance studies from 

different geographical regions. Proportions (%) of isolates categorized as susceptible by current 

EUCAST breakpoints (chapter 8.1, Table 17) [111] 

Agents Europe U. S. 
Asia-Pacific region 

and South Africa 

Latin 

America 

bla negative 87.2
a
 73.2

c
 77.9

e
 70.6

f
 

Ampicillin 86.4
a
 73.1

c
 75.5

e
 No data 

Amoxicillin-clavulanic acid 91.3
a
 >90.0

c
 84.1

e
 88.9

f
 

Cefuroxime
g
 94.8

a
 No data No data No data 

Ceftriaxone  99.6
b
 99.5

d
 99.3

e
 99.2

f
 

Ceftaroline 97.7
a
 No data 93.4

e
 96.0

f
 

Meropenem  100.0
b
 100.0

d
 No data No data 

a
 Community-acquired respiratory tract infections, 2010 (n=515) [121] 

b 
Pneumonia, hospitalized patients, 2009-2012 (Europe and the Mediterranean region) (n=189) 

[428] 
c
 Respiratory and bloodstream isolates, 2008-2010 (n=1545) [371] 

d
 Pneumonia, hospitalized patients, 2009-2012 (n=251) [428] 

e
 Community-acquired respiratory tract infections, 2010 (n=453) [429] 

f
 Various infection types and locations, 2011 (n=126) [130] 

g
 Isolates with cefuroxime MIC = 2 mg/L (intermediate) are included in the susceptible 

proportion 

 

Table 15 Beta-lactam susceptibility of non-invasive (2000-2014) and invasive (2013-2014) H. 

influenzae from Norway (compiled from NORM [339-345]). Proportions (%) of isolates 

categorized as susceptible by current EUCAST breakpoints (chapter 8.1, Table 17) [111] 

Agents
a
 

Non-invasive
b
  Invasive

c
 

2000 

n=355 

2001 

n=704 

2004 

n=513 

2007 

n=808 

2011 

n=677 

2014 

n=463 
 

2013 

n=79 

2014 

n=69 

bla  negative 92.9 93.0 91.2 89.5 87.7 82.7  84.8 87.0 

Ampicillin 93.6 91.8 88.9 86.6 81.7 80.3  82.3 79.7 

Amoxicillin-ca
d
 100.0 98.7 96.9 92.0 93.8 90.9  94.9 94.2 

Cefuroxime
e
 No data No data No data 83.7 83.0 86.6  81.0 87.0 

Cefotaxime No data No data No data 99.5 100.0 99.4  98.7 98.6 

Ceftriaxone No data No data No data No data No data No data  100.0 100.0 

a
 MIC determination by gradient tests (Etest, 2000-2011; non-specified, 2013-2014) 

b
 Respiratory, eye and ear isolates 

c
 Isolates from blood, CSF and other sterile materials 

d
 Amoxicillin-clavulanic acid 

e
 Isolates with cefuroxime MIC = 2 mg/L (intermediate) are included in the susceptible 

proportion
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7 NON-BETA-LACTAM ANTIMICROBIAL AGENTS 

 

7.1 AGENTS WITH ACTIVITY AGAINST H. INFLUENZAE  

Non-beta-lactam resistance in H. influenzae has been reviewed repeatedly 

[164,269,333,383,410,470,516,558]. Although the topic is outside the primary scope 

of this thesis, a brief summary is presented in this chapter because any phylogenetic, 

epidemiologic or mechanistic links between beta-lactam and non-beta-lactam 

resistance in H. influenzae would be highly relevant. 

H. influenzae without acquired resistance mechanisms are susceptible to a wide range 

of non-beta-lactam antimicrobial agents in vitro. Commonly used therapeutic agents 

with clinical breakpoints defined by EUCAST include quinolones, tetracyclines, 

chloramphenicol and trimethoprim-sulfamethoxazole; rifampicin may be used for 

prophylaxis [111].  

In addition, CLSI have defined clinical breakpoints for the macrolides clarithromycin, 

azithromycin (azalide) and telithromycin (ketolide) [75]. EUCAST currently define the 

wild type population as intermediate susceptible to these agents due to intrinsic 

resistance [255] and weak correlation between MICs and outcome [111]. In vitro and 

in vivo studies have shown bactericidal effect of azithromycin [103], telithromycin 

[356] and clarithromycin [194,329] on NTHi in AOM and/or pulmonary infections. 

The effect of azithromycin correlates to MIC and clinical breakpoints [103]. 

Clarithromycin may have in vivo bactericidal effect despite increased MIC by in vitro 

susceptibility testing [329]. Clinical trials indicate that azithromycin is non-inferior to 

amoxicillin-clavulanic acid for treatment of AOM [11] and lower RTI [576]. 

The ability of azithromycin, telithromycin and clarithromycin to kill intercellular 

bacteria reflects the good intracellular penetration of these drugs [5,103,329]. 

Intracellular accumulation is also an important hallmark of fluoroquinolones, such as 

ciprofloxacin [5] and levofloxacin [449]. Other non-beta-lactams with demonstrated 

activity against intracellularly located NTHi include tetracycline [45,540], 

quinupristin/dalfopristin [5] and rifampicin [540].  
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Synergy between beta-lactams and non-beta-lactams (e.g. quinolones) against rPBP3 

H. influenzae may be observed in vitro (Figure 13). Uemura et al. compared 

concurrent administration of imipenem-levofloxacin and imipenem-clarithromycin 

with single administration and observed significantly reduced biofilm formation [533]. 

These observations suggest that combined therapy may be a useful therapeutic 

approach in infections where biofilm and/or the formation of intracellular bacterial 

communities are important for pathogenesis (chapter 4.4).  

Clinical breakpoints for H. influenzae and aminoglycosides have not been defined by 

EUCAST [111] and CLSI [75]. MIC-distributions suggest that the in vitro activity of 

gentamicin against H. influenzae is similar to the activity against other Gram-negative 

organisms, e.g. Acinetobacter baumannii (www.eucast.org/mic_distributions/). 

Gentamicin kills H. influenzae effectively in vitro but has no intracellular activity 

[540] and is generally considered unsuitable for treatment of pulmonary infections.  

 

7.2 NON-BETA-LACTAM RESISTANCE IN H. INFLUENZAE 

EUCAST define resistance to ciprofloxacin as an exceptional phenotype in H. 

influenzae [255] and recommend that such isolates are referred to a reference 

laboratory [111]. Resistance to quinolones is associated with hypermutability [369] 

and usually due to substitutions in the quinolone resistance-determining regions 

(QRDR) of subunit A of topoisomerase II (GyrA) and subunit A of topoisomerase IV 

(ParC); the resistance level depends largely on the number of substitutions in the 

positions 84 and 88 in both proteins [151]. Isolates with single substitutions are 

usually low-level resistant but additional mechanisms may increase resistance [369]. 

The plasmid-mediated acetyl transferase gene aac(6’)-lb-cr may contribute to 

quinolone resistance [372]. Other plasmid-mediated quinolone resistance determinants 

such as qnr has been reported in H. parasuis [167] but not in H. influenzae.  

Nalidixic acid (30 μg) is superior to ciprofloxacin (5 μg) for detection of low-level 

resistance and may be used for screening [370]. Global surveillance studies indicate 

that 10-30% of H. influenzae may possess first-step QRDR substitutions [85]. In Spain 

http://www.eucast.org/mic_distributions/
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(2000-2013), only 28/7267 isolates (0.39%) had ciprofloxacin MIC >1 mg/L and the 

proportion remained stable during the study period [396]. Notably, dissemination of 

levofloxacin resistant clones was recently reported from Taiwan, with an increase in 

isolates with MIC >2 mg/L from 2.0% in 2004 to 24.3% in 2010 [241]. 

 Resistance to trimethoprim-sulfamethoxazole in H. influenzae is caused by reduced 

activity of trimethoprim due to alterations in the dfrA gene encoding the enzyme 

dihydrofolate reductase (DHFR), which catalyzes the reduction of dihydrofolate to 

tetrahydrofolate [90], and/or resistance to sulfamethoxazole due to acquisition of sul 

genes and mutations in the folP gene encoding dihydropteroate synthase (DHPS) [99]. 

Tetracycline resistance in H. influenzae is due to increased efflux mediated by the 

transferable tet(B) gene [66]. Resistance to chloramphenicol may be caused by the 

acquired enzyme chloramphenicol acetyltransferase, encoded by the cat gene [418], 

and occasionally by impermeability due to loss of an outer membrane porin [48].  

Non-beta-lactam resistance rates for respiratory and invasive isolates from Norway 

based on surveillance data from NORM [343,344] are presented in Table 16. 

Table 16 Susceptibility to non-beta-lactams in non-invasive and invasive H. influenzae from 

Norway according to NORM 2014 [345] and EUCAST breakpoints [111]. S, susceptible; I, 

intermediate; R, resistant 

Agents 
MIC 

breakpoints
a
 

Non-invasive
b
 (n=463)  Invasive

c
 (n=69) 

S I R  S I R 

Trim-sulfa
d
 0.5/1 78.0 3.0 19.0  87.0 2.9 10.1 

Tetracycline 1/2 98.5 0.2 1.3  98.6 0.0 1.4 

Chloramphenicol 2/2 99.1 - 0.9  100.0 - 0.0 

Ciprofloxacin 0.5/0.5 99.6 - 0.4  8.6 - 1.4 

a
 S≤/R> (mg/L) [111] 

b
 Respiratory, eye and ear isolates 

c
 Isolates from blood, CSF and other sterile materials 

d
 Trimethoprim-sulfamethoxazole 
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7.3 MULTI-DRUG RESISTANCE (MDR) 

In 1984, Mendelman et al. reported a case of meningitis caused by MDR H. influenzae 

[302]. The resistotype (bla positive and co-resistance to chloramphenicol and 

tetracycline) was mediated by a 43-megadalton R-plasmid. The first Nordic case of H. 

influenzae septicemia with a similar strain was reported by Vik et al. in 1986 [543]. 

Later investigations showed that the resistance determinants in such strains are located 

at an ICE [254], now referred to as ICEHin1056, with blaTEM residing in one 

transposon (Tn3) and tet and cat genes in another (Tn10) [212,310]. ICEHin1056 may 

be detected by molecular methods [430]. Transfer occurs with a frequency of between 

10
-1

 and 10
-2

 in H. influenzae [212]. The association between bla, tet and cat genes is 

reflected by surveillance data: resistance to tetracycline and chloramphenicol was 

more frequent in bla positive versus bla negative isolates in NORM 2011 [343].  

MDR H. influenzae with combinations of chromosomally mediated resistance 

mechanisms have also been reported. Campos et al. reported two isolates with 

resistance to ciprofloxacin and concomitant bla and chloramphenicol acetyltransferase 

activity, and two ciprofloxacin-resistant isolates with concomitant non-bla-mediated 

ampicillin resistance [55]. A strain with non-bla-mediated beta-lactam resistance 

(resistant to amoxicillin-clavulanic acid and imipenem) co-resistant to quinolones and 

trimethoprim-sulfamethoxazole caused a nosocomial outbreak in Taiwan in 2008 

[573]. More recently, a group II low-rPBP3 strain with co-resistance to quinolones was 

reported from Germany [372]. Surveillance data support a link between various 

chromosomally mediated resistance mechanisms (beta-lactams, quinolones and 

trimethoprim-sulfamethoxazole). Resistance to trimethoprim-sulfamethoxazole is 

more frequent in H. influenzae with with non-bla-mediated beta-lactam resistance in 

Norway [342], and resistance to trimethoprim-sulfamethoxazole is prevalent among H. 

influenzae with QRDR substitutions in Spain [396].  

Finally, extensively MDR H. parainfluenzae with resistance to ciprofloxacin, 

tetracycline, chloramphenicol, azithromycin and extended-spectrum cephalosporins 

were reported from Switzerland [510]; a similar accumulation of resistance mechanism 

has to my knowledge not been reported in H. influenzae. 
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8 TESTING OF SUSCEPTIBILITY TO BETA-LACTAMS 

 

8.1 CLINICAL BREAKPOINTS  

The minimum inhibitory concentration (MIC) value is an objective measure of drug 

tolerance and denotes the lowest concentration (expressed as mg/L or μg/mL) of a 

drug that prevents visible growth of a microorganism. Clinical MIC breakpoints are 

used to categorize the organism as susceptible (S), intermediate (I) or resistant (R) 

based on MIC [315]. Breakpoint setting requires information on dosages, 

pharmacokinetics and pharmacodynamics (PK/PD), resistance mechanisms, and MIC 

distributions with epidemiological cutoff (ECOFF) values, defined as the highest MIC 

of isolates without acquired resistance mechanisms (wild-type). Clinical breakpoints 

should be supported by clinical data and not divide the wild-type population [315].   

Current breakpoints for H. influenzae and beta-lactams from the European Committee 

on Antimicrobial Susceptibility Testing (EUCAST, www.eucast.org) [111] and 

Clinical and Laboratory Standards Institute (CLSI, http://clsi.org) [75] differ 

significantly and are not identical for any of the 17 agents listed in Table 17.  

EUCAST and CLSI both use ECOFF to separate between ampicillin susceptible (MIC 

≤1 mg/L) and non-susceptible (MIC >1 mg/L) isolates. In contrast to CLSI, EUCAST 

have not defined an intermediate category for ampicillin. Clinical data for H. 

influenzae and aminopenicillins are insufficient and the relevance of current 

breakpoints is debated [110,139,516,537]. Ampicillin breakpoints from CLSI were 

originally set to separate between bla positive and bla negative strains [139].  

Non-susceptibility to extended-spectrum cephalosporins is characterized as an 

‘exceptional phenotype’ [255]. Both EUCAST and NordicAST recommend that such 

isolates are sent to a reference laboratory [111,338]. EUCAST breakpoints for 

extended-spectrum cephalosporins are largely based on ECOFFs (Table 17), whereas 

CLSI breakpoints mostly correlate to non-species-related (PK/PD) breakpoints [516]. 

As different breakpoints lead to differences in susceptibility rates, surveillance data are 

sometimes reported according to both guidelines [121,130,428,429]. 

http://www.eucast.org/
http://clsi.org/
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Table 17 Clinical breakpoints for H. influenzae and beta-lactams from EUCAST [111] and 

CLSI [75] compared to epidemiological cut-off (ECOFF) values and non-species related 

(PK/PD) breakpoints [111] (S≤/R>, mg/L)  

Agents Class
c
 Adm

d
 ECOFF

e
 

CLSI 

[75] 

EUCAST 

[111] 

PK/PD 

[111] 

Ampicillin Ap p.o. 1 1/2 - - 

Ampicillin Ap i.v. 1 1/2 1/1 2/8 

Ampicillin-sulbactam
a,b

 Ap-i i.v. 1 - 1/1 2/8 

Amoxicillin
a,b

 Ap p.o. 2 - - - 

Amoxicillin
a,b

 Ap i.v. 2 - 2/2 2/8 

Amoxicillin-clavulanic acid
a
 Ap-i p.o. 2 4/4 - - 

Amoxicillin-clavulanic acid
a
 Ap-i i.v. 2 - 2/2 2/8 

Piperacillin-tazobactam
a,b

 Ur-i i.v. 0.06 1/1 - 4/16 

Cefuroxime
a
 Cs II p.o. 2 4/8 0.125/1 - 

Cefuroxime
a
 Cs II i.v. 2 4/8 1/2 4/8 

Ceftibuten Cs III p.o. 0.5 2/- 1/1 - 

Cefixime Cs III p.o. 0.125 1/- 0.125/0.125 - 

Cefpodoxime Cs III p.o. 0.25 2/- 0.25/0.5 - 

Cefotaxime Cs III i.v. 0.06 2/- 0.125/0.125 1/2 

Ceftriaxone Cs III i.v. 0.06 2/- 0.125/0.125 1/2 

Ceftazidime Cs III i.v. 0.5 2/- - 4/8 

Cefepime Cs IV i.v. 0.25 2/- 0.25/0.25 4/8 

Ceftaroline Cs V i.v. 0.03 0.5/- 0.03/0.03 0.5/0.5 

Aztreonam Mb i.v. 0.5 2/- - 4/8 

Doripenem Cp i.v. 0.5 1/- 1/1 1/2 

Ertapenem Cp i.v. 0.125 0.5/- 0.5/0.5 0.5/1 

Imipenem Cp i.v. 2 4/- 2/2 2/8 

Meropenem (non-CSF) Cp i.v. 0.25 0.5/- 2/2 2/8 

Meropenem (CSF) Cp i.v. 0.25 0.5/- 0.25/1 - 

a
 CLSI: infer susceptibility to amoxicillin from ampicillin; consider ampicillin-resistant beta-

lactamase negative isolates resistant to ampicillin-sulbactam, amoxicillin-clavulanate, 

piperacillin-tazobactam and cefuroxime despite apparent in vitro susceptibility [75] 
b
 EUCAST: infer susceptibility to amoxicillin from ampicillin; infer susceptibility to 

ampicillin-sulbactam and piperacillin-tazobactam from amoxicillin-clavulanate [111] 
c
 Ap, aminopenicillin; i, beta-lactamase inhibitor; Up, ureidopenicillin; Cs, cephalosporin; 

Mb, monobactam; Cp, carbapenem; I-V, cephalosporin generations 
d
 Administration route; p.o., per os; i.v., intravenous 

e
 Epidemiological cut-off values (EUCAST; www.eucast.org/mic_distributions_ecoffs) 

http://www.eucast.org/mic_distributions_ecoffs
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As illustrated by the differences between EUCAST and CLSI breakpoints, setting of 

clinical breakpoints may be difficult. Notably, there is also a lack of consensus on non-

species-related (PK/PD) breakpoints between the two breakpoint committees. For 

instance, PK/PD breakpoints for ampicillin and cefotaxime calculated by EUCAST 

suggest that isolates with ampicillin MIC 4-8 mg/L and cefotaxime MIC 2-8 mg/L are 

resistant to standard doses of the drugs, but susceptible to high-dose therapy [111]. In 

contrast, the PK/PD breakpoints for ampicillin and cefotaxime (S≤2/R>2 mg/L, both 

agents) presented in the latest review article on beta-lactam resistance in H. influenzae 

[516] suggest that increased doses of these drugs do not affect clinical efficacy. 

The MIC distributions for H. influenzae with and without resistance mechanisms 

further complicate setting of clinical breakpoints for this organism. The rPBP3 

population overlaps with the wild-type population for several agents, and no 

breakpoint will reliable discriminate between the two populations. For instance, rPBP3 

isolates have ampicillin MIC range 0.5-16 mg/L (bla negative) [139,516,537] and 

cefotaxime MIC range 0.03-2 mg/L [180,516,531]; both ranges include isolates with 

MIC below ECOFF (Table 17).  

Antimicrobial susceptibility testing is associated with uncertainty due to biological and 

technical variation. A precision of ±1 dilution is generally accepted for MIC methods 

[209]. Consequently, when the breakpoints divide the resistant population, MIC-based 

susceptibility categorization will in some cases lead to categorization errors. For 

ampicillin, the S/R-breakpoint from EUCAST divides the low-rPBP3 population 

(MIC50 = 1 mg/L), and the I/R-breakpoint from CLSI divides the high-rPBP3 

population (MIC50 = 2 mg/L) [516]. For cefotaxime, the EUCAST breakpoints divide 

the high-rPBP3 population (MIC range 0.125-2 mg/L, MIC50 = 0.5 mg/L) [516].  

 

8.2 BROTH DILUTION  

MIC determination by dilution methodology using serial dilutions of the drug (twofold 

dilutions including the value 1 mg/L) is considered the gold standard for susceptibility 

testing of bacteria [107]. Methodologies for broth microdilution (BMD) are described 
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by EUCAST [107,109] and CLSI [75]; both methods are based on the early works of 

Ericsson & Sherris [101]. Serial dilutions may be produced in-house from antibacterial 

powders and broth from approved manufacturers, but commercial dried trays for 

reconstitution with broth are more convenient for use in routine laboratories [209].  

EUCAST and CLSI methodologies are both based on Mueller-Hinton broth (MHB) 

but differ with respect to the supplements recommended for testing of H. influenzae. 

EUCAST recommend Mueller-Hinton-Fastidious (MH-F) broth, consisting of MHB 

supplemented with 5% defibrinated horse blood and 20 mg/L beta-NAD [109,282]. 

CLSI recommend Haemophilus Test Medium (HTM), composed by MHB 

supplemented with 5 g/L yeast extract, 15 μg/mL beta-NAD, and 15 μg/mL hematin 

[74,211]. Different media for susceptibility testing of H. influenzae were compared in 

a multicenter study by Jacobs et al. [200]. MICs obtained with HTM (from different 

manufacturers), another MHB-based medium (with 2% lysed horse blood and 15 mg/L 

beta-NAD), and two media based on IsoSensitest broth were within ±1 dilution for 15 

of 21 agents tested, and inter-laboratory differences were more marked than the 

differences between media. Ampicillin, amoxicillin-clavulanic acid and ceftriaxone 

were among the most reproducible agents tested.  

Fuchs and co-workers evaluated media for determination of ampicillin broth dilution 

MIC in H. influenzae. In two studies with 206 isolates (including 61 bla positive) 

[140] and 143 bla negative isolates [27], respectively, HTM was compared with the 

MH-F-like LHB-3 medium (MHB supplemented with 3% lysed horse blood and 20 

mg/L beta-NAD). Geometric mean MIC was essentially the same with HTM (2.49 

mg/L) and LHB-3 (2.55 mg/L) and 96.1% of the results were within ±1 dilution step 

[140]. Susceptibility categorization (CLSI breakpoints) was essentially the same with 

both media [27]. The authors also investigated the influence of variations in colony 

age, inoculum, incubation time and atmosphere and observed that a 10-fold increase in 

inoculum increased ampicillin MIC from 1.50 to 2.45 mg/L [140].  

EUCAST and CLSI guidelines also differ with respect to susceptibility testing of bla 

positive isolates to ampicillin-sulbactam and amoxicillin-clavulanic acid. EUCAST 

recommend fixed concentrations of the bla inhibitor (sulbactam, 4 mg/L; clavulanic 
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acid, 2 mg/L) [111], whereas CLSI recommend a 2:1 ratio [74]. Clavulanic acid has 

low antibacterial activity against H. influenzae (MIC range 25-125 mg/L) [129]. 

Although BMD is considered reference methodology for MIC determination, 

validation of data requires adequate quality control (QC). QC MIC ranges for H. 

influenzae reference strains are defined by EUCAST [113] and CLSI [75]. Notably, as 

QC MICs within ±1 dilutions of target are accepted, median MICs for a particular 

agent-organism combination determined in separate investigations using the same test 

population may differ by two dilutions if MIC in the two investigations systematically 

deviates from target by +1 and -1 dilution, respectively. To avoid systematic errors, all 

QC MICs should be within range, and median MIC should ideally be on target. Also, 

as systematic errors outside the MIC range of the strain will not be detected if only one 

reference strain is used, QC should ideally be performed with strains covering 

different parts of the MIC scale. MIC data may also be compared to MIC distributions 

for clinical isolates as an additional control of validity. 

Other methods for susceptibility testing than MIC determination by broth dilution 

should be calibrated and evaluated against reference methodology. Commonly used 

acceptance criteria are >90% overall essential agreement (±1 dilution) and <1.5% very 

major errors (VME) and <3% major errors (ME) for individual species-drug 

combinations [209]. Notably, VME, ME, minor errors (mE) and categorical agreement 

are calculated with the complete test population as the denominator and thus strongly 

influenced by the proportion of resistant isolates in the test population (prevalence). 

Categorical errors and categorical agreement rates may be used for comparison of 

methods for susceptibility testing using identical populations, but the usefulness of 

acceptance criteria based on defined categorical error rates without taking into account 

the representativeness of the test population is debatable. In contrast to VME, the false 

susceptible rate (FSR; the number of VME divided by the number of isolates resistant 

by reference method) is independent of prevalence and may be used for comparison of 

results obtained with different methods and test populations.  

It should be noted that all the parameters described above are dependent on MIC 

breakpoints, and that rates achieved with different guidelines may not be compared. 
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8.3 GRADIENT DIFFUSION  

Gradient diffusion tests are commonly used for MIC determination in routine 

laboratories [209]. A strip coated with an antimicrobial agent concentration gradient 

on one side and an MIC scale printed on the other side is applied on an agar plate 

inoculated with a suspension of the test strain, and MIC is read directly where bacterial 

growth intersects with the strip. Three tests are commonly used: Etest (bioMérieux; 

www.biomerieux.com), MIC test strip (MTS) (Liofilchem; www.liofilchem.net) and 

M.I.C.Evaluator (M.I.C.E.) (Thermo Fisher Scientific; www.thermoscientific.com). 

EUCAST provides a list of compliance of manufacturers with EUCAST 

recommendations [108]. Etest, MTS and M.I.C.E. may all be used with MH-F agar 

(and with HTM, according to the manufacturers). Notably, as per September 2015, 

only one manufacturer (Liofilchem) offers amoxicillin-clavulanic acid and ampicillin-

sulbactam strips with fixed inhibitor concentrations [108].  

Several studies have indicated that Etest and M.I.C.E. may be unreliable for 

susceptibility testing of H. influenzae to beta-lactams (in particular aminopenicillins), 

but the results are conflicting [27,36,149,324,409,522]. No publications evaluating the 

performance of MTS and H. influenzae have been identified during the work with this 

thesis; there is also a general lack of evaluations of gradient tests with MH-F agar. 

Mushtaq et al. compared Etest and M.I.C.E. with agar dilution (IsoSensitest Agar, 

ISA) for several agents and species [324]. Overall essential agreement was poorest for 

the 56 Haemophilus isolates (H. influenzae, n=46; H. parainfluenzae, n=10) (Etest, 

74.4%; M.I.C.E., 76.9%), lower for beta-lactams than for non-beta-lactams, and 

particularly low for ampicillin and amoxicillin. Essential agreement rates for 

ampicillin, amoxicillin, amoxicillin-clavulanic acid (2:1), cefotaxime low (32 mg/L) 

and cefotaxime high (256 mg/L) were 60.5%, 42.4%, 65%, 55.8% and 85.7% for 

Etest, and 73.8%, 59.4%, 73.8, 83.7% and 68.8%, for M.I.C.E., respectively. 

Correlation coefficients (r) between gradient and reference MICs were 0.6-0.9 for 

Etest and 0.7-0.9 for M.I.C.E.; poor correlation (r≤0.7) was seen for amoxicillin 

(Etest) and amoxicillin-clavulanic acid (both tests).  

http://www.biomerieux.com/
http://www.liofilchem.net/
http://www.thermoscientific.com/


141 

 

Billal et al. reported even lower essential agreement in a study comparing Etest to 

BMD (HTM) or categorization of 87 bla negative rPBP3 strains [36]. The authors 

found 48%, 49% and 60% essential agreement for ampicillin, amoxicillin-clavulanic 

acid (2:1) and ceftriaxone, respectively. For all agents, a large number of Etest MICs 

were ≥6 dilutions higher than the corresponding BMD MIC.  

Overestimation of ampicillin resistance was also observed by Rennie et al. [409]. The 

authors compared the performance of Etest and M.I.C.E. for susceptibility testing of 

fastidious species with BMD (HTM) as the gold standard. The test population included 

39 H. influenzae and ten isolates of other Haemophilus species, and the agents tested 

included ampicillin, amoxicillin, amoxicillin-clavulanic acid (2:1) and cefotaxime. 

Detailed results for H. influenzae were not presented but the authors stated that major 

errors were mainly observed for ampicillin and Haemophilus spp.; for this agent-

species combination, major errors were seen for 4/49 (8.2%) isolates with M.I.C.E. 

and 3/49 (6.1%) isolates with Etest. 

In contrast, Fuchs and co-workers tested 143 bla negative H. influenzae and found a 

higher ampicillin susceptibility rate with Etest (HTM) (68%) compared to BMD 

(HTM) (59%) [27]. The authors also evaluated Etest with the MH-F-like media WHB 

(MHB with 5% whole horse blood and 20 mg/L beta-NAD) and LHB-3 (MHB with 

3% lysed horse blood and 20 mg/L beta-NAD) and obtained susceptibility rates 

slightly closer to the gold standard (WHB, 66%; LHB-3, 64%). The same group 

compared BMD (HTM) and ampicillin Etest with six different media, including HTM, 

WHB and LHB-5 (MHB with 5% lysed horse blood and 20 mg/L beta-NAD), for a 

collection of 145 bla negative (including 59 isolates with ampicillin MIC >1 mg/L) 

and 61 bla positive H. influenzae. The authors obtained lower ampicillin MICs with 

Etest (HTM, 1.23 mg/L; WHB, 1.53 mg/L; LHB-5, 1.62 mg/L) compared to BMD 

(2.49 mg/L) [140]. Both reports suggest that Etest underestimates MIC for ampicillin 

at levels near the clinical breakpoint, irrespective of media. 

Similarly, Garcia-Cobos et al. obtained a higher ampicillin susceptibility rate with 

Etest compared to BMD (HTM) in 34 bla negative rPBP3 isolates (88.2% versus 

76.5%); Etest MIC was 1-2 dilutions lower than BMD MIC for 41% (14/34) of the 
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isolates [149]. Overall essential agreement for ampicillin (all resistance genotypes, 

n=94) was 80.9% and varied between genotypes (bla negative sPBP3, 100%; bla 

negative rPBP3, 97%; bla positive sPBP3, 25%; bla positive rPBP3, 86.7%). The 

corresponding results for amoxicillin and amoxicillin-clavulanic acid (2:1) were 80.9% 

(100%; 73.5%; 15%; 87.7%) and 84% (96%; 73.5%; 100%; 66.7%), respectively.  

Tristram compared Etest and M.I.C.E. with BMD (HTM) and reported excellent 

correlation between the gradient tests, and between the gradient tests and BMD [522]. 

Overall essential agreement rates for ampicillin, amoxicillin-clavulanic acid (2:1) and 

cefotaxime were 81%, 91% and 93%, respectively. Essential agreement for ampicillin 

was higher for bla negative (27/30, 90%) compared to bla positive isolates (28/40, 

70%). Notably, for bla negative rPBP3 isolates, 47% (14/30) of ampicillin gradient 

MICs were one (n=12) or two (n=2) dilutions lower than reference MIC. 

Poor agreement between gradient tests and BMD for testing of susceptibility of bla 

positive isolates to ampicillin [149,522] is consistent with previous observations. 

Jorgensen et al. compared Etest with BMD (HTM) for susceptibility testing of H. 

influenzae (n=100) and found essential agreement for ampicillin, cefuroxime and 

cefotaxime of 76.5%, 95% and 96%, respectively [210]. The poor agreement for 

ampicillin reflects that the test was difficult to interpret for bla positive strains due to 

growth of small colonies within the inhibition ellipse. EUCAST recommend that bla 

positive isolates of H. influenzae are reported resistant to aminopenicillins without bla 

inhibitor, irrespective of MIC [111]. Notably, 6.3% (5/80) of bla positive H. influenzae 

had ampicillin MIC <1 mg/L in NORM 2014 [345]. Methods for detection of bla in H. 

influenzae are described in chapter 6.2.4. 

 

8.4 DISK DIFFUSION  

In the very first report of laboratory-confirmed ampicillin resistance (bla) in H. 

influenzae, Nelson stated that susceptibility testing of this organism is ‘a tricky 

business’ and characterized disk testing as ‘notoriously unreliable’ [334].  
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Modern disk diffusion is a simple and cost-effective method suitable for large-scale 

testing of clinical isolates in routine laboratories [209]. In short, a paper disk with a 

standardized content of an antimicrobial agent is applied on an agar plate inoculated 

with the test strain according to a standardized procedure. A concentration gradient is 

established by drug diffusion. Inhibited growth at concentrations exceeding the MIC of 

the isolate results in an inhibition zone around the disk; the diameter corresponds to 

the MIC value. A linear relationship between the zone diameter and antimicrobial log 

concentration of various drugs was demonstrated by Ericsson et al. [100].  

The principle of agar diffusion (and broth dilution) was demonstrated by Fleming as 

early as 1929 [132]. Inspired by his famous observation that a substance produced by a 

Penicillium colony inhibited the growth of staphylococci, Fleming embedded a 

standardized amount of mould broth filtrate (denoted ‘penicillin’) in growth agars 

inoculated with various organisms, including ‘Bacillus influenzae (Pfeiffer)’, and 

obtained inhibition zones of different sizes.  

As a consequence of the emergence of ampicillin resistant H. influenzae, a disk 

diffusion method for susceptibility testing of this organism was approved by the 

National Committee for Clinical Laboratory Standards (NCCLS) (now CLSI) in 1986 

[139]. The originally used LHB medium was replaced by HTM in 1990 [211]. In 

Europe, several disk diffusion methodologies were developed by different European 

national breakpoint committees; most were based on MHA or ISA [10]. The EUCAST 

methodology, with zone diameter breakpoints calibrated against EUCAST clinical 

MIC breakpoints, was launched in 2009 and is widely used, primarily in Europe [282]. 

EUCAST developed and recommend MH-F agar for susceptibility testing of H. 

influenzae [111,215]. 

Zone diameters are not comparable between various disk diffusion methodologies. In 

addition to being calibrated against different sets of breakpoints, major differences 

include different agar bases, different supplements for fastidious organisms (e.g. H. 

influenzae) and different inoculums (confluent or semi-confluent). The consistency of 

susceptibility categorization of H. influenzae to various antimicrobial agents by 

different test methodologies and interpretative guidelines was investigated in an 
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international collaborative quality assessment study [574]. Testing of 150 isolates at 15 

laboratories in six European countries and the U.S. revealed significant discrepancies, 

especially for bla negative ampicillin resistant isolates.    

The impact of different media for susceptibility testing of H. influenzae (bla negative 

isolates, n=143) to ampicillin by disk diffusion (10 μg) was investigated by Barry et al. 

[27]. Compared to HTM, larger inhibition zones were obtained with LHB-3, WHB, 

ISA (supplemented with 5% whole horse blood and 20 mg/L beta-NAD), and 

chocolate agar, resulting in underestimation of resistance. In contrast, Fuchs et al. 

obtained smaller zones with LHB-5, WHB and ISA compared to HTM when 206 

isolates (including 61 bla positive) were tested with the same disk [140]. 

The performance of disk diffusion for susceptibility categorization depends on the 

correlation between inhibition zone and reference MIC, which may be expressed as the 

Pearson correlation coefficient (r) (perfect correlation, r=1). MIC-zone correlation 

varies between agents and with disk potency. Zerva et al. evaluated beta-lactam disks 

(HTM) for susceptibility testing of H. influenzae (n=300) with BMD (HTM) as the 

gold standard and observed superior correlation and interpretative accuracy with 

ampicillin 2 μg (r=0.94) compared to ampicillin 10 μg (r=0.90) [578]. Others have 

reported similar results [149,219,297]. Superiority of low-potency disks compared to 

disks with higher drug content for categorization of H. influenzae is also reported for 

amoxicillin-clavulanic acid 2-1 μg versus 20-10 μg [149,219]. Consistent with 

previous observations [386], Zerva et al. also reported poor MIC-zone correlation with 

imipenem 10 μg (r=0.41) and meropenem 10 μg (r=0.28), and the disks did not 

separate between wild-type isolates and isolates with increased MIC [578].  

EUCAST has defined clinical zone breakpoints for most beta-lactams with MIC 

breakpoints [111]. In contrast to CLSI [75], EUCAST recommend low-potency disks 

for testing of ampicillin, amoxicillin-clavulanic acid and cefotaxime. MIC-zone 

correlations produced according to EUCAST recommendations are available at 

www.eucast.org/zone_diameter_distributions. Categorical agreement, error rates and 

FSR based on correlations for beta-lactams are shown in Table 18. The data indicate 

high FSR (>10%) for ampicillin, extended-spectrum cephalosporins and carbapenems.  

http://www.eucast.org/zone_diameter_distributions
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Table 18 Performance of EUCAST disk diffusion based on MIC-zone correlations and 

interpretation according to EUCAST MIC and zone breakpoints [111]. Data from 

www.eucast.org/zone_diameter_distributions (accessed 2015-09-25) 

Agents Disk 

(μg) 

n
a
 R or I/R

b
 

(n) 

CA
c
 

(%) 

mE
d
 

n (%) 

ME
e
 

n (%) 

VME
f
 

n (%) 

FSR
g
 

(%) 

Ampicillin 2 265 81 87.5 - 22 (8.3) 11 (4.2) 13.6 

Amoxicillin-ca
h
 2-1 60 3 50.0 - 30 (50.0) 0 (0.0) NA 

Cefuroxime 30 217 32/85 81.1 38 (17.5) 2 (0.9) 1 (0.5) 1.2 

Ceftibuten 30 165 15 95.8 - 5 (3.0) 2 (1.2) 13.3 

Cefixime 5 148 15 97.3 - 3 (2.0) 1 (0.7) 6.7 

Cefpodoxime 10 146 9/17 91.8 9 (6.2) 0 (0.0) 3 (2.1) 17.6 

Cefotaxime 5 417 32 97.1 - 6 (1.4) 6 (1.4) 18.8 

Ceftriaxone 30 60 6 81.7 - 9 (15.0) 2 (3.3) 33.3 

Cefepime 30 148 22 93.2 - 1 (0.7) 9 (6.1) 40.1 

Doripenem 10 133 14 90.2 - 1 (0.8) 12 (9.0) 85.7 

Ertapenem 10 148 1 99.3 - 0 (0.0) 1 (0.7) 100.0 

Imipenem 10 148 21 79.7 - 24 (16.2) 6 (4.1) 28.6 

Meropenem
i
 10 154 0 100.

0 

- 0 (0.0) 0 (0.0) NA 

a
 Number of observations 

b
 Intermediate or resistant by MIC  

c
 Categorical agreement 

d
 Minor error (resistant or susceptible by MIC and intermediate by disk diffusion, or 

intermediated by MIC and resistant or susceptible by disk diffusion) 
e
 Major error (susceptible by MIC and resistant by disk diffusion) 

f
 Very major error (resistant by MIC and susceptible by disk diffusion) 

g
 False susceptible rate (VME divided by the number of resistant isolates)   

h
 Amoxicillin-clavulanic acid (fixed) 

i 
General breakpoints are used for interpretation. A total of 15 isolates were intermediately 

susceptible by MIC with meningitis breakpoints (zone breakpoint are not defined) 

I am aware of only one previously published evaluation of EUCAST disk diffusion for 

susceptibility categorization of H. influenzae to beta-lactams, using reference MIC as 

the gold standard. Søndergaard et al. performed susceptibility testing to ampicillin, 

cefuroxime and cefpodoxime by disk diffusion and BMD (HTM) for 135 bla negative 

isolates, including 44 (33%) with the rPBP3 genotype [475]. Categorical agreement 

and error rates were not presented, but the authors reported that six isolates were 

ampicillin resistant by both disk diffusion and BMD, whereas 10% (i.e. 13 or 14 

http://www.eucast.org/zone_diameter_distributions
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isolates) were resistant by BMD only. Thus, FSR by disk diffusion (ampicillin 2 μg; 

AMP2) was >50% (7/13 or 8/14).  

For comparison, Zerva et al. tested 183 bla negative H. influenzae (including 22 

ampicillin non-susceptible isolates) with AMP2 and HTM agar and found 96% 

(176/183) categorical agreement with BMD [578]. No isolates with MIC >1 mg/L 

were susceptible by disk diffusion, i.e. FSR was 0%. In a more recent multi-centre 

study, Kärpänoja et al. tested two ampicillin susceptible and three ampicillin resistant 

(MIC > 1 mg/L) bla negative control strains with AMP2 (HTM) [219]. Using the same 

interpretative criteria as Zerva et al. [578], the authors reported an overall FSR at 8% 

(sensitivity 92%), and the individual FSR for one ampicillin resistant strain (MIC = 8 

mg/L) was 24%.  

To my knowledge, no previously published study has compared EUCAST disk 

diffusion and gradient tests for susceptibility categorization of H. influenzae, with 

reference methodology as the gold standard.  

Garcia-Cobos et al. performed susceptibility testing of 89 H. influenzae isolates to 

ampicillin and amoxicillin-clavulanic acid by EUCAST disk diffusion and Etest 

(HTM) [147]. The authors focused on genotype assignment and did not assess 

agreement with reference methodology for susceptibility categorization, although 

BMD MICs (HTM) were determined in a previous study [149].  

In another study, Cherkaoui et al. compared results obtained by EUCAST disk 

diffusion and ampicillin Etest for 78 bla negative H. influenzae (nine rPBP3 isolates 

with Etest MIC = 1 mg/L, and 69 isolates of unknown resistance genotype with Etest 

MIC ≤0.5 mg/L) [63]. All isolates were negative by screening with the 

benzylpenicillin 1 unit disk (chapter 8.5). The authors reported discrepancy between 

Etest (susceptible) and disk diffusion (resistant) for seven rPBP3 isolates and 26 

isolates of unknown genotype. Whether the discrepancy was due to false resistance by 

disk diffusion or false susceptibility by Etest is unknown, as MIC determination by 

reference methodology was not performed. 
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8.5 SCREENING FOR RESISTANCE MECHANISMS 

Disk diffusion with interpretative criteria based on zone ECOFFs provides a useful 

tool for discrimination between wild-type isolates and isolates with acquired beta-

lactam resistance. With a sufficiently sensitive screening method, agent-directed 

testing may be restricted to screening positive isolates.  

Shortly after their discovery that most isolates with PBP3-mediated resistance have the 

N526K substitution (chapter 6.3.3), Ubukata and co-workers developed a screening 

algorithm based on four disks for categorization according to resistance genotype 

[529]. The authors tested 228 H. influenzae isolates (including 53 low-rPBP3, 29 high-

rPBP3 and 32 blaTEM positive; five isolates had both mechanisms) with six disks 

(HTM). Isolates were categorized as sPBP3 (‘BLNAS’) if susceptible by ampicillin 10 

μg and cefaclor 30 μg, and as high-rPBP3 (‘BLNAR’) if resistant by cefpodoxime 10 

μg and cefdinir 5 μg. Remaining isolates were categorized as low-rPBP3 (‘low-

BLNAR’). Using PCR-based genotyping as the gold standard, sPBP3 and high-rPBP3 

isolates were identified with ≥95% accuracy. Interpretative criteria for bla positive 

isolates were not presented, and the fact that the proposed algorithm would categorize 

bla positive sPBP3 isolates as low-rPBP3 was not discussed.  

Nørskov-Lauritsen et al. evaluated screening disks using ISA (with NAD and horse 

blood) and chocolate agar [350]. The authors identified 47 low-rPBP3 isolates by disk 

diffusion testing of 470 H. influenzae and ftsI sequencing of 147 isolates with non-

wild-type zone for cefaclor 30 μg (CEC30), corresponding to an rPBP3 prevalence of 

10%. CEC30 was superior to ampicillin 10 μg and cefuroxime 30 μg (CXM30) and 

identified rPBP3 isolates with sensitivities/specificities of 98%/99% (chocolate) and 

96%/96% (ISA). The reported sensitivities and specificities may be biased as 

calculations were based on the assumption that the inclusion criteria for ftsI 

sequencing identified all rPBP3 isolates in the original population. 

In the Nordic countries, the Swedish Reference Group for Antibiotics (SRGA) and the 

Norwegian Working Group on Antibiotics (NWGA) previously recommended 

phenoxymethylpenicillin 10 μg (PV10) and CEC30 as screening for beta-lactam 

resistance in H. influenzae (www.antibiotikaresistens.no, AFA/Brytningspunkter). 

http://www.antibiotikaresistens.no/
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Following the launching of the EUCAST disk diffusion methodology in 2009 [282], 

the benzylpenicillin 1 unit (PG1) disk was introduced for screening in the first version 

of the NordicAST breakpoint table in 2010 (www.nordicast.org/aldre-versioner). 

Screening with PG1 was included in the EUCAST breakpoint table from 2012 

(www.eucast.org/ast_of_bacteria/previous_versions_of_documents/). In a EUCAST 

validation of the screening method (breakpoint S≥12 mm), the disk correctly 

categorized 98% (102/104) of bla negative isolates according to the presence of ‘PBP 

mutations’, with a sensitivity of 98% (53/54) and specificity of 98% (49/50) [112].  

For comparison, Søndergaard et al. evaluated the ability of seven disks (EUCAST 

methodology) to categorize H. influenzae isolates according to the presence of the 

N526K substitution [475]. The authors tested 135 bla negative isolates (including 44 

rPBP3) and found 91% sensitivity and 99% specificity with PG1 and EUCAST 

screening breakpoints. With 33 bla positive isolates (including one rPBP3) added to 

the collection, three disks with bla stable agents had practically equal 

sensitivities/specificities (CEC30, 89%/90%; CXM30, 91%/90%; cefoxitin 30 μg 

(FOX30), 89%/92%).  

In another investigation, Garcia-Cobos et al. tested two collections of H. influenzae 

isolates (54 bla negative, including 30 rPBP3; 35 bla positive, including 15 rPBP3) 

with 12 disks (not PG1) [147]. CXM30 was superior to CEC30 and FOX30 

(sensitivity/specificity; bla negative, 83%/92%; bla positive, 93%/100%). Based on 

their results, the authors suggested a screening algorithm, based on the CXM30 disk. 

Because PG1 does not separate between bla positive isolates with and without 

additional resistance mechanisms [111,112], NordicAST currently recommend CEC30 

or CXM30 for screening of bla positive isolates [338]. Notably, cefaclor is less stable 

to bla compared to other cephalosporins (chapter 6.2.2), suggesting that separate 

screening breakpoints for bla positive and bla negative isolates may be warranted for 

this agent [338].  

 

 

http://www.nordicast.org/aldre-versioner
http://www.eucast.org/ast_of_bacteria/previous_versions_of_documents/
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8.6 INTERPRETING DIFFICULTIES 

Some characteristic phenomenons may complicate interpreting of agar-based methods 

for susceptibility testing of H. influenzae. These include synergistic effects between 

neighboring disks, double zones [350] and hazy growth within the inhibition zone 

[219,567] by disk diffusion, and regrowth at concentrations above MIC by agar 

dilution [567,568] and gradient tests (Figure 13). Mechanisms possibly contributing to 

these poorly understood observations are described in chapter 6.4.1. 

 

Figure 13 Phenomenons complicating interpreting of susceptibility testing of H. influenzae 

by disk diffusion (EUCAST) and Etest. Left, hazy growth within the zone (cefaclor, CEC30) 

and synergistic effects between CEC30 and chloramphenicol (C30), and between CEC30 and 

nalidixic acid (NA30). Right, inhibited growth at 2 mg/L (not shown) and regrowth at higher 

concentrations (4-32 mg/L; dashed lines) by amoxicillin-clavulanic acid (2:1) Etest (MH-F). 

Photography by Lene Haakensen, Norwegian Institute of Public Health, with permission 
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9 THESIS AT A GLANCE 

 

The idea (2006)  

A cefotaxime
R
 H. influenzae isolated from nasopharynx in a child with ALL and AOM  

Paper I (2010) 

H. influenzae (n=46) from NORM 2004 (n=484) were characterized by ftsI sequencing, 

PBP3-typing, PFGE, and Etest. All isolates with non-bla-mediated resistance (n=23) 

were group II low-rPBP3 (prevalence ≥5%). Most rPBP3 isolates (83%) belonged to 

two clones. Clonality analysis suggested HGT of mutant ftsI in vivo. 

Paper II (2014) 

H. influenzae (n=196) from NORM 2007 (n=808) were characterized by ftsI/PBP3-

typing, PFGE, MLST, and BMD MIC. Novel terminology (rPBP3/sPBP3) was 

introduced. MLST-ftsI typing was established. The prevalence of PBP3-mediated 

ampicillin
R
 was 9%. The rPBP3 prevalence was 15%. Group II predominated (96%). 

Four MLST-ftsI types accounted for 61% of rPBP3 isolates. The first group III rPBP3 

isolate from Northern Europe was reported. Clonality analysis supported a contribution 

of HGT to the evolution of rPBP3 strains. 

Paper III (2014) 

High-rPBP3 H. influenzae (group III, n=23; group III-like, n=7) from Norwegian 

routine laboratories (2006-2013) were characterized by ftsI/PBP3-typing, MLST, and 

BMD MIC. Extended-spectrum cephalosporin
R
 was frequent (47%-97%). Ceftriaxone

R
 

was restricted to L389F positive isolates (n=16). The suffix ‘(+)’ was introduced for 

this genotype. Clonal spread was evident. An outbreak (n=3) with a group III(+) MDR 

strain (blaTEM positive and resistant to four non-beta-lactams) was described. The first 

invasive group III(+) isolate from Europe was reported. 

Paper IV (2015) 

H. influenzae (n=154) (bla negative, 68% low-rPBP3) from Study II were used to 

evaluate screening disks for detection of rPBP3 isolates, and to evaluate Etest and 

EUCAST disk diffusion for testing of beta-lactam susceptibility. The PG1 and CXM5 

disks identified rPBP3 with the highest accuracies. False susceptibility rates were high 

with ampicillin Etest (88%) and the AMP2 disk (EUCAST breakpoints, 77%; adjusted 

breakpoints, 28%). A comment recommending high-dose aminopenicillin therapy in 

severe infections with screening-positive isolates susceptible to aminopenicillins by 

gradient or disk diffusion was suggested. 
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11 OBJECTIVES AND RESEARCH QUESTIONS 

 

The overall objectives of this project were to: 

i)  Elucidate the resistance mechanisms and the molecular epidemiology of Norwegian 

H. influenzae with non-bla-mediated beta-lactam resistance  

ii) Evaluate and improve methods and algorithms for in vitro susceptibility testing of 

H. influenzae to beta-lactam antibiotics  

 

The major research questions were (studies/papers in brackets): 

 How important is PBP3-mediated resistance (rPBP3) for the increased prevalence 

of H. influenzae with non-bla-mediated beta-lactam resistance in Norway? (I-II) 

 Which rPBP3 genotypes occur in Norwegian H. influenzae? (I-III) 

 What is the correlation between rPBP3 genotypes and phenotypic susceptibility 

profiles? (II-III) 

 How clonal are rPBP3 H. influenzae? (I-III) 

 Does horizontal gene transfer with recombinational exchange of mutant ftsI genes 

contribute to the development of rPBP3 strains? (I-III)  

 Are there any associations between phylogeny, rPBP3 genotypes and 

pathogenicity? (II-III) 

 Which screening disk is the most reliable for detection of rPBP3 isolates? (IV) 

 How reliable are routine methods (disk diffusion and gradient tests) for 

susceptibility categorization of H. influenzae to beta-lactams? (IV)  
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12 STUDY DESIGN 

 

Study I Cross-sectional epidemiologic and laboratory study 

Study II  Cross-sectional epidemiologic and laboratory study 

Study III Longitudinal epidemiologic and laboratory study with case reports 

Study IV  Methodology evaluation (diagnostic) study 
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13 MATERIALS AND METHODS 

 

13.1 BACTERIAL ISOLATES 

13.1.1 Study I 

A total of 46 H. influenzae isolates were included in Study I [464]. The isolates were 

selected from a nationwide surveillance population of consecutive respiratory, eye and 

ear isolates (n=484), collected as part of standard health care in January – March 2004 

(NORM 2004) [341]. Detailed information on primary sampling, characterization and 

susceptibility testing is available in the surveillance report [341]. Selection of isolates 

was based on susceptibility data reported by the primary laboratories. Inclusion criteria 

were constructed to encompass all isolates resistant to benzylpenicillin and non-

susceptible to aminopenicillins (according to 2004 breakpoints), and an equal number 

of susceptible control isolates (Figure 14). 

 

Figure 14 Flowchart showing selection and inclusion of isolates for Study I [464] 
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13.1.2 Study II 

A total of 196 H. influenzae isolates were included in Study II [465]. The isolates were 

selected from a nationwide surveillance population of consecutive respiratory, eye and 

ear isolates (n=808) collected as part of standard health care in January and February 

2007 (NORM 2007) [341]. Detailed information on primary sampling, 

characterization and susceptibility testing is available in the surveillance report [341]. 

An overview of the inclusion procedure for Study II is presented in Figure 15.  

 

Figure 15 Flowchart showing selection and inclusion of isolates for Study II [465] 

Selection of isolates was based on the susceptibility data reported by the primary 

laboratories. Inclusion criteria were constructed to identify all isolates with reduced 

beta-lactam susceptibility not explained by bla. The exact criteria for the R-group were 

cefaclor (30 μg) zone <17 mm, amoxicillin-clavulanic acid (2:1) MIC >1 mg/L, 

cefuroxime MIC >2 mg/L, and/or cefotaxime MIC >0.06 mg/L (all isolates); 

phenoxymethylpenicillin (10 μg) zone <13 mm, ampicillin (2 μg) zone <16 mm, 
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and/or ampicillin MIC >0.5 mg/L (bla negative isolates). One isolate with wild-type 

susceptibility from each laboratory (randomly selected from the remaining isolates) 

was included in the S-group (control isolates).  

Four selected isolates were identified as other species than H. influenzae (H. 

parainfluenzae, n=3; H. haemolyticus, n=1) and excluded from the study. Clinical 

data for the complete population (except 13 patients and isolates excluded from the R-

group) was included in the statistical analyses (n=795). 

 

13.1.3 Study III 

A total of 30 high-rPBP3 H. influenzae from Norway, isolated between May 2006 and 

July 2013, were included in Study III [466] (Figure 16).  

 

Figure 16 Flowchart showing selection and inclusion of isolates for Study III [466] 

The only inclusion criterion was presence of the S385T substitution. Three isolates 

were recruited from Study II [465]. The remaining 27 isolates were included based on 

results from ftsI sequencing of H. influenzae isolated at Vestfold Hospital Trust or 

referred from Norwegian routine laboratories, according to recommendations from 

NWGA (from 2007) and NordicAST (from 2010), stating that H. influenzae resistant 
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to extended-spectrum cephalosporins be sent to reference laboratory [338]. This 

service was established at Vestfold Hospital Trust in 2007 and is offered to Norwegian 

routine laboratories in agreement with the Haemophilus Reference Laboratory at the 

Norwegian Institute of Public Health and the Norwegian National Advisory Unit on 

Detection of Antimicrobial Resistance (K-Res). 

 

13.1.4 Study IV 

A total of 154 isolates (sPBP3, n=50; rPBP3, n=104) from Study II were included in 

Study IV [467]. Inclusion criteria were constructed to encompass i) bla negative group 

II low-rPBP3 isolates, and ii) sPBP3 isolates with wild-type BMD MICs to all beta-

lactams tested. Study II isolates with the following characteristics (n=42) were 

excluded from Study IV: 

 bla positive (n=16) 

 rPBP3 other than group II (n=5) 

 sPBP3 and cefuroxime MIC = 2 mg/L (wild-type MIC but intermediately 

susceptible according to EUCAST breakpoints [111]) (n=9) 

 sPBP3 and MIC above ECOFF for ≥1 beta-lactam (n=13) (see Table 28) 

 

13.1.5 Reference strains 

H. influenzae reference strains used in the project are presented in Table 19. 

Table 19 H. influenzae reference strains  

Strain Characteristics Purpose References 

Rd KW20
a
 Species type strain DNA reference sequence [131,556] 

ATCC 49766 sPBP3 Quality control (MIC) [75,113]  

ATCC 49247 Group II low-RPBP3 Quality control (MIC) [75,113] 

ATCC 35056 blaTEM positive Quality control (bla inhibition)  

NCTC 8468 sPBP3 Quality control (zone) [113] 

a
 ATCC 51907; GenBank:U32793 
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13.2 CLINICAL DATA 

Demographic data and sampling information are registered as part of the NORM 

surveillance system and were readily available for patients and isolates included in 

Study I [464] and Study II [465].  

For patients and isolates included in Study III [466], demographics, sampling 

information and brief clinical information (as provided by the clinician) were acquired 

from the primary laboratories. Three patients recently hospitalized with X-ray 

confirmed pneumonia most likely caused by study isolates were selected for clinical 

case reports. For these patients, relevant supplementary information about diagnosis, 

antimicrobial therapy and clinical outcome was extracted from the medical records. 

Additional information was achieved through phone interviews with the patients.  

Basic clinical data for the patients and isolates included in this project is summarized 

in Table 20. 

Table 20 Demographics and clinical data 

Parameter Study I [464] Study II [465] Study III [466] 

Patients
a 

46 196 30 

Denominator
b 

480 795 Not applicable 

Laboratories
c 

15 22 10 

Isolate from     

    Respiratory tract 42 (91%) 110 (56%) 24 (80%) 

    Ear 4 (9%) 24 (12%) 3 (10%) 

    Eye - 53 (27%) 2 (7%) 

    Blood  - - 1 (3%) 

    No data - 9 (5%) - 

Patient characteristics    

    Median age (range) 30 (0-86) 5 (0-86) 29 (0-91) 

    Male/female ratio 0.7 1.0 0.8 

    Hospitalized 19 (41%) 60 (31%) 10 (33%) 

a
 Corresponds to the number of study isolates (one isolate per patient) 

b
 Size of the original surveillance population after exclusion (Figures 15-16) 

c
 Number of primary laboratories contributing with study isolates 
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13.3 ETHICS 

The bacterial isolates and patient information used in Study I, Study II and Study IV 

were collected as part of the Norwegian Surveillance System for Antimicrobial Drug 

Resistance (NORM) (www.antibiotikaresistens.no). The use of NORM data in this 

project is warranted in Norwegian law (http://lovdata.no, FOR-2003-11-14-1353) and 

no further ethical approval was required.  

The use of isolates and data in Study III was approved by the Regional Committees for 

Medical and Health Research Ethics in Norway (reference 2014/411). Written consent 

was provided for the patients selected for clinical case reports. 

 

13.4 LABORATORY METHODS 

13.4.1 Overview 

An overview of laboratory methods used in this project, including information on 

manufacturers, is presented in Table 21.  

 

13.4.2 Susceptibility testing 

BMD MICs were determined by in-house prepared serial dilutions in Study II [465] 

and with commercial dried trays for reconstitution in Study III [466]. BMD MICs were 

imported to the EUCAST database (www.eucast.org/MIC_distributions) in June 2010 

(Study II) and March 2014 (Study III). 

Etest was used for MIC determination in Study I [464] and evaluated with previously 

determined BMD MICs as the gold standard in Study IV [467]. Study IV also 

evaluated susceptibility categorization by disk diffusion according to EUCAST 

methodology [282], and the proficiency of nine disks to screen for isolates with the 

rPBP3 genotype.  

Details regarding guidelines, media and manufacturers are specified in Table 21.  

 

http://www.antibiotikaresistens.no/
http://lovdata.no/
http://www.eucast.org/MIC_distributions
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Table 21 Laboratory methods  

Procedure Study I [464] Study II [465] Study III [466] Study IV [467] 

Species 

identification 

XV (Oxoid, UK) 

 

XV (Oxoid, UK); 

ompP6 and 16S rRNA PCR 

[465,488];  

16S rRNA sequencing
a
 [420] 

XV (Oxoid, UK);  

API NH (bioMérieux, France);  

MALDI-TOF (Bruker, 

Germany) 

Performed previously [465]  

Biotyping No No 
API NH (bioMérieux, France) 

[226] 

No 

Serotyping SAST (Remel, UK) bexA and cap
a 
PCR

 
[119,465] cap

 
PCR

 
[119,466] Performed previously [465] 

Molecular 

typing 

PFGE [84,464] PFGE
a 
[84,464];  

MLST [289] 

PFGE
a 
[84,464];  

MLST [289] 

Performed previously [465] 

Gene 

sequencing 

ftsI (1010-1719) [464] ftsI (1010-1719) [464] ftsI (1010-1719) [464];  

gyrA and parC (QRDR)
a
 [370] 

Performed previously [465] 

Beta-lactamase 

detection 

Nitrocefin (Oxoid, UK) Acidimetric agar
a
 [260]; blaTEM 

and blaROB PCR
a 
[84,464] 

Acidimetric agar [260]; blaTEM 

and blaROB PCR
 
[84,464] 

Performed previously [465] 

BMD MIC No HTM (Oxoid, UK)
b
 [75]

c
 HTM (TREK, UK)

d
 [75] or 

MH-F (BD, U.S.)
d
 [107,109] 

Performed previously [465] 

 

Gradient MIC Etest (AB Biodisk, Sweden) 

w/ supplemented
e
 MHA 

(BD, U.S.)  

No No Etest (bioMérieux, France)  

w/ HTM (Oxoid, UK) 

Disk diffusion No No No EUCAST methodology [111] 

w/ disk and media from 

Oxoid, UK 

Breakpoints EUCAST [111] EUCAST [111] EUCAST [111] EUCAST [111]; CLSI [75] 

a
 Selected isolates; 

b
 In-house prepared serial dilutions;

 c
 With modifications (fixed concentrations of bla inhibitors); 

d
 Commercial dried trays;

 

e 
1% haemoglobin and 1% IsoVitaleX (BD, U.S.)
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13.4.3 New and modified molecular tests  

Several molecular tests were designed particularly for the project by dr. scient. Inger 

Lill Anthonisen (Vestfold Hospital Trust). In addition, some previously described tests 

were used with modifications. Details are specified in Table 22.  

Table 22 New and modified primers and primes used in this project  

Name Function Target Sequences (5′ to 3′)
a
 Original

b
 Reference 

SSNF2 F-primer ftsI CCTTTCGTTGTTTTAA

CCGCA 

- [464] 

KTGR2 R-primer ftsI AGCTGCTTCAGCATC

TTG 

- [464] 

bexAFb F-primer bexA CGTTTATRTGATGTTG

ATCCTGA 

HI-1 [119]/[465] 

bexARb R-primer bexA TGTCCATATCTTCAAA

ATGGTG 

HI-2 [119]/[465] 

bexAP Probe bexA FAMATGCAAGYCGRG

CTTTCATCCCTG-BHQ 

- [465] 

Hinf_fR R-primer cap (f) GGTACTATCAAGTCC

AAATC 

f1 [119]/[465] 

Hinf_eR2 R-primer cap (e) CTAATTGTTCTTTCTG

TCTA 

- [465] 

ompP6P Probe ompP6 ACGTGGTACACCAGA

ATACAACATCGA 

- [465] 

H16SP Probe 16S rRNA TCGCTCCACCTCGCA

GCTTCGCT 

- [465] 

TEMP Probe blaTEM CAGCTCCGGTTCCCA

ACGATCAAG 

- [465] 

ROBP Probe blaROB TAGCGACAACAGCGC

GACCAATTTG 

- [465] 

e1.1
c
 F-primer cap (e) TTTGGTAACGAATGT

AGTGGTAG
c
 

e1 [119]/[466] 

e2.1
c
 R-primer cap (e) ATAGCTTTACTGTATA

AGTCTTAG
c
 

e2 [119]/[466] 

a
 Underscored, sites of modification 

b
 Original designation (in cases of modification) 

c
 Modified primers designed at the Haemophilus Reference Laboratory at the Norwegian 

Institute of Public Health 
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13.4.4 DNA sequence analyses 

Sequencing of gene fragments was performed at GATC Biotech AG (www.gatc-

biotech.com), with the exception of MLST (performed at the Norwegian Institute of 

Public Health). Gene sequences were deposited in the EMBL-EBI Nucleotide 

Sequence Database (www.ebi.ac.uk) (Table 23). 

Table 23 Accession numbers
a
 for gene sequences produced in the respective studies 

Gene Study I [464] Study II [465] Study III [466] 

ftsI FM161990,  

FM163633 - FM163679 

HG818627 - HG818822 HG983286 - HG983315 

gyrA - - HG983316 - HG983320 

parC - - HG983321 - HG983325 

a 
EMBL-EBI Nucleotide Sequence Database (www.ebi.ac.uk) 

Sequences were analyzed using Lasergene software (DNASTAR, www.dnastar.com). 

Amino acid substitutions were deduced from comparison with the sequences of H. 

influenzae Rd KW20 [131] (Table 19).  

Phylogenetic analysis of ftsI gene sequences (nucleotides 1010–1719) was performed 

by construction of UPGMA (unweighted pair group method with arithmetic mean) 

phylograms by distance methods using ClustalW2 (www.ebi.ac.uk) and displayed 

using Treeview (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html) and TreeDyn 

(www.phylogeny.fr) softwares. H. influenzae Rd KW20 was used as reference and H. 

parainfluenzae (EMBL:AB267856) as outgroup.  

 

13.4.5 Epidemiological typing 

Dendrograms of PFGE band patterns were constructed using GelCompar II software 

(Applied Maths, www.applied-maths.com), Dice coefficients and the UPGMA 

algorithm. Clusters of related or possibly related isolates were identified according to 

degree of similarity and comparison of band patterns according to the Tenover criteria 

[502] (chapter 3.4).  

http://www.gatc-biotech.com/
http://www.gatc-biotech.com/
http://www.ebi.ac.uk/
http://www.ebi.ac.uk/
http://www.dnastar.com/
http://www.ebi.ac.uk/
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://www.phylogeny.fr/
http://www.applied-maths.com/
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MLST was performed according to the scheme constructed by Meats et al. [289]. 

Allelic profiles were analyzed using eBURSTv3 software, with six shared alleles for 

definition of clonal complexes (chapter 3.6). Based on data from this project and 

previous investigations, STs were assigned to phylogenetic division I or II [289], WGS 

clades [88], and MLSA-based ‘phylogroups’ (Clades 1-13 and eBURST group 2) 

[102] (chapters 3.6-3.8),  

Assessment of clonality was carried out by combined analyses of PBP3 types, ftsI 

alleles, PFGE band patterns and/or MLST allelic profiles. The novel concepts of 

MLST-PBP3 typing and MLST-ftsI typing as tools for molecular surveillance of 

rPBP3 strains of H. influenzae were established and validated (see chapter 14.3.2).  

 

13.5 STATISTICS 

Descriptive statistics were used in the two cross-sectional epidemiological studies 

(Study I [464] and Study II [465]), and in the longitudinal study (Study III [466]). 

Analysis and presentation of data focused on beta-lactam susceptibility rates, rPBP3 

prevalence and distribution of rPBP3 genotypes, the correlation between rPBP3 

genotypes and phenotypic resistance, and the dynamics of rPBP3 clones.  

Comparison of rates, frequencies and proportions in Study II [465] was performed 

with calculation of significance levels by Fisher’s exact probability test. Multivariate 

logistic regression analysis was performed to search for associations between 

resistance genotypes and various clinical characteristics. Predictive Analytics Software 

(PASW) Statistics v17.0 (IBM Corp., www.ibm.com) was used for statistical analyses. 

A qualitative approach was used for analysis of clinical data for the case reports in 

Study III [466], with emphasis on infection type, co-morbidity, antimicrobial therapy 

(agents and doses) and clinical outcome.  

In the diagnostic study (Study IV) [467], the performance of Etest was evaluated using 

continuous (MIC) and categorical data (S-I-R). Essential and categorical agreement 

with reference MIC (BMD) at different MIC levels was visualized by plotting BMD 

MIC at the x-axis and Etest MIC (log difference) at the y-axis. This approach is a 

http://www.ibm.com/
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modification of the Bland-Altman plot for comparison of two tests (mean at the x-axis 

and log difference at the y-axis).  

Agreement rates, categorical errors and false susceptible rates by disk diffusion and 

Etest were calculated with BMD MIC interpretead according to current clinical 

breakpoints as the gold standard. Test performances by the two methods were 

compared and significance levels were calculated using Chi-square test and MedCalc 

software (www.medcalc.net).  

Receiver operating characteristic (ROC) analysis and calculation of test performance 

parameters (sensitivity, specificity, predictive values) with optimized screening 

breakpoints was used to evaluate and compare the ability of screening disks to identify 

isolates with the rPBP3 genotype. Positive and negative predictive values (PPV and 

NPV, respectively) at a prevalence representative for a Norwegian population were 

calculated using Bayes’ theorem [205] and the following formulas: 

PPV = 
sensitivity x prevalence 

sensitivity x prevalence + (1 – specificity) x (1 – prevalence) 

 

NPV = 
specificity x (1 – prevalence) 

(1 – sensitivity) x prevalence + specificity x (1 – prevalence) 

Finally, descriptive statistics were used for presentation of supplemental disk diffusion 

data. Histograms were used to show MIC-zone and genotype-zone correlations; a 

scatter plot was used to show zone-zone correlations [467].  

 

http://www.medcalc.net/
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14 RESULTS AND DISCUSSION 

 

14.1 CHARACTERIZATION OF STUDY ISOLATES 

14.1.1 Species identification 

Correct species identification of H. influenzae may be challenging (chapter 2). By 

confirmatory molecular species identification, ten of 196 isolates in Study II were 

positive by ompP6 PCR and negative by 16S PCR [465,488]; the isolates were 

confirmed to be H. influenzae by MLST and 16S rRNA sequencing [420]. Conversely, 

conventional methods revealed that two of 52 isolates selected for Study I (Figure 14) 

[464], and four of 212 isolates selected for Study II (Figure 15) [465], belonged to 

other species. In other words, 2.3% (6/264) of isolates selected from the NORM 

database were not H. influenzae.  

Four H. parainfluenzae were distinguishable from H. influenzae by being dependent 

on factor V but not factor X. In addition, one XV-dependent isolate selected for Study 

II (from the ear of a three-year old) expressed beta-haemolysis by satellite test and was 

identified as presumptive H. haemolyticus. Species identification of this isolate has 

later been confirmed by MALDI-TOF (Bruker) (A++, score >2.1, repeated analysis).  

Notably, characterization by MLST (with detection of the fucK gene) revealed no non-

haemolytic H. haemolyticus among the 196 isolates included in Study II, neither 

among the 30 isolates (identified by conventional methods and MALDI-TOF) included 

in Study III (Figure 16) [466]. Thus, the frequency of H. haemolyticus among XV-

dependent Haemophilus isolates in this project was considerably lower than reported 

by Murphy et al. [321] but in accordance with more recent reports [126,280,579].  

These observations indicate that misidentification of H. haemolyticus as H. influenzae 

by conventional methods is infrequent in clinical samples from eye, ear and the 

respiratory tract, and illustrate the usefulness and high reliability of such methods and 

MALDI-TOF (with updated database) for identification of H. influenzae in routine 

laboratories. The 16S PCR assay [488] used for identification in Study II is unreliable. 
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14.1.2 Capsular serotypes and biotypes 

All isolates in this project were sampled from non-invasive locations, except one blood 

isolate in Study III (Table 20). As expected for collections of non-invasive H. 

influenzae, almost all were NTHi (98.9%, 369/372). Two Hif isolates (from ear and 

respiratory tract) were included in Study II [465], and one Hif isolate (from ear) was 

included in Study III [466]. It should be noted that the method used for capsular 

serotyping in Study I (SAST) may produce false negative results, and bexA-deficient 

Hib isolates (Hib
-
) (chapter 2.8) would not be detected by the approach used in Study 

II (screening with bexA PCR).  

The 30 isolates in Study III were assigned to biotypes I (n=3), II (n=4), III (n=14) and 

IV (n=9) [466]. Within a clonal group of ten ST1197 isolates, six had biotype III 

reaction patterns and four were assigned to biotype IV. Similarly, among a clonal 

group of four ST836 isolates, biotypes III and IV accounted for two isolates each. The 

two biotypes differ by the ornithine decarboxylase (ODC) reaction (Table 3). As 

described in chapter 2.7, false positive and negative ODC results are frequent 

[104,105]. However, ODC reactions for the isolates in the two clones described above 

were reproducible and easy to interpret, suggesting that different test results reflect 

true differences in ODC enzyme activity. Variations in phenotypic expression of ODC 

activity may be related to several regulatory mechanisms [258]. The observations 

suggest that biotyping has poor epidemiological value. 

 

14.1.3 Phylogenetic analyses 

Phylogenetic analysis of the isolates belonging to the ten most frequent STs in Study II 

[465] is summarized in Table 24, with assignment to MLSA clade [102], WGS clade 

[88] and phylogenetic division [289] deduced from MLST or PFGE (Figure 17). 

Seventy STs were represented; 15 were novel (ST1190-ST1204) [465]. Ten STs had 

>3 representatives and accounted for 58% (114/196) of the isolates. Seven of the ten 

isolates negative by 16S rRNA PCR (chapter 14.1.1) were ST425 (n=5) and ST124 

(n=2). By eBURST analysis [125], the 70 STs were grouped into 39 clonal complexes 

(CC) and three singletons. Ten of 14 previously described MLSA clades [102] were 
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represented; 69% of the isolates belonged to Clade 13 (n=59), eBURST group 2 

(n=50) and Clade 9 (n=26), whereas no isolates belonged to Clade 3 (Hib), Clade 4 (H. 

aegyptius), Clade 5 (Hib) and Clade 7 (Hid). Nine of the ten most frequent STs 

belonged to phylogenetic division I and to WGS clades II, III, IV and V. Phylogenetic 

division II was represented by two ST124 Hif isolates, belonging to WGS Clade I.  

PFGE analysis of the 46 isolates in Study I [464] and the 177 isolates in the R-group in 

Study II identified 24 clusters and 21 singletons (Figure 17). Eight clusters counted >5 

isolates. In Study I, 28 isolates (61%) were assigned to clusters 1 (n=12), 2 (n=7), 3A 

(n=3), 6C (n=3) and 4 (n=3). PFGE clusters 6A and 3B, both among the four most 

frequent in Study II (2007), were not represented in Study I (2004).  

As expected, pulsotypes varied within STs. Conversely, most isolates with the same 

pulsotypes shared the same ST, but several examples of isolates with identical 

pulsotypes and different STs were observed. PFGE merged CC-ST201 and CC-ST503; 

the clusters otherwise corresponded well to MLST CCs. Notably, PFGE Cluster 6B, 

largely corresponding to CC-ST12, also comprised one ST180 (CC-ST3) and one 

ST14 (CC-ST14) isolate. The STs belong to WGS Clade V (Table 24), indicating that 

PFGE is able to trace relationship not detected by housekeeping phylogeny. 

Table 24 Phylogenetic characterization of isolates in Study II [465] (ten most prevalent STs) 

ST [289] n PFGE
a
 CC [125] MLSA [102] WGS [88] Division [289] 

ST367 29 6A CC-ST3 eBURST gr 2 V
b
 I

b
 

ST396 16 2 CC-ST396 Clade 9
b
 III I

c
 

ST201 15 3A CC-ST201 Clade 13 II
d
 I

d
 

ST159 12 3A CC-ST503 Clade 13 II
b
 I

c
 

ST14 11 1 CC-ST14 eBURST gr 2 V I 

ST12 8 6B CC-ST12 None V I 

ST395 8 3B CC-ST395 Clade 13
b
 II I

c
 

ST57 6 7,8,9 CC-ST57 Clade 8 IV I 

ST425 5 20 CC-ST425 No data No data No data 

ST2 4 No data CC-ST2 None IV I 

a
 Associated cluster. Some isolates of the respective STs were assigned to other PFGE clusters  

b
 Indirect assignment via another ST assigned to the same CC 

c
 Indirect assignment via assignment to WGS clade 

d
 Indirect assignment via assignment to PFGE cluster 
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Figure 17 UPGMA dendrogram of band 

patterns for the 46 isolates in Study I [464] and 

the 177 isolates in the R-group in Study II 

[465] showing the correlation between PFGE 

(pulsotype and cluster) and housekeeping 

phylogeny (not performed for Study I isolates; 

indicated as ‘No data’). MLSA phylogroups 

are based on phylogenetic analysis of 

concatenated MLST sequences by Erwin et al. 

[102]. PFGE clusters of related or possibly 

related isolates based on analysis of band 

patterns and Dice coefficient of similarity are 

indicated by colours (similarity coefficients 

71%-76%). Horizontal lines separate different 

pulsotypes within each cluster. The colour 

scales indicate relative frequencies of the eight 

most prevalent PFGE clusters, STs, CCs and 

phylogroups in Study II. eB gr2, eBURST 

group 2; Mis, miscellaneous; Sg, singletons; 

Ng, no phylogroup. An error in CC-ST57 

occurring in the previously published figure 

[465] has been corrected 
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Table 25 shows the phylogenetic characteristics for the 30 isolates included in Study 

III [466]. Four WGS clades, five MLSA clades, eight CCs and 12 STs were 

represented, including two novel STs (ST1282 and ST1287).  

Although only one of the ten most frequent STs in Study II (ST159) was represented 

in Study III, there were obvious phylogenetic similarities on a superior level: two of 

the three most prevalent STs in Study III belonged to CCs occurring frequently in 

Study II (CC-ST395 and CC-ST503); except for WGS Clade III being absent, all 

Study III isolates that could be assigned to a WGS clade belonged to the same clades 

as the ten most frequent STs in Study II; and phylogenetic division I predominated in 

both studies. Finally, phylogenetic division II and WGS Clade I were represented 

through ST124 Hif isolates in both studies. 

The phylogenetic characteristics of the two strain collections illustrate that NTHi are 

genetically diverse, but that most isolates belong to a limited number of lineages 

(chapter 3.9). The observations in this project also show that the fundamentally 

different typing methods PFGE, MLST and WGS are complimentary and may be 

combined to determine phylogenetic relationship at different resolution levels. 

Table 25 Phylogenetic characterization of isolates (n=30) in Study III [466] 

ST [289] n CC [125] MLSA [102] WGS [88] Division [289] 

ST1197 10 CC-ST395 Clade 13
a
 II

a
 I

b
 

ST159 4 CC-ST503 Clade 13 II
a
 I

b
 

ST836 4 CC-ST245 Clade 1
a
 V I

a
 

ST155 3 CC-ST155 Clade 13 II I
b
 

ST422 2 CC-ST422 Clade 10
a,c

 IV
c
 I

a
 

ST124 1 CC-ST124 Clade 2 I II
a
 

ST142 1 CC-ST142 None V I
b
 

ST148 1 CC-ST245 Clade 1 V
a
 I

a
 

ST160 1 CC-ST160 None V I
b
 

ST408 1 CC-ST3 eBURST gr 2
a
 V

a
 I

a
 

ST1282 1 CC-ST503 Clade 13
a
 II

a
 I

b
 

ST1287 1 None No data No data No data 

a
 Indirect assignment via another ST assigned to the same CC 

b
 Indirect assignment via assignment to WGS clade 

c
 Discrepancy between MLSA and WGS phylogeny (see Figure 5) 
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14.2 RESISTANCE MECHANISMS AND EPIDEMIOLOGY 

14.2.1 Terminology and categorization 

A novel terminology for H. influenzae with/without genetically confirmed PBP3-

mediated resistance to beta-lactams (rPBP3/sPBP3) was introduced in Paper II [464] 

and later used in Paper III [466], Paper IV [467], and in this thesis. The rationale is 

presented in detail in chapter 6.3.4. In short, the designations rPBP3 and sPBP3 are 

equivalent to the traditionally used designations gBLNAR/gBLPACR and 

gBLNAS/gBLPAR, respectively, but differ in that they i) do not include information 

on beta-lactamase status, ii) may be used independently of guidelines for interpretation 

of MICs to ampicillin and amoxicillin-clavulanic acid, and iii) do not give the false 

impression that PBP-mediated resistance is restricted to aminopenicillins.  

The rPBP3 (i.e. gBLNAR/gBLPACR) genotype is defined by the presence of the 

R517H or N526K substitution, whereas sPBP3 (i.e. gBLNAS/gBLPAR) isolates lack 

both substitutions. There is, however, no international consensus on subcategorization 

of rPBP3 isolates (chapter 6.3.4). The ‘modified Ubukata system’ (my designation), 

based on publications by Ubukata and coworkers [178,180,530] and Garcia-Cobos et 

al. [148], is summarized in Table 10.  

In Paper III, we proposed a further modification by adding the L389F substitution to 

the categorization system [466]. High-rPBP3 isolates (S385T positive) with and 

without the additional L389F substitution were designated ‘third stage’ and ‘second 

stage’, respectively, and the suffix ‘(+)’ or ‘(-)’ was added to the group designation. 

This modification was based the classes suggested by Osaki et al. [360], and 

phenotypic susceptibility profiles observed in in Study III and in previous studies 

(Table 11). The ‘modified Ubukata-Osaki system’ is presented in Figure 11. 

As demonstrated in this thesis, the introduction of the novel terminology, and the 

modification to the categorization system, have clinical and epidemiological relevance 

and simplify precise and unambiguous communication on the molecular basis of non-

bla-mediated beta-lactam resistance in H. influenzae.  
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14.2.2 Resistance genotypes in rPBP3 H. influenzae from Norway 

Prior to this project, the resistance mechanism in Nordic (Norway, Sweden, Denmark, 

Finland and Iceland) isolates of H. influenzae with non-bla-mediated beta-lactam 

resistance had to my knowledge not been characterized. Table 26 summarizes the 

resistance genotypes (chapter 6.3.4) of the rPBP3 isolates in this project (n=169).  

In the two cross-sectional studies, encompassing H. influenzae isolates from 2004 and 

2007, group II low-rPBP3 predominated, consistent with previous European 

surveillance studies (Table 12). In Study I [464], all isolates in the R-group (n=23) 

were group II low-rPBP3. Data were first presented at the 24
th

 Annual Meeting of the 

Scandinavian Society for Antimicrobial Chemotherapy (SSAC) in 2007 [463]. Of the 

177 R-group isolates in Study II [465], 116 (66%) were rPBP3; predominantly group 

II (n=111, 96%). Two group III-like(-) and one group III(-) isolate were identified; the 

latter represents the second group III high-rPBP3 H. influenzae reported from Europe, 

and the first with this genotype from Northern Europe (Table 12). 

The three high-rPBP3 isolates from Study II were included in the longitudinal Study 

III, adding up to 30 high-rPBP3 H. influenzae (2006-2013) [466]. This highly 

remarkable collection is unique outside Japan (Table 12). The high proportion of 

group III isolates (23/30), with more than half (12/23) being group III(+) (i.e. third 

stage high-rPBP3) is of particular notice. Only two isolates with similar genotypes 

have been reported previously in Europe and the Americas: one group III(+) invasive 

isolate from Canada [457] and one group III(+) AOM isolate from France [83]. 

Accordingly, the single group III(+) blood isolate in Study III is the first reported 

invasive isolate from Europe with this genotype.  

Table 26 also presents PBP3 types with designations used in the respective studies. 

There are striking similarities between the PBP3 types in Norwegian rPBP3 isolates 

and previous surveillance studies from other geographical regions (chapter 6.3.6). 

First, PBP3 type 1 (n=10) and PBP3 type 2 (n=10) accounted for 67% of the high-

rPBP3 isolates in Study III. PBP3 type 2 is identical to the most frequent PBP3 type in 

respiratory high-rPBP3 isolates from Korea in 2010 [364], and compatible with the 

most frequent PBP3 type in an earlier Japanese study (2002-2003) [492] (Table 13).  
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Table 26 Overview of resistance genotypes in rPBP3 H. influenzae from Norway (n=169) 

  Study
c
  PBP3 substitutions

d
 

Genotypes
a
 

PBP3 

types
b
 

I 

[464] 

II 

[465] 

III 

[466] 

 

D
3
5
0
 

S
3
5
7

 

A
3
6
8
 

M
3
7
7
 

S
3
8
5

 

L
3
8
9

 

A
4
3
7
 

I4
4
9

 

G
4
9
0

 

A
5
0
2
 

R
5
1
7
 

N
5
2
6
 

A
5
3
0
 

T
5
3
2

 

V
5
4
7
 

A
5
5
4
 

Y
5
5
7
 

V
5
6
2
 

N
5
6
9
 

III(+) 2   10 (7)  N N  I T F      K   I   L S 

 5   1  N N  I T F    T  K        

 6   1  N N  I T F    T  K      L  

III-like(+) 3   4 (3)  N N  I T F     H   S I  H  S 

III 1  1 10 (1)  N N   T     T  K   I    S 

 7   1      T     T  K   I    S 

III-like 4  2 3  N N  I T      H   S I     

II A 11 48 (5)   N   I      V  K   I    S 

 B 7 19 (5)          V    K   I    S 

 C 2 5   N   I     E   K   I    S 

 D 1 17   N        E   K S       

 E 1             T  K        

 F 1 1              K        

 G                K        

 H  6            V  K        

 I  4   N      S   V  K   I    S 

 J  3   N           K   I    S 

 K  2     T         K        

 L  1   N        E   K   I D   S 

 M  1   N         V  K   I    S 

 N  1 (1)   N      S V    K   I    S 

 O  1              K   I    S 

 P  1              K   I     

 Q  1           E V  K   I    S 

I   2             H    I T    

a
 According to the modified Ubukata-Osaki system for categorization of rPBP strains (Figure 11) 

b
 According to the designations used in the respective studies 

c
 Number of isolates with the respective PBP3 types (number of bla positive isolates in brackets) 

d
 Substitutions included in the categorization system in bold 
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Second, PBP3 types A (n=59), B (n=26) and D (n=18) accounted for 77% (67%, 19% 

and 13%, respectively) of the 134 group II low-rPBP3 isolates in Study I and Study II. 

PBP3 type A is frequent in Europe [22,63,204,247,394,414], Canada [457], Australia 

[566] and Korea [364], whereas PBP3 type B is frequent in Sweden [414], Switzerland 

[63], Canada [457], Australia [566] and Korea [364] (Table 13).  

The significance of these observations with respect to the molecular epidemiology of 

rPBP3 strains is discussed in chapter 14.3.2.  

 

14.2.3 Correlation between rPBP3 genotypes and phenotypic resistance 

Correlations between resistance genotypes and phenotypic susceptibility profiles, 

based on data from Study II [465] and Study III [466], are presented in Table 27 

(median MICs) and Table 28 (proportions of isolates categorized as susceptible).  

Table 27 Correlation between resistance genotypes (Figure 11) and phenotypic beta-lactam 

susceptibility (MIC50, mg/L)  

Agents 

sPBP3 

(n=80) 

[465] 

I 

(n=2) 

[465] 

II 

(n=111) 

[465] 

III-like(-) 

(n=3) 

[466] 

III(-) 

(n=11) 

[466] 

III-like(+) 

(n=4) 

[466] 

III(+) 

(n=12) 

[466] 

Ampicillin 0.25 0.5 2
a
 2 2

b
 8

b
 4

b
 

Amoxicillin 0.5 0.25 4
a
 4 8

b
 4

b
 8

b
 

Piperacillin 0.004 0.03 0.03
c
 - - - - 

Cefuroxime 0.5 0.5 8 >8 8 8 8 

Cefotaxime 0.004 0.06 0.03 ≤0.125 0.25 0.5 1 

Ceftriaxone - - - 0.06 0.06 0.25 0.25 

Cefixime - - - >1 0.25 >1 0.5 

Cefepime - - - 0.5 0.5 1 2 

Ceftaroline - - - 0.03 0.06 0.125 0.25 

Meropenem 0.03 0.016 0.125 0.125 0.25 0.25 0.5 

Imipenem - - - 1 1 ≤0.5 1 

a
 Susceptibility testing of bla positive isolates to ampicillin and amoxicillin performed in the 

presence of sulbactam (4 mg/L) and clavulanic acid (2 mg/L), respectively 
b
 Susceptibility testing of bla positive isolates to ampicillin and amoxicillin performed in the 

presence of sulbactam (2:1) and clavulanic acid (2:1), respectively 
c
 Susceptibility testing of bla positive isolates to piperacillin performed in the presence of 

tazobactam (4 mg/L)  
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With the notable exception of imipenem, genotype-MIC correlations were largely 

consistent with previous data (Table 11). Median MICs were generally ≥2 dilutions 

higher for group II rPBP3 isolates compared to sPBP3 [465], and median cefotaxime 

MICs for second-stage and third-stage high-rPBP3 isolates exceeded low-rPBP3 by 

three and five dilutions, respectively. Interestingly, 11 isolates in Study II has 

piperacillin MICs above ECOFF (range 0.125-0.25 mg/L), including four sPBP3 

isolates. The significance of this observation is discussed in chapter 14.2.4. 

The majority of group II isolates were categorized as resistant to ampicillin, 

amoxicillin and cefuroxime (Table 28). Significant proportions were resistant to 

cefotaxime (7/111, 6%) and (in the case of meningitis) non-susceptible to meropenem 

(22/111, 20%). Notably, 12% (13/111) of group II isolates were categorized as 

susceptible to all tested agents, whereas 11% (9/80) of sPBP3 isolates were non-

susceptible to ≥1 beta-lactam (not including isolates intermediately susceptible to 

cefuroxime, n=10). The latter observation is further discussed in chapter 14.2.4.  

All 30 high-rPBP3 isolates [466] were categorized as resistant to ≥1 of the extended-

spectrum cephalosporins cefotaxime, ceftriaxone, cefixime, cefepime and ceftaroline; 

the proportions of resistant isolates varied from 47% (ceftriaxone) to 97% (cefixime). 

Cefixime differed from the other cephalosporins by being less active in isolates with 

R517H-based genotypes compared to genotypes with N526K as the first stage 

substitution. Genotype-MIC correlations for cefepime and ceftaroline (or other fourth- 

and fifth-generation cephalosporins) are not reported previously (Table 11).  

Of particular notice are the higher MICs to ampicillin, cefotaxime and ceftriaxone in 

third-stage high-rPBP3 (group III-like(+) and group III(+)) compared to second-stage 

(group III-like and group III). This is in accordance with previous reports (Table 11). 

With current EUCAST breakpoints [111], the differences in MIC levels greatly 

affected categorization of susceptibility to ceftriaxone (Table 28): no isolates with 

second-stage genotypes had ceftriaxone MIC above the S-breakpoint, whereas 88% of 

isolates with third-stage genotypes were categorized as resistant [466].  
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Table 28 Correlation between resistance genotypes (Figure 11) and phenotypic beta-lactam 

susceptibility (% susceptible by EUCAST breakpoints [111]). Green, >90%; yellow, 50-90%; 

orange, 25-50%; red, <25%, grey, no data  

Agents 

sPBP3 

(n=80) 

[465] 

1
st
 stage rPBP3 

(n=113) 

[465] 

2
nd

 stage rPBP3 

(n=14) 

[466] 

3
rd

 stage rPBP3 

(n=16) 

[466] 

Ampicillin 98.8 40.7
a
 7.1

b
 0.0

b
 

Amoxicillin 97.5 46.0
a
 0.0

b
 0.0

b
 

Cefuroxime
c
 87.5 44.2 0.0 0.0 

Cefotaxime 98.8 93.8 28.6 0.0 

Ceftriaxone   100.0 12.5 

Cefixime   7.1 0.0 

Cefepime   14.3 0.0 

Ceftaroline   28.6 0.0 

Meropenem
d
 100.0 80.5 85.7 50.0 

Meropenem
e
 100.0 100.0 100.0 100.0 

Imipenem   100.0 100.0 

a
 Susceptibility testing of bla positive isolates to ampicillin and amoxicillin performed in the 

presence of sulbactam (4 mg/L) and clavulanic acid (2 mg/L), respectively 
b
 Susceptibility testing of bla positive isolates to ampicillin and amoxicillin performed in the 

presence of sulbactam (2:1) and clavulanic acid (2:1), respectively 
c
 Proportion of isolates categorized as S or I 

d
 Meningitis breakpoints  

e
 General breakpoints 

Most group III(+) (8/12, 67%), some group III(-) (2/11, 18%), and no group III-like 

isolates were non-susceptible to meropenem (meningitis breakpoints). In contrast, all 

isolates had imipenem MICs below ECOFF. This is consistent with the low affinity of 

this agent for PBP3 (chapter 6.3.5) but differ from previously reported genotype-MIC 

correlations (Table 11). However, imipenem-resistant H. influenzae have with few 

exceptions [308,436] been identified using agar-based MIC methods [57,62,360,384-

386]. Further studies are needed to determine the correlation between rPBP3 

genotypes, increased imipenem MIC and clinical resistance.  

The genotype-MIC correlations and susceptibility profiles observed in this project 

underline the importance of confirming susceptibility to extended-spectrum 

cephalosporins and meropenem in severe H. influenzae infections such as meningitis 

and septicaemia, even in geographical regions where low-rPBP3 genotypes 
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predominate. Finally, the observed differences in resistance phenotypes between 

isolates with second-stage and third-stage high-rPBP3 genotypes data support the 

suggested modification to the rPBP3 categorization system (Figure 11). 

 

14.2.4 Evidence of non-bla-mediated resistance other than rPBP3 

Mechanisms regulating the resistance phenotypes in rPBP3 strains and the possible 

contribution of other suggested and hypothesized mechanisms to non-bla-mediated 

resistance in H. influenzae are described in chapter 6.4. This project confirmed that H. 

influenzae with non-bla-mediated beta-lactam resistance other than rPBP3 (as defined 

in Table 10) are rare in Norway. However, analysis of resistance phenotypes 

suggested the existence of additional, uncharacterized resistance mechanisms.  

First, in Study III [466], the single invasive group III(-) high-rPBP3 isolate was 

susceptible to cefotaxime and had generally lower beta-lactam MICs than other group 

III(-) isolates. Conversely, the single group III(+) Hif isolate was more resistant than 

NTHi isolates with comparable genotypes. There were no indications of increased 

efflux-mediated beta-lactam resistance due to derepression of the AcrAB efflux pump 

[214], as all isolates expressed wild-type susceptibility to macrolides [466]. These 

observations suggest that strain-associated mechanisms other than increased efflux 

may modify beta-lactam resistance levels in rPBP3 strains, consistent with previous 

observations [214,530]. These issues will be further explored in future studies.  

Second, in Study II [465], ampicillin, cefuroxime and cefotaxime MIC50 values for 

sPBP3 isolates in the R-group were one dilution higher compared to sPBP3 isolates in 

the S-group (Figure 18). The two sPBP3 populations were phylogenetically different: 

a total of 39 STs were represented, but only five were present in both study groups. 

Furthermore, 13 of 71 (18%) bla negative sPBP3 isolates (including two isolates in the 

S-group) had MIC above ECOFF for at least one agent; reduced beta-lactam 

susceptibility was supported by positive PG1 screening in three (Table 29). Four 

isolates had ≥3 PBP3 substitutions; most were also present in fully susceptible isolates. 

One screening-positive ST368 isolate had the A554T substitution present in H. 

influenzae ATCC 49247, which expresses higher beta-lactam resistance levels than 
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most other group II low-rPBP3 [464]. A554T was also present in two additional 

ST368 sPBP3 isolates with identical pulsotypes (not in the table); both were screening 

positive (PG1 zones 6 and 9 mm, respectively). Two isolates had single, unique 

substitutions: the novel SSN-near P392S and the KTG-near V511A. Whether either of 

the P392S, V511A and A554T substitutions may contribute to reduced susceptibility 

will be investigated through PBP3 modeling and transformational studies.  

Seven of the thirteen isolates had no PBP3 substitutions. Among these were four 

screening-negative ampicillin-susceptible isolates with increased piperacillin MIC. An 

intriguing hypothesis may be that increased piperacillin MICs in these isolates is due 

to altered PBP2 (chapter 6.4.1). Interestingly, the three isolates belonged to a clonal 

group of nine ST395 isolates with related pulsotypes; the remaining six isolates were 

fully susceptible to piperacillin (MIC ≤0.016 mg/L). Characterization of this clone 

(including PBP2 typing) will be carried out in a future study. 

 
Figure 18 MIC distributions for ampicillin (A) and cefotaxime (B) by resistance genotype 

and study group in Study II [465]. Median MICs for isolates in the S-group, bla-negative 

sPBP3 isolates in the R-group, and rPBP3 isolates, respectively, were 0.125 mg/L, 0.25 mg/L, 

and 2 mg/L (ampicillin); and 0.004 mg/L, 0.008 mg/L, and 0.03 mg/L (cefotaxime) 
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Table 29 Non-bla-mediated beta-lactam resistance in isolates categorized as sPBP3 according to the rPBP3 categorization system (Table 10). 

Isolates and data are from Study II [465]. PG1 zone data were obtained as part of Study IV [467] before the isolates were excluded. Study group, 

phylogenetic assignment (MLST and PFGE), phenotypic susceptibility profiles and PBP3 substitutions are shown. All isolates were bla negative 

by acidimetric test and blaTEM/blaROB PCR. MICs above ECOFF (Table 17, www.eucast.org/MIC_distributions) and PG1 zones below the 

screening breakpoint recommended by EUCAST (<12 mm) [111] are highlighted. Bold, PBP3 substitutions possibly contributing to reduced 

susceptibility (see text)  

Study 

group
a
 

MLST
b
 PFGE 

cluster 

PG1
c
 zone 

(mm) 

MIC (mg/L) 
PBP3 substitutions 

ST CC AMP
c
 AMX

c
 PIP

c
 CXM

c
 CTX

c
 MEM

c
 

S ST34 CC-ST34 No data 15 0.25 0.25 0.25 8 0.03 0.125 None 

R ST155 CC-ST155 3C 14 0.5 0.5 <0.002 16 0.016 0.06 V511A 

R ST159 CC-ST503 3A 17 0.25 1 0.004 8 0.008 0.03 None 

R ST210 CC-ST176 Single 17 0.25 1 0.008 4 0.004 0.016 None 

R ST368 CC-ST368 12 6 0.5 1 0.016 4 0.008 0.03 V547I, A554T, N569S 

R ST395 CC-ST395 3B 16 0.25 2 0.125 2 0.06 0.03 None 

R ST395 CC-ST395 3B 14 0.125 1 0.25 0.5 0.016 0.06 None 

R ST395 CC-ST395 3B 15 1 1 0.125 >16 0.03 0.125 None 

R ST425 CC-ST425 20 14 0.25 1 0.016 >16 0.008 0.06 D350N, V547I, N569S 

R ST430 CC-ST425 19 6 0.25 0.5 0.03 >32 0.03 0.25 None 

S ST907 CC-ST425 No data 18 0.25 4 0.016 16 0.008 0.03 D350N, V547I, N569S 

R ST558 CC-ST906 21 10 0.5 2 0.016 8 0.03 0.25 D350N, A502T, V547I, N569S 

R ST1198 Single Single 16 0.25 4 0.004 1 0.008 0.06 P392S 

a
 See Figure 15 

b
 ST, sequence type; CC, clonal complex (named by founder) 

c 
PG1, benzylpenicillin 1 unit; AMP, ampicillin; AMX, amoxicillin; PIP, piperacillin; CXM, cefuroxime; CTX, cefotaxime; MEM, meropenem 

http://www.eucast.org/MIC_distributions
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Further investigations are needed to clarify whether the unexplained phenotypes may 

be mediated by novel resistance mechanisms or simply are due to measurement errors. 

As correct assignment to susceptibility categories was considered unclear, the 13 

isolates were excluded from (the methodology) Study IV [467] (chapter 13.1.4). 

 

14.2.5 Prevalence of phenotypic resistance and resistance mechanisms 

The prevalence of phenotypic non-bla-mediated beta-lactam resistance to Norwegian 

H. influenzae is monitored by NORM (Table 15) [339-345]. Among the agents tested 

are amoxicillin-clavulanic acid, cefuroxime, cefotaxime (from 2007) and ceftriaxone 

(invasive isolates, from 2013). Reduced susceptibility to these drugs is not explained 

by commonly occurring beta-lactamases (blaTEM and blaROB) and indicates the 

presence of other acquired resistance mechanisms. Testing in NORM is strictly 

phenotypic and resistance mechanisms are not characterized by molecular methods.  

When this project was initiated, H. influenzae categorized as resistant to beta-lactams 

due to mechanisms other than bla were still rare in Norway. According to the most 

recent Norwegian surveillance data at the time (NORM 2004) [341], 3.1% of 

respiratory isolates were resistant to amoxicillin-clavulanic acid, an increase from 

1.3% three years earlier [340]. Beta-lactam resistance mechanisms other than bla had 

not yet been characterized in Nordic isolates and the prevalence of H. influenzae 

possessing such resistance mechanisms was unknown. 

Study I aimed to assess the contribution of rPBP3 to phenotypic beta-lactam resistance 

in the NORM 2004 surveillance population [464]. The study confirmed that altered 

PBP3 was the predominating mechanism in Norwegian isolates of H. influenzae with 

non-bla-mediated resistance. Consistent with previous studies from Europe and North 

America (Table 12), group II low-rPBP3 was the predominating genotype (Table 26).  

All 23 isolates included in the R-group were categorized as rPBP3, indicating a 

prevalence of ≥4.8% (23/480). As the inclusion criteria (Figure 14) failed to identify 

all rPBP3 in the original population, the exact prevalence could not be calculated.  
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The considerably wider inclusion criteria for Study II (Figure 15) appeared to be well 

under the cut-off for rPBP3 isolates in the NORM 2007 surveillance population, as 

only 66% (116/177) of the isolates in the R-group had the rPBP3 genotype [465]. The 

calculated rPBP3 prevalence in the original population was 14.6% (116/795). Similar 

to three years earlier, group II low-rPBP3 was the predominating genotype (Table 26).  

As shown in chapter 14.2.4, an additional 13 isolates (1.6%) in Study II expressed 

non-bla-mediated beta-lactam resistance other than rPBP3. If the phenotypes of these 

isolates reflect the presence of novel resistance mechanisms, the prevalence of isolates 

with non-bla-mediated beta-lactam resistance would reach 16.2% (129/795).   

For most beta-lactams, the prevalence of non-bla-mediated non-susceptibility by in 

vitro susceptibility testing and interpretation according to clinical breakpoints is 

considerably lower than the prevalence of isolates with rPBP3 genotypes. As indicated 

in Table 15, the proportions of non-susceptibility vary considerably between beta-

lactams. In Study II, the calculated prevalences of rPBP3-mediated non-susceptibility 

to ampicillin (or ampicillin-sulbactam), amoxicillin (or amoxicillin-clavulanic acid), 

cefotaxime and meropenem with EUCAST breakpoints [111] were 8.8%, 8.1%, 1.3%, 

and 2.9%, respectively [465]. 

The datasets from Study I and Study II do not allow direct comparison of rPBP3 

prevalences. However, assuming that the correlation between the proportion of isolates 

with rPBP3 genotypes and phenotypic resistance rates is constant in comparable 

populations, this correlation may be used to estimate rPBP3 prevalences if the 

phenotypic resistance rate is known. According to the NORM 2007 surveillance 

report, the amoxicillin-clavulanic acid resistance rate was 8.0% [342], consistent with 

the calculated rPBP3-mediated resistance rate of 8.1% for this agent in Study II. 

Consequently, the rPBP3 prevalence / amoxicillin-clavulanic acid resistance rate ratio 

in NORM 2007 was 14.6% / 8.0% = 1.825. Based on this ratio, the rPBP3 prevalence 

in the NORM 2004 surveillance population may be estimated to 5.7% (1.825 x 3.1% 

[341]), suggesting a significant increase in the prevalence of rPBP3 isolates from 2004 

to 2007 (p<0.0001). Using the most recent surveillance data, the rPBP3 prevalence in 

2014 may be estimated to 16.6% (1.825 x 9.1% [345]). 
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Figure 19 shows estimated rPBP3 prevalences for respiratory H. influenzae based on 

amoxicillin-clavulanic acid resistance rates in NORM 2000-2014 [339-345] 

(recalculated according to current EUCAST breakpoints [111]). Beta-lactamase 

prevalences and human use of amoxicillin (oral) in Norway during the same period are 

also depicted. Notably, the increased frequency of both resistance mechanisms 

occurred concomitantly with a 76% increased usage of amoxicillin from 2000 to 2012 

(from 0.83 to 1.45 DDD/1000 inhabitants/day), while phenoxymethylpenicillin usage 

decreased by 7.3% during the same period (from 4.45 to 4.07 DDD) [342,345]. 

Norwegian antibiotic prescriptions do currently not include information on diagnoses, 

but it may be assumed that amoxicillin and phenoxymethylpenicillin are mainly used 

for respiratory tract infections (including otitis media and sinusitis). Consequently, the 

observed alterations in use of oral penicillins in Norway suggest that outpatients with 

respiratory tract infections are increasingly frequently treated with amoxicillin. 

 

Figure 19 Usage of amoxicillin (oral) and prevalences of respiratory H. influenzae with beta-

lactam resistance mechanisms (rPBP3 and beta-lactamase) in Norway 2000-2014. 

Amoxicillin usage data (total human use) and beta-lactamase prevalence data are from 

NORM surveillance reports [342,345]. The rPBP3 prevalence for 2007 is from Study II [465]; 

prevalences for 2000, 2001, 2004, 2011 and 2014 are estimates based on recalculated 

amoxicillin-clavulanic acid resistance rates in NORM [339-343,345] (Table 15) and a 

conversion factor of 1.825 (see text). ND, no data  
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An association between amoxicillin usage and bla positive H. influenzae was 

demonstrated in a previous study [68], and the rapid increase in rPBP3 H. influenzae in 

Japan during the 1990s was linked to high consumption of oral extended-spectrum 

cephalosporins [180,532]. To my knowledge, an association between amoxicillin 

usage and rPBP3 H. influenzae is not previously reported. It seems likely that 

amoxicillin may increase the selective pressure for ampicillin-resistant rPBP3 strains 

as well as for bla positive strains. Thus, it may be hypothesized that the increased 

usage of this drug in Norway during the 2000s contributed to the increasing frequency 

of rPBP3 and bla positive H. influenzae in this period. 

 

14.2.6 Emergence of high-rPBP3 strains in Norway 

The gradual increase in the prevalence of rPBP3 H. influenzae in Norway (Figure 19) 

is comparable to the development in Japan during the 1980s and 1990s [531] (chapter 

6.3.6). A rapid shift in genotypes from low-PBP3 to high-rPBP3 occurred in Japan 

when the prevalence of low-rPBP3 isolates approached 20%. A similar development 

took place in Korea during the 2000s [17,230,364]. A genotype shift from low-rPBP3 

to high-rPBP3 in Norway would compromise current empirical therapy (usually 

cefotaxime) in severe infections with H. influenzae.  

Study III was a longitudinal study focusing on the epidemiology and characteristics of 

high-rPBP3 H. influenzae from Norway [466]. An overview of the 30 study isolates 

according to year of isolation, resistance genotypes and susceptibility to cefotaxime is 

presented in Figure 20.  

Notably, the study design does not allow conclusions with respect to changes in 

incidence. The material is not complete and the true annual incidences are likely 

considerably higher. Nevertheless, although the study was closed for inclusion in July 

2013, this year had the highest annual incidence of high-rPBP3 (n=9). In addition, four 

high-rPBP3 isolates with cefotaxime MIC 1-2 mg/L (gradient test) identified between 

August and December were not included in the study, adding up to 13 high-rPBP3 

isolates in 2013. The data also suggest a shift in high-rPBP3 genotypes from second-

stage to third-stage during the study period.  
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Figure 20 High-rPBP3 H. influenzae from Norway (May 2006 – July 2013). Left, genotypes 

according to the modified Ubukata-Osaki system (Figure 11); right, susceptibility to 

cefotaxime (BMD MIC interpreted with EUCAST breakpoints [111]). Data from [466]  

The emergence of high-rPBP3 strains in Norway and the shift from second-stage to 

third-stage genotypes occurred concomitantly with 158% increased usage of extended-

spectrum cephalosporins between 2000 and 2012 (from 0.06 to 0.16 DDD/1000 

inhabitants/day) [342,345].  

The results from Study I indicate that high-rPBP3 H. influenzae.were absent in NORM 

2004 [464]. Study II showed a high-rPBP3 prevalence of 0.4% (3/795) in NORM 

2007, and high-rPBP3 strains accounted for 2.6% (3/116) of rPBP3 isolates [465]. 

Recent surveillance data indicate that low-rPBP3 still is the predominating genotype in 

Norway. Based on gradient MICs and EUCAST breakpoints [111], the prevalence of 

cefotaxime-resistant isolates in NORM 2014 was low (respiratory, 0.6%; invasive, 

1.4%) and stable (Table 15).  

Selection of isolates for Study III was based on cefotaxime resistance by gradient MIC 

and EUCAST breakpoints (Figure 16). PBP3 typing showed that 69% (27/39) of the 

selected isolates were high-rPBP3, suggesting that this criterion is a sensitive indicator 

of the high-rPBP3 genotype.   

In conclusion, there is so far no evidence of a shift from low-PBP3 to high-rPBP3 in 

Norwegian H. influenzae. However, the emergence of high-rPBP3 strains is a cause 

for concern, and the epidemiological situation may be dramatically altered in few 
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years (chapter 6.3.6). The temporal association between increased usage of extended-

spectrum cephalosporins and the emergence of high-rPBP3 strains in recent years 

suggests a role of increased selective pressure and underlines the importance of 

rational antibiotic usage. 

 

14.2.7 Molecular epidemiology of rPBP3 strains 

As described in chapter 6.3.7, limited clonal dissemination of rPBP3 H. influenzae 

within geographically restricted areas has been reported in several previous 

investigations. However, there is a general lack of knowledge on the global molecular 

epidemiology of rPBP3 strains, as only a few studies [56,146,394,492] have linked 

information about resistance genotypes to epidemiological typing by unambiguous 

methods (i.e. MLST), which is required for inter-investigator comparison. 

Clonal expansion of rPBP3 strains in Norway was confirmed in Study I [464]. Most 

rPBP3 isolates (19/23, 83%) belonged to PFGE clusters 1 and 2, consisting of 12 

isolates carrying PBP3 type A, and seven with PBP3 type B, respectively. Sequence 

analysis of the ftsI gene fragment used for deduction of PBP3 substitutions revealed 

that all isolates within each of the two PFGE clusters had identical ftsI alleles. The two 

clones were widespread, with distances of up to 970 and 410 km, respectively, 

between domiciles of the corresponding patients.  

Based on these observations, and the striking similarities between the PBP3 

substitution patterns in rPBP3 H. influenzae from Norway and other geographical 

regions, with PBP3 types A and B (and compatible patterns) frequently reported in 

Europe [22,63,204,247,394,414], we postulated the existence of endemic European 

rPBP3 clones [464].  

To explore this hypothesis, we developed and validated the novel concept of MLST-

ftsI typing in Study II [465]. By this approach, allele designations for unique 710-bp 

ftsI sequences are added to MLST allelic profiles, and isolates with identical MLST-

ftsI profiles are considered clonal. MLST-ftsI typing was also utilized for 

epidemiological characterization of the 30 high-rPBP3 strains in Study III [466]. In the 
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two investigations, encompassing 143 rPBP3 (representing all six genotypes) and 80 

sPBP3 isolates, we found that MLST-ftsI typing increased the discriminatory power 

compared with MLST alone and MLST combined with PBP3 types, without 

compromising consistency with PFGE-based grouping.  

Phylogenetic analysis revealed 35 unique ftsI alleles in 166 rPBP3 isolates in this 

project (Figure 21). The six low-rPBP3-encoding alleles lambda-2 (n=35), zeta 

(n=26), lambda-1 (n=23), omicron (n=18), gamma (n=6), and nu-3 (n=5), and the two 

high-rPBP3 alleles ftsI-1 (n=10) and ftsI-2 (n=6), together accounted for 78% of all 

rPBP3 isolates. Most alleles encoding high-rPBP3 genotypes (ftsI types 1-10) 

clustered on a highly diverging major branch. Alleles encoding group II low-rPBP3 

types A (lambda), C (nu) and D (omicron) formed separate clusters on another major 

branch, whereas zeta (type B) and gamma (type H) diverged less from the alpha 

cluster, defined by the reference DNA sequence.  

The resolution level of MLST-ftsI typing compared to PFGE may be illustrated by 

PFGE cluster 3B, consisting of 12 CC-ST395 isolates with four pulsotypes (Figure 

17) [465]. MLST-ftsI typing identified one group III(-) high-rPBP3 (ST1197) and two 

group II low-rPBP3 (ST556) isolates and separated them from nine sPBP3 with 

identical or related pulsotypes. The ST1197 group III(-) isolate in PFGE cluster 3B 

was the first in a clonal group of ten high-rPBP3 isolates with unique MLST-ftsI 

profiles (CG2) in Study III [466]. PFGE analysis of seven representatives of this clone, 

isolated from patients in different geographical regions over a period of three years, 

revealed four related pulsotypes differing by a maximum of five bands. 

In this project, MLST-ftsI typing was validated with a 710 bp sequence (aa 338-573). 

Use of longer fragments (e.g. the complete ftsI gene) would theoretically increase 

resolution, whereas shorter sequences would reduce discriminatory power. Notably, a 

shorter sequence (nt 977-1597, 621 bp) is obtained with the PCR methodology 

published at http://pubmlst.org/hinfluenzae for detection of PBP3 substitutions in 

invasive H. influenzae, compared to the methodology used in this project (Table 22).  

 

http://pubmlst.org/hinfluenzae
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Figure 21 Phylogram showing the genetic diversity of the ftsI gene (transpeptidase region, 

nucleotides 1010-1719) and the correlation between ftsI types and PBP3 types in 166 rPBP3 

isolates [464-466]. Outgroup and reference sequence (alpha-0) is H. influenzae Rd KW20 

(top). Colours indicate high-rPBP3-encoding alleles: red, III(+); purple, III-like(+); blue, 

group III(-); green; group III-like (-). The scale is DNA divergence (0.02 = 2%) 
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Study II showed that the increased rPBP3 prevalence in Norway is due to 

dissemination of a few clonal groups. In NORM 2007, four clonal groups (MLST-ftsI 

types) accounted for 61% (71/116) of rPBP3 isolates [465]. Two clones carried PBP3 

type A encoded by slightly different ftsI alleles (ST14 with lambda-1 and ST367 with 

lambda-2); one clone consisted of ST396 isolates with PBP3 type B; and one clone 

comprised ST201 isolates with PBP3 type D. Combined analysis of ftsI alleles, MLST 

and PFGE (Figure 17) revealed that the ST14/A and the ST396/B clones corresponded 

to the two predominating rPBP3 clones (PFGE clusters 1 and 2, respectively) in 

NORM 2004 [464]; i.e. the clones persisted over a period of at least three years. 

MLST-PBP3 typing, i.e. adding the PBP3 type to the MLST allelic profile, may be 

used as a surrogate approach when ftsI sequences are not available. It should be 

emphasized that MLST-PBP3 typing does not offer the same level of resolution, as 

identical PBP3 types frequently are encoded by different (although related) ftsI alleles 

(Figure 21). However, grouping of three ST12 isolates with PBP3-type A encoded by 

the slightly different alleles lambda-1 and lambda-3 represented the only discrepancy 

between MLST-ftsI typing and MLST-PBP3 typing in this project. 

Some of the MLST-PBP3 types observed in this project were identical or compatible 

to MLST-PBP3 types reported by others (Table 30). Of particular notice is that PBP3 

type A is frequently linked to ST14 and ST367 in the very limited number of reports 

on the molecular epidemiology of rPBP3 (chapter 6.3.7). ST14 and ST367 NTHi with 

type A-compatible substitution patterns have caused invasive disease [146] and 

pneumonia [394] in Spain. A study on invasive H. influenzae in Sweden 2008-2010 

[414] identified a cluster of seven NTHi of ST14, ST367 and related STs carrying 

PBP3 type A (F. Resman, personal communication). A recent report described an 

outbreak in a Swedish nursing home caused by a ST14 clone with PBP3 type A, 

affecting 15 individuals including eight residents during one month in 2011 [9].  

Finally, studies on invasive H. influenzae in Canada during 2000-2006 [458-460] and 

2008-2009 [457] revealed an increasing prevalence of rPBP3 NTHi, with PBP3 type A 

being common in both periods [457,458]. ST14 and ST367, respectively, were the 

most common STs in NTHi from two different regions and periods [457,459]. PBP3 
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type A was by far the most frequent substitution pattern in ST14 and also appeared in 

some ST367 isolates (R. Tsang, personal communication). 

Clonal dissemination also contributed strongly to the remarkable number of high-

rPBP3 H. influenzae identified in Norway 2006-2013 [466]. Five clonal groups (CG1-

CG5) comprising 2-10 isolates with identical MLST-ftsI types accounted for 22 of the 

30 isolates in Study III (Figure 22, left). An invasive NTHi isolate with an MLST-

PBP3 type compatible with the three CG1 isolates (2006-2007) was identified in Spain 

(2004-2009) [146], suggesting a widely disseminated high-rPBP3 clone in Europe. 

Table 30 Disseminated rPBP3 clones in this project [464-466] and other investigations 

Genotype
a
 ST PBP3

b
 ftsI

c
 CG

d
 Country  Period n

e
 Reference 

III(+) ST836 2 2 5 Norway  2013 4 [466] 

III(+) ST159 2 5 4 Norway 2013 3 [466] 

III(-)  ST1197 1 1 2 Norway 2007-2010 10 [466] 

III-like(+) ST422 3 4 3 Norway 2011-2013 2 [466] 

III-like(-) ST155 4 3 1 Norway 2006-2007 3 [466] 

III-like(-) ST155 (4) ND ND Spain 2004-2009 1 [146] 

II ST14
f
 A lambda-1 NA Norway 2004 12 [464,465] 

II ST14 A lambda-1 NA Norway 2007 11 [465] 

II ST14 A ND ND Canada 2000-2009 ND [457-460]
g
 

II ST14 (A) ND ND Spain 2000-2009 1 [394] 

II ST14
g
 A ND ND Sweden 2008-2010 ND [414]

g 

II ST14 A ND ND Sweden 2011 15 [9] 

II ST367 A lambda-2 NA Norway 2007 29 [465] 

II ST367 A ND ND Canada 2000-2009 ND [457-460]
g
 

II ST367 (A) ND ND Spain 2000-2009 1 [394] 

II ST367 (A) ND ND Spain 2004-2009 2 [146] 

II ST367
g
 A ND ND Sweden 2008-2010 ND [414]

g 

II ST396
f
 B zeta NA Norway 2004 7 [464,465] 

II ST396 B zeta NA Norway 2007 16 [465] 

II ST201 D omicron NA Norway 2007 15 [465] 

a
 PBP3 resistance genotype according to the modified Ubukata-Osaki system (Figure 11) 

b
 PBP3 type (Table 26). Compatible patterns in brackets 

c
 ftsI allele (Figure 21). ND, no data 

d
 Clonal group (defined in [466]). ND, no data; NA, not applicable  

e
 Number of isolates with the respective MLST-ftsI or MLST-PBP3 profiles. ND, no data

 

f
 ST assignment based on PFGE pulsotypes identical to isolates of known STs in [465] 

g
 Personal communication (see text) 
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Two clones (CG4 and CG5) were both restricted to single hospitals and isolated within 

very short time periods (four and 16 days, respectively). CG5 was present in samples 

from two persons within the same household. Person-to-person transmission of beta-

lactam-resistant NTHi has been reported by others, including outbreaks in a respiratory 

ward [182] and a nursing home [9], and intrafamilial transmission of rPBP3 strains 

[549]. These observations highlight the importance of hygiene measures in health 

institutions to prevent nosocomial spread of high-rPBP3 strains. 

 

Figure 22 Clonality and co-resistance in high-rPBP3 H. influenzae from Norway 2006-2013. 

Left, clonal groups (by MLST-ftsI typing); right, co-resistance to non-beta-lactams (number 

of classes) and presence of blaTEM (β). From [466] 

 

14.2.8 Multi-drug resistance (MDR) 

Co-resistance was more frequent than expected in Study III [466]. The proportion of 

bla-positive isolates (37%, 11/30) was more than twice the prevalence in respiratory 

H. influenzae in NORM 2014 (17%, Table 15) [345]. Similarly, resistance rates for 

trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol, and ciprofloxacin in 

Study III were 43% (13/30), 13% (4/30), 13% (4/30), and 10% (3/30), respectively, 

compared to 19%, 1.3%, 0.9%, and 0.4%, respectively, in NORM 2014 (Table 16) 

[345]. All isolates in Study III had wild-type MICs to rifampicin and macrolides.  
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There was a remarkable accumulation of MDR H. influenzae towards the end of the 

study period (Figure 22, right). Six isolates expressed resistance to two or more 

groups of non-beta-lactams; all six had third-stage high-rPBP3 genotypes. The 

resistotypes are presented in Table 31. 

 Table 31 Resistotypes of MDR high-rPBP3 strains from Norway [466] 

      Non-beta-lactam susceptibility
c
 

CG
a
 n ST PBP3

b
 Period bla LF CI DO TC CH TS 

4 3 ST159 III(+) 2013 TEM-1 S
d
 R I R R R 

Sg 1 ST1282 III-like(+) 2013 TEM-1 S S I R R R 

3 2 ST422 III-like(+) 2011-2013 TEM-1 S
d
 S

d
 S S S R 

a
 Clonal group (Table 29 and Figure 22). Sg, singleton 

b
 PBP3 resistance genotype according to the modified Ubukata-Osaki system (Figure 11) 

c
 S/I/R-categorization according to EUCAST MIC breakpoints [111]. LF, levofloxacin; CI, 

ciprofloxacin; DO, doxycycline; TC, tetracycline; CH, chloramphenicol; TS, trimethoprim-

sulfamethoxazole 
d
 Increased MIC within the susceptible range 

Five isolates had ciprofloxacin MIC above ECOFF (>0.06 mg/L) and amino acid 

substitutions in the QRDR of GyrA and/or ParC. The tree CG4 isolates had significant 

substitutions in both proteins (GyrA, S84L and D88N; ParC, S84I) and were 

categorized as ciprofloxacin-resistant. The two CG3 isolates had only one significant 

substitution (GyrA, S84L) and quinolone MICs within the susceptible category.  

Quinolone resistance in H. influenzae is associated with hypermutability [369] 

(chapter 7.2). It seems likely that hypermutability also increases the ability to acquire 

PBP3 substitutions by spontaneous mutations, favoring development of strains with 

both resistance mechanisms. Hypermutable H. influenzae are prevalent in cystic 

fibrosis patients [550]. One CG4 isolate was from sputum of a cystic fibrosis patient; 

another was from nasopharynx of a patient with primary ciliary dyskinesia. High 

antibiotic pressure in these patient categories may result in selection of MDR strains. 

The CG4 isolates also had blaTEM-1 and were resistant to chloramphenicol, tetracycline 

and trimethoprim-sulfamethoxazole. This resistance profile suggests the presence of 

the previously described integrating and conjugative element ICEHin1056 [310] 
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(chapter 7.3). The remarkable resistotype of CG4 might thus be the result of two 

independent factors: hypermutability, leading to PBP3 and QRDR substitutions, and 

the acquisition of a mobile genetic element, e.g. ICEHin1056.  

To my knowledge, the three CG4 isolates in Study III represent the first ciprofloxacin-

resistant high-rPBP3 H. influenzae reported outside Japan, and CG4 represent the first 

clonal group with this particular combination of resistance mechanisms. The resistance 

mechanisms of this clone will be further characterized in a future study. 

 

14.2.9 Phylogeny, resistance and pathogenicity 

Associations between PBP3 resistance genotypes, phylogeny and pathogenicity 

(chapter 6.5), based on available clinical data, were explored in Study II [465]. 

Multivariate regression analysis of isolates with known hospitalization status (766/795, 

96%) showed that increasing age (OR=1.3, p<0.001) and male gender (OR=1.8, 

p=0.001) were significant independent risk factors for hospitalization. With adjustment 

for age, gender and beta-lactamase production, there was a borderline significant 

association between rPBP3 and hospitalization (OR=1.6, p=0.053). Similarly, 

multivariate analysis of isolates with known site of isolation (768/795, 97%) showed a 

significant association between rPBP3 and eye infection (OR=2.1, p=0.003) but no 

association with other localizations. Information about STs was available for study 

isolates only and thus not included in the regression analysis.  

The most prevalent STs were highly diverse with respect to resistance genotypes and 

clinical characteristics. Notably, ST-specific analysis showed no correlation between 

rPBP3 and hospitalization, indicating that the association between rPBP3 and 

pathogenicity suggested by the regression analysis most likely reflects the presence of 

strain-associated virulence determinants in some of the high-prevalent rPBP3 strains. 

For instance, all ST396 (n=16) and ST201 (n=15) isolates were rPBP3, and both STs 

were significantly associated with eye infection (p<0.05).  

Some non-significant associations between ST and disease (see [465] for details) were 

recognizable from previous investigations. ST159 was in most cases isolated from 
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respiratory tract of hospitalized patients above 50 yrs of age, reflecting the reported 

association between this ST and infection in COPD patients [322]. Most ST57 isolates 

were from children below 3 yrs of age, consistent with a previously reported 

association with AOM [244]. Finally, the highest hospitalization rate was observed for 

ST14 isolates (all carrying PBP3 type A), in accordance with the potential of this ST to 

cause pneumonia [394] and invasive disease [414,457,459], and the recently reported 

ST14/PBP3 type A outbreak in a nursing home in Sweden in 2011, during which one 

of eight infected residents died and four were hospitalized [9].  

These observations are consistent with previous investigations on associations between 

population structure and disease [244] and distribution of virulence determinants 

[88,102]. Of particular note is the association between igaB and WGS clades II and IV 

[88], as three of four major low-rPBP3 clones (ST14, ST201 and ST367) and the four 

most prevalent high-rPBP3 STs (ST155, ST159, ST836 and ST1197) belong to these 

two clades (Tables 24-25). 

 

14.2.10 Development of rPBP3 strains 

Accumulating evidence suggest that new rPBP3 strains evolve through a combination 

of point mutations and transformation with exchange of mutant ftsI sequences through 

homologous recombination (chapter 6.3.8). Comparative analyses of ftsI sequences 

(Figure 21) and phylogeny in Study II [465] and Study III [466] revealed several 

examples of identical rPBP3-encoding ftsI alleles in phylogenetically unrelated strains 

(Table 32), supporting that HGT contributes to development of rPBP3 strains in vivo. 

The highly divergent allele lambda-2, encoding PBP3 type A, was distributed to five 

STs, belonging to three separate WGS clades within phylogenetic division I.  

Similarly, the two high-rPBP3-encoding alleles ftsI-2 and ftsI-4 were both distributed 

to STs assigned to separate WGS clades. Conversely, seven STs hosted more than one 

PBP3 type. Six ST57 isolates carried four rPBP3 types (A, K, L and N) and the 

reference sequence (z0).  
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Considering that H. influenzae is naturally competent and transformation is frequent in 

vivo (chapter 3.3), horizontal transfer of complete ftsI alleles is a more likely 

explanation to these observations than independent development of identical, highly 

mutated alleles through convergence. Recombinational exchange of complete ftsI 

genes has been demonstrated in vitro [478]. In another study, the mean length of donor 

segments was 8.1±4.5 kb [293], suggesting that most homologous recombinational 

events in H. influenzae involve DNA fragments greatly exceeding the length of the ftsI 

alleles in this project (0.71 kb).  

The distribution of ftsI-2 to phylogenetic divisions I and II indicates the absence of 

restriction barriers preventing exchange of ftsI sequences encoding complete 

transpeptidase regions between the two major phylogenetic groups of H. influenzae. 

This is consistent with previous reports of inter-species recombinational exchange of 

ftsI sequences between H. influenzae and H. haemolyticus [288,499,565], with no 

differences between inter- and intra-species transformation frequencies [478]. 

Table 32 Identical ftsI alleles present in isolates of different STs. Data from [465] and [466]   

Geno- 

type
a
 

PBP3 

type
b
 

ftsI type
c
 ST  

[289] 

CC  

[125] 

WGS 

[88] 

Division 

[289] 

n 

III(+) 2 2 ST836 CC-ST245 V I
d
 4 

   ST160 CC-ST160 V I
e
 1 

   ST124 CC-ST124 I II
d
 1 

III-like(+) 3 4 ST422 CC-ST422 IV I
d
 2 

   ST1282 CC-ST503 II
d
 I

e
 1 

II A lambda-2 ST367 CC-ST3 V
d
 I

d
 29 

   ST12 CC-ST12 V I 2 

   ST1193 CC-ST12 V
d
 I

d
 1 

   ST85 CC-ST472 III
d
 I

d
 2 

   ST57 CC-ST57 IV I 1 

II H gamma ST12 CC-ST12 V I 4 

   ST411 CC-ST422 IV I
d
 2 

a
 According to the modified Ubukata-Osaki system (Figure 11) 

b
 See Table 26 

c
 See Figure 21 

d
 Indirect assignment via another ST assigned to the same CC 

e
 Indirect assignment via assignment to WGS clade 
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Mosaic ftsI genes in H. influenzae, suggesting recombination with shorter fragments, 

have been reported previously [478,499,564,565]. A preliminary multiple sequence 

alignment analysis of ftsI sequences in Study II indicated the presence of mosaicism in 

isolates with group II rPBP3 genotypes. A detailed analysis on the role of intragenic 

recombination in the development of rPBP3 strains will be carried out in a future study 

encompassing ftsI sequences from isolates of all genotypes. 

As the presence of USS/pUSS facilitates DNA uptake (chapter 6.3.8), it seems likely 

that the frequency of recombinational events in the ftsI gene (including events leading 

to development of rPBP3 strains) correlates to the density of USS/pUSS in the donor 

sequence. The ftsI gene of H. influenzae Rd KW20 contains two USS and four pUSS 

copies (Figure 12). Interestingly, several rPBP3-encoding ftsI alleles contained 

additional copies of pUSS. One extra copy was present in allele zeta, encoding the 

frequently occurring low-rPBP3 type B; in seven alleles in cluster eta, encoding the 

infrequent low-rPBP3 types I, J, N, O and P; and in the high-rPBP3-encoding alleles 

ftsI-2 and ftsI-10 (group III(+)), ftsI-9 (group III(-)), ftsI-4 and ftsI-8 (group III-

like(+)), and ftsI-3 (group III-like(-)). Two extra copies were present in three alleles in 

cluster nu, encoding PBP3 type C, and in the infrequently occurring allele xi (PBP3 

type Q). Transformational studies using rPBP3 H. influenzae with different densities 

of pUSS may clarify the significance of these observations for uptake and 

recombination of mutant ftsI fragments. 

As hypothesized in chapter 6.3.8, bacterial fitness and compensatory substitutions may 

be used in an explanatory model to explain the apparently stepwise and non-random 

development of rPBP3 strains. A notable observation in this project was that isolates 

with R517H as the first stage substitution were significantly more frequent (p<0.0001) 

among high-rPBP3 (7/30, 30.4%) versus low-rPBP3 isolates (4/136, 2.9%). A possible 

explanation for this observation could be that acquisition of the second stage S385T 

substitution is associated with reduced fitness cost, and that fitness improvement is 

more prominent in R517H isolates compared to N526K isolates. The impact of distinct 

PBP3 substitutions on fitness will be investigated in a future study. 
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14.3 CLINICAL CASE REPORTS 

14.3.1 Case descriptions 

In Study III [466], the efficacy of antimicrobial therapy was evaluated for three 

hospitalized patients with well-defined infections likely caused by study isolates 

(patients and isolates 18, 27 and 28; Figure 22). All isolates had group III genotypes 

as defined by the N526K and S385T substitutions; isolates 27 and 28 also possessed 

the third-stage L389F substitution and were categorized as group III(+) high-rPBP3 

(chapter 6.3.4). 

Isolate 18 (ST1287) was cultured from the blood of a patient with X-ray confirmed 

pneumonia, COPD, hypogammaglobulinemia, chronic lymphocytic leukaemia and 

myasthenia gravis and represents the first reported invasive group III high-rPBP3 H. 

influenzae from Europe (Table 12). The strain was categorized as susceptible to 

cefotaxime (MIC ≤0.12 mg/L) and generally expressed lower MICs to beta-lactams 

than other (noninvasive) study isolates with comparable resistance genotypes. There 

was no co-resistance to non-beta-lactams. Accordingly, the patient responded well to 

initial parenteral therapy with cefotaxime (three days) followed by oral treatment with 

ciprofloxacin (susceptible, MIC ≤0.03 mg/L). 

Isolates 27 and 28 belonged to CG5 (ST836) and were categorized as resistant to 

amoxicillin-clavulanic acid (MIC = 8 mg/L), ampicillin-sulbactam (MIC = 8 mg/L), 

cefotaxime (MIC = 1 mg/L), ceftriaxone (MIC = 0.5 mg/L), cefepime (MIC = 2 mg/L) 

and ceftaroline (MIC = 0.25 mg/L) according to EUCAST clinical breakpoints [111]. 

The isolates also possessed blaTEM-1 and were trimethoprim-sulfamethoxazole 

resistant, but susceptible to, including ciprofloxacin (MIC ≤0.03 mg/L) and other non-

beta-lactams. Both patients had X-ray confirmed pneumonia (C-reactive protein ≥160 

mg/L) and significant co-morbidity. The study isolates were cultured from sputum.  

Patient 27 (cardiovascular disease) responded to high-dose cefotaxime therapy (2 g 

three times a day) after initial treatment with benzylpenicillin. Patient 28 (disseminated 

cancer) responded to ciprofloxacin after initial piperacillin-tazobactam therapy.  
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14.3.2 Discussion 

The first case (patient 18) indicates that the therapeutic efficacy of cefotaxime (in this 

case used for empirical therapy) in invasive infections caused by high-rPBP3 H. 

influenzae may be predicted by a low MIC value, even in immunocompromized, 

multimorbid patients. In the two other cases, the isolate was categorized as resistant to 

the agent used for initial empirical therapy (benzylpenicillin and piperacillin-

tazobactam), and therapy was altered to high-dose cefotaxime and ciprofloxacin, 

respectively.  

Benzylpenicillin therapy was associated with increased mortality compared to 

ampicillin and cefuroxime in a clinical study on H. influenzae bacteremia [505], and is 

definitively not a therapeutic option for infections caused by rPBP3 strains. Clinical 

breakpoints for benzylpenicillin are not defined by EUCAST [111].  

For piperacillin-tazobactam, the picture is less clear. EUCAST recommend that 

amoxicillin-clavulanic acid resistant H. influenzae be reported as resistant to 

piperacillin-tazobactam and have not defined breakpoints [111]. Previous 

investigations have shown that PBP3 alterations affect the in vitro activity of 

piperacillin less than the activity of aminopenicillins and extended-spectrum 

cephalosporins [187,313,436] (chapter 6.3.5). The reports suggest that this agent may 

be a useful therapeutic alternative in infections caused by high-rpBP3 H. influenzae 

and that the interpretative rule recommended by EUCAST results in overestimation of 

resistance. Piperacillin-tazobactam MICs were not determined in Study III. 

It is not known why patient 27 received cefotaxime therapy despite categorization of 

isolate 27 as resistant. However, clinical response to high-dose cefotaxime is 

consistent with CLSI breakpoints (susceptible, ≤2 mg/L) [75], and also with EUCAST 

PK/PD breakpoints for cefotaxime using a dose of at least 2 g x 3 or more (susceptible, 

≤2 mg/L; resistant, >2 mg/L) [111].  

Based on these observations, the relevance of EUCAST MIC breakpoints for clinical 

susceptibility categorization of H. influenzae to parenteral extended-spectrum 

cephalosporins may be questioned. EUCAST breakpoints for this group of agents are 

identical to or close to ECOFF, whereas CLSI breakpoints largely correspond to 
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PK/PD breakpoints (Table 17). Different breakpoints greatly affect clinical 

susceptibility categorization of high-rPBP3 H. influenzae to extended-spectrum 

cephalosporins. Resistance rates for the 30 high-rPBP3 isolates in Study III varied 

from 47% (ceftriaxone) to 97% (cefixime) with EUCAST breakpoints (chapter 

14.2.3). For comparison, all isolates were susceptible to ceftriaxone and ceftaroline 

using the breakpoints recommended by CLSI, whereas only one isolate was 

categorized as resistant to cefotaxime and cefepime, and six isolates (20%) were 

categorized as resistant to cefixime. 

As EUCAST PK/PD breakpoints indicate, increasing the doses may compensate for 

reduced susceptibility to extended-spectrum cephalosporins. This is exemplified by the 

intermediate categories for this group of agents against pneumococci, in which 

reduced beta-lactam susceptibility is caused by mechanisms very similar to rPBP3 H. 

influenzae. However, by not defining intermediate categories for extended-spectrum 

cephalosporins, EUCAST state that high-dose therapy with these drugs is not 

considered an option in infections caused by high-rPBP3 H. influenzae.  

The cases presented here illustrate that by categorizing most high-rPBP3 H. influenzae 

as resistant to extended-spectrum cephalosporins and piperacillin-tazobactam, 

EUCAST breakpoints and interpretative rules lead to the use of other agents with less 

favorable ecological profiles. Clinical data are needed to determine whether these 

agents are safe therapeutic options in severe infections caused by high-rPBP3 H. 

influenzae with increased MICs, and for determination of clinically relevant 

breakpoints. 

 

14.4 BETA-LACTAM SUSCEPTIBILITY TESTING 

14.4.1 Broth microdilution MIC  

BMD MIC was used as the reference methodology for MIC determination and 

susceptibility categorization in this project (chapter 8.2). An overview of beta-lactams 

tested and corresponding BMD MIC50 values is shown in chapter 14.2.3 (Table 27). 

Table 33 presents BMD MICs for QC reference strains in Study II [465].  
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Table 33 QC BMD MIC data in Study II [465]. Numbers of readings at various MICs (mg/L) 

for H. influenzae reference strains (Table 19). Green, ATCC 49766 (sPBP3); red, ATCC 

49247 (rPBP3); blue, ATCC 35056 (bla positive). Shadings; QC MIC ranges [75,113]; 

vertical lines, ECOFFs (Table 17) 

 BMD MIC (mg/L) 

Agents ≤
0
.0

0
2

 

0
.0

0
4
 

0
.0

0
8
 

0
.0

1
6
 

0
.0

3
 

0
.0

6
 

0
.1

2
5
 

0
.2

5
 

0
.5

 

1
 

2
 

4
 

8
 

1
6
 

Ampicillin      4 2    3 9   

Ampicillin-sulbactam
a
      1 1  1 1 1 2   

Amoxicillin        4 2  1 6 5  

Amoxicillin-clavulanic acid
b
       1 1  2  2 1  

Piperacillin 6     1 8 2 1      

Piperacillin-tazobactam
a
 2 2    2 1        

Cefuroxime        8   2 2 7 4 

Cefotaxime 6 2     3 8 4      

Meropenem     7 1 2 4 9      

a 
bla inhibitor concentration fixed at 4 mg/L  

b 
bla inhibitor concentration fixed at 2 mg/L 

Several QC ranges for the sPBP3 strain ATCC 49766 were established by EUCAST in 

2014 and were not available when the data were produced and published. A 

retrospective quality assessment revealed that cefotaxime MIC values for this strain 

were out of range (too low). Accordingly, cefotaxime MIC50 values for clinical sPBP3 

isolates in Study II (0.004 mg/L) were two dilutions lower than modal MIC of the 

wild-type population (0.016 mg/L). Similarly, MIC50 values for clinical sPBP3 isolates 

and piperacillin (with and without tazobactam) were two dilutions lower than modal 

MIC of the wild-type population (0.004 mg/L versus 0.016 mg/L).  

All cefotaxime and piperacillin (with and without tazobactam) MICs for ATCC 49247 

(rPBP3) were within the accepted ranges, indicating that the published MIC values for 

clinical isolates [465] are reliable at ranges close to ECOFF (piperacillin) and the 

clinical breakpoints (cefotaxime). However, the two agents were excluded from the 

methodology study (Study IV) [467], as they were considered unsuitable as gold 

standards for evaluation of Etest and disk diffusion (chapters 14.4.2 and 14.4.3). 

Ampicillin and amoxicillin QC MICs were within accepted ranges. However, 

ampicillin MIC50 for clinical bla negative sPBP3 isolates (0.25 mg/L, Figure 18) was 
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one dilution lower than modal MIC of the wild-type population according to the 

EUCAST database (0.5 mg/L). The discrepancy triggered an investigation at the 

EUCAST Development Laboratory, showing that all distributions in the database had 

median MICs at 0.25 mg/L, except one large distribution with a median MIC at 0.5 

mg/L (G. Kahlmeter, personal communication 2010-06-22). After removal of the 

distribution from the database, modal ampicillin MIC of the wild type population in 

the EUCAST database was lowered by one dilution step (Figure 23).  

  

Figure 23 MIC distributions for H. influenzae and ampicillin in the EUCAST database 

(www.eucast.org/MIC_distributions) before (left) and after (right) adjustments in June 2010 

(see text). Images provided by G. Kahlmeter 

The revised MIC distribution for ampicillin (modal MIC 0.25 mg/L) visualized the 

slightly higher in vitro activity of this agent against H. influenzae compared to 

amoxicillin (0.5 mg/L). This is consistent with different ECOFFs (ampicillin, 1 mg/L; 

amoxicillin, 2 mg/L). Accordingly, EUCAST MIC breakpoints for amoxicillin (and 

amoxicillin-clavulanic acid) were changed from 1/1 (S≤/R>, mg/L) to 2/2 in January 

2012 (www.eucast.org/ast_of_bacteria/previous_versions_of_documents).  

EUCAST and CLSI recommend that ampicillin may be used to infer susceptibility to 

amoxicillin [75,111]. Before the change in breakpoints, this recommendation 

implicated a discrepancy between categorization of susceptibility to amoxicillin based 

on amoxicillin MIC and categorization based on susceptibility to ampicillin. Using 

current MIC breakpoints for ampicillin and amoxicillin, ‘categorical correlation’ 

(susceptible to both or resistant to both) in Study IV was 89.6% (138/154), and 

http://www.eucast.org/MIC_distributions
http://www.eucast.org/ast_of_bacteria/previous_versions_of_documents
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amoxicillin MIC was within ±1 dilution of ampicillin MIC +1 dilution (‘essential 

correlation’) for 86.4% (133/154) of the isolates [467].  

The observations and events referred in this chapter illustrate that MIC data may be 

misleading even when obtained by reference methodology, and underline that careful 

QC is crucial to ensure reliable results (chapter 8.2). The contribution to improved 

quality of the EUCAST database, leading to adjustments in clinical breakpoints for H. 

influenzae, represents one of the main achievements in this project. 

 

14.4.2 Evaluation of Etest 

In Study IV [467], 104 bla negative group II low-rPBP3 and 50 bla negative sPBP3 H. 

influenzae from Study II [465] were used to evaluate Etest for categorization to beta-

lactams, with BMD MIC interpreted according to EUCAST breakpoints [111] as the 

gold standard. All Etest MICs for QC strains were within accepted ranges (Table 34).  

Table 34 QC Etest MIC data in Study IV [467]. Numbers of readings at various MICs (mg/L) 

for H. influenzae reference strains (Table 19). Green, ATCC 49766 (sPBP3); red, ATCC 

49247 (rPBP3). Shadings; QC MIC ranges [75,113]; vertical lines, ECOFFs (Table 17) 

Agents 

Etest MIC (mg/L) 

≤
0
.0

0
2

 

0
.0

0
4
 

0
.0

0
8
 

0
.0

1
6
 

0
.0

3
 

0
.0

6
 

0
.1

2
5
 

0
.2

5
 

0
.5

 

1
 

2
 

4
 

8
 

1
6
 

Ampicillin        5   1 5   

Amoxicillin         5   6   

Piperacillin   2 2 1  1 3 2      

Cefuroxime         4 2  1 3 3 

Cefotaxime    6    7       

Meropenem      6 1 4 1      

Etest MICs for the isolates in Study IV are compared to BMD in Table 35. Essential 

and categorical agreement rates were low (<70%) for all agents tested. Consistent with 

ampicillin and amoxicillin MICs for the sPBP3 QC strain deviating from target by +1 

dilution, Etest generally overestimated MIC at lower ranges and underestimated MIC 

at higher ranges.  
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Table 35 Susceptibility categorization of H. influenzae (bla negative, n=154) by Etest (HTM) 

with BMD MIC (HTM) and EUCAST breakpoints [111] as gold standard. Data from [467] 

 BMD MIC (mg/L)    

Etest
a
 0

.0
6
 

0
.1

2
5
 

0
.2

5
 

0
.5

 

1
 

2
 

4
 

8
 

1
6
 

≥
3
2

 

n % 

EA
b 

/ 

FSR
c
 

AMP              

+3 2 
         

2 1.3% 
 

+2 7 6 3 1 
      

17 11.0% 
 

+1 2 12 4 10 1 1 
    

30 19.5% 
 

0  
 

8 3 21 3 
    

35 22.7% 69.5%
b
 

-1  
 

2 2 9 26 3 
   

42 27.3% 
 

-2  
   

1 5 17 
   

23 14.9% 
 

-3  
    

2
d
 1 2 

  
5 3.2% 

 
CA 11 18 17 15 31 4 3 

   
99 64.3%  

ME  
  

1 1 
     

2 1.3%  

VME  
    

33 18 2 
  

53 34.4% 88.3%
c
 

AMX              

+3  1
d
 

  
2 

     
3 1.9% 

 
+2  5 8 5 2 2 

    
22 14.3% 

 
+1  1 4 8 10 1 1 1 

  
26 16.9% 

 
0  

  
9 8 11 3 9 

  
40 26.0% 63.0%

b
 

-1  
  

2 8 4 12 5 
  

31 20.1% 
 

-2  
    

3 5 14 
 

1 23 14.9% 
 

-3  
     

2
d
 5

d
 2 

 
9 5.8% 

 
CA  7 12 24 26 18 4 15 

 
1 107 69.5% 

 
ME  

   
4 3 

    
7 4.5% 

 
VME  

     
19 19 2 

 
40 26.0% 66.7%

c
 

CXM              

+3  1 2 3
d
 13

d
 1 

    
20 13.0% 

 
+2  

 
7 4 6 3 1 

   
21 13.6% 

 
+1  1 10 8 10 3 

 
4 

  
36 23.4% 

 
0  

 
1 4 12 4 

 
9 

  
30 19.5% 54.5%

b
 

-1  
   

5 
 

2 7 
 

4 18 11.7% 
 

-2  
      

12 5 2 19 12.3% 
 

-3  
      

4
d
 2 4

d
 10 6.5% 

 
CA  2 18 12 17 4 1 20 5 9 88 57.1% 

 
mE  

 
2 4 10 7 2 12 2 1 40 26.0% 

 
ME  

  
3 19 

     
22 14.3% 

 
VME  

      
4 

  
4 2.6% 7.1%

c
 

(See legend on next page)  
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Table 35 (previous page) 

a
 Difference between Etest (AMP, ampicillin; AMX, amoxicillin; CXM, cefuroxime) and 

BMD MIC expressed as the number of twofold dilutions by which Etest MIC is higher 

(positive values) or lower (negative values) than BMD MIC. CA, categorical agreement 

between Etest MIC and BMD MIC; mE, minor error: intermediate by Etest and 

susceptible/resistant by BMD MIC, or susceptible/resistant by Etest and intermediate by 

BMD MIC; ME, major error: resistant by Etest and susceptible by BMD MIC; VME, very 

major error: susceptible by Etest and resistant by BMD MIC  
b
 Essential agreement: proportion of gradient MICs within ±1 dilution of BMD MIC 

c
 False susceptible rate: proportion of isolates resistant by BMD MIC categorized as 

susceptible by Etest (calculated by dividing the number of VMEs by the number of isolates 

with BMD MICs above the R-breakpoint (breakpoints indicated by vertical lines) 
d
 Includes Etest MICs deviating from BMD MIC by more than three dilutions

  

By Etest, 94.2% (145/154) of the isolates were categorized as ampicillin susceptible, 

compared to 61.0% (94/154) with reference methodology. On average, Etest 

underestimated ampicillin MIC by one, two and three dilutions for isolates with BMD 

MICs of 2 mg/L, 4 mg/L and 8 mg/L, respectively, leading to high VME (34.4%) and 

FSR (88.3%) for this agent. In other words, Etest wrongly categorized most ampicillin 

resistant isolates as susceptible.  

The results are in accordance with previous reports of underestimation of resistance to 

ampicillin by Etest [27,149,522] (chapter 8.3). Etest is widely used for routine 

susceptibility testing, and false categorization of rPBP3 H. influenzae as susceptible to 

aminopenicillins may be clinically important. 

The results illustrate that a systematic difference between MIC methodologies of one 

dilution may greatly affect susceptibility rates when the clinical breakpoints divide the 

resistant population, which is the case for aminopenicillins and low-rPBP3 H. 

influenzae (chapter 8.1). It should be noted that only one medium (HTM) with MHA 

from only one manufacturer (Table 21) was used in the present evaluation. 

Data from Study IV suggest that introduction of a wide intermediate category to avoid 

division of the rPBP3 population would improve categorical agreement between Etest 

and BMD MIC (not shown). PK/PD breakpoints defined by EUCAST support an 

intermediate category encompassing bla negative H. influenzae with ampicillin MIC 
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up to 8 mg/L [111]; however, clinical data to support breakpoint changes are lacking 

[110,139,516,537]. In contrast to EUCAST, CLSI recommend that H. influenzae with 

ampicillin MIC = 2 mg/L are categorized as intermediately susceptible [75]. Replacing 

EUCAST breakpoints with CLSI breakpoints for ampicillin would not improve 

categorical agreement (CLSI, 61.7%; EUCAST, 64.3%) or FSR (CLSI, 87.0%; 

EUCAST, 88.3%). The number of VME would be reduced (CLSI, 13.0%; EUCAST, 

34.4%), but mE would be frequent (25.3%) [467]. 

The poor categorical agreement of cefuroxime Etest was mainly due to a high number 

of minor errors. Notably, current EUCAST breakpoints define part of the wild-type 

population (MIC = 2 mg/L) as intermediate susceptible to cefuroxime. Using ECOFF 

for S/R-categorization, recalculated categorical agreement and FSR by cefuroxime 

Etest were 67.5% (104/154) and 32.8% (21/64), respectively; i.e. underestimation of 

resistance was frequent, but less frequent compared to aminopenicillins.  

Implications of high FSR by ampicillin, amoxicillin and cefuroxime Etest for test 

algorithms and interpretation and reporting of results are discussed in chapter 14.4.5. 

Etest was also used to test susceptibility to piperacillin (with/without tazobactam), 

cefotaxime and meropenem. Piperacillin and cefotaxime BMD MICs were found 

unsuitable as gold standards (chapter 14.4.1) and excluded from the evaluation.  

Evaluation of meropenem Etest was valid, but data were not included in the paper 

[467] for pedagogic reasons (similar test panels for evaluation of Etest and disk 

diffusion; chapter 14.4.3). Similar to other agents, meropenem Etest overestimated 

MIC in lower ranges and underestimated MIC at higher ranges (Figure 24). Essential 

agreement with BMD MIC was 77% (118/154), and categorical agreement (with 

EUCAST meningitis breakpoints) was 84% (130/154). No ME were observed; VME 

and FSR could not be evaluated as no resistant isolates were included. 
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Figure 24 Bubble chart (modified Bland-Altman plot) showing the correlation between Etest 

and BMD for determination of meropenem MIC in H. influenzae (n=154). BMD MICs from 

[465]. The vertical axis shows the difference between the methods expressed as the number of 

twofold dilutions by which Etest MIC is higher (positive) or lower (negative) than BMD 

MIC. Bubble sizes indicate proportions of isolates. Data are presented separately for rPBP3 

(red) and sPBP3 (black) isolates. Blue frame, essential agreement (±1 dilution). Red vertical 

lines, EUCAST breakpoints [111]. Shadings indicate VME (dark red), ME (dark yellow), and 

mE (light red/yellow). Green frame, QC MIC range (ATCC 49766) [75,113]  

 

14.4.3 Evaluation of EUCAST disk diffusion 

In Study IV [467], EUCAST disk diffusion [282] was evaluated for susceptibility 

categorization of H. influenzae to aminopenicillins and cefuroxime, using the same test 

population as for Etest (chapter 14.4.2). All zones for the QC strains NCTC 8468 were 

within accepted ranges [113].  

Categorization was performed according to EUCAST recommendations [111], using 

standard disks (ampicillin 2 μg, AMP2; cefuroxime 30 μg, CXM30) and breakpoints, 

and amoxicillin susceptibility inferred from ampicillin. Categorization to ampicillin, 

amoxicillin and cefuroxime was also performed with alternative disks (amoxicillin-
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clavulanic acid 2-1 μg, AMC3; cefuroxime 5 μg, CXM5) and zone breakpoints, and 

with the benzylpenicillin 1 unit (PG1) disk and EUCAST screening breakpoints [111].  

Zone-MIC correlations showed considerable overlapping of susceptible and resistant 

isolates with AMP2, AMC3, CXM30 and CXM5 (Supplemental Figure S1 [467], see 

Appendix). The performances of the four disks and PG1 for categorization of 

susceptibility to ampicillin, amoxicillin and cefuroxime using different sets of zone 

breakpoints, and a comparative analysis with Etest (chapter 14.4.2), are summarized in 

Table 36. Categorical agreement was poor and VME were frequent with currently 

recommended disks and breakpoints [111], in particular for aminopenicillins. The 

AMP2 disk underestimated resistance to ampicillin and categorized 87.0% (134/154) 

of the isolates as susceptible, compared to 61.0% (94/154) with BMD MIC. 

Agreement with ampicillin BMD MIC was slightly higher with the AMC3 disk 

compared to AMP2 (p=0.1081), and VME (p=0.0047) and FSR (p=0.0001) were 

significantly lower. AMC3 was also superior to ampicillin Etest for categorization to 

ampicillin.  

A minor zone breakpoint adjustment (+2 mm) for AMP2 slightly increased agreement 

with BMD MIC for categorization to ampicillin (p=0.1593) and amoxicillin 

(p=0.0464). With adjusted zone breakpoints for AMP2 and AMC3 (+1 mm), there 

were no significant differences between the disks, and both were superior to Etest for 

categorization of susceptibility to aminopenicillins. In addition, categorical correlation 

between AMP2 (ampicillin) and AMC3 (amoxicillin) increased from 79.9% (123/154) 

with current breakpoints to 90.9% (140/154) with adjusted breakpoints (p=0.0121). 

Notably, use of disks and media from different manufacturers may greatly affect the 

results by disk diffusion. Such variation was not investigated in this project, and a 

broader evaluation is necessary to decide whether a change in breakpoints is advisable.  

Even with adjusted breakpoints, FSR with AMP2 (28.3%) in Study IV was higher than 

the FSR calculated from zone-MIC correlations published by EUCAST (13.6%) 

(Table 18). Differences in accuracy and precision of the methods used for 

determination of reference MICs are important contributors to inter-investigator 

variations in zone-MIC correlations and categorical agreement rates. 
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Table 36 Susceptibility categorization to ampicillin, amoxicillin and cefuroxime by disk diffusion (EUCAST methodology), with BMD MIC interpreted 

according to EUCAST breakpoints [111] as gold standard. Beta-lactamase negative isolates (n=154). From [467] 

Agent 

categorized 
Disk

a
 

Zone 

breakpoints
b
 

FSR
c
  VME

c
  ME

c
  mE

c
  CA

c
 

Fraction %
d
  n %

d
  n % 

 
n % 

 
n %

d
 

Ampicillin AMP2 16/16
e
 46/60 76.7% (↓)  46 29.9% (↓)  6 3.9% 

 
NA NA 

 
103 66.9% (↑) 

 AMP2 18/18 17/60 28.3% ↓↓  17 11.0% ↓↓  24 15.6% 
 

NA NA 
 

114 74.0% (↑) 

 AMC3 15/15
f
 24/60 40.0% ↓↓  24 15.6% ↓  15 9.7% 

 
NA NA 

 
116 75.3% ↑ 

 AMC3 16/16 17/60 28.3% ↓↓  17 11.0% ↓↓  20 13.0% 
 

NA NA 
 

118 76.6% ↑ 

 PG1 12/12
g
 2/60 3.3% ↓↓  2 1.3% ↓↓  45 29.2% 

 
NA NA 

 
107 69.8% (↑) 

Amoxicillin AMP2 16/16
e
 47/60 78.3% (↑)  47 30.5% (↑)  7 4.5% 

 
NA NA 

 
101 65.6% (↓) 

 AMP2 18/18 16/60 26.7% ↓↓  16 10.4% ↓  22 14.3% 
 

NA NA 
 

117 76.0% (↑) 

 AMC3 15/15
f
 25/60 41.7% ↓  25 16.2% ↓  16 10.4% 

 
NA NA 

 
114 74.0% (↑) 

 AMC3 16/16 17/60 28.3% ↓↓  17 11.0% ↓  20 13.0% 
 

NA NA 
 

118 76.6% (↑) 

 PG1 12/12
g
 3/60 5.0% ↓↓  3 1.9% ↓↓  46 29.9% 

 
NA NA 

 
105 68.2% (↓) 

Cefuroxime CXM30 26/25
e
 15/56 26.8% ↑  15 9.7% ↑  27 17.5% 

 
20 13.0% 

 
93 60.4% (↑) 

 CXM5 20/19 7/56 12.5% (↓)  7 4.5% (↑)  32 20.8% 
 

17 11.0% 
 

99 64.3% (↑) 

 PG1 12/12
g
 4/56 7.1% -  4 2.6% -  40 26.0% 

 
11 7.1% 

 
99 64.3% (↑) 

a
 AMP2, ampicillin 2 μg; AMC3, amoxicillin-clavulanic acid 2-1 μg; CXM5, cefuroxime 5 μg; CXM30, cefuroxime 30 μg; PG1, benzylpenicillin 1 unit 

b
 S≥/R< (mm). The reference is Study IV [467] unless otherwise indicated 

c
 FSR, false susceptible rate (proportion of isolates R by BMD MIC categorized as S by disk diffusion); VME, very major error (S by disk diffusion and R by 

BMD MIC); ME, major error (R by disk diffusion and S by BMD MIC); mE, minor error (S/R by disk diffusion and I by BMD MIC, or I by disk diffusion 

and S/R by BMD MIC); CA, categorical agreement; NA, not applicable 
d
 Comparison with results obtained by Etest (Table 35) and calculation of significance levels using chi-square test. ↑, higher; ↓, lower; -, identical; ↑↑/↓↓, p 

≤0.0001; ↑/↓, p ≤0.05; (↑)/(↓), tendency, not significant (p >0.05) 
e
 EUCAST clinical breakpoint [111] 

f
 EUCAST clinical breakpoint for susceptibility categorization to amoxicillin-clavulanic acid [111] 

g
 EUCAST screening breakpoint for detection of isolates with beta-lactam resistance mechanisms [111] 
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I am aware of only one published, independent investigation comparing EUCAST disk 

diffusion to BMD MIC for susceptibility categorization of H. influenzae to beta-

lactams (chapter 8.4). Søndergaard et al. reported that >50% (7/13 or 8/14) of 

ampicillin resistant isolates were susceptible with AMP2 [475], consistent with FSR of 

76.7% (current breakpoints) and 28.3% (adjusted breakpoints) in Study IV (Table 36).  

Non-inferiority of AMC3 compared to AMP2 for categorization to aminopenicillins is 

consistent with previous investigations based on HTM [219]. The MIC-MIC (chapter 

14.4.1), MIC-zone and zone-zone correlations observed in the present project suggest 

that AMP2 and AMC3 may be used interchangeably for categorization of 

susceptibility to aminopenicillins in bla negative H. influenzae. Consequently, AMC3 

may be used for testing of bla positive and bla negative isolates for susceptibility to 

aminopenicillins with and without bla inhibitor. Use a single disk irrespective of bla 

production would significantly simplify routine susceptibility testing of H. influenzae.  

Although the antibacterial activity of clavulanic acid against H. influenzae is low (MIC 

range 25-125 mg/L) [129], the inhibitor component may theoretically have a slight 

impact on the inhibition zone by testing of bla negative isolates with the AMC3 disk, 

and it needs to be clarified whether separate zone breakpoints are needed for 

susceptibility categorization of bla positive versus bla negative isolates. 

As BMD MICs for piperacillin for the sPBP3 QC strain were out of range (too low), 

data for this agent were excluded from Study IV (chapter 14.4.1). However, BMD 

MICs for the rPBP3 QC strain were within the accepted range (Table 33), and 

overestimation of piperacillin MIC is unlikely. Six rPBP3 isolates included in Study 

IV had piperacillin BMD MIC above ECOFF (range 0.125-0.25 mg/L); according to 

current EUCAST zone breakpoints, 6/6 and 4/6 were categorized as susceptible with 

AMP2 and AMC3, respectively. The results suggest that the disks recommended by 

EUCAST for categorization of susceptibility to piperacillin and piperacillin-

tazobactam are unable to identify H. influenzae with increased MIC to these agents.  

For cefuroxime, categorical agreement by disk diffusion was poor with both disk 

potencies and not significantly different from Etest (Table 36). FSR and VME rates 

were significantly higher with CXM30 compared to Etest (and PG1), but there were no 
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significant differences between Etest and CXM5 or between CXM5 and CXM30. 

Notably, a considerably higher FSR was obtained with the CXM30 disk in this project 

(15/56, 26.8%) compared to the MIC-zone correlations registered in the EUCAST 

database (1/85, 1.2%; Table 18). 

In conclusion, data from this project suggest that disk diffusion according to current 

EUCAST recommendations is associated with high frequencies of VME by 

categorization of susceptibility to aminopenicillins, piperacillin (with/without 

tazobactam) and cefuroxime. However, there are discrepancies with EUCAST data 

and additional independent investigations are needed. Strategies to reduce the clinical 

consequences of VME by routine susceptibility testing are discussed in chapter 14.4.5. 

 

14.4.4 Evaluation of rPBP3 screening disks 

Different disks and media may be used to screen for beta-lactamase resistance in H. 

influenzae (chapter 8.5). In a 2007 pilot study (presented at the SSAC 2007) [463], we 

evaluated the pre-EUCAST screening method (PV10 and CEC30 disk; supplemented 

ISA) with the 46 isolates from Study I [464]. Screening failed to identify 22% (5/23) 

of the rPBP3 isolates, clearly illustrating the need for improved screening methods. 

Although not formally part of the present project, the investigation has historical 

interest; the poster [463] is therefore included in the Appendix section of this thesis. 

In Study IV [467], 154 bla negative H. influenzae from Study II [465] were used to 

evaluate nine disks by their ability to identify low-rPBP3 isolates. The test population 

was identical to the population used to evaluate Etest (chapter 14.4.2) and disk 

diffusion (chapter 14.4.3). 

As the first evaluation of PG1, premilinary results from Study IV were used to 

establish the screening breakpoints introduced in the first NordicAST breakpoint table 

in 2010 (chapter 8.5). The data were partly (PG1, PV10 and CEC30) presented at the 

21
st
 European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) 

in 2011 [462]; the poster is included in the Appendix section.  
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An ROC diagram showing the relative performance of the evaluated disks is presented 

in Figure 25. Genotype-zone correlations are presented in Paper IV [467] 

(supplemental Figure S3; see Appendix). The calculated test performances are 

summarized in Table 37.  

 

Figure 25 Receiver operating characteristic (ROC) diagram showing the performance of nine 

beta-lactam disks for detection of the rPBP3 genotype in H. influenzae (bla negative, n=154). 

Optimized screening breakpoints (Table 37) are indicated for each disk. Solid lines, bla stable 

agents; dashed lines, bla susceptible agents. PG1, benzylpenicillin 1 unit; PG5, 

benzylpenicillin 5 units; PV10, phenoxymethylpenicillin 10 μg; AMP2, ampicillin 2 μg; 

AMC3, amoxicillin-clavulanic acid 2-1 μg; AMC30, amoxicillin-clavulanic acid 20-10 μg; 

CEC30, cefaclor 30 μg; CXM5; cefuroxime 5 μg; CXM30, cefuroxime 30 μg. From [467]  

Table 37 Screening for penicillin-binding protein 3-mediated beta-lactam resistance (rPBP3) 

by disk diffusion (EUCAST methodology). Beta-lactamase (bla) negative H. influenzae 

(n=154); rPBP3 prevalence in the test population 67.5% (104/154) 
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Disk
a
 

Bla 

stable 

Break-

point
b 

Sensitivity Specificity PPV
c 

NPV
d 

Accuracy
e 

(%) (%) (%) (%) (n) (%) 

PG1
 

No 12
f
 96.2 94.0 97.1 92.2 147 95.5 

PG5 No 20 90.4 94.0 96.9 82.5 141 91.6 

PV10 No 20 95.2 82.0 91.7 89.1 140 90.9 

AMP2 No 20 89.4 98.0 98.9 81.7 142 92.2 

AMC3 Yes 18 81.7 86.0 92.4 69.4 128 83.1 

AMC30 Yes 26 69.2 88.0 92.3 57.9 116 75.3 

CEC30 Yes 23 77.9 92.0 95.3 66.7 127 82.5 

CXM5 Yes 21 94.2 88.0 94.2 88.0 142 92.2 

CXM30 Yes 27 85.6 88.0 93.7 74.6 133 86.4 

a
 PG1, benzylpenicillin 1 unit; PG5, benzylpenicillin 5 units; PV10, phenoxymethylpenicillin 

10 μg; AMP2, ampicillin 2 μg; AMC3, amoxicillin-clavulanic acid 2-1 μg; AMC30, 

amoxicillin-clavulanic acid 20-10 μg; CEC30, cefaclor 30 μg; CXM5; cefuroxime 5 μg; 

CXM30, cefuroxime 30 μg 
b
 Optimized screening breakpoints (S≥, mm) with rPBP3 isolates (N526K positive) defined as 

screening targets (see Figure 25)
 

c
 Positive predictive value 

d
 Negative predictive value 

e
 Correct assignment to resistance genotype (N526K positive and screening positive, or 

N526K negative and screening negative) 
f
 Identical to the screening breakpoint recommended by EUCAST [111] 

The PG1 disk identified rPBP3 isolates with the highest sensitivity and accuracy of all 

tested disks. EUCAST introduced this disk as first-line screening for beta-lactam 

resistance in 2012 (www.eucast.org/ast_of_bacteria/previous_versions_of_documents) 

Validation by EUCAST [112] showed slightly higher sensitivity (98%), specificity 

(98%) and accuracy (98%) compared to Study IV (96.2%, 94.0%, and 95.5%, 

respectively).  

Somewhat different test performance was reported in a later, independent evaluation of 

PG1 as screening for the rPBP3 genotype in H. influenzae [476]. Using disks and 

media similar to Study IV, the authors found 91% sensitivity, 99% specificity and 96% 

accuracy. Diverging results (despite identical screening breakpoints, S≥12 mm [111]) 

may in part be due to different interpretation of hazy growth [219]. This phenomenon 

was frequent for rPBP3 isolates in Study IV (in particular with PG1 and CEC30; 

Figure 13); sensitivity was substantially reduced when hazy growth was ignored.  

http://www.eucast.org/ast_of_bacteria/previous_versions_of_documents
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As PG1 is unsuitable for rPBP3 screening in bla positive H. influenzae, five disks with 

bla stable agents were included in Study IV. The CXM5 disk, evaluated for the first 

time in this project, categorized isolates according to resistance genotype with the 

highest accuracy and demonstrated superior test performances compared to the 

CEC30, CXM30, AMC3 and AMC30 disks previously evaluated by others [147,476]. 

CXM5 was the only bla stable disk with sensitivity and accuracy >90%. 

It should be noted that PPV and NPV are prevalence dependent (similar to VME and 

ME; chapter 8.2), and that the rPBP3 prevalence in the test population (67.5%) was 

considerably higher than the prevalence in a representative population in Norway 

(Figure 19). When the sensitivity and specificity of a test are known, predictive values 

at a given prevalence may be calculated using Bayes’ theorem [205] (chapter 13.5). 

The calculated predictive values for the PG1 and CXM5 disks, with the test 

performances obtained in Study IV (Table 37) and the estimated rPBP3 prevalence in 

the NORM 2014 surveillance population (16.6%, chapter 14.2.5), were as follows:  

PG1, PPV = 76.2%, NPV = 99.2%; CXM5, PPV = 61.0%, NPV = 98.7%. 

In conclusion, the present and previous investigations indicate that the PG1 disk, with 

screening breakpoints recommended by EUCAST, reliable detects H. influenzae with 

the rPBP3 genotype. Importantly, all disks with bla stable agents evaluated so far have 

suboptimal test performances. As shown in this project, CXM5 appears to be the most 

reliable alternative; however, the disk is not a standard EUCAST disk and currently 

not available from all manufacturers. Further improvements of the screening method 

for rPBP3 detection in bla positive H. influenzae are needed.  

 

14.4.5 Test algorithm  

To my knowledge, Study IV [467] is the first study comparing gradient MIC and 

EUCAST disk diffusion with reference methodology for susceptibility testing of H. 

influenzae (chapter 8.4). The poor categorical agreement rates and the high frequencies 

of false susceptible results by categorization of rPBP3 H. influenzae to beta-lactams by 

routine methods are worrisome (chapters 14.4.2 – 14.4.3).  
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Importantly, the PG1 screening disk detects isolates with acquired resistance 

mechanisms with high sensitivity and specificity and predictive values (chapter 

14.4.4), reducing the need for agent-directed testing to screening-positive isolates. 

Thus, screening with PG1 should always be performed as a part of susceptibility 

testing of H. influenzae in order to reduce the probability of VME. Isolates that are 

rPBP3 positive by screening should be reported as ampicillin resistant in cases of 

meningitis, irrespective of additional test results, analogous to current 

recommendations for pneumococci positive by screening for beta-lactam resistance 

[111]. Screening-positive bla negative isolates may also be categorized as cefuroxime 

resistant without further testing. 

The results from Study IV indicate that EUCAST disk diffusion is non-inferior to Etest 

(with HTM) for categorization of susceptibility to ampicillin, amoxicillin and 

cefuroxime. Correlation data suggest that the AMC3 disk may be used instead of 

AMP2 for susceptibility categorization of bla negative H. influenzae to ampicillin. 

This simplification of agent-directed testing does, however, require validation of zone 

breakpoints for AMC3 and bla negative isolates.  

To minimize the clinical consequences of false susceptible results, we suggested 

adding a comment recommending high-dose aminopenicillin therapy or the use of 

other agents in severe infections caused by screening-positive isolates categorized as 

susceptible to aminopenicillins by disk or gradient diffusion [467].  

With the exception of replacing AMP2 with AMC3, the recommendations above have 

been implemented by NordicAST [338]. 

EUCAST [111] and CLSI [75] recommend that susceptibility to piperacillin and 

piperacillin-tazobactam is inferred from susceptibility to ampicillin and amoxicillin-

clavulanic acid (chapter 8.1). As discussed in chapter 14.3.2, this interpretative rule 

frequently implicates categorization of H. influenzae as resistant to piperacillin and 

piperacillin-tazobactam, despite retained high in vitro activity of the drugs. 

Conversely, unpublished data from Study IV showed poor correlation between 

piperacillin MIC and inhibition zones with AMP2 and AMC3, and most isolates with 
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non-wild-type piperacillin MIC were categorized as susceptible to piperacillin based 

on susceptibility to aminopenicillins (chapter 14.4.3).  

These observations suggest that categorization of susceptibility to piperacillin 

(with/without tazobactam) should be performed through agent-directed testing and 

interpretation according to clinical breakpoints. 
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15 CONCLUSIONS AND FUTURE REMARKS 

 

The beta-lactam resistance epidemiology of H. influenzae in Norway has changed 

considerably during the last decade. When this project was initiated, isolates with non-

bla-mediated resistance were rare, and few laboratories had established routines for 

detection of such isolates. Ten years later, the prevalence approaches 20%, and H. 

influenzae strains resistant to extended-spectrum cephalosporins have emerged. 

This project was the first to characterize the resistance mechanism in Nordic H. 

influenzae with non-bla-mediated resistance. Group II low-rPBP3 isolates accounted 

for 96% of rPBP3 H. influenzae in NORM 2007, and the significantly increased rPBP3 

prevalence between 2004 (estimate 5.7%) and 2007 (14.6%) was mainly due to the 

expansion of four low-rPBP3 clones. Such clones may persist over several years, and a 

low-rPBP3 ST14 clone capable of causing invasive disease is particularly widespread.  

A few (n=13) bla-negative isolates with non-wild type beta-lactam susceptibility in 

Study II lacked rPBP3-defining substitutions, suggesting the existence of additional 

resistance mechanisms. 

Study III showed that high-rPBP3 H. influenzae emerged and spread in Norway during 

the project period. The strain collection is unique outside Japan. Of particular notice is 

the large number (n=23) of group III isolates, including 12 group III(+)isolates with 

the additional L389F substitution associated with increased resistance; these genotypes 

have rarely been reported outside Japan and Korea. An extensively MDR group III(+) 

high-rPBP3 ST159 strain, resistant to all extended-spectrum cephalosporins tested, and 

four classes of non-beta-lactams, was isolated from three patients at the same hospital 

within a period of four days, illustrating the need for hygienic measures to prevent 

nosocomial spread of MDR H. influenzae. The remarkable resistotype of this strain is 

previously unreported.  

The temporal association with significantly increased usage of amoxicillin and 

extended-spectrum cephalosporins suggests that selective pressure, favouring strains 

with beta-lactam resistance mechanisms (rPBP3 and bla), contributed to the altered 
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resistance epidemiology of H. influenzae in Norway during the 2000s. These 

observations underline the importance of rational use of antibiotics. In addition, 

horizontal transfer of rPBP3-encoding ftsI gene fragments appears to contribute to 

evolution of rPBP3 strains in vivo. This project was the first to report identical ftsI 

alleles in rPBP3 strains unrelated by housekeeping phylogeny. Mechanisms 

contributing to the emergence and spread of rPBP3 H. influenzae are summarized in 

Figure 26. 

The situation calls for improved surveillance of the global molecular epidemiology of 

resistant H. influenzae. The novel MLST-ftsI typing approach, developed and 

validated in this project, is a powerful tool for global surveillance of rPBP3 strains. To 

ensure safe empirical therapy, H. influenzae should be included in regional (EARS-

Net) and global (WHO-GLASS) programs for surveillance of antimicrobial resistance 

in invasive isolates. Notification of H. influenzae resistant to extended-spectrum 

cephalosporins, with molecular characterization at a national reference laboratory, 

should be considered.  

Susceptibility testing of rPBP3 H. influenzae and categorization of susceptibility to 

beta-lactams is challenging, mainly because current clinical breakpoints for 

aminopenicillins divide the low-rPBP3 population. False susceptibility to 

aminopenicillins is frequent by disk diffusion and Etest, commonly used in routine 

laboratories. Breakpoint changes may improve reproducibility of in vitro susceptibility 

testing and agreement with reference methodology, but clinical data to support such 

changes are insufficient. Future research should include clinical studies evaluating the 

therapeutic efficacy of aminopenicillins, extended-spectrum cephalosporins and 

piperacillin-tazobactam in infections caused by rPBP3 H. influenzae with different 

resistance genotypes and MIC levels. 

The PG1 screening disk recommended by EUCAST and NordicAST, first evaluated in 

this project, detects bla-negative rPBP3 H. influenzae with high sensitivity and 

specificity. The CXM5 disk was evaluated for the first time in this project and appears 

to be the best current option for screening of bla-positive isolates. Isolates positive by 
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rPBP3 screening should be reported ampicillin resistant in cases of meningitis 

irrespective of results by agent-directed testing.  

To minimize the clinical consequences of VME, a warning comment should be added 

for rPBP3 screening-positive isolates susceptible to aminopenicillins by disk diffusion 

and gradient tests. The recommendations above have been implemented in the 

NordicAST test algorithm.  

Collaboration with other study groups has been established and several new 

investigations have been initiated as a result of this project. As a EUCAST Network 

Laboratory, Vestfold Hospital Trust collaborates with the EUCAST Development 

Laboratory on evaluation and improvement of methods for in vitro susceptibility 

testing of H. influenzae. Other projects include improved rPBP3 screening in bla-

positive isolates and a broad evaluation of gradient tests. In two collaboratory projects 

with Lund University, imipenem resistance in H. influenzae and the characteristics of 

the widely disseminated and virulent ST14/PBP3 type A clone are investigated.  

Collection and characterization of high-rPBP3 H. influenzae from Norway is an 

ongoing project in collaboration with the Haemophilus Reference Laboratory at the 

Norwegian Institute of Public Health and the Norwegian National Advisory Unit on 

Detection of Antimicrobial Resistance (K-Res). A WGS study with selected isolates 

from this project (including the MDR-ST159 strain) and more recent isolates with 

unusual phenotypes is performed in collaboration with K-res and Haukeland 

University Hospital. The project focuses on MDR and mobile genetic elements, 

virulence, and novel beta-lactam resistance mechanisms. 

Additional future projects include recombinational studies focusing on the correlation 

between PBP3 substitutions and fitness, and the correlation between USS/pUSS 

density and uptake and transformation with mutant ftsI genes. Finally, the association 

between beta-lactam resistance and PBP3 substitutions other than the four included in 

the categorization system will be explored, and the impact of PBP2 substitutions on 

the susceptibility of H. influenzae to piperacillin will be investigated. 
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Figure 26 Emergence and spread of rPBP3 H.influenzae. A. Evolution of rPBP3 strains by spontaneous 

point mutations and horizontal transfer of mutant ftsI DNA. B. Emergence of low-rPBP3 and high-rPBP3 

strains due to selective pressure by beta-lactams. C. Clonal dissemination of rPBP3 strains by person-to-

person transmission 
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Introduction and purpose
Beta-lactam resistance in Haemophilus infl uenzae is most commonly caused by beta-lactamase and/or altered penicillin-binding protein 3 (PBP3) [1]. 
Isolates with PBP3 alterations (N526K or R517H) are denoted gBLNAR (genetic beta-lactamase negative ampicillin resistant) or gBLPACR 
(genetic beta-lactamase positive amoxicillin-clavulanate resistant), depending on beta-lactamase status [2]. Isolates without PBP3 alterations are
denoted gBLNAS (genetic beta-lactamase negative ampicillin susceptible) or gBLPAR (genetic beta-lactamase positive ampicillin resistant). 
The purpose of this study was to compare the reliability of two disk diffusion-based screening methods (previous and current screening method 
recommended by the Swedish Reference Group for Antibiotics) for detection and classifi cation of beta-lactam resistant H infl uenzae according to 
resistance genotypes and resistance phenotypes: phenoxymethylpenicillin 10 μg (PCV10) and benzylpenicillin 1 unit (PCG1), respectively, combined with 
beta-lactamase detection and cefaclor 30 μg (CEC30) [3].

Methods
A collection of 196 respiratory tract isolates; 177 isolates with non-wild type beta-lactam MIC or zone (not explained by beta-lactamase production) and 
19 control isolates with wild type susceptibility to beta-lactams; comprising 109 gBLNAR, seven gBLPACR, nine gBLPAR and 71 gBLNAS isolates was 
tested by disk diffusion (PCV10, PCG1 and CEC30; EUCAST methodology) and MIC determination (ampicillin, amoxicillin, cefuroxime, cefotaxime and 
meropenem; microbroth dilution, CLSI methodology). For ampicillin and amoxicillin, MIC determination of beta-lactamase positive isolates was 
performed in combination with sulbactam and clavulanate, respectively.
Screening results were interpreted according to the recommended test algorithms for the two methods, using the following screen breakpoints: PCV10; 
R<20 mm, PCG1; R<12 mm and CEC30; R<23 mm. MICs were interpreted according to EUCAST MIC breakpoints (for meropenem, meningitis break-
points were used).

Results
Ninety-four percent of the gBLNAR/gBLPACR isolates and 29 % of the gBLNAS/gBLPAR isolates were non-susceptible to at least one beta-lactam due 
to mechanisms other than beta-lactamase, with a tendency towards higher MICs and multi-agent resistance in isolates with altered PBP3.
The PCG1 disk discriminated better than the PCV10 and CEC30 disks between gBLNAR and gBLNAS isolates (Fig.1). Similarly, PCG1 zones correlated 
better than PCV10 and CEC30 zones to non-beta-lactamase mediated non-susceptibility to beta-lactams in general (Fig.2) and to ampicillin in particular 
(Fig.3).
With resistance phenotype (S versus R1-R5; Fig.2) as the gold standard, the PCG1- and PCV10-based methods correctly categorized 84 % and 83 % of 
the isolates, respectively.
Using resistance genotypes as the gold standard, the PCG1-based method was superior to the PCV10-based method (sensitivity, specifi city and correct 
categorization 97/84/91 % and 96/69/85 %, respectively). 

Conclusions
Replacement of the PCV10 disk by the PCG1 disk improves performance of the screening method for detection and categorization of beta-lactam 
resistance in Haemophilus infl uenzae. The CEC30 disk should only be used for categorization of beta-lactamase positive isolates.
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Figure 1. Zone diameter distributions for PCV10, PCG1 and CEC30 versus resistance genotype. 

Figure 2. Zone diameter distributions for PCV10, PCG1 and CEC30 versus non-beta-lactamase mediated non-susceptibility to beta-lactams. S; susceptible to all agents, R1-R5; non-susceptible to 1-5 agents. 

Figure 3. Zone diameter distributions for PCV10, PCG1 and CEC30 versus ampicillin MIC. EUCAST MIC breakpoints S≤1/R>1 (mg/L). 
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