
 

 

Investigation of Ice-PVC separation under 
Flexural Loading using FEM Analysis  

®

The phenomenon of icing is referred to when water droplets are cooled below the freezing 

temperature (0°C) and freeze upon impact with a structure [1]. Ice exists in a number of 

different crystal structures, as well as two amorphous states [2]. The ordinary ice we find in 

our freezer is hexagonal crystal structure that is called ice – 1 h, where the numbers refer to 

individual water molecules [3]. The physical properties and the appearance of accreted ice 

varies widely [4, 5]. It is known from published work that Young’s modulus of ice varies 

between 4 GPa to 9 GPa [6-8]. In addition, it has also been reported that value of Young’s 

modulus for ice is related to temperature, grain size, density and sample volume.  

Icing causes many serious problems, for example, icing causes aircraft accidents [9, 10], 

icing on ship hulls creates navigational problems [9] and icing on wind turbines has many 

negative consequences [11, 12]. These challenges are associated with the ice adhesive 

behaviour [13]. 

There is no direct correlation to calculate the ice adhesion force [14]. However, 

researchers have given number of theories [15, 16]. The theories divide the force of 

adhesion into four categories: electrostatic adhesion [17, 18], diffusive adhesion [19, 20], 

mechanical adhesion, and chemical adhesion [21]. 

The most common reason of ice adhesion is mechanical. The ice adheres when water 

seeps into the microscopic pores of the material substrate and freezes, thereby, forming an 

interlocking mechanism [22]. Therefore, surface roughness has a significant effect on ice 

adhesion. For example, ice adhesion on the surface of un-polished stainless steel, in general, 
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is up to 1.65 MPa, while the ice adhesion on polished stainless steel is only 0.07 MPa [14]. 

In the given study, ice is frozen over a PVC surface. PVC is a polymer-based structure, 

and its mechanical properties may vary based on curing process [23]. In addition, additives can 

be added to obtain a range of mechanical properties, for example [24] studied mechanical 

properties of PVC with the addition of polyethylene oxide. In this study, soft and pure PVC is 

used. It is reported that its Young’s modulus can vary in the range of 1.5 MPa to 15 MPa [23]. 

An experiment based study reported by [24] found the Young’s modulus of PVC to be around 

7 MPa. 

 

In order to approach to the problem of the adhesion of ice, a two layer laminate structure of ice 

and polymer material is designed. A four-point bending test is applied to investigate the 

separation of ice from a PVC surface. Different methods are used to analyse the results: 

theoretical, experimental and numerical simulations.  

For the theoretical analysis the Euler-Bernoulli beam theory [25] is solved in MATLAB®.  

For experimental work, ice is frozen over the PVC surface and loaded in a four-point bending 

test bench with a mounted strain gauge. The numerical study is performed in ANSYS® 

Multiphysics by modelling the two materials: ice and PVC. The results from these studies 

reveal the longitudinal and shear stresses at the interface of the PVC surface and the ice 

separation behaviour. 

 

The Euler-Bernoulli beam theory [25] can be used to calculate the maximum deflection in the 

centre of the four-point bending specimen. Maximum deflection δ𝑚𝑎𝑥 is given in Equation (1): 

 

 δ𝑚𝑎𝑥 = 𝛿𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑃𝐿1

48𝐸𝐼𝑡

(3𝐿2 − 4𝐿1
2) (1) 

 

where 𝛿𝑐𝑒𝑛𝑡𝑒𝑟  is the deflection in the centre, 𝐿 is the total length, 𝐿1 is the distance between 

support point to loading point, 𝐸 is Young’s modulus and 𝐼 is total moment of inertia about the 

neutral axis. 

This specimen contains ice and PVC, two kinds of different materials, and therefore the rule 

of mixtures is introduced to find the material properties of the sample. It is valid to assume that 

under tensile loading, the Young’s moduli of the sample can be described as given in Equation 

(2): 

 

 𝐸 = 𝐸𝑖𝑐𝑒

𝐴𝑖𝑐𝑒

𝐴
+ 𝐸𝑝

𝐴𝑝

𝐴
 (2) 

 

where 𝐸, 𝐸𝑖𝑐𝑒 and 𝐸𝑝are Young’s moduli of the sample, ice and PVC respectively. 𝐴, 𝐴𝑖𝑐𝑒 and 

𝐴𝑝are cross-sectional areas of the sample, ice and PVC respectively. 

Stress calculations in beams are performed with respect to the neutral axis. The neutral axis 

of a beam goes through the centroid of its cross section. Since there are two materials that have 

 

 

  



 

 

 

different young’s moduli 𝐸𝑖𝑐𝑒  and 𝐸𝑝, it is safe to assume that 𝐸𝑖𝑐𝑒 > 𝐸𝑝, the expansion 

factor, also known as balance coefficient (𝑛), is given in Equation (3): 

 

 𝑛 =
𝐸𝑝

𝐸𝑖𝑐𝑒

 (3) 

 

In order to have a similar inertial effect of both materials, the balance coefficient is 

multiplied by the width of PVC to create a hypothetical area. The neutral axis of the sample 

shifts because of the difference in the Young’s moduli of ice and PVC, similarly, the values 

of the moment of area and the moment of Inertia also change. These values are required to 

be calculated with respect to the new neutral axis (Equation (3)). The total moment of area 

𝑄𝑡  and inertia 𝐼𝑡  are given in Equations (4) and (5): 

 

 𝑄𝑡 = 𝑄𝑖𝑐𝑒 + 𝑄𝑝 (4) 

 

 𝐼𝑡 = 𝐼𝑖𝑐𝑒 + 𝐼𝑝 (5) 

 

where 𝑄𝑖𝑐𝑒  is the area moment of ice, 𝑄𝑝 is area moment of PVC, 𝐼𝑖𝑐𝑒  is the moment of 

inertia of ice and 𝐼𝑝 is the moment of inertia of PVC. 𝑄𝑖𝑐𝑒  , 𝑄𝑝  , 𝐼𝑖𝑐𝑒  and 𝐼𝑝 are given in 

Equations (6) to (9): 

 

 𝑄𝑖𝑐𝑒 = 𝑡𝑖𝑐𝑒 ∙ 𝑏 ∙  (𝑦
𝑖𝑐𝑒

− 𝑌) (6) 

 

 𝑄𝑝 = 𝑡𝑝  ∙  𝑛 ∙ 𝑏 ∙  (𝑦
𝑝

− 𝑌) (7) 

 

 𝐼𝑖𝑐𝑒 =
𝑏 ∙ 𝑡𝑖𝑐𝑒

3

12
+ 𝑏 ∙ 𝑡𝑖𝑐𝑒 ∙ (𝑦

𝑖𝑐𝑒
− 𝑌)2 (8) 

 

 𝐼𝑝 =
𝑛 ∙ 𝑏 ∙ 𝑡𝑝

3

12
+ 𝑛 ∙ 𝑏 ∙ 𝑡𝑝 ∙ (𝑦

𝑝
− 𝑌)2 (9) 

 

where 𝑦
𝑖𝑐𝑒

 and 𝑦
𝑝
 are distances of the neutral axis of ice and PVC from the reference axis 

respectively. 

 

 

  



 

 

 

The longitudinal stresses in the ice and PVC are given in Equations (10) and (11): 

 

 𝜎𝑥,𝑖𝑐𝑒 = −
𝑀(𝑦 − 𝑌)

𝐼𝑡

 , (𝑡𝑝 ≤ 𝑦 ≤ 𝑡𝑝 + 𝑡𝑖𝑐𝑒) (10) 

 

 𝜎𝑥,𝑝 = −
𝑛𝑀(𝑦 − 𝑌)

𝐼𝑡

 , (0 ≤ 𝑦 ≤ 𝑡𝑝)  (11) 

 

where 𝜎𝑥,𝑖𝑐𝑒  and 𝜎𝑥,𝑝 are the longitudinal stresses in ice and PVC respectively. 𝑦 is the position 

based on reference axis (placed at the bottom of the sample). 

Similarly, shear stresses in the ice and PVC are given in Equations (12) and (13): 

 

 𝜏𝑥,𝑖𝑐𝑒 =
𝑉𝑄𝑖𝑐𝑒

𝐼𝑡  𝑏
 , (𝑦 = 𝑡𝑝) (12) 

 

 𝜏𝑥,𝑝 =
𝑛𝑉𝑄𝑝

𝐼𝑡  𝑏
 , (𝑦 = 𝑡𝑝) (13) 

 

where 𝜏𝑥,𝑖𝑐𝑒 and 𝜏𝑥,𝑝 are the shear stresses at the interface of ice and PVC respectively. 

 

The aim of the experiment is to generate observations of ice separation on a laboratory scale 

since bending induces longitudinal and shear stresses. Samples are prepared by freezing ice 

from tap water over the PVC surfaces (on the opposite side to the location of strain gauge) at -

10℃ over 12 hours in the cold room test facility at UiT-The Arctic University of Norway 

(Narvik Campus). The length of the PVC plate is 260 mm and all of this is covered with ice. 

The width and the thickness of the plate are 60mm and 1mm, respectively. The experiments 

are performed in the same conditions in order to avoid building any cracks in sample due to 

thermal shock. Thermal shock may introduce cracks in the ice samples and hence lead to 

erroneous results [26]. 

In order to investigate the separation of ice from a PVC surface, a four-point bending test 

bench is set up. Two different samples with ice thickness of 3 mm and 5 mm are investigated. 

In this setup the distance between the two supporting points is 200mm and the distance from 

the supporting point to the loading point is 20mm as shown in Figure 1. 

In these experiments, loads are in the form of weights. These weights are placed gently by 

hand to produce strain in the sample. Strains are recorded using a rosette strain gauge adhered 

to the bottom of a PVC sample as shown in Figure 2. The strain gauge is attached to a 

Wheatstone bridge circuit to give variation in voltage with the change in resistance. In this 

study, TML® FRA-5-23 strain gauges are used. These strain gauges have a gauge factor value 

of 2.15. The voltages are recorded using a data acquisition system. In this study a National 

Instrument® USB-6351 model, X Series Data Acquisition device is used to record strain. To 

connect the instrumental circuitry, various other cables, accessories, along with the data  

 

 

  



 

 

 

acquisition device are connected to a computer. The data is recorded in the National 

Instrument LabView® program. The data is recorded at 1 kHz over 1 sec for each load. It 

allows measuring of the strain more accurately since data can be averaged over time. Crude 

data (.lvm files) are processed in MS Excel to calibrate the results. The parameters are 

shown in Table 1. 

 

 

 

 

  



 

 

 

 

Description Variable Units value 

Length of PVC and ice sample 𝑙 𝑚𝑚 260 

Width of PVC and ice sample 𝑏 𝑚𝑚 60 

Thickness of PVC 𝑡𝑝 𝑚𝑚 1 

Thickness of ice for sample 1 𝑡𝑖𝑐𝑒 𝑚𝑚 3 

Thickness of ice for sample 2 𝑡𝑖𝑐𝑒 𝑚𝑚 5 

Distance between the support and the load points  𝐿1 𝑚𝑚 20 

Distance between the two load points 𝐿2 𝑚𝑚 160 

Distance between the two support points 𝐿 𝑚𝑚 200 

Loads 𝑃 𝑔 varied 

 

The numerical studies are performed in ANSYS® Multiphysics. The geometric model is built 

in the ANSYS® Multiphysics structural module. The dimensions of the geometric model are 

260 mm long and 60 mm wide. The geometric model contains 12 volume segments. The 

volume segments provide the geometric features required to place the loading and boundary 

conditions on the model. The finite element (FE) model of ice and PVC sample is built using 

ANSYS® finite element (FE) brick 20 nodes solid 186 elements [27] using linear elastic 

isotropic material model. This element type provides more accurate results in comparison to 

solid 8 node brick 185 elements. However, the simulation run-time for solid 186 is considerably 

higher than solid 185 elements.  

The FE models are tested for sensitivity by varying the element numbers as shown in Figure 

3. Net displacement results for a node at a particular geometric location are used to test the 

sensitivity. Result for an FEM mesh of 31200 elements is considered as a reference. For other 

meshes, variations are calculated as given in Equation (14). 

 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 =
𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡31200 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

 (14) 

 

As shown in Figure 3 that FEM results are consistent with a number of elements equal to 

7240, therefore it is valid to use an FEM model containing 10800 elements for further analysis. 

The displacement constraint is applied at the point of supports as shown in Figure 4. In FEM, 

the displacement constraints are applied in x and y directions. It is to be noted that the 

longitudinal axis is oriented in the z direction in this model. The forces are applied equally to 

the nodes as shown in Figure 5. 
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The results are given in three sections; theoretical, experimental and numerical simulation 

results. Theoretical results are obtained by solving Euler-Bernoulli beam theory for four-point 

bending in MATLAB®. Experimental results are achieved via strain gauge in four-point 

bending test bench. And numerical results are from linear static analysis in ANSYS® 

Multiphysics. 

 

Three different results were obtained through theoretical analysis, i.e. maximum displacements 

in the samples with load, stress profile with a thickness of the sample beam, stress profile in 

the longitudinal direction of the sample beam. 

The maximum displacement in the samples is calculated using the correlation of Equation 

(1) which is based on beam theory. To find the limits of theoretical results, the variation in 

gradient (
𝛿𝑚𝑎𝑥

𝑃
) is tabulated as given in Table 2. It is shown that gradient values are more 

sensitive to the Young’s modulus of ice in comparison to the Young’s modulus of PVC. 
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𝒕𝒊𝒄𝒆 

(mm) 

Gradient (
𝒎𝒎

𝒈
) 

𝑬𝒊𝒄𝒆 = 4 GPa 

𝑬𝒑 = 1.5 MPa 

Gradient (
𝒎𝒎

𝒈
) 

𝑬𝒊𝒄𝒆 = 9 GPa 

𝑬𝒑 = 1.5 MPa 

Gradient (
𝒎𝒎

𝒈
) 

𝑬𝒊𝒄𝒆 = 4 GPa 

𝑬𝒑 = 15 MPa  

Gradient (
𝒎𝒎

𝒈
) 

𝑬𝒊𝒄𝒆 = 9 GPa 

𝑬𝒑 = 15 MPa 

3 mm 0.0012 5.31E-04 0.0012 5.29E-04 

5 mm 2.32E-04 1.03E-04 2.31E-04 1.03E-04 

The maximum displacements with loads for an ice Young’s modulus of 4 GPa and a PVC 

Young’s modulus of 15 MPa for a 5 mm thick ice sample are shown in Figure 6, which is 

produced using MATLAB® script. 

The longitudinal stress is independent of the material property such as Young’s modulus 

and directly proportional to the applied load. The maximum stress in the sample is limited by 

tensile strength. Stress more than the tensile strength will cause ice to fracture. The tensile 

strength of ice has been reported to be between 1 MPa to 1.5 MPa [28]. Loads responsible for 

this amount of stresses are given below: Maximum Longitudinal Stress across the thickness of 

a 3 mm ice sample under a load of 1000-1400 is 1.080-1.512MPa; Maximum Longitudinal 

Stress across the thickness of a 5 mm ice sample under a load of 2600-3900g is 1.016-

1.523MPa. Figure 7 is shown the longitudinal stress across the thickness of a 5 mm ice sample 

under a load of 3900g. 

As shown, the tensile stress is maximum at the interface between ice and PVC and 

compressive stress is maximum at the top of the ice. There is negligible stress in PVC since it 

is softer than ice. The negative value of longitudinal stresses corresponds to compressive 

stresses. The longitudinal stress across the length of the sample for a 5 mm ice sample under a 

load of 3900 g is shown in Figure 8. It is shown that longitudinal stress is zero beyond the 

support point and varying linearly between the supports and loading points. 

The shear stress is a function of material properties such as Young’s modulus. The shear 

stress values of the samples are shown with the Young’s moduli of ice and PVC in Table 3. 

The shear stress causes the ice to separate from PVC. The adhesive strength of ice on a PVC  

 

 

  



 

 

 

surface is reported to be 234421 Pa (~34 psi) [22]. It is found that the shear stress 

experienced by the samples under maximum tensile loading is far less than this value. 

Therefore, it can be assumed that ice will undergo tensile failure prior to separation from a 

PVC surface. It is calculated that for a 3 mm thick ice sample that it will break and separate 

under a load of 1000-1400 g and the maximum shear stress is 270-378 Pa, for a 5 mm thick 

ice sample, it will break and separate under a load of 2600-3900 g and the maximum shear 

stress is 228-342 Pa. 
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𝒕𝒊𝒄𝒆 

(mm) 

Shear Stress (Pa) 

𝑬𝒊𝒄𝒆 = 4 GPa 

𝑬𝒑 = 1.5 MPa 

Shear Stress (Pa) 

𝑬𝒊𝒄𝒆 = 9 GPa 

𝑬𝒑 = 1.5 MPa 

Shear Stress (Pa) 

𝑬𝒊𝒄𝒆 = 4 GPa 

𝑬𝒑 = 15 MPa  

Shear Stress (Pa) 

𝑬𝒊𝒄𝒆 = 9 GPa 

𝑬𝒑 = 15 MPa 

3 mm 95.2982 42.3737 946.1282 422.3767 

5 mm 30.8891 13.7315 307.7777 137.0951 

 

Variation in shear stress along the length of a 5 mm ice sample for an ice Young’s 

modulus of 4 GPa and a PVC Young’s modulus of 15 MPa under the load of 3900 g is given 

in Figure 9. It is to be noted that shear stress is zero beyond the support points and within 

the loading points and has a constant value between support and loading points. These 

results are in agreement with the four-point shear force diagram. 
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The replication of the mechanical behaviour of ice under flexural loading and the 

delamination of ice from the surface of PVC are the two key points to be noted. The 

experiments are repeated with both thicknesses 3 mm and 5 mm ice samples. The 

displacement with load for each sample is given in Figure 10 and Figure 11. 

The experiments show that the gradient of displacement with load for 3 mm and 5 mm 

thickness ice samples are 1.04E-03 mm/g and 2.41E-04 mm/g, r-squared value is 80.3 % 

and 73.3 % respectively. R-squared values indicate the fitness of data with the proposed 

linear equation. These values were used to calculate the Young’s Modulus of ice using the 

procedure given before. The results were obtained for three different Young’s Modulus for 

PVC: 1.5 MPa, 7 MPa and 15 MPa. In addition, r-squared value indicate that experimental 

results of 3 mm and 5 mm samples have a deviation of 19.7% and 26.8% respectively. The 

experimental results for the Young’s modulus of ice are given in Table 4.  

It is found from the results that Young’s moduli of ice do not vary with Young’s moduli 

of PVC. Also, the obtained values of Young’s modulus are in reasonable proximity to the 

values reported in the literature [6-8]. The deviation in the results is indicative of factors 

such as noise in strain gauges, handling of loads, instrumentation error, etc.   

The maximum loads at the time of failure for 3mm and 5mm thickness of ice sample are 

1800g and 3500g respectively. It is calculated that the corresponding longitudinal stresses 

for 3mm and 5mm thickness of ice sample are 1.96 MPa and 1.37 MPa respectively, and 
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shear stresses for each load are 41.7 Pa and 32.1Pa accordingly. It is found that maximum 

longitudinal stresses are in reasonable proximity of the reported values of the tensile strength 

of ice [28].  

The failures in 3 mm and 5 mm ice samples are shown in Figure 12 and Figure 13. As shown 

in Figure 12: Failure in a 3 mm ice sample, that ice has gone through fractures, and a part of it 

is still in adhesion to the PVC surface. As shown in Figure 13, that ice has gone through fracture 

from various points and separated from the PVC surface. This is indicative of adhesive failure. 

Residuals of ice are noticeable on close observation of PVC surfaces. This is indicative of 

cohesive failure. It is obvious that shear stress from bending was not enough to overcome the 

adhesive strength of ice and PVC (reported to be 234421 Pa (~34 psi) [22]). The fracture had 

introduced localised stress concentration which had contributed to the crack propagation at the 

interface and hence lead to the separation of ice from the PVC surface [29]. 
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Thickness 

of ice 

(mm) 

Assumed PVC 

Young’s 

Modulus (MPa) 

Ice Young’s Modulus 

from Experiments 

(GPa) 

Deviation in 

results (GPa) 

based on R-

squared value 

 

3 

1.5 4.70 +/- 0.93 

7 4.70 +/- 0.93 

15 4.70 +/- 0.93 

 

5 

1.5 3.85 +/- 1.03 

7 3.85 +/- 1.03 

15 3.85 +/- 1.03 

 

 

 

  



 

 

 

Numerical analysis was carried out in ANSYS® Multiphysics. Results of maximum 

displacement in samples with load and longitudinal stresses are obtained. Figure 14 shows 

displacement results from a 5 mm sample under a loading of 3500g. Numerical results of 

displacement gradient with load are 1.036E-03 𝑚𝑚/𝑔 and 2.409E-04 𝑚𝑚/𝑔 for 3 mm sample 

and 5 mm sample respectively. 

 

 

The obtained longitudinal stress results for a 3 mm sample under a loading of 1800 g are 

shown in Figure 15 with a zoomed-in view shown in Figure 16. 
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The obtained longitudinal stress results for a 5 mm sample under a loading of 3500 g are 

shown in Figure 17 with a zoomed-in view shown in Figure 18. 

 

 

The maximum tensile longitudinal stresses experienced by the samples are 2.08 MPa and 

1.56 MPa for 3mm and 5mm thickness of ice sample respectively. 
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It can be noted that values of displacement with load gradient and longitudinal stresses are in 

good agreement within different methodologies. Displacement with load gradients for various 

samples tested using theoretical, experimental and numerical analysis are presented in Table 5. 

Longitudinal stresses obtained through theoretical, experimental and numerical analysis are 

given in Table 6. 

 

𝑚𝑚/𝑔 𝐸𝑖𝑐𝑒

𝐸𝑝  

Ice thickness on 1 

mm thick PVC 

sample 

Theoretical analysis 

using rule of mixture 

and beam theory 

Experimental results Numerical results 

using FEM 

(ANSYS® 

Multiphysics) 

3 mm 1.20E-03 1.04E-03 1.036E-03 

5 mm 2.31E-04 2.41E-04 2.409E-04 

 

𝐸𝑖𝑐𝑒 𝐸𝑝

Ice thickness 

on 1 mm thick 

PVC sample 

Load at the 

time of 

failure (g) 

Theoretical 

analysis using 

rule of mixture 

and beam theory 

Experimental 

results 

Numerical results 

using FEM 

(ANSYS® 

Multiphysics) 

3 mm 1800 1.96 1.96 2.08 

5 mm 3500 1.37 1.37 1.56 

 

There is acceptable variation between theoretical, experimental and numerical results. This 

can be associated with instrumental and numerical errors. 
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In this paper, ice adhesion over an arbitrary material of PVC has been investigated using 

theoretical analysis, experimental and numerical approaches. The theoretical study of this 

work is based on the use of the Euler-Bernoulli beam theory to solve a four-point bending 

problem to give the correlation of displacements with load, longitudinal stress and shear 

stress, and the rule of mixtures to derive common variables from two materials, such as 

Young’s modulus, moment of inertia, and moment of area. Since adhesive forces can be 

categorized as either electrostatic, diffusion, mechanical and chemical as per the literature, 

there is no general correlation to work out the adhesive strength of ice over a particular 

surface except via experiments. Experiments with the help of theoretical analysis revealed 

the material properties of ice such as Young’s modulus and tensile strength. The numer ical 

analysis provided detailed results of displacement and longitudinal stresses in the two-

material beam. A good agreement among theoretical, experimental and numerical results 

confirms that ice can separate from a surface even when the shear force is not enough to 

overcome the adhesive strength. From the results it can be concluded that during the test 

the shear force is not enough to overcome the adhesive strength. Nonetheless, as fracture 

happens, the ice separates from the surface, which is associated with the crack propagation 

theory. 
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