
!

!
! !

Faculty of Bioscience, Fisheries and Economics                                              
Department of Arctic and Marine Biology 

Marine microbial eukaryotes in Svalbard waters: 
Seasonality, community composition and diversity 
—"
Miriam Marquardt 
A dissertation for the degree of Philosophiae Doctor – April 2016 

!



Cover image: Adventfjorden in different seasons (Photography by 1,4: Stuart Thomson, 2: 
Miriam Marquardt, 3: David Wrangborg) 
 
 
 
 



Marine microbial eukaryotes in Svalbard waters: 

Seasonality, community composition and diversity  

 

Miriam Marquardt 
 

Thesis submitted in partial fulfillment of the requirements for  

the degree of Philosophiae Doctor (Ph.D) in Natural Science 

 

Longyearbyen, 78°North, April 2016 

 
 

 

 

 

Department of Arctic Biology 

University Centre in Svalbard 
 

 

 

 

 

Department of Arctic and Marine Biology 

Faculty of Bioscience, Fisheries and Economics 

UiT The Arctic University of Norway 

 

The thesis work was conducted within the ARCTOS PhD 

school (UiT) and was part of the MicroFun project (UNIS) 



2"

Supervisors 

 
Assoc. Prof. Tove M. Gabrielsen 

University Centre in Svalbard 

Department of Arctic Biology  

 

Dr. Anna Vader 

University Centre in Svalbard 

Department of Arctic Biology  

 
Prof. Marit Reigstad 

UiT The Arctic University of Norway 

Faculty of Biosciences, Fisheries and Economics  

Department of Arctic and Marine Biology  

 

 

 

 

 

 

 

 

 



3"

Preface 

 
In 2006/07 I was doing a student exchange year at the University of Tromsø (UiT). At the 

time when I had to choose my courses to study there, the UNIS course catalogue was still 

included in the one from UiT, but I was not aware of that. I was so exited to see all these 

amazing courses about Arctic ecology, Arctic fauna and flora…and basically chose just 

UNIS courses. The student administrator wrote disappointingly back to me that I actually 

had to go to Svalbard, not Tromsø, if I wanted to take these courses. So I did, one year 

later; first on a cruise in 2007, then for a course in 2008 and for fieldwork in 2010. At 

that point, I never would have imagined that I would soon move to Svalbard to do a 4-

year-PhD study there…  

 
People say once you have fallen for the Arctic - you always return. 

This is one of my return stories. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

      For this PhD thesis roughly 2.500.000 millilitres  

 (or more…) of seawater were filtered 
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Abstract 

Microbial eukaryotes are critically important for the functioning of marine ecosystems. In 

Arctic waters, where marine planktonic cyanobacteria are infrequent, microbial 

eukaryotes are the predominant primary producers. The ongoing changes in the Arctic 

reflected by sea-ice retreat, freshening of the ocean and increased stratification may 

favour smaller protists in the future and that will potentially alter production and 

downward flux. In spite of their importance, our knowledge of the diversity, seasonality 

and fate of pico- and nanosized eukaryotic plankton is still limited in the polar regions, 

especially during the polar night period. High-Arctic regions are characterized by 

extreme seasonality in light conditions, with 24 hours of sunlight in summer giving way 

to several months of complete darkness in winter.  

Molecular tools are now available for identifying even the smallest protist species. To 

investigate microbial eukaryotes in Svalbard waters two sampling approaches were 

applied: (1) Spatial sampling at multiple locations around West Spitsbergen to study the 

distribution of two small key-phototrophs (Micromonas pusilla and Phaeocystis 

pouchetii) during the polar night. PCR screening with specific primers was used to 

overcome the difficulty of identifying these small flagellates in low-biomass winter 

samples. (2) High-resolution temporal sampling (December 2011 to December 2012) at 

the Isfjorden-Adventfjorden time series station (IsA, West Spitsbergen) was conducted to 

investigate the succession and diversity of small protists and to determine their 

contribution to the vertical carbon flux. The community composition of suspended 

microbial eukaryotes (two size fractions: 0.45 – 10 µm and > 10 µm) from four different 

depths (5, 15, 25 and 60 m) was determined using 454 sequencing of the 18S V4 region 

amplified from both DNA and RNA. Additionally, microbial eukaryotes (> 0.45 µm) 

were sampled from short-time sediment traps (20, 30, 40 and 60 m) to study their 

contribution to the vertical flux. Hydrographical profiles and in situ environmental 

conditions were recorded at all stations. 

Strong seasonal shifts of the community composition, species richness and 

photosynthetic biomass were observed in Adventfjorden. The winter and early-spring 
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communities were more diverse than the spring and summer/autumn communities. Small 

Gyrodinium species were predominant in both DNA and RNA libraries of the suspended 

material throughout the year, and in the trap material. The Arctic Micromonas ecotype 

was most abundant in the early bloom and fall periods at IsA, but was widely distributed 

and active at almost all locations and depths around Svalbard. Also Phaeocystis pouchetii 

was widespread during the polar night, and blooming from mid to end of May at the IsA 

station. Heterotrophs such as Marine Stramenopiles (MASTs), Picozoa and the parasitic 

Marine Alveolates (MALVs) displayed higher relative abundances in winter than in other 

seasons in Adventfjorden. Strategies such as kleptoplasty and parasitism might have 

helped certain species (e.g. Strombidium sp. and MALVs, respectively) to cope with 

unfavourable conditions at certain times of the year. Smaller cells (< 10 µm) contributed 

more to the vertical flux during autumn and winter, possibly due to increased flocculation 

and ballasting. In contrast, larger and more typical spring bloom taxa (e.g. diatoms) 

dominated both the water column and the sedimented material in spring. In March an 

advective event, which replaced cold and less saline Local Water with warm and saline 

Transformed Atlantic Water was potentially responsible for a change in the IsA 

community composition.  

The combined use of RNA and DNA data was of large benefit when opening the ”black 

box” of the polar night, revealing that the Arctic winter protist communities are active 

and more diverse than expected. Molecular tools not only revealed novel taxa 

contributing to the vertical export, but also suggested new mechanisms for vertical export 

demonstrated by parasite-host induced transport. Together, these results emphasize the 

extreme seasonality of Arctic microbial communities driven by the environment (e.g. 

light regime, nutrient availability), but also point to the necessity of a thorough 

knowledge of hydrography to fully understand their succession, variability and fate. 
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1. Introduction 
 
Microbial eukaryotes can be defined as any microscopic organism with a complex cell 

(or cells), in which the genetic material is organized into a membrane-bound nucleus (or 

nuclei) (Caron et al. 2012 and references within), and include microalgae as well as non-

autotrophic protists (Poulin et al. 2011). These tiny organisms can be found anywhere on 

the planet (terrestrial, aquatic, atmospheric), inhabit niches of diverse forms and sizes 

(Fenchel 1987) and are often found in high cell numbers (e.g. 2.8 x 106 cells L-1 of the 

haptophyte Phaeocystis pouchetii in the Fram Strait, Lasternas and Agusti 2010). 

Microbial eukaryotes are of critical importance for the functioning of the earth 

ecosystems. Focusing on the marine ecosystem, microbial eukaryotes have diverse and 

important roles: (1) As primary producers: global annual net production of approx. 50 

petagrams carbon (Chavez et al. 2011); (2) As consumers/predators, e.g. heterotrophic 

dinoflagellates/ciliates controlling bloom dynamics (Sherr and Sherr 2007, Seuthe et al. 

2011); (3) As maintainers of biogeochemical cycles (microbial loop – Azam et al. 1983): 

several protists are able to transform carbon-, nitrogen-, sulfur- and phosphate-containing 

compounds to make them available for biological production (Strom 2008, Richardson 

and Jackson 2007, Worden et al. 2015). Until recently, the biodiversity of marine 

microbial eukaryotes was mainly studied by microscopy and morphological identification 

techniques. These techniques largely limited our knowledge of the diversity and role of 

pico- (0.2–2 µm) and nano-sized (2–20 µm) cells. However, the last decades’ rapid 

developments in sequencing techniques and molecular genomics have finally given us the 

tools to charter the true and immense biodiversity of microbial life as well as discovering 

new taxonomic relationships (e.g. López-García et al. 2001, Moon-Van Der Staay et al. 

2001, Moreira and López-García 2002, Dinsdale et al. 2008). Yet, seasonal studies of 

pico- and nanoflagellates are still limited in the world´s oceans (e.g. Romari and Vaulot 

2004, Piwosz and Pernthaler 2009, Terrado et al. 2008 and 2009, Gilbert et al. 2009 and 

2012, Sørensen et al. 2012), especially during the polar night period in the Arctic marine 

systems. 

The marine Arctic is a highly seasonally pronounced environment and known to be 

tremendously productive at certain times of the year (e.g. in situ primary production in 
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spring: 107.87 mg C m-3 d-1 and winter: 13.91 mg C m-3 d-1, in Arctic Ocean surface 

waters from 1954 – 2007, Matrai et al. 2013). Seasonal variability in e.g. solar radiation, 

temperature, sea-ice cover and nutrient availability (Walsh 2008, Thomas and Dieckmann 

2010) as well as large spatial variations (e.g. different surface types such as open ocean, 

landmasses and sea ice – Walsh 2008) characterize the habitat and determine the life in 

this remote and extreme environment.  

The ongoing rapid changes in the northern hemisphere, reflected by increasing air 

temperatures, stronger stratification and a decreasing sea ice cover, will strongly impact 

the Arctic marine ecosystems (Cottier et al. 2007, Moline et al. 2008, Hoegh-Guldberg 

and Bruno 2010, Stroeve et al. 2012) and the question arises of how this will affect the 

annual carbon budget and primary production in the future (Hill et al. 2013, Arrigo and 

van Dijken 2011). In the northern latitude regions, where marine planktonic 

cyanobacteria are infrequent, marine microbial eukaryotes are the predominant primary 

producers (Li 1998, Vincent 2000, Li et al. 2009). Recent studies suggest that changes in 

the vertical structure of the water column (i.e. stronger stratification) will lead to a shift in 

the microbial communities, favouring smaller picoplankton cells (Daufresne et al. 2009, 

Li et al. 2009, Tremblay et al. 2009, Worden et al. 2015) and potentially altering the 

carbon flux (Li et al. 2009). 

Few seasonal studies exist from the Pacific sector / Canadian Arctic, describing the 

succession of microbial eukaryotes in a limited time period based on molecular analysis 

(e.g. Terrado et al. 2008: December to May, 2009: November to July, and 2011: March to 

May, Comeau et al. 2013: March to May, Hassett et al. 2016: January to August). On the 

Atlantic side, such studies are even rarer (Sørensen et al. 2012: January to June, Piquet et 

al. 2013: April to June, Metfies et al. 2016: June to August). As the Atlantic influenced 

Arctic differs from the Canadian Arctic with respect to freshwater supply, stratification 

gradients and surface nutrients (Bluhm et al. 2015), a different community and 

successional pattern may exist. This study represent a full years coverage of the microbial 

eukaryote succession in an Atlantic influenced, but high Arctic fjord, with additional 

focus on two specific species and on the potential contribution of these small sized 

organisms to the vertical export.  
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2. Objectives  
 
The overall aim of this thesis was to investigate the community composition, diversity, 

seasonality and fate of marine microbial eukaryotes in Svalbard waters. To retrieve a 

high-resolution year-round dataset from a high-Arctic fjord system, the main focus was 

on the IsA station during the year 2011 – 2012. The main objectives were: 

 

(I) To describe the seasonal variation in community composition and diversity of 

marine microbial eukaryotes (0.45 – 10 µm) in a high-latitude fjord system 

over the course of a year (Paper I, III). 

(II) To identify the most abundant taxa (size: >10µm, <10µm), more specifically 

OTUs (Operational Taxonomic Units), at the IsA station and determine the 

relationship between the taxa/OTUs and their environment. Special focus was 

set on advection and sedimentation in the system (Paper I, III). 

(III) To compare the presence (who is there?) and activity (are they viable?) of two 

arctic key-phototrophs, Micromonas sp. and Phaeocystis sp., in Svalbard 

waters, especially during the polar night (Paper I, II, III). 
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3. Background  
 
3.1. Svalbard Arctic archipelago: seasons and processes 
 
The Svalbard Arctic archipelago is located between 74° and 81° North and is 

characterized by its extreme light regime ranging from four months of darkness in winter 

(no sunrise from November to February) to a period of 24 hours of light during the 

midnight sun period (no sunset from April to August). The light regime gradually 

decreases northwards towards the pole; the polar night is not ‘just dark’ but in fact quite 

heterogeneous (Fig. 1). The polar night has generally been considered as a period of 

limited biologic activity. However, recent studies show that several species of plankton 

are active and even feeding during this period in Svalbard waters (Berge et al. 2009, 

Kraft et al. 2013, Berge et al. 2015).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: The polar night light regime in the Arctic: Civil twilight between the 66°N (polar 

circle) and 72°N, civil polar night between 72°N and 78°N, and nautical polar night at 

latitudes above 78°N (illustration from Berge et al. 2015). 
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Sea ice is another important character of the Arctic, as it plays a crucial role for the 

ecosystem and the climate (e.g. Søreide et al. 2006, Walsh 2008, Arndt et al. 2009, 

Thomas and Dieckmann 2010). The extent and thickness of the sea ice has declined 

dramatically during the last decades (Hoegh-Guldberg and Bruno 2010, Stroeve et al. 

2012, Dobricic et al. 2016). This is also affecting the Svalbard archipelago as several 

fjords on the west coast of Svalbard showed large fluctuations in their seasonal ice-cover 

(Onarheim et al. 2014, Muckenhuber et al. 2016, Nilsen et al. 2016). 

Arctic species and ecosystems are, by nature, finely tuned to the timing of seasonal 

events and biomass production is characterized by large fluctuations over the year.   

In the Arctic, the pelagic spring bloom commonly takes place between April and June at 

latitudes 70 - 80° N (Leu et al. 2011). At this time the production can be several orders of 

magnitude higher than during low production periods (Sakshaug et al. 2009). The onset 

and timing of the Arctic spring bloom depends on several factors including light, 

turbidity, nutrients, trace metals, sea ice break-up and stratification (Smetacek and Nicol 

2005, Sakshaug et al. 2009, Hodal et al. 2012). Of these especially light limits the growth 

of arctic phytoplankton (Sherr et al. 2003, Sakshaug et al. 2009, Hodal et al. 2012). It is 

proposed that the retreat of sea ice, with delayed freezing and earlier melting and change 

in snow cover, will have large impact on the timing of ice algal and pelagic blooms 

(Ardyna et al. 2014, Katlein et l. 2015, Arrigo and van Dijken 2015). Typically the Arctic 

spring bloom is dominated by diatom species such as Thalassiosira antarctica var. 

borealis, Chaetoceros socialis and Fragilariopsis cylindrus (von Quillfeldt 2000, Hodal 

et al. 2012) or the haptophyte Phaeocystis pouchetii (Wassmann et al. 1999, Olli et al. 

2002, Sherr et al. 2003, Hodal et al. 2012). Outside bloom periods, during winter, 

summer (mid June to August) and autumn (September and October), ciliates, 

dinoflagellates and smaller nanoflagellates often dominate the water column in Svalbard 

and adjacent waters (Seuthe et al. 2011, Kubizyn et al. 2014).  

 
The vertical particle flux plays a major role in the global carbon cycle by removing 

carbon from the upper ocean/atmosphere where it was originally sequestered by 

photosynthetic organisms (biological pump – Volk and Hoffert 1985). Globally more 

than 10 billion tons of carbon are removed per year by this process (Buesseler and Boyd, 
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2009). The vertical particle transport (or flux) increases and decreases according to the 

amount of organic matter produced in the euphotic zone, and also depends on other 

factors and processes in the water column such as grazing, community composition and 

depth (Wassmann et al. 2003, Turner 2015). In this context, the fate of the production 

very much depends on the secondary producer match/mismatch situation (Cushing 1990, 

Reigstad et al. 2000), since primary producers can either be grazed and recycled in the 

surface layers or contribute to sedimentation processes (vertical flux) (Wassmann 1998, 

Turner 2015). Both grazing and sinking are important but competing processes when it 

comes to the fate of particles and algal cells. The vertical particle flux is often very high 

at the time when production in the euphotic zone is largest, usually during spring (or ice-

edge) bloom occasions (Dore et al. 2008, Thompson et al. 2008, Michels et al. 2008, 

Lalande et al. 2011, Martin et al. 2011, Rynearson et al. 2013). Diatoms are important 

contributors to the vertical flux and are frequently observed in sediment traps (Smetacek 

1980, Riebesell et al. 1995, Olli et al. 2002, Reigstad et al. 2008). Phaeocystis is known 

for its massive blooms composed of gelatinous colonies. These can also sink out and 

contribute to the flux (e.g. as part of fecal pellets, Hamm et al. 2001), albeit their 

contribution to the deep water layers is usually low compared to diatoms (Beaulieu 2002, 

Reigstad and Wassman 2007). Very little is known regarding the contribution of smaller 

protist cells (< 10 µm) to the downward flux (Richardson and Jackson 2007). However, 

aggregates formed by flocculation of dissolved organic carbon, and marine snow (sticky 

matter of marine organisms) are important for vertical particle transport, and may 

increase the contribution of smaller plankton cells (Richardson and Jackson 2007, 

Worden et al. 2015). 

 
3.2. Marine microbial eukaryotes in the Arctic – an overview of major groups 
 
Phylogenetics (the study of the evolutionary relationship among groups of organisms) 

and the methodical identification and classification of organisms (i.e. taxonomy) are 

research fields of perpetual change and open gaps (Adl et al. 2012, Burki 2014). The 

eukaryotic tree of life is continuously growing (Figure 2) and during the last decades 18S 

rRNA gene surveys (18S rDNA, see 4.2) have unveiled many new lineages and 

relationships (Adl et al. 2012, Terrado et al. 2009, Monier et al. 2013, Burki 2014). In the 
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following paragraph some members of the eukaryotic tree with high relevance to the 

Arctic marine environment are briefly described. The taxonomy used in this study 

follows Adl et al. (2005 and 2012) with some deviations indicated by references. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2: Eukaryotic tree of life based on phylogenetics (illustration taken from Burki 2014). 

Dotted lines: uncertain relationships. 

 

 

Stramenopiles, Alveolata and Rhizaria are combined under the supergroup ‘SAR’ (Burki 

et al. 2007), which is strictly phylogenetically defined (Burki 2014). Stramenopiles 

(earlier Heterokontophyta, Baldauf 2000) are distinguished by their “heterokont” (two 

different shaped) flagella. They include a large variety of multi- (e.g. Phaeophyceae – 

brown algae) and unicellular algae with a phototrophic lifestyle (e.g. class 

Bacillariophyceae – diatoms). The class Bacillariophyceae is quite well studied and has a 
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crucial rule in the arctic spring bloom production (von Quillfeldt 2000, Sakshaug et al. 

2009, Hodal et al. 2012) as well as the sea-ice habitat (Horner 1980, Gosselin et al. 1997, 

Werner et al. 2007, Arrigo et al. 2010). Several (potential) mixotrophic taxa are also 

found among Stramenopiles and have been reported from Arctic environments: 

Chrysophyceae (Lovejoy et al. 2002, Rózanska et al. 2008), Dictyophyceae, 

Pelagophyceae and Raphidophyceae (Poulin et al. 2008). Mixotrophy, the ability to use 

both phototrophy and heterotrophy to gain energy and nutrients, can be an advantageous 

strategy during the long polar night or in times of unfavourable conditions (Nygaard and 

Tobiesen 1993, Jones 1994, Moorthi et al 2009, Bachy et al. 2011, Flynn et al. 2013). A 

very common and phylogenetically diverse group of purely heterotrophic flagellates 

within the Stramenopiles is the novel eukaryotic lineages of Marine Stramenopiles 

(MASTs, Massana et al. 2004 and 2006). MASTs are important picoplankton grazers 

(Massana et al. 2004 and 2006). Several MAST clades have been identified (Massana et 

al. 2004 and 2006, Massana and Pedros-Alio 2008) with clades 1, 2, 3, 7 and 8 being 

frequently found in arctic water and sea ice (Lovejoy et al. 2006, Comeau et al. 2011 and 

2013, Thaler and Lovejoy 2014). 

 

Alveolata contain a range of morphologically diverse heterotroph or mixotroph groups 

such as Dinoflagellata (including Dinophyceae and Marine Alveolates - MALV), 

Ciliophora and Ampicomplexa. An Alveolata-specific characteristic is the presence of 

cortical alveoli; a system of vesicles supporting the membrane (Cavalier-Smith 1991). 

Alveolata play important roles as grazers and parasites in the marine system (Levinsen 

and Nielsen 2002, Seuthe et al. 2011, Chambouvet et al. 2008, Skovgaard et al. 2009, 

Gómez et al. 2009), but also have many phototrophic representatives. Alveolata have 

high rDNA copy numbers compared to other superphyla, and therefore often dominate 

18S gene surveys (Zhu et al. 2005, Medinger et al. 2010, Gong et al. 2013). Large Arctic 

Dinophyceae have been thoroughly investigated by microscope studies (e.g. Okolodkov 

and Dodge 1996, Levinsen and Nielsen 2002, Seuthe et al. 2011) however small naked 

genera such as Gymnodinium and Gyrodinium are often difficult to identify to species 

level, while they are very frequently detected and identified in 18S rRNA studies 

(Comeau et al. 2011). Uncultivated groups of Marine Alveolates (MALVs, López-García 
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et al. 2001, Guillou et al. 2008) play an important role as parasites in the sea (Skovgaard 

et al. 2009, Chambouvet et al. 2008, Noguchi et al. 2013). In the Arctic mostly the 

MALV Group I and II clades are recovered in genes surveys (Lovejoy et al. 2006, 

Terrado et al. 2009). Ciliophora are of relevance in the marine food web as both grazers 

and prey (Levinsen and Nielsen 2002, Levinsen et al. 2000, Turner et al. 2001, Sherr and 

Sherr 2007, Seuthe et al. 2011). They can vary greatly in size (from 10 µm to 4 mm, 

Denis 2008) and are diverse in both water (Sherr et al. 1997, Levinsen and Nielsen 2002, 

Seuthe et al. 2001) and sea ice (Agatha et al. 1993, Bachy et al.2011). Strombidiidae-type 

ciliates have been reported to dominate 18S surveys in the Arctic (Lovejoy and Potvin 

2011). Some Ciliophora possess the ability of kleptoplasty (see below), as found in for 

instance Strombidium spp. (Stoecker and Silver 1990), Mesodinium rubrum and Loboea 

stobila (reported in Lovejoy et al. 2002 and 2006, Comeau et al. 2011). Kleptoplasty 

(Rumpho et al. 2006) enables the protist to use ingested chloroplasts to perform 

photosynthesis, allowing the host cell to switch between different trophic modes (i.e. 

mixotrophy) and thus retain activity under both light and dark conditions. Kleptoplasty is 

also known from several Dinophyceae species (e.g. Dinophysis spp. – Minnhagen et al. 

2008, and Gymnodinium spp. – Skovgaard 1998). 

 
Rhizaria primarily contain heterotrophic groups (Burki 2014) and are considered to be 

important Arctic predators of phytoplankton (Lovejoy et al. 2014). Rhizaria includes 

three main groups; Cercozoa, Foraminifera and Radiolaria (Moreira et al. 2007); which 

are based on molecular characteristics (e.g., Keeling 2001, Archibald et al. 2003, 

Nikolaev et al. 2004, Bass et al. 2005, Burki and Pawlowski 2006, Burki et al. 2010, 

Brown et al. 2012, Sierra et al. 2013). Rhizaria vary in form but a large part of them are 

naked and testate amoeboid with filose or reticulose pseudopods (Burki 2014). 

Radiolaria, such as the classes Polycystinea and Acantharia as well as phylum Cercozoa, 

are often found in Arctic 18S libraries (Lovejoy et al. 2014). Cryothecomonads from the 

Cercozoa group are frequently found in Arctic waters (Thaler and Lovejoy 2012 and 

2014). Recent discoveries indicate that they may play an essential ecological role in the 

sea ice habitat (Comeau et al. 2013).  

Opisthokonta are mainly heterotrophs characterized by a uniflagellated (zoo)spore phase. 
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The kingdoms of fungi and animals belong to this group as do the bacterivorous 

choanoflagellates. Parasitic/saprophytic Chytridiomycota have been found to dominate 

marine fungal communities in the Arctic (Terrado et al. 2008, Hassett et al. 2016) and 

have recently been discovered to also infect sea ice algae (Hassett et al. 2016). 

Knowledge on choanoflagellates in the Arctic is still limited, but they have been 

suggested to be diverse on a pan-arctic scale (Lovejoy 2014). 

Archaeplastida include red and green algae, as well as land plants, and the unicellular 

group of Glaucophytes. The class Chlorophyceae includes the globally distributed small 

(ca. 2 µm) green algae Micromonas pusilla with several strains identified (Slapeta et al. 

2006). One strain (strain CCMP2099, Micromonas Arctic) has only been isolated from 

Arctic waters (Lovejoy et al. 2007) and is capable of phagotrophy (McKie-Krisberg and 

Sanders 2014). 

The phyla Crypto- and Haptophyta together form the potentially monophyletic group 

Hacrobia (Sakaguchi et al. 2009, Okamoto et al. 2009), with cells typically having two 

unequal flagella. Both phyla include mainly plastid-bearing phototrophs, but also some 

hetero- and mixo-trophic species. Several algal species belonging to Haptophyta have 

ecological importance as they can form large (toxic) blooms and have significant impact 

on the biogeochemical cycles (e.g. Wassmann et al. 1990, Verity and Smetacek 1996, 

Reigstad and Wassmann 2007, Schoemann et al. 2005, and refs. therein). The single-cell 

or colony-living Phaeocystis pouchetii, for instance, can dominate microbial eukaryote 

communities in the Arctic (Olli et al. 2002, Sherr et al. 2003, Olli et al. 2007, Lovejoy et 

al. 2007).  

Hacrobia also include heterotrophic flagellates belonging to Telonemia, Picozoa 

(previously named picobiliphytes, Not et al. 2007 and Seenivasan et al. 2013) and 

Katablepharidae, although their true phylogenetic relationship is so far poorly understood 

(Burki et al. 2009, Zhao et al. 2012). These flagellates are found in low to high 

abundance in arctic marine 18S surveys (Monier et al. 2013, Thaler and Lovejoy 2015). 

The phylum Telonemia has a cosmopolitan distribution, is often found in surface waters 

in the Arctic (Shalchian-Tabrizi et al. 2006 and 2007, Monier et al. 2013) and has also 
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previously been found in Svalbard waters (Shalchian-Tabrizi et al. 2007, Bråte et al. 

2010). It has been suggested that Telonemia, due to its frequent occurrence in both 

marine and brackish water, may play an important ecological role (Vørs 1992, Lee and 

Patterson 1998, Shalchian-Tabrizi et al. 2007). Picoplankton-sized (< 3 µm) Picozoa have 

been measured in high abundance in certain oceanic regions (up to 30% in tropical eddy-

influenced surface waters; Seenivasan et al 2013). Picozoa comprise (at least) three 

subclades with Arctic representatives (Lovejoy 2014). It is hypothesized that Picozoa, 

based on their ultra-structure (Seenivasan et al. 2013), may feed on TEP (transparent 

exopolymers; Riedel et al. 2006) in the Arctic, making them potentially important in 

sedimentation processes.  
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4. Approach  
 
4.1. Study area and sampling program  

 
Study area 

The Svalbard Arctic archipelago is surrounded by the Arctic Ocean to the north, the Fram 

Strait to the west and the Barents Sea to the east and south. Spitsbergen, the largest island 

of the Archipelago, is a unique area to study the Arctic marine ecosystem, as it is easily 

accessible thanks to the infrastructure in Longyearbyen, the islands main town. The 

archipelago is influenced by different watermasses transported by the West Spitsbergen 

Current (WSC) and the East Spitsbergen Current (ESC) (Ingvaldsen and Loeng 2009, 

Fig. 3). The WSC is an extension of the Gulf Stream system that transports warm and 

saline Atlantic water (AW) on the western coast of Spitsbergen, while the eastern coast is 

influenced by colder and less saline water (Arctic Water - ArW) from the Arctic Ocean 

which is transported with the ESC (Ingvaldsen and Loeng 2009). Due to the warm WSC, 

the climate on Spitsbergen is relatively mild compared to similar latitudes in other 

regions of the Arctic (Cottier et al. 2005). 

The west coast of Spitsbergen is characterized by several fjordsystems which are 

potentially good indicators for environmental changes due to the alternating inflow of 

different watermasses and changing conditions (i.e. Atlantic, Arctic, brine- and fresh- 

water inputs) (Nilsen et al. 2008). Isfjorden, the largest fjordsystem on the west coast, is 

directly influenced by warm WSC water as it is open to the shelf and its mouth does not 

have a sill (Nilsen et al. 2008). Isfjorden is a very shallow system with more than half of 

the area having a depth less than 100 m (Nilsen et al. 2008). The Isfjorden system 

includes several smaller fjords and fjord systems including Billefjorden in the north east 

and Tempelfjorden and Adventfjorden on the southern side. Earlier efforts to study the 

biological processes in the Isfjord system have mostly been concentrated on the sill fjord 

Billefjorden (e.g. Arnkvæn et al. 2005, Sørensen et al. 2012, Grigor et al. 2014). 

However, Adventfjorden is much more easily accessible from Longyearbyen (Fig. 3) and 

this proximity makes high resolution temporal sampling possible.  

Adventfjorden is a ~7 km long and ~5 km wide fjord with depths of  < 100 m, and does 
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not have a sill. ArW formed locally or advected with the coastal current originating from 

the ESC normally occupies Adventfjorden, but seasonal (late summer and fall) and 

occasional (winter) inflow of warm and saline AW from the WSC to Isfjorden influences 

the area (Nilsen et al. 2008, Cottier et al. 2007). Adventfjorden has mostly been free of 

sea ice since 2007 (www.met.no; ice-free: 2006 – 2007, 2010, 2012 – 2014). During 

summer and autumn glacial run-off (Advent River, Longyear River, Fig. 3) affect the 

fjord by substantial input of sediment-loaded freshwater (Węsławski et al., 1999). 

 

Sampling program 

The temporal sampling for Paper I and III was centered around the Adventfjorden time 

series station (IsA) established during autumn 2011 in Isfjorden, at the mouth of 

Adventfjorden close to Longyearbyen (N 78°15.6, E 15° 31.8), while spatial sampling for 

Paper II took place at multiple locations around Svalbard (Fig. 3). A moored observatory 

located at IsA, which included two CTDs, light sensors, temperature loggers and an 

ADCP, provided us with a unique opportunity to continuously monitor the marine 

environment. The IsA station was sampled bi-/weekly from December 2011 to June 

2012, and biweekly to monthly from July to December 2012 (Paper I, III). Spatial 

sampling (fjords and open deep water) took place between December 2008 and January 

2013 (Paper II).   
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Figure 3: Sampling area. Left The Svalbard Archipelago with the location of the sampling 

stations for Paper II. The West Spitsbergen Current (WSC) and the East Spitsbergen Current 

(ESC) are indicated. R3: Rijpfjorden; BAB: Billefjorden Adolfbukta. Right: Detailed map of 

Adventfjorden showing the position of the IsA time series station. Glacial run-off into the 

fjord from Longyear and Advent Rivers indicated with lines. The bathymetric data are from 

the International Bathymetric Chart of the Arctic Ocean (IBCAO version 3, Jacobsen et al. 

2012). 

 

 

The Adventfjorden sampling and analyses were done in collaboration with other marine 

scientists from UNIS, UiT – The Arctic University of Norway, University of Bergen 

(UiB) and Institute of Oceanology Polish Academy of Science (IOPAS, Poland), 

providing a better understanding of the system as a whole. The sampling campaign was 

part of the UNIS MicroFun project (http://www.mare-

incognitum.no/index.php/microfun).  
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At each sampling date additional environmental data from a vertical CTD profiler was 

obtained and light measurements were performed. Seawater was collected with a Niskin 

bottle from four standard depths (5 m, 15 m, 25 m, 60 m) at IsA, and a combination of 

other depths at the other stations (5, 15, 35, 60, 75, 150, 500 and 2290 m; see Paper II). 

The standard depths for IsA were decided based on the placement of the mooring CTDs 

(25 and 65 m). Additionally short-term sediment traps were deployed (20, 30, 40, 60 m) 

at seven time-points during 2011 – 2012 (Paper III). 

Collected seawater was used to analyze the community composition, amplified from 

DNA, and the active community, amplified from RNA, of microbial eukaryotes (0.45 – 

10 µm, > 10 µm). Additional water samples were used to determine particulate carbon 

and nitrogen (POC/PON), nutrients (N, P, Si) and fractionated Chl a biomass (> 0.7 µm 

or > 10 µm) according to standard protocols. Short-term sediment traps were used to 

investigate the potential contribution of the microbial eukaryote community to the 

vertical flux, and to evaluate their fate. Water collected from the sediment trap was 

likewise analyzed for DNA, fractionated Chl a, POC/PON and particle sizes.   

 
4.2. Molecular analysis, data processing and statistics  
 
The 18S ribosomal RNA (rRNA) is part of the small subunit (40S) of the ribosome, a 

complex which is responsible for protein biosynthesis in all living cells. The genes that 

encode the rRNA are called ribosomal DNA (rDNA). 18S rRNA is a basic component of 

all eukaryotic cells and investigations of the 18S gene have revolutionized the field of 

phylogenetics. The 18S rRNA gene is easy to amplify because it exits in multiple copy in 

each cell, and contains conserved  and variable (V) regions enabling the study of 

evolutionary relationships through time (Lovejoy et al. 2007, Amaral-Zettler et al. 2009, 

Burki 2014). Usually primers are designed to bind to the conserved regions in order to 

amplify the variable regions. 

 
In the study I and III (Papers I, III) Roche 454-pyrosequencing (see BOX 2) was 

performed using universal eukaryotic primers (designed by Comeau et al. 2011) targeting 

the V4 hypervariable region of the 18S rDNA. An end-point PCR assay with species-
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specific primers was used to identify the key phototrophs (Micromonas and Phaeocystis) 

in Paper II. The PCR products of both species were verified with Sanger sequencing 

(Sanger and Coulson, 1975). While PCR screening with species-specific primers is a 

quick tool to identify target species in environmental samples, 454-pyrosequencing with 

universal primers allow for chartering the total diversity in the communities. Because 

454-pyrosequencing is prone to a higher error rate compared to traditional Sanger 

sequencing (Huse et al. 2007, Balzer et al. 2011) the sequence reads should be clustered 

at a level of sequence similarity relevant for the target gene and species. After clustering 

the 454-sequence reads at different similarity levels (97%, 98% and 99%), clustering into 

operational taxonomic units (OTUs) was done using the less strict similarity level of 97% 

to avoid inflating the OTU richness of the samples. OTU clustering is the most frequent 

used diversity unit to characterize microbial taxa (Schmidt et al. 2014). To simplify the 

text, the word species is used instead of ‘OTU’ in the results and discussion chapters of 

this thesis. 

 
Diversity estimations, statistical tests and multivariate analyses were performed after 

normalization of the samples to an even sequencing depth in R (R version 3.2.1, R Core 

Team 2015). The use of frequently applied diversity indices (species richness, Shannon-

Wiener and Pielou´s Evenness, described in BOX 1) allowed comparison to available 

literature. Statistical tests and multivariate analyses were always performed with three 

types of data to ensure the reliability of the results: raw data (total sequence reads), 

unweighted data (presence/absence of individual OTUs in each sample) and log10(n+1)-

transformed data. After finding that there were no large differences between the three 

outcomes, transformed data were presented to down-weight the influence of highly 

abundant OTUs in Paper I and III. 
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BOX 1: BIODIVERSITY  
 
In the Convention on Biological Diversity (UN Conference on Environment and Development, Rio de 
Janeiro, 1992, Convention on Biological Diversity, Article 2), biodiversity is defined as follows:  
 
“ ‘Biological diversity’ means the variability among living organisms from all sources including, inter alia, 
terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this 
includes diversity within species, between species and of ecosystems.”  
 
Different concepts have been assessed to describe diversity in more detail, as for instance in Norse et al. 
(1986) where they describe three levels of diversity: genetic (genetic variability within species), species 
(species numbers) and ecological (community) diversity. Species diversity is also often considered part of 
ecological diversity, in which species richness, the number of species in a community, is assessed.  
Biodiversity varies greatly across the Earth, and between its different regions and habitats and there are a 
variety of diversity indices to estimate that. A few selected very commonly used diversity indices will be 
shortly presented here (Clarke and Warwick 2001): 
 
Species richness (S) is a count of the total number of species in a sample. It depends on the sample size 
and thus large sample sizes tend to have higher species richness compared to small sample sizes.  
 
The Chao 1 (Schao1) diversity index (Chao, 1984) is very frequently used, and is based on species richness 
but takes into account the number of rare classes (i.e. OTUs) found in a sample: 
 
Schao1= Sobs + n1(n1-1)/2(n2+1)  
 
with the observed number of species ( Sobs ), and n1 as the number of OTUs with only one sequence (i.e. 
singletons) and n2 the number of OTUs with only two sequences (i.e. doubletons). 
 
Also very frequently used is the Shannon-Wiener (H’) diversity index: 
 
H’= - Σi pi log(pi) 
 
where pi is the proportion of the total count (or biomass) estimated by the ith number of species. Since H’ 
can be sensitive to sampling effort, it should be used only to compare samples with equivalent sampling 
designs. 
 
Pielou´s evenness (J’) is a commonly used index for the equitability or evenness in a sample. It measures 
how evenly distributed the individuals are among different species: 
 
J’ = H’/H’max = H’/log S 
 
H’max is the maximum possible value of the Shannon-Wiener index meaning that which would be achieved 
if all species were equally abundant (i.e. log S). 
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4.3. High-throughput sequencing – a useful challenge  
 
The recent developments in sequencing technologies have revolutionized the field of 

molecular genomics. From the traditional Sanger approach where single amplicons are 

sequenced one at a time (one tube one reaction), the current high-throughput sequencing 

(HTS) approaches perform parallel runs of millions of sequencing reactions at once, thus 

allowing for the simultaneous sequencing of amplicons from all species in e.g. 

environmental samples. Different HTS technologies have been developed during the last 

two decades, and due to the increased read length compared to other technologies (e.g. 

Illumina, Illumina Inc.), we chose to use Roche 454 pyrosequencing technology (BOX 2) 

for this project. 

Along with the wealth of sequencing information obtained by HTS come limitations and 

potential errors that are important to be aware of. From starting in the field (e.g. varying 

field protocols for DNA and RNA sampling and filtration), and continuing in the 

molecular laboratory (e.g. contaminations, RNA instability, primer choice and bias, 

sequencing errors, introduction of chimeric sequences), errors can be introduced to the 

data and these needs to be dealt with (Huse et al. 2007, Balzer et al. 2011). HTS itself can 

produce errors in the sequence reads that potentially generate incorrect phylotypes with 

the consequence of inflated OTU richness (Huse et al. 2010, Behnke et al. 2011). Another 

challenge is to correctly assign the different OTUs to the correct species; in many cases 

this is not possible, as most of the available databases are still incomplete compared to 

the tremendous marine microbial diversity. Further, since the OTU clustering can be run 

with different methods and programs (e.g. hierarchical clustering algorithms in mothur, 

Schloss et al. 2009) and is strictly defined by the users constraints (e.g. similarity level 

used), results between different studies can be inequivalent (Schmidt et al. 2014). The 

effects of these combined errors and challenges can be reduced by the use of 

bioinformatic pipelines to trim the dataset and improve assignments (e.g. QIIME - 

Carporaso et al. 2010, mother - Schloss et al. 2009, UCHIME - Edgar et al. 2011), as 

reviewed by several authors (e.g. Huse et al. 2010, Quince et al. 2009 and 2011, Nilsson 

et al. 2011, Schloss et al. 2011, Nguyen et al. 2014, Tedersoo et al. 2015). The 

comparison of libraries prepared from extraction of DNA versus RNA (by sequencing 
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cDNA reverse-transcribed from rRNA) are expected to differ in the identified OTU 

richness and relative read abundances of different OTUs because the libraries prepared 

from RNA extracts are expected to give higher relative read abundances of active taxa. In 

contrast, libraries prepared from DNA extracts may amplify DNA also from dead and 

dying cells as well as extracellular DNA (Egge et al. 2014, Logares et al. 2014). The 

combined used of both molecules thus give valuable insights into the species present in 

an environment compared to the ones that are active at the time of sampling (Logares et 

al. 2014). Environmental sequencing of rRNA/cDNA can also give an impression of the 

activity and growth rates of protists (Dortsch et al. 1983, Dittami and Edvardsen 2012, 

Logares et al. 2014). A potential source of error using the 18S rRNA or its gene product 

(rDNA) lies in the different gene copy numbers (Zhu et al. 2005, Not et al. 2009, 

Medinger et al. 2010, Gong et al. 2013) and different rRNA content per cell among taxa 

(Dittami and Edvardsen 2012). Thus, the relative abundances of sequence reads has to be 

interpreted with these caveats in mind.  

 
With potential methodological caveats in mind, HTS has revealed an amazing diversity 

of marine microbes, with the identification of to date unknown phylogenetic diversity 

(Massana et al. 2002, Moreira and López-Garcia 2002, del Campo et al. 2016). So, how 

can we compare the HTS data with species identification based on traditional tools? We 

know that one DNA read ≠ one individual, so how do results from HTS studies compare 

to for instance similar surveys based on light microscopy? A freshwater study by Xiao et 

al. (2014) compared the use of light microscopy with 454 sequencing to investigate the 

phytoplankton composition. The results of the two methods were not always in 

agreement. While HTS identified more of the rare species and especially pico-sized 

organisms (i.e. revealing higher diversity), light microscopy was better at identifying to a 

higher taxonomic level (e.g. species level) (Xiao et al. 2014). All in all, the benefit of 

HTS lies rather in in the large amount of provided information of protist communities in 

large samples and the short time and low cost of processing the data (Lindahl et al. 2013).  
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BOX 2: 454 PYROSEQUENCING   

Pyrosequencing is one of several high-throughput sequencing technologies (and the main 

technique used in Paper I and III). It is based on the "sequencing by synthesis” principle by 

detection of a pyrophosphate release after nucleotide incorporation (Ronaghi et al. 1998), and 

distinguishing the procedure from Sanger sequencing where the order of nucleotides is detected 

by dideoxynucleotides terminating the chain reaction (Sanger and Coulson 1975). 

In 454 pyrosequencing DNA is amplified inside water droplets floating in an oil solution (i.e. 

emulsion PCR). Each of these water droplets contain a single DNA template that is immobile 

and surfaced to a single primer-coated bead that then forms a clonal colony (i.e. genetically 

identical replicates). Beads are then loaded onto a picotiter plate for sequencing with only one 

bead per well. The plates are flushed with one deoxynucleotide, i.e. A, C, G or T nucleotide at a 

time, and when the DNA polymerase incorporates the complementary dNTP onto the template, 

pyrophosphate is released, converted to ATP, and acts as a substrate for the luciferase enzyme 

which generates a visible light signal when oxidising luciferin. The light signal of each dNTP 

incorporation is proportional to the number of dNTPs that were incorporated, and thus the 

identity and number of nucleotides added to the growing strain are detected. Sequencing errors 

are more prone to occur across homopolymers (i.e. sequences of identical bases: AAAA) with 

erroneous interpretation of the strength of the light signal, and as the homopolymer length 

increases, it becomes more difficult to accurately quantify the flash of light. This potential error 

source is mostly dealt with bioinformatically. 
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5. Summary of results 
 
5.1. Paper I: Seasonal variation in community composition and diversity of microbial 

eukaryotes at the high-arctic IsA station 

 
Sampling was conducted over the course of one year (26 sampling days) at the IsA time 

series station to assess the community composition and diversity of microbial eukaryotes 

(size: 0.45 to 10 µm) from a depth of 25 m by 454 pyrosequencing. The results showed 

that community composition as well as diversity of microbial eukaryotes was strongly 

influenced by season. Two large shifts in the composition were observed, during early 

spring and in summer/autumn, with a potential assemblage resetting the following winter. 

Multivariate analyses indicated that the changes in community composition throughout 

the year corresponded to seasonal events (e.g. increased light regime) rather than 

hydrography. The winter and early-spring communities were more diverse than the spring 

and summer/autumn communities. Dinophyceae, especially Gyrodinium helvecticum and 

G. fusiforme, were predominant in both the DNA and RNA libraries throughout the year. 

Micromonas Arctic was abundant mostly in the early-bloom and autumn periods, 

whereas heterotrophs such as marine stramenopiles (MASTs) and Picozoa, and the 

parasitoid marine alveolates (MALVs), displayed higher relative abundances in the 

winter than in other seasons.  

 
5.2. Paper II: Distribution of Micromonas pusilla and Phaeocystis pouchetii during the 

polar night in Svalbard waters 

 
The presence and depth distribution of the two phototrophs Phaeocystis pouchetii 

(Haptophyceae) and Micromonas pusilla (Mamiellophyceae) was investigated during the 

civil polar night. Samples from around Svalbard were used, representing many locations 

with different characteristics (open water – fjord, ice-covered – ice-free, shallow – deep, 

Atlantic – Arctic Water). PCR screening with species-specific primers was applied to 

overcome the difficulties of identifying small flagellates in low-biomass winter samples. 

It was possible to detect phototrophic biomass (Chl a) even during the polar night, but 

concentrations were very low. The investigations indicated that both Phaeocystis 
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pouchetii and Micromonas pusilla were widespread during the polar night in Svalbard 

waters as they were detected in nearly all locations at different depths (e.g. Rijpfjorden at 

240 m). RNA samples from some of the stations suggested that most of the cells were 

actually viable.  

 
 

5.3. Paper III: Hydrography, sedimentation and the fate of pelagic protists 

 
The fate of marine pelagic protists and their contribution to the vertical flux was 

investigated at the IsA station by 454 pyrosequencing. Samples were collected during 

seven sampling events in winter, spring and autumn from December 2011 to September 

2012. Protists (> 0.45 µm) were sampled from short-time sediment traps (depths:  20, 30, 

40, 60 m) as well as from the water column (0.45 – 10 µm and >10 µm, depths: 5, 15, 25, 

60 m). Hydrographic profiles, which were obtained regularly during the whole period, 

indicated that the shallow Adventfjorden was vertically homogeneous, except during the 

stratified summer. An advective event during winter, replacing cold and less saline Local 

Water (LW) with warm and saline Transformed Atlantic Water (TAW), co-occurred with 

a shift in the community composition of small protists in March. The community 

composition and the diversity within the suspended and exported material showed strong 

seasonal changes during 2011-2012. Smaller protists (< 10µm) dominated the exported 

material during autumn and winter with small taxa such as Marine Alveolates (MALVs) 

and Dinophyceae predominating. In contrast, larger and more typical spring bloom taxa 

(e.g. diatoms) were dominant in the water column and sunk into the traps during spring. 

Species showed very contrasting patterns: Gyrodinium fusiforme and G. helvecticum 

were dominant in the water column and in the traps throughout the year, while several 

Choanoflagellida and Dinophyceae strains were not abundant in the exported material at 

all. Interestingly, some parasitic species, such as MALV 1a and Chytriodinium were 

abundant in the trap but not found in the water column. Small-sized metazoans (e.g. 

copepods and benthic larval stages) were also abundant in the exported material. Whether 

they were actually contributing to the passive downward flux or actively migrating into 

the traps remained unclear. 
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6. Discussion 
 
This study is, to my knowledge, the first whole year seasonal 18S-gene study of arctic 

microbial eukaryotes (< 10 µm) performed in a high-resolution perspective at 78°N. The 

IsA station showed strong seasonal shifts (2011 – 2012) in the community composition 

and diversity of microbial eukaryotes as well as downward flux contribution reflecting 

the extreme seasonality of the Arctic (Fig. 4).  

 

6.1. Marine microbial eukaryotes in the Svalbard Arctic display strong seasonality  

 
Winter 

The unique discovery of the high winter diversity (see species richness; Fig. 4, Paper I, 

III) in this high-Arctic fjord system (cf. sea-ice protists in the Canadian Arctic - Niemi et 

al. 2011), contradicts with the classic Arctic paradigm that implies only negligible 

biological activity during the polar night (Paper I – III, cf. Berge et al. 2009, Kraft et al. 

2013, Błachowiak-Samołyk et al. 2014, Berge et al. 2015). The relatively high read 

abundance of heterotrophs such as MAST, Picozoa, Choanoflagellida and the parasitic 

MALV (both group I and II) during fall and winter compared to spring is probably a 

response to the Arctic winter where the absence of light restricts the phototrophic 

organisms (Paper I, III). Thus, these results give new insights into the assemblages of 

the smallest protists in the Arctic, where studies based on microscopy only are able to 

identify “unidentified nanoflagellates” (e.g. Sommer et al. 2005, Werner et al. 2007, 

Iversen and Seuthe 2011, Kubiszyn et al. in revision). Interestingly these small protists 

seemed to play an important role for the vertical particle flux during winter (and autumn) 

(Fig. 4; Paper III), possibly due to increased flocculation and ballasting processes (Olli 

and Heiskanen 1999, Richardson and Jackson 2007, Wiedmann et al. 2016).  

The phototrophic biomass was also detectable during the winter months and was 

dominated by cells < 10 µm (Paper I – III), as has been observed in Kongsfjorden 

(Iversen and Seuthe 2011). The Svalbard winter communities also included key 

phototrophs (e.g. Micromonas and Phaeocystis, Paper II), and the RNA libraries showed 

that they were active most of the time. There are two known overwintering strategies for 
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phototrophs: (1) Keeping viable persisting stocks of cells throughout the winter, which 

may be important when the conditions change to more favorable ones (Paper II) and 

consequently for seeding the next spring bloom (Lewis et al. 1999, Niemi et al. 2011, 

Błachowiak-Samołyk et al. 2014). (2) To produce resting spores which then settle into 

the sediments and are brought up with vertical mixing in the water column in spring 

(Eilertsen et al. 1995, Hegseth et al. 1995, Brown et al. 2013). Kubiszyn et al. (in 

revision) could not confirm the presence of any vegetative forms of typical bloom-

seeding phototrophs during winter at IsA. However the DNA and RNA libraries in this 

study (Paper I) do not agree with that, as for example Skeletonema sp. and Thalassiosira 

spp., possibly as resting spores (cf. Eilertsen et al. 1995, Błachowiak-Samołyk et al. 

2014), and Chlorophyta besides M. pusilla, were found in low read abundances (i.e. they 

were present and alive) even during the dark winter months. These taxa increased in 

relative read abundances in early spring (March), in a similar fashion to Phaeocystis sp. 

and M. pusilla. These findings are pushing the need for more polar night studies to 

potentially uncover new species and life strategies of those night survivors.  

 

Winter-spring transition 

The return of the sun above the horizon correlated with an increase in the estimated Chl a 

biomass, increased contribution of phototrophs such as Bacillariophyceae, Chlorophyta 

and Haptophyta and a reduction in the relative proportion of heterotrophs (Fig. 4; Paper 

I, III), a common finding in Arctic areas (Terrado et al. 2009, Tremblay et al. 2008, 

Terrado et al. 2011, Iversen and Seuthe 2011). At IsA, the community changes seen in 

the early spring (early March) were potentially a combination of ongoing advective 

processes (Paper III) as well as a seasonal response to changes in the environment 

(among others: increased solar radiation and nutrient availability, Paper I). Also in 

Adventfjorden Micromonas constituted a higher importance in the pre-bloom phase as 

reported previously from Arctic waters (Lovejoy et al. 2007, Terrado et al. 2008, 

Sørensen et al. 2012, Nordgård 2014) and that in turn agrees with the theory that the 

viable winter cells were “just waiting” for better conditions to seed (Paper I, II). Due to 

its small cell size (i.e. high surface:volume ratio; Key et al. 2010) Micromonas is 
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potentially more efficient in nutrient uptake than large protists (> 20 µm) and has lower 

requirements.  

 

Spring 

The IsA spring communities were less diverse and more uneven compared to winter 

communities (Fig. 4), and included common arctic spring bloom species (agreeing with 

Kubiszyn et al. in revision) that were abundant in both the small and large size-fractions 

of the suspended samples (Paper I, III). Interestingly, the seasonal diversity changes (i.e. 

high in winter, low in spring) of small eukaryotes identified with 454-sequencing did not 

agree with the results of Kubiszyn et al. (in revision). Kubiszyn et al. (in revision) 

encountered high species richness during the spring months at IsA and rather less diverse 

winter communities. There are two potential technical explanations for this disagreement; 

for one, winter samples are very dilute and a 200 ml water sample (as analysed by 

Kubiszyn et al. in revision) is possibly not enough to cover the full diversity of winter 

protists; and secondly, the taxonomic knowledge of Arctic spring bloom species is much 

better compared to that of winter species - which often include high numbers of those 

“unidentified nanoflagellates”. 

 
Two phototrophic key groups, Bacillariophyta and Haptophyta, dominated the spring 

bloom at IsA (April to May, Paper I, III, cf. Kubiszyn et al. in revisison) and they were 

also the main contributors to the vertical flux during that time (Paper III), showing a 

change of the vertical flux from small to large cells. The succession occurred in a fairly 

well-mixed water column which persisted most of the year apart from the more stratified 

summer months (Paper I, III) contradicting the Sverdrup paradigm regarding a need of 

stratified conditions (Smetacek and Passow 1990, Eilertsen 1993) for the spring bloom to 

occur. Blooming events in the presence of an unstratified or disrupted water column are 

not abnormal and have been reported earlier from temperate and cold waters fjord 

systems (e.g. Norwegian fjords – Eilertsen 1993, Kongsfjorden - Seuthe et al. 2011 and 

Hodal et al. 2012). Heterotrophic/mixotrophic taxa and notably sequences with best 

matches to the dinoflagellate Gyrodinium spp. and the ciliate Strombidium (especially in 

the RNA libraries) were common in spring in Adventfjorden (Paper I) and Kongfjorden 



35"

(Seuthe et al. 2011) as well as in the Canadian Arctic (Terrado et al 2011, Comeau et al. 

2011). 

 

Summer/Autumn 

The reestablishment of the microbial community at the end of the year 2012, in terms of 

diversity estimates and community composition (Paper I) hints at a re-occurring seasonal 

pattern, although more data is needed to validate that (Fig. 4). Interestingly, in autumn, an 

intensive sedimentation event was observed at IsA (770-1530 mg POC m-2 d-1, 

Wiedmann et al., 2016) that co-occurred with sediment-loaded glacial run-off 

(Wiedmann et al. 2016). Possibly due to this event and concurrent increased flocculation 

and ballasting processes (Wiedmann et al. 2016), the contribution of smaller eukaryotes 

increased again in the trap material in September (Paper III). Besides the increased 

flocculation and ballasting processes during summer and autumn, river meltwater 

potentially brung putative freshwater species into Adventfjorden, which is evidenced by 

increased reads of different Telonemia species (June – August; cf. Kongsfjorden - Bråte 

et al. 2010). 

 

 

This is the first study that has revealed seasonal patterns of different taxa according to a 

series of snapshots, even during the dark polar night, by use of combined DNA and RNA 

libraries in the Atlantic influenced Arctic. The uniqueness and importance of time-series 

data is unquestioned, as these are needed in order to further evaluate the stability of 

seasonal successions (cf. Gilbert et al. 2012) as well as their main biotic and abiotic 

drivers (cf. Kim et al 2014).  
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6.2. Dominant Svalbard protists in a pan-Arctic perspective 

 
The number of 18S surveys of smaller eukaryotes (< 20 µm) has increased tremendously 

in the last years (e.g. Massana et al. 2004, Kilias et al. 2014, Thaler and Lovejoy 2015), 

making it easier to assign taxonomy to OTUs and maybe to identify potential key-

species. I defined a “key-species” in this study, as a species that is abundant in a period of 

time and which hence may play an important ecological role in the system.  

 

Micromonas and Phaeocystis: true arctic survivors - present all-year around 

This study reported the presence of viable life stages of the two key phototrophs, 

Phaeocystis pouchetii and Micromonas pusilla during the polar night in Svalbard waters 

(Paper I – III), and hence supports the significant role of pico- and nanoplankton as 

Arctic key-phototroph substituting for cyanobacteria, which are scarce in the northern 

regions (Li 1998, Vincent 2000, Li et al. 2009). While these two flagellates are truly 

widespread in Arctic waters (Svalbard – Paper II, Eilertsen et al. 1989, Barents Sea – 

Wassmann et al. 1990, Throndsen and Kristiansen 1991, Central Arctic Ocean - Sherr et 

al. 2003, Metfies et al. 2016, Fram Strait – Kilias et al. 2013 and 2014, Canadian Arctic – 

Lovejoy et al. 2007, Terrado et al. 2008 and 2011), winter reports of these two key 

species are still rare (Northern Norway - Throndsen and Heimdal 1976, Arctic - Sherr et 

al. 2003, Iversen and Seuthe 2011, Bachy et al. 2011), often due to logistical constraints. 

The Svalbard polar night DNA/RNA libraries revealed that these two phototrophs are 

able to survive unfavorable conditions without daylight (Paper II) and may overwinter in 

the pelagic, and go on to seed the spring bloom as discussed in 6.1 (Paper I, II; cf. 

Sørensen et al. 2012). However, resting stages (for Phaeocystis: Hegseth and Tverberg 

2013, Gaebler-Schwarz et al. 2010) or alternative trophic abilities, e.g. phagotrophy as 

recently reported for Micromonas pusilla, (Gonzales et al. 1993, Sanders and Gast 2011, 

McKie-Krisberg and Sanders 2014) are alternative ways of surviving. Independently of 

the sampling location and watermass characteristics, most of the Micromonas sequences 

in this study were assigned to the arctic subclade Micromonas CCMP2099 (Paper I – 

III: Micromonas Arctic; Lovejoy et al. 2007). This was in contrast with Metfies et al. 

(2016) who found the Arctic subclade abundant only in polar waters, while M. pussila 
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Clade C was predominant in Atlantic water. The predominance of Micromonas Arctic in 

the strongly Atlantic water influenced Svalbard archipelago possibly indicates that the 

arctic subclade is able to cope with changes in hydrography.  

 

Picozoa – contributing to the vertical export  

Picozoa (ca. 1-3 µm, previously called Picobiliphyta, Seenivasan et al. 2013) were 

frequently observed in Adventfjorden, especially in the winter samples, and seem to have 

a broad distribution in the Arctic (Thaler and Lovejoy 2015 and references within). One 

species in particular, Picobiliphyta-strain5 (Paper I, III), was identified as abundant over 

the course of a year in the pelagic as well as in the sediment traps (Paper I, III). The 

same species was also frequently found in the Canadian Arctic and to a much lesser 

degree in the Chukchi Sea (Thaler and Lovejoy 2015). Thaler and Lovejoy (2015) 

discussed possible diets of Picozoa and suggested that these flagellates have broader diets 

compared other heterotrophic nanoflagellates thus enabling Picozoa to inhabit different 

regions and depths competitive advantage. This enables these species to inhabit different 

regions and depths (i.e. a broad distribution, Thaler and Lovejoy 2015). Hence, this may 

explains their predominance during the polar night at IsA when there is strong food 

limitation. 

 

Alveolata – the kings of Adventfjorden 

Alveolata were the most abundantly represented group at IsA during the study year 

(Paper I, III) and are often dominant in 18S studies (Terrado et al. 2011, Comeau et al. 

2011, Lovejoy and Potvin 2011). We excluded the fact that the dominance in this study 

(Paper I) was due to only high rDNA gene copy numbers that often prevail in Alveolata 

(Zhu et al. 2005, Medinger et al. 2010, Gong et al. 2013), as DNA and RNA libraries 

presented chiefly the same patterns. 

 
The two Dinoflagellata species assigned to Gyrodinium fusiforme and G. helvecticum 

were ubiquitous in the IsA samples (small and large size fractions, and exported samples; 

Paper I, III) and in several locations around the Svalbard archipelago (Carrier 2016, 

Seuthe et al. 2011). Whereas G. helvecticum is originally described from freshwater, it 
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forms a single clade with the marine G. rubrum (Takano and Horiguchi 2004, Lovejoy et 

al. 2006), and assignments to both these taxa are commonly found in analyses of Arctic 

marine samples. Gyrodinium spp. have a widespread distribution in the Arctic (Barents 

Sea – Rat’kova and Wassmann 2002, Canadian Arctic – Comeau et al. 2011, Greenland 

Sea – Richardson et al. 2005, Central Arctic – Bachy et al. 2011, Kilias et al. 2014). An 

important Gymnodinium species at IsA was Gymnodinium sp. strain 7 which was 

observed during the polar night in the Central Arctic under the sea ice (Bachy et al. 2011) 

but in contrast, also in Atlantic water in the Scotian Shelf (Dasilva et al. 2014), thus the 

Atlantic influenced Svalbard archipelago seems to be a suitable habitat for this species. 

Many of the Gyrodinium and Gymnodinium species have a heterotrophic (or 

mixotrophic) lifestyle (Levinsen and Nielsen 2002) with a range of potential prey items 

(Sherr et al. 1989, Johansson et al. 2004, Aberle et al. 2007, Sherr and Sherr 2007, Jeong 

et al. 2010), but in turn dinoflagellates are also important prey for higher trophic levels 

(Rysgaard et al. 1999, Seuthe et al. 2011, Jeong et al. 2010). These potential generalist 

species may play an important biological role in the future Arctic Ocean as they were 

abundant regardless of any changes in the environment in Adventfjorden (e.g. changes in 

light, temperature, watermass - Paper I, III; and even changes in predator composition – 

Stübner et al. 2016) and hence may be able to cope easily in a fast-changing habitat. 

According to my data (Paper I, III), and in agreement with microscopic analyses from 

Kongsfjorden winter samples (Callesen 2015), it appears that there is a higher abundance 

of small dinoflagellates (< 10 µm) than reported earlier, which in the future should be 

more focused on. 

 
Potential specialist groups such as marine alveolates (e.g. MALV I clade-1 and MALV II 

clade-7, Paper I, III) seemed to be strongly influenced by different hydrographic 

conditions (cf. Thaler and Lovejoy 2015, Kubiszyn et al 2014) and thus their presence 

fluctuated in Adventfjorden throughout the year-long study (Paper I, III).  Both MALV I 

and MALV II are frequently reported from Arctic waters (Lovejoy et al. 2006, Canadian 

Arctic – Terrado et al. 2009, Central Arctic - Bachy et al. 2011 and Kilias et al. 2014, 

Fram Strait – Kilias et al. 2013, Svalbard - Sørensen et al. 2012). The decreased relative 

read abundance of MALVs in the winter-spring transition at IsA was supported by qPCR 
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cell counts investigated by Thomson (2014) during the same time period. Thomson 

(2014) measured MALV II (order Syndiniales) 18S copy numbers between 40 – 50 x 104 

cells L-1 in February, with max. copy numbers in April (90 x 104 cells L-1), and 

determined a sudden decrease after the 19th April from which the Syndiniales did not 

recover. Thomson and I concluded that MALV II were transported out of the system with 

re-occurring cold water (advection event mentioned earlier; Paper III). However, since 

MALVs have a parasitoid lifestyle (Guillou et al. 2008) and are known to inhabit marine 

organisms such as crustaceans, dinoflagellates, fish and bivalves (Stentiford and Shields 

2005, Chambouvet et al. 2008, Skovgaard et al. 2009, Noguchi et al. 2013, Miller et al. 

2012), their appearance/disappearance possibly could relate to host availability (Paper 

III). 

At the IsA station, ciliates had an increased relative abundance during spring (April and 

May, Paper I), potentially feeding on larger phytoplankton available (Kubiszyn et al. in 

revision) at that time. This successional pattern is common in the Arctic (Central Arctic - 

Sherr et al. 2003; Kongsfjorden - Seuthe et al. 2011) as ciliates are important grazers on 

other protists but also an essential diet for many higher trophic levels  (Levinsen and 

Nielsen 2002, Turner et al. 2001, Sherr and Sherr 2007, Seuthe et al. 2011). Two 

important grazers in Adventfjorden were the ciliates Strombidiidae sp. (strain 37) and 

Choreotrichia-1 sp. (Paper I, III). They both belong to the subphyla Intramacronucleata, 

which is broadly distributed over the Arctic Ocean (Beaufort Sea – Terrado et al. 2009 

and Comeau et al. 2011, Barents Sea – Fernandez-Leborans et al. 2006, Svalbard – 

Seuthe et al. 2011 and Sørensen et al. 2012). Members of the family Strombidiidae are 

known to have the ability of kleptoplasty (Rumpho et al. 2006) that certainly makes them 

well-fitted to living in the Arctic as they may remain active under limited food 

availability by converting light energy to organic compounds during summer and autumn. 

Stramenopiles predominate in winter 

Heterotrophic uncultured marine stramenopiles (MASTs, Massana et al. 2004 and 2006) 

were also commonly found in Adventfjorden and this is the first study that investigated 

their seasonal succession in the Arctic, little of which is known about to date. 
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Three subclades of MAST 1 (MAST 1a, 1b and 1c) are found in the Arctic and it is 

suggested that they are associated with certain environments; MAST 1a and 1b were 

associated with ice-covered and open waters (Thaler and Lovejoy 2014). This 

contradicted our data as MAST 1a especially was identified in all seasons (Paper I, III), 

at different depths (Paper III) and in the exported material (Paper III) in Adventfjorden, 

even though we investigated an enclosed ice-free fjordsystem. However, as MAST 1a 

was only dominant during winter (Paper I, III), possibly it was transported out of the 

fjord when the watermass shifted as suggested for the MALVs, however it did reappear at 

the end of the year. MAST 7 was also found at IsA, albeit in very low relative abundance, 

in contrasts to the findings by Thaler and Lovejoy (2015) who found MAST 7 to be 

ubiquitous and abundant in Arctic samples 18S clone libraries. 

 
 
 

6.3. The fate of marine microbial eukaryotes and its potential drivers 

 
Seasonal succession implies a shift in dominance of species and thus their fate. The fate 

of passively drifting small-sized plankton can have several pathways and drivers. Firstly, 

seasonally driven changes in community composition, in which species favour various 

conditions and hence grow successfully at different times of the year, are discussed in 

6.1. Secondly, hydrographically driven changes – plankton species can be passively 

distributed by lateral advection in the water column (Hamilton et al 2008). Thirdly, they 

can sink out and contribute to the vertical carbon flux. That may happen due to 

unfavourable growth conditions, i.e. limited spore development and increased sinking 

rate, but also due to enhanced flocculation and ballasting events (Kranck 1973, 

Sutherland et al. 2015). A fourth pathway would be by grazers who can boost the vertical 

C flux by fecal pellet production and protists cells may sink integrating in such 

aggregated fecal pellets (Wexels Riser et al., 2007, Lalande et al. 2011, Turner 2015 and 

ref. within).   
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Hydrography driven changes (and climate change) 

Variations in water mass composition were important for the structure of the microbial 

eukaryote community at IsA. An advective event during early spring (March), which 

replaced Local Water with Transformed Atlantic Water, was probably the trigger for a 

change in the composition of small protists (0.45 – 10 µm, Paper III). Similar events 

have been reported from another West Spitsbergen fjord, Kongsfjorden (Hegseth and 

Tverberg 2013, Piquet et al. 2014, Kubiszyn et al. 2014) where Atlantic water intrusions 

can also strongly influence the system (Cottier et al. 2005) in combination with 

freshwater input from the adjacent glaciers (Svendsen et al. 2002, Cottier et al. 2005). 

The Kongsfjorden protist community composition was strongly affected by the changing 

hydrography in different seasons (spring and summer), i.e. different water mass origins 

and the strength of inflows (Hegseth and Tverberg 2013, Piquet et al. 2014, Kubiszyn et 

al. 2014). Protists have limited mobility and are therefore largely influenced by 

circulation patterns and hydrographic conditions (Greene Pershing 2007, Hamilton et al. 

2008). Further, due to their short life cycles and high reproduction rates, protists are very 

likely relatively highly affected by climate-driven changes (Foissner and Hawksworth 

2009).  

The current climate warming in the Arctic with freshening of the seawater and an 

increased stratification is predicted to favour picoplankton, in contrast to the current 

situation (Daufresne et al. 2009, Li et al. 2009, Sommer et al. 2016). The IsA station did 

not resemble such a situation in 2011 – 2012. While there was no seasonal sea ice cover 

in the fjord, the IsA station was fairly well-mixed and non-stratified most of the year, 

with a strong spring bloom of larger protists occurring in end of April – May (Paper I 

and III). The IsA station generally reflected the hydrographic conditions of the upper 100 

m of the large Isfjorden system one week delayed indicated by the CTD data (Paper III). 

While a freshening of the water in the Svalbard fjords is a rather seasonal impact varying 

with fluctuations in sea ice and meltwater run-off from glaciers, this process may not 

necessarily affect the stratification (Carmack et al. 2015) as seen at IsA. Thus, the 

stratification-associated changes in the Arctic marine environment are potentially more 

prominent in the central Arctic Ocean and the Canadian Arctic rather than in the western 
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Svalbard fjords. 

Nevertheless, the fluctuations and loss of seasonal sea ice in Svalbard fjords may result in 

earlier pelagic spring blooms and the cease of ice-algae blooms which may in return 

greatly affect the arctic food web and the contribution to the vertical flux (Grebmeier et 

al. 2006, Arrigo et al. 2012, Post et al. 2013, Lovejoy 2014, Wiedmann et al. 2016). 

Hence, this present annual study of the ice-free Adventfjorden system represents a 

possible scenario of future ice-free Svalbard fjords (Paper I, III). 

 

Predators, sinking and vertical flux 

The contribution of different taxa and species to the vertical flux at IsA largely differed 

between the seasons (Paper III) possibly due to the large variation in protist lifestyles 

and their adaptive strategies (generalist vs. specialist). Different patterns were observed, 

many species that were abundant in the water column were also present in the traps (e.g. 

Gyrodinium fusiforme, G. helveticum and others), whilst others were only abundant in the 

water column and absent from the traps (e.g. Choanoflagellida, several Dinophyceae 

strains). Yet others were only abundant in the trap and not in the pelagic (e.g. 

Chytriodinium, Cercozoa). The carbon cycle and sequestration is dependant on carbon 

oxidation rates as well as the process of photosynthesis (Worden et al. 2015). This 

interaction relies heavily on grazing rates, i.e. on heterotrophic species and their diverse 

feeding strategies (e.g. predation and parasitism; Worden et al. 2015). While grazing rates 

were not evaluated in this study, the presence of predators (e.g. zooplankton, hetero- and 

mixotrophic protist) was discussed since molecular traces from many predators were 

found in the trap material (Paper III).  However, some of these predators are possibly 

intruders in the sediment traps as most of them are able to swim and potentially follow 

their prey, or conduct vertical migrations (Lee et al. 1988, Michaels et al. 1990, Amacher 

et al. 2009). Also parasitism is a way to access organic material, but it is challenging to 

determine this trophic mode in carbon cycling models (Worden et al. 2015), and 

interestingly several of the species only abundant in the trap are known to have an 

infective lifestyle (e.g. MALV 1a, Chytriodinium, Cercozoa). It is even hypothesized that 

parasitic feeding modes may be more important from an ecological perspective than 
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grazers controlling bloom dynamics (Montagnes et al. 2008, Chambouvet et al. 2008, 

Sherr and Sherr 2009). Thus parasitism needs to be paid more attention when studying 

carbon cycles and the vertical flux. 

A large part of carbon flux literature states that size matters, because larger and heavier 

cells (e.g. diatoms, coccolithophores, spores) may sink faster and in turn contribute more 

to the downward flux (Michaels and Silver 1988, Boyd and Newton, 1999, Sarthou et al. 

2005, Richardson and Jackson 2007, Ziveri et al. 2007). 

That may not necessarily be true as we found small microbial eukaryotes (< 10 µm) to be 

dominant in the trap material at IsA (Paper III), and this finding is supported by other 

recent studies (Worden et al. 2004, Richardson and Jackson 2007, Amacher et al., 2009 

and 2013, Cuvelier et al. 2010, Worden et al., 2015). The contribution of smaller cells to 

the vertical flux seemed to be strongly seasonally dependant, as there was a higher 

relative abundance of small-sized protists found in the traps during autumn and winter at 

IsA compared to spring (when diatoms were dominant in the traps). This was possibly 

due to a higher relative abundance of pico- and nanosized cells during winter and autumn 

(read abundance – Paper I, III, cell counts – Kubiszyn et al. in revision), and the 

ongoing mixing processes that transported cells down to the deeper water (Siegel et al. 

2016), in combination with increased flocculation and ballasting processes (Jackson and 

Richardson 2007, Worden et al. 2015) especially in autumn (Wiedmann et al. 2016). 
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7. Conclusions  
 
Marine microbial eukaryotes were investigated in Svalbard waters with special focus on  

the high-Arctic and ice-free Adventfjorden from a seasonal perspective. The community 

composition and the diversity of small protists showed strong fluctuations during the 

course of a year and reflected the strong seasonality of the Arctic (Fig. 4). While the 

temporal differences in the community were potentially driven mostly by seasonal events 

and factors such as returning of the light and nutrient availability, the similar community 

composition at the four sampling depths was rather a result of the non-stratified water 

column that was apparent most of the year in 2011 – 2012.  

 
Microbial eukaryote seasonal succession in Adventfjorden 

The methods used in this study revealed the predominance of small heterotrophic 

nanoflagellate (HNF) taxa such as MASTs, MALVs and Picozoa during winter in the 

high-Arctic Adventfjorden. The succession of protists developed from a predominance of 

heterotrophic taxa in winter to a more typical Arctic spring bloom assemblages during 

spring (Fig. 4; cf. Terrado et al. 2009, Hodal et al. 2012). The diversity estimation in 

combination with the RNA libraries demonstrated that the protist world is rather species 

rich, with potentially many unknown species and acitivites even during the polar night. 

Future studies should focus more on this important time of the year in the Arctic, which 

still is a “black box” concerning biological knowledge. 

 
Abundant species = key species?  

Species and groups such as Phaeocystis, Micromonas, MALV I, Gyrodinium and 

Gymnodinium which were relatively abundant in Svalbard waters have been previously 

reported from Arctic regions. In this study I defined key species as those present in 

relatively high abundance (based on sequence reads) in the system over time or on a 

particular sampling date. Micromonas pusilla and Phaeocystis pouchetii have been 

reported to be key phototrophs (Ratkova and Wassmann 2002, Schoemann et al. 2005, 

Lovejoy et al. 2007, Kilias et al. 2013) and this study also reports their broad distribution 

around Svalbard, mostly in an active state (RNA) even during the dark winter months. 

Other abundant species like Gyrodinium helvecticum and G. fusiforme may have a rather 
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generalist lifestyle in the system. They seem to cope in many different environmental 

conditions, which may be an advantage in the ongoing climate changes in the Arctic. In 

contrast, there are specialists such as MALV I which can only cope in certain 

environmental conditions  (cf. Thaler and Lovejoy 2015) and were advected out of the 

IsA system in spring when the watermass changed back from TAW to LW. 

 
The fate of microbial eukaryotes 

The life and death of marine microbial eukaryotes may depend on several factors (e.g. 

seasonal events, hydrography, grazing, unfavorable conditions, etc.). While certain 

phototrophs (e.g. Phaeocystis and Micromonas) may keep a small winter standing stock, 

possibly in a spore phase, ready to spawn when the environmental conditions improve, 

others stay relatively abundant in the pelagic all year around (Gyrodinium spp.). 

Strategies such as kleptoplasty (e.g. Strombidium sp.) and parasitism (MALVs, 

Chytriodinium sp., Leptolegnia sp.) may also help to cope with unfavourable conditions 

in the harsh Arctic.  

 

While microscopy may be unable to identify small cells in detritus from trap material, the 

molecular approach used in this study was able to identify a contribution of small 

eukaryotes (< 10 µm) to the vertical flux (e.g. similar community composition of trap and 

small suspended eukaryotes in winter and autumn at IsA), contradicting the theory that 

predominantly large cells contribute to the downward flux. The reason behind this may 

be a general predominance of small HNFs in the water column during winter and autumn. 

Additionally in autumn, small eukaryotes got highly enriched in aggregates, induced by 

increased flocculation/ballasting from the river/glacial meltwater, which were then 

sinking out. Thus, especially in arctic and subarctic fjord systems, which are affected by 

glacial runoff in the melt season and where HNF are predominant during winter and 

autumn may the contribution of small eukaryotes to the vertical flux may be of greater 

importance compared to other systems (e.g. sea ice, open water).  
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8. Outlook  
 
Although this study has contributed many new insights into the hidden world of marine 

microbial eukaryotes in Svalbard waters, there are still knowledge gaps to fill. First of all, 

we need to increase our knowledge of the biological activity during the polar night 

period. In the addition to the question ‘who is there?’ (quality) we should also address 

‘how many are actually there?’ (quantity). So far, sequencing techniques leave us with 

only semi-quantitative results, and the combination of a HTS technique with quantitative 

approaches such as qPCR, flow cytometry, DAPI stained cell counts or Fluorescence In 

Situ Hybridization (FISH) would be an advantage.  

 

Of further interest is also the annual pattern of marine microbial eukaryotes communities, 

which seemed to reset towards autumn to the composition from the start of the year. The 

IsA time series data is a unique dataset with a high resolution perspective, although 

clearly one year of data is not enough to clarify whether this event was random and 

maybe dependent on different watermass advections into the fjord, or a re-occurring 

pattern which is seasonally influenced. Analyses of samples that were continuously taken 

at the IsA station between the years 2012 – 2016 will give further insights into this 

question (Vader et al. in preparation).  

 

The combined use of DNA and RNA libraries was of a large benefit for this study, 

although due to logistical reasons it was not possible to sample more frequently for RNA. 

I suggest increasing the combined use of DNA and RNA in future studies to reveal a 

more thorough picture of the community (‘Who is there and who is actually active?’). 

Especially for the polar night studies and the trap material this would be of advantage. 

Additionally it would be interesting to utilize comparative metatranscriptomics to gain 

more deeply insights into the ongoing activities and functions of the different species in 

the water column (‘What are they actually doing?’) as well as in the sediment traps (‘Are 

they grazing? Are they parasitic?’).  

 

Lastly, the sequence databases still contain many gaps, especially for samples that come 

from remote areas like the Arctic, which makes it difficult to identify cryptic species. 
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Phylogenetics is a useful tool that should be included to identify these species and to 

possibly aid in the discovery of new species. In that sense, the comparison with other 

Arctic areas is of great importance to this rather local study, to identify endemic and 

widespread species in a pan-arctic perspective as well as to identify the OTUs 

phylogenetically (Gabrielsen et al. in preparation).  
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