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“My big fish must be somewhere.”

— Ernest Hemingway



Contents

I, ACKNOWIEAGMENTS......eeiiiii et e et enre e e eneenns 1
L. SUMIMAIY <.ttt b e e b et e e et e e st e e bt e sab e e nbeeanseebeennneenes 3
L I 0 T oL SRS 6
1 INEFOTUCTION ... bbbt b et bbb 8
1.1 Study DaCKGroUNG........cooiiiiiieiece e e 8
1.2 In the wrong waters- alien invasive deCapods ..........cocveivreriiereniieneenesie e 9
1.3 The red king crab — invasive history, management and research............ccccceeevervrenne. 11
1.4 The challenge of Mmeasuring an IMPACE..........cccoiieiiririie i s 14
1.5 Food web concepts and tOOIS..........ccveieieeiieie e 15
1.6 FOOd WED MOUEIS......cooiiiiiiiec e 17
1.6.1  Ecopath with ECOSIM (EWE) ....cccciviiieiiee e 18

1.7 Benthic secondary production at high latitudes.............cccccveverieeiiiie s 19
1.8 MaiN ODJECLIVES ....oveeiiee sttt et eeneenns 21

FZ N o] 0] £ o U PR 22
2.1 Porsangerfjord — an ecological 1aboratory..........cccoveeiiiiiiiiie e 22
2.2 EWE MOAEITING ...t 24
2.3 Data CONECLION.......ceeiiiiiiiiceee e 26
2.3.1  Redking crab distriDULION ........ccooiiiiiiieiice s 27

2.3.2  DIEL ANAIYSIS ..ot s 27

2.3.3  EnVIroNMENtal data .........cooveiiiiiiiiiiiisieee e 28

2.4 Estimation of benthic P/B and production...........ccocceeeiieiiiin e 28

3 SUMMANY OF FESUILS ..ot sre e 30
o 01 PP PPOTPPROPPPTPIN 30



4

5

o101 A | O U PPOTPPOPRPRUPIN
3.1.1  Supplementary results to Paper Ill: Keystoneness of red king crab ..............
DTl T 1] o] o ISR P PRI
4.1 Eating and being eaten— feeding strategy and predation pressure............cceeeeevvereennne
4.2 Predation IMPACT...... oottt bbb e et neenneeae s
4.2.1  Direct predation impact on large, long-lived invertebrates.............c.ccccceene.
4.2.2  Benthic production and P/B ..o
4.2.3  Predation on herbivorous eChinoids...........ccoccoiiieeiininnieiece e
4,24 KEYSIONENESS. ...ceiitieiiiieeieeeetee e st e st e st ettt e bb e et e et et e st e e nnbe e e nnbe e e nnne e e
S S © [ 110 170 oSSR

4.3 Niche overlap and competitive effeCtS ........cceviiiieiiieii e
4.4 Applicability and limitations of this WOrK............ccccoveviiii i
4.5 Conclusions and fUtUre PErSPECTIVES ........cueiveiiiiereeie e

R B I ENCES ...ttt et e e e e e e e et e e e e e e e e raeenaa e ———



I. Acknowledgments

First of all, I wish to thank my UIT supervisors, Torstein Pedersen and Einar M. Nilssen, for
their guidance along this difficult but extremely enlightening journey. Your expertise in ecology
is impressive and your patience and trust in me is well appreciated. Thank you Torstein for your
persistence, your encouraging optimism, your effort to improve my Norwegian skills, and also
for never talking football with me! Thank you Einar for the nice company in the field and the

many good tips on where to spend my holiday!

I would also like to thank my co-workers at the Institute of Marine Research (IMR): Lis L.
Jorgensen, Jan Sundet, Maria Jenssen and Ann-Merete Hjelset for their contribution in many
good discussions, workshops, and field work. Additional thanks to Jan, for the provision of
extra funding. | hope to continue our collaboration in the future. I am very grateful for statistical

advice and challenging exchange with my co-author Virginie Ramasco.

I would like to thank Eivind Oug (NIVA) for his enthusiasm to play with mud, for sharing his
impressive taxonomic skills and his expertise in benthic ecology. | hope we will be able to

finish the invaluable time series in inner Porsangerfjord.

A number of colleagues have contributed to this project through field and laboratory work, most
importantly Emma Kallgren. Thank you for your reliability, your organizational skills and all
the good work you have done! My gratitude goes to the crew of R/V Johan Ruud for a great
support during the cruises to Porsangerfjord. |1 would also like to thank Aivo Lepland (NGU)
who has provided some of the video material used in Paper | and Marianne Nilsen who

answered my questions regarding stable isotope analysis.

My special thanks go to Susanne Kortsch and my (former) office mates Nina Mikkelsen and
Silje Ramsvatn. Not only have I valued your help and professional advice, but | am grateful
your friendship over the past years. | also want to thank all my colleagues at the AMB for
creating a very social working atmosphere and many enjoyable lunch and coffee breaks. Thanks

go to Erin Kunisch who was willing to proofread this synopsis for English-language.

Michael Greenacre, Raul Primiciero, Mikko Vihtakari, Martin Moérsdorf and Andre Frainer

have helped me to resolve some of the statistical issues in this thesis.



Last but not least | would like to thank all my friends, both here in Tromsg and in other places,
for helping me to hang in there, survive the darkest winters, refill my energy with exciting
outdoor activities, giving me wonderful holiday breaks, and by simply being there.

Finally I thank my dear family. Especially my Dad for nagging me to finish so | could get a
proper job, Caro for always having my back, my Grandma for her optimism, and my Mom for
helping me to not lose hope, listening to all my complaints, and supporting me in the best way

possible.



Il. Summary

Biological invasions are one of the many challenges facing coastal waters of the ocean and with
increased human activity and a changing climate, increasingly threaten high-latitude
environments. The red king crab, one of the world’s largest decapods, was introduced into the
Barents Sea in the 1960s. It has since become a valuable fishery resource in Russian and
Norwegian waters, and is continuously expanding its distribution range along the coastline. In
the early 2000s, red king crabs entered Porsangerfjord, which now holds one of the largest
densities of king crabs along the northern Norwegian coast. Along with the invasion of red king
crabs, Porsangerfjord has also experienced extensive down-grazing of kelp by sea urchins and
a decline in coastal cod abundance. Because of these factors, the Porsangerfjord ecosystem
provides a unique ecological laboratory of scientific studies. A shallow sill separates the inner
fjord from the outer fjord and crabs have only recently entered this new area, which is

characterized by year around cold bottom temperatures and a complex topography.

The red king crab is a predator of various benthic invertebrates in a range of soft- and hard
bottom habitats. Benthic invertebrates perform numerous important functions in marine
ecosystems. Macrobenthic secondary production comprises a crucial component of the energy
flow in ecosystems, supporting higher trophic level species such as cod. With prospective
management in mind, it is crucial to assess the significance of the red king crab as a benthic
predator, by integrating dynamic processes and energy flow in food web studies. Therefore, the
major objectives of this thesis were to assess macrobenthic communities and their secondary
production in Porsangerfjord, and, together with information on the trophic niche, asses the role
of the red king crab in the food web and its predation and competitive impacts through Ecopath
with Ecosim mass balance models (EwE).

Results from this thesis reveal heterogeneity in benthic communities along the fjord (Paper 1),
likely a result from different environmental conditions and possibly predation effects by the red
king crab. Polychaetes dominated community structure and we found high total soft bottom
macrobenthic biomass and production in the inner fjord, despite cold temperatures and lower
production to biomass ratios (P/B). A generalistic, opportunistic feeding strategy makes the
crab a successful invader and its diet included a variety of prey items including mollusks,
polychaetes and echinoderms. Larger and long-lived species are suggested to be indicative of
predation (Paper I, I11) and those were more scarce in the outer fjord, i.e. in areas with high

king crab densities (Paper 1), raising the community P/B ratio in these areas. Stable isotope



analysis revealed no distinct ontogenetic niche shift in the red king crabs, with both adults and
juveniles feeding at approximately trophic level 3. However, distinct distribution of size groups
pointed to differences in habitat and resource use between crabs during their life cycle (Paper
I1). Trophic niches of red king crab in Porsangerfjord overlapped with a few other native
benthic predatory invertebrates such as other decapod crabs, sea stars and predatory snails, and
bird groups, while most fish fed at higher trophic levels and/or used pelagic pathways (Paper
Il and I11). The red king crab had an important top-down role in the ecosystem, with a high
overall impact. The crab itself was of low significance for other predators, impacting other
species groups mostly through direct predation (Paper I11). Supporting results from paper I,
EwE modelling showed that impacts were high on large, long-lived benthic invertebrates, often
serving as prey and competitors at the same time. Predation by the red king crab on different
trophic levels raised system omnivory, with unknown consequences for stability and resilience.
Predation by the crabs possibly lead to a change in size structure in the benthic compartment,
raising P/B ratios and leading to a faster turnover in biomasses. Increasing densities of red king
crabs may also mediate regrowth of macroalgae by predation on sea urchins in some areas of

the fjord, but this needs further investigation.
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1 Introduction

1.1 Study background

Since its deliberate introduction into the Barents Sea, the red king crab (Paralithodes
camtschaticus; Tilesius, 1815) has been discussed in the public eye, being both a valuable
fishery resource and a potential threat to native biota. The crab has now resided in Norwegian
waters for over 35 years and can be seen as a permanent component of benthic life along the
northern coast. In the light of this, surprisingly little evidence evaluating its cumulative effect
has emerged in the scientific literature. So far, only one empirical, peer reviewed study has been
published addressing the impact of the red king crab in Norwegian waters (Oug et al. 2011).
The study provides an excellent time series, but measures static components only, namely
abundance and biomass of benthic invertebrates. A food web approach investigating the
potential consequences of altered trophic interactions has not been done until today.

The Institute of Marine Research (IMR), together with other partner institutions, initiated a
program entitled, Ecological Processes and Impacts Governing the Resilience and Alternations
in the Porsangerfjord and the Hardangerfjord, or EPIGRAPH in 2008. The program was aimed
at supporting future management plans and provides, among other objectives, a framework for
studies on benthic biodiversity, production, and red king crab interactions in the focus area of
Porsangerfjord. This thesis was part of the above-mentioned research activities, focusing on
macrofaunal production and the role of the red king crab in the ecosystem.

In this introduction | will give an overview of the invasive history and biology of the red king
crab and the role of invasive decapods in other systems. Since the "impact” of the red king crab
is frequently discussed throughout this thesis, I explain the concept and identify challenges
when trying to measure an impact, and how food web models (such as Ecopath) can assist in
the evaluation of impacts. | will give a brief introduction to benthic macrofauna as important
contributors to energy flow in high latitude systems. Finally, I will present the major objectives
of this thesis.

For the first time, | present the red king crab in the context of food webs, with all its trophic
interactions, and provide quantification of energy flow in the benthos. Descriptive elements of
Paper | and Il are brought together in Paper 111, presenting direct and indirect community-wide

impacts of this invasive decapod. The trophic niche and feeding strategy of the red king crab,



its impact on other groups and the overall ecosystem, as well as limitations of this work are
discussed at the end of this synopsis. Data gathered in this thesis can serve as a groundwork for
future monitoring in Porsangerfjord and other areas in the Barents Sea undergoing red king crab
invasion, and open the way towards an ecosystem-based approach in red king crab

management.

1.2 In the wrong waters- alien invasive decapods

Human activity has allocated and altered the native distribution of many species, including
marine crustaceans (Galil et al. 2011). While the accurate number of displacements may only
be guessed, numerous alien crustaceans have become invasive, meaning they have established
a self-maintaining population, continuously expanding in range (Falk-Petersen et al. 2006).
Among crustaceans, decapods are one of the most successful higher trophic level taxa
establishing in numerous freshwater and marine habitats of the world (Galil et al. 2011). The
Norwegian biodiversity authority has registered 14 alien crustacean species in 2012, with 5
decapods being put on the black list, considered to pose a high risk for the ecosystem (Gederaas
etal. 2012). Alien decapods have led to marked ecological consequences in some of the invaded
systems around the world and have caused high economic costs, from repairing damages caused
to fisheries and in the environment (Ruiz et al. 2011). Other species, such as the Pacific white
shrimp (Litopenaeus vannamei) and the Norwegian red king crab (Paralithodes camtschaticus)
are commercially exploited and contribute to local income (Liao & Chien 2011, Falk-Petersen
2012).

Most invasive species have certain traits which facilitate their establishment and success in their
new habitat (Ricciardi et al. 2013). Displacements of crustaceans out of their native range
mostly happens in the larval stage, via propagules travelling with human transport or drifting
with ocean currents. Large decapods are in addition quite mobile and may walk over long
distances across the sea floor, helping to expand their current range (Weis 2010). Some
decapods may perform migrations and ontogenetic changes of habitat over their life cycle,
thereby affecting a range of different habitats (Boudreau & Worm 2012). Short generation
cycles and high fecundity of many decapods aid in their establishment when a suitable habitat
is found. Decapods have a broad tolerance for different salinities and water temperatures,
possess a generalist feeding strategy and a wide dietary niche. These characteristics, along with



their behavioural competiveness, make decapods successful invaders (Weis 2010, Hanfling et
al. 2011).

The impacts of invasive decapods are often related to changes in trophic interactions,
competition and habitat modification (reviewed by Snyder & Evans 2006, Hanfling et al. 2011).
Common direct predation effects of invasive decapods are the reductions in the density of prey,
changes in in community structure, composition and biodiversity (e.g. Grosholz et al. 2000,
Snyder & Evans 2006). Because of their omnivorous feeding behaviour, invasive decapods
often feed on different trophic levels (Commitol & Ambrose 1985), and these consequences
may be complex and indirect, potentially affecting food web structure and energy flow
throughout the system (Hanfling et al. 2011). Large generalist decapod predators have been
shown to play important roles in the food web by linking multiple trophic levels and having
widespread effects on the food web (Snyder & Evans 2006). Some introduced decapods may
act as ecosystem engineers by modifying habitat through sediment disturbance or inducing
trophic cascades affecting habitat structuring species (Weis 2010). For example, the Portunid
crab (Charybdis japonica) in New Zealand, which feeds on bioturbating sea urchins, which are
important in nutrient recycling (Townsend et al. 2015). Effects on macroalgae through
predation or herbivore suppression, is well documented for a number of (invasive) decapods,
like crayfish (e.g. Procambarus spp., Orconectes spp.), which prey on herbivorous snails and
other invertebrates with positive effects for algae. At the same time they may switch to
herbivorous feeding and thereby reduce algal biomass substantially (Nystrom 1999, Gherardi
2007, Hansen et al. 2013).

The most widely distributed decapod and presumably one of the best studied invasive species,
is the European green crab (Carcinus maenas). This crab species is native to the Atlantic coast
of Europe and North Africa, has been recorded in 3 oceans and has established populations
along the coasts of 4 continents (North and South America, South Africa and Australia, see
Grosholz & Ruiz 1996, Brockerhoff & McLay 2011). It has been documented to significantly
reduce the abundance of native benthic invertebrates such as clams and other crabs, and also
alters community composition through indirect effects (Grosholz et al. 2000). It caused a long
lasting habitat shift in the native shore crab, Hemigrapsus oregonensis (De Rivera et al. 2011),
and has become important prey for other invasive crabs and birds (Griffin et al. 2008, Wong &
Dowd 2013). The European green crab has been associated with the reduction in commercial
shellfish and total economic costs of threatened shellfish fishery are estimated to be substantial
if crab abundance increases (Lafferty & Kuris 1996, Grosholz et al. 2010).

10



Examples of large invasive decapod crabs at high latitude environments are the Atlantic rock
crab (Cancer irroratus), which has spread rapidly in coastal waters of Iceland since 2006
(Gislason et al. 2014) and the snow crab (Chionoecetes opilio), which is native to the north
Pacific and the northwest Atlantic, but is quickly expanding its range in the Barents Sea
(Alvsvag et al. 2008, Sundet & Bakanev 2014). Lithodid crabs have recently been observed to
become more numerous at the Antarctic shelf, where warming temperatures have likely helped
them to reconquer this cold habitat (Thatje et al. 2005, Aronson et al. 2015). Ecological
consequences of these large decapods are generally unknown, though these species may have a
high commercial importance. For example, the snow crab has high economic potential in the
Barents Sea (Hansen 2016) and a fishery commenced by Russian and Norwegian vessels in
2014,

1.3 The red king crab — invasive history, management and research

The first catch of an adult red king crab in Norwegian waters was registered in 1977 (Nilssen
2003), about 150 km from its place of introduction into the Russian Barents Sea in the 1960s
and 1970s by scientists (Orlov & lvanov 1978). In the 1990s, the crab became a common
bycatch and an annoyance for cod fishermen in the Varanger area, who had to deal with crabs
entangled in their line- and fishing nets. Since then, the crab has spread westwards along the
Finnmark coast, establishing first in Laksefjord, then Porsangerfjord and around Sgrgya (Fig.
1). By definition it has become invasive (Falk-Petersen et al. 2006), continuously expanding its
range (Windsland et al. 2014). Its current distribution stretches from the southwestern to the
southeastern Barents Sea along the Kola Peninsula (Fig. 1). In Norwegian waters it is
considered a coastal species, with the highest densities inside fjord systems (Sundet & Hoel
2016). However, it has been recorded in offshore areas around the Tromsg plateau, dominating
benthic mega-fauna biomass (Jargensen et al. 2014). Newest records of juvenile and adult king
crabs in the area around Tromsg and in Balsfjord at 69° N (E. Nilssen, UiT, pers. comm.)

illustrate the ongoing process of establishment.

Temperature is thought to be the major constraining factor for distribution in lithodid crabs
(Hall & Thatje 2009). The red king crab is a boreal species with a temperature optimum of
around 4 °C (Hansen 2002, Siikavuopio & James 2013), mostly because of restrictions to larval
development, which is significantly delayed at water temperatures below 2°C (Stevens 2014).

Recent records of crabs in the White Sea indicates that this cold habitat may become seasonally
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available for crabs, but due to sub-zero temperatures and low salinities it may not be suitable
as a permanent habitat (Starikov et al. 2015). First single catches occurred in Porsangerfjord in
2002, and were followed by an establishment of red king crabs in the outer and middle areas of
the fjord, and a commercial fishery began in 2008. Only recently, in 2012, were crabs registered
in the inner, cold part of Porsangerfjorden, with mainly small crabs in shallow water but

increasingly larger catches of adult crabs in the past few years (E. Nilssen, UiT, pers. comm.).

Pacific
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Fig. 1 Distribution area of red king crab in the native area of the Pacific and in the new range
of the Barents Sea. Source: IMR 2015.

Following larval settlement, small juvenile crabs remain at shallow waters for 2-3 years, where
podding behaviour may occur (Dew 1990). Red king crab mature at a carapace length of
approximately 110 mm (Hjelset et al. 2009), and generally remain at habitats > 100 m water
depth during summer and autumn. Mature crabs migrate upwards to shallow waters in late
winter, followed by mating and breeding in springtime (Stone et al. 1992). Adults are often
found aggregated according to size and sexes (Stone et al. 1993, Jgrgensen & Nilssen 2011).
Whether red king crabs residing in Norwegian fjords follow the same pronounced migration
patterns as in native areas, has not been fully established. More restricted movement patterns
of king crabs in Norwegian waters are likely due to higher complexity in bottom topography
(Jgrgensen & Nilssen 2011, Windsland et al. 2014).

Since 2008, the red king crab fishery in Norway is divided into two management regimes, the
quota-regulated and the open-access fishery (Sundet & Hoel 2016). The latter is aimed at
limiting the spreading of crabs and occurs westwards of 26° E. Quota are mostly allocated to

12



small boats and are initially intended as a compensation to fishermen most affected by the
bycatch of crabs in their nets used in the cod-fishery. Up to date, over 500 vessels are involved
in the quota-regulated fishery and land annual catches worth 150 million NOK (Sundet & Hoel
2016). The current total stock of crabs with > 70 mm carapace length is estimated to
approximately 3.090.000 individuals in Norwegian waters (source: IMR, 2014, available at
http://www.miljostatus.no), while there are no good stock estimates for smaller crabs. In recent
years the commercial stock has declined in the Russian Barents Sea (Dvoretsky & Dvoretsky
2015), and fishing pressure on large males has altered size composition in the stock (see Hjelset
et al. 2012, Dvoretsky & Dvoretsky 2015). First research activities in Norwegian waters were
related to problems in bycatch and a Russian/Norwegian research agreement was established in
1994. In the following years the research quota increased steadily and crab dispersal, as well as

stock size, became major objects of science.

Significant research effort regarding the impact of the king crab on its environment, did not
occur until the late 90s (Sundet et al. 2000, Gudimov et al. 2003, Jgrgensen 2005, Jgrgensen &
Primicerio 2007, Mikkelsen & Pedersen 2012). The red king crab is one of the largest decapods
in the world. As a generalist predator, it feeds on numerous benthic invertebrates, including in
and- epifaunal molluscs, polychaetes, other crustaceans and echinoderms (reviewed in Falk-
Petersen et al. 2011). It feeds by scooping the sediment or using its claws to pick up and crush
hard shelled organisms. Diet in adults seems to vary with the location studied, indicating an
opportunistic feeding strategy, but little is known about diet of small crabs (Falk-Petersen et al.
2011). A study on the benthic community in the Norwegian Varangerfjorden documented
reduced abundance in prey taxa, a shift in community composition and reduced substrate quality
due to the removal of bioturbating infauna (Oug et al. 2011). A reduction in density and biomass
of prey fauna is also reported from Russian studies (Pavlova 2008, Pavlova 2009), but these
impacts were not believed to affect biodiversity and community structure substantially
(Britayev et al. 2010). The red king crab is listed in the highest risk category (severe risk) of
invasive species in the black list of the Norwegian biodiversity authority (Gederaas et al. 2012).
Documented impacts on higher trophic levels and competitive effects have not been studied
thoroughly (but see Mikkelsen 2013).

13



1.4 The challenge of measuring an impact

Proportional to new species introductions and increasing propagule pressure, the field of
invasion biology has become its own strand of science, with an exponential increase in articles,
books and journals dedicated to this topic (Richardson & Py3Sek 2008). Of major interest in this
field is the impact of alien and invasive species. The impact describes how the alien species
affects the chemical and biological environment (Richardson et al. 2011). Definition of an
impact strongly depends upon perception, and often it is recognized only in relation to the
human value system by the provision of ecosystem services related to an economic value
(Lockwood et al. 2013) that fails to capture ecological consequences. Ricciardi et al. (2013)
defines impact as “a measurable change to the properties of an ecosystem by a non-native
species,” with all alien species having some sort of impact, simply due to the fact that they
create interactions with native species. This allows impacts to be positive or negative (or value-

free) and I will follow their definitions throughout this thesis.

Common to any definition of the impact term is that impact means change, induced (for
example) in the abundance of a prey population. Changes can be measured over temporal or
spatial scales and at the individual (mortality), population (genetic effects, abundances),
community (biodiversity) or ecosystem level (Parker et al. 1999, Ricciardi et al. 2013).
Ecological indicators such as abundance and biomass can be used to measure and reconstruct
past changes (Coll & Lotze 2016). Species traits, such as feeding guilds, size structure (Coll &
Lotze 2016), and productivity can reveal changes in an ecosystem context beyond taxonomical
composition and relate to community function. Food web models may be used to address more
complex changes in ecosystems, with respect to structure and function (Coll & Lotze 2016, see
below). Mass-balance models (Ecopath with Ecosim) can and have been be used for quantifying
the impact of a trophic species on other groups and the overall food web (see e.g. Coll et al.
2013). Impact is a scaled and gradual concept and quantification in classic impact studies is
best achieved by experimental studies (Richardson et al. 2011). Experimental studies may
however be logistically difficult, bring certain biases due to the setup and may only be
representable of local conditions or habitats. In that case, correlational studies can help to
identify impacts, but may be less effective in establishing cause and effect relationships due to
natural variation and other factors influencing the study object (see Paper I).
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1.5 Food web concepts and tools

“No fish is an island™
(Ecopath quote, adapted from a poem by John Donne from 1624)
...and neither is a crab.

All species in an ecosystem interact with one another, through trophic (predation, parasitism)
and non-trophic relationships (competition and facilitation). More recently, impact studies of
invasive species have begun to investigate the indirect effects of invaders, the impact on trophic
flow, food-webs and ecosystem processes (Vander Zanden et al. 1999, Grosholz 2002, Wong
& Dowd 2013). Of essential interest is whether impacts concern prey organisms only, or if there
will be changes concerning other species. These may be indirectly linked to the invader through
trophic chains or share similar resources. In conjunction with this approach, one needs to
approximate and represent (trophic) interactions in the system in question, for example in the
form of a food web. As it happens, one of the pioneers in invasion biology, Charles S. Elton,
who published the most cited book in this discipline (The ecology of invasions by animals and
plants in 1958, reviewed by Richardson & PySek 2008), also constructed one of the first food
webs ever (Bear island, Summerhayes & Elton 1923), laying the foundation for this ecological

concept.

In food webs, the trophic position (or trophic level) of a species represents the number of
feeding links separating an organism from the primary production, which is set at trophic level
1. In early theory the trophic level concept was applied to simple food chains, producing
discrete trophic levels for each consumer. Most food webs are of course much more complex,
including taxa that feed at more than one trophic level (so called trophic omnivory), resulting
in non-discrete trophic positions (Thompson et al. 2007). In addition, the role of a species and
its trophic position in the food web may change during its life cycle, due to a change in diet or
its predators. Ontogenetic niche shifts are therefore important to address, but are rarely assessed
in food web studies.

In order to establish who eats whom and how much, we need to obtain knowledge about the
trophic ecology of each participant in the local food web. Ideally, we want to capture the entire
width of its trophic niche, i.e. dietary diversity. Stomach (or gut content) analysis is frequently
used to get an overview of a species’ prey and their proportions, since it can give detailed

information on prey identity and quantification can be approximated in (larger) species.

15



However, stomach samples pose certain limitations and biases since their content is merely a

snapshot of the full range of a species’ diet and often biased towards slow, digestible prey.

Stable isotope ecology has advanced as one of the major methods to study a species trophic
niche and interactions in the food web (Hobson & Welch 1992, Newsome et al. 2007, Layman
et al. 2007a, Layman & Allgeier 2012). Stable isotope analysis relies on the principle of
stepwise enrichment via the food chain of the heavier isotope and the natural variation in the
environment. It is now one of the major tools to investigate marine food web structure
(Whiteledge et al. 1988, Hobson & Welch 1992, Iken et al. 2001, Iken et al. 2005, Layman et
al. 2012), where 5'°N is usually used to assess trophic position and §'*C to trace carbon source
(Fig. 2). The isotopic niche concept has emerged to investigate a species’ ecological niche, with
regard to resource and habitat use (Newsome et al. 2007). It is usually defined as the area
occupied by individual signatures of a population in the two-dimensional isotopic space of §*C
and 8'°N. Isotopic niche width can then be quantified by a number of available metrics
measuring dispersion (Bearhop et al. 2004, Jackson et al. 2011, Layman et al. 2012). The
isotopic niche concept has been widely applied to detect ontogenetic niche shifts in the same
species (Hammerschlag-Peyer et al. 2011, Ramsvatn & Pedersen 2012), habitat use (Cummings
et al. 2012, O'Farrell et al. 2014), niche differentiation and trophic niche overlap (Guzzo et al.
2013, Jackson et al. 2014, Le Bourg et al. 2015). However, stable isotopes are only valid in
combination with stomachs if the purpose is to investigate prey composition. With diet
proportions obtained from mixing models, stable isotope signatures may be used as input to
food web models (Ramsvatn 2013) or to validate trophic levels estimated in models (Nilsen et
al. 2008).
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Fig. 2 Schematic drawing of primary producers and consumers isotopic ratios (in%o) in the food

web. Stable isotope signatures of carbon (8*3C) can be used to trace pelagic and benthic
pathways, while nitrogen isotope ratios (5!°N) can be used to determine trophic levels. Figure

modified after Rombouts et al. (2013).

1.6 Food web models

Food web models usually aggregate species into functional groups with similar prey and
predators, though food webs in nature are inherently complex and a model will never be a
representation of the real world (Pimm 1982). Simple models can however help revealing
underlying complexity and assist in generating hypotheses, guide data collection, identify major
uncertainties, explain past changes, and make predictions about potential future changes
(Epstein 2008). Local data will improve any model and the availability of time series data can
create more realistic predictions. The type of research question determines which modelling

approach should be used. The applicability of quantitative food web models for management
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purposes is a clear advantage over qualitative modelling, however extensive input data is often

needed.

1.6.1 Ecopath with Ecosim (EWE)

Currently, Ecopath is the most frequent multispecies trophic model applied to aquatic
ecosystems and is used mainly for evaluating ecosystem functioning and the effects of different
exploitation regimes (Pauly et al. 2000, Colléter et al. 2015). Most models that exist today focus
on pelagic interactions, but increasingly incorporate high resolution in, or focus entirely on, the
benthic compartments (e.g. Byron et al. 2011, Ortiz et al. 2015, Aydin & Whitehouse 2016).
EwE-modelling has been used to investigate ecosystem effects of invasive species (Arias-
Gonzalez et al. 2011, Pinnegar et al. 2014) and address possible management measures (\Wong
& Dowd 2013). Establishing an Ecopath model requires extensive information on species
biomass, productivity, diet and consumption, often linked to elaborate field sampling. Once the

baseline model is established, it can be expanded and used for various purposes.

The Ecopath package offers a wide range of simple metrics to more advanced ecological
network analysis tools and indicators (Ulanowicz 1986, Christensen & Walters 2004,
Christensen et al. 2005), used in the description of food web structure and emergent food web
properties relevant to system health, stability and maturity (Vasconcellos et al. 1997). These
are among others trophic level (TL), connectance (number of possible links compared to
realized links), the system omnivory index (a measure of how feeding interactions are
distributed over trophic levels as the mean variance of TLs in each consumers diet (Christensen
& Pauly 1993), and biomass residence time, which equals system biomass divided by the total
throughput (Biomass/Export + Respiration, Christensen 1995). The impact of individual
species groups in the food web may further be evaluated using the mixed trophic impact (MT]1;),
the total relative impact ¢; (Libralato et al. 2006) and keystoneness indices (Power et al. 1996,
Christensen et al. 2005, Libralato et al. 2006) (see below and section 2.2 for explanation of

these indices).

The concept of a keystone species was first introduced by Robert Paine (1969) to explain the
changes observed in a community after removing a predatory seastar, which controlled space
competitors in a rocky intertidal food web (Paine 1966), which Paine hypothesized was
important for maintaining overall structure, diversity and stability. The concept was later
refined as a species “whose impact on its community or ecosystem is large, and

disproportionately large relative to its abundance” (Power et al. 1996). Impacts by keystone
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species have since been well documented, and also include a few generalist decapods, like the
lobster (Jasus edwardsii) (Eddy et al. 2014). Large decapods may play keystone roles by
exerting strong top down control on prey, supressing herbivory or space competitors (reviewed
in Boudreau & Worm 2012). The keystoneness indicators implemented in Ecopath can be used
for identifying a keystone species as a function of its total impact ¢; , and its biomass (Power et
al. 1996, Libralato et al. 2006).

1.7 Benthic secondary production at high latitudes

Despite seemingly unfavourable environmental conditions, benthic communities of high
latitude systems are, often diverse assemblages of high biomass. Increased research in these
regions has shown that the common notion of the Arctic benthic communities being poor in
biodiversity is no longer applicable (Piepenburg 2005). Benthic macrofaunal organisms
perform numerous important functions in marine ecosystems, ranging from non-trophic
functions as habitat facilitators, sediment turbators and stabilizers, their involvement in nutrient
recycling (Welsh 2003), to their roles as significant links among multiple trophic levels
(Commitol & Ambrose 1985, Snelgrove 1998). Ecosystem models from the coastal northeast
Atlantic suggest that a significant amount of energy is channelled via the benthos (Bax &
Eliassen 1990, Pedersen et al. 2008, Pedersen et al. 2016). Benthic secondary production often
comprises a crucial component of the energy flow in ecosystems, particularly at high latitudes
(Petersen & Curtis 1980, Nilsen et al. 2006, Blicher et al. 2009) and may support commercial
fish species such as cod (Gadus morhua) (Kanapathippillai et al. 1994), bottom-feeding fish,
mammals, and birds (Grebmeier et al. 2006). Benthos inhabiting soft sediments represent long
term integrators of environmental conditions and processes in the overlaying water column,
making them an ideal study object. Species such as infaunal polychaetes, are often especially
productive due to small body masses and high production/biomass (P/B) ratios (e.g. Nilsen et
al. 2006). Infaunal organisms provide food for numerous organisms within and outside the
benthos, such as crabs, fish (e.g. haddock) and birds. Among those, the commercially targeted

snow and red king crab in the Barents Sea.

Benthic species and communities are often quantified in terms of abundances and biomass.
These are static measures at a certain time, usually given per unit area. Secondary production
can be defined as the formation of heterotrophic biomass through time (Allen 1971, Benke
1996), and is a process which results from the growth of an organism, creating biomass with
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losses to excretion, respiration and reproduction, which then is transferred to the next trophic
level by predation. Secondary production therefore integrates static measures (density,
biomass), dynamic population measures such as growth, recruitment and mortality, as well as
biotic and abiotic interactions in a population (e.g., Valentine-Rose et al. 2011, Dolbeth et al.
2012), into an overall functional measure of energy flow through the system. Most importantly,
somatic secondary production largely determines the carrying capacity for predators.
Production is usually expressed in terms of energy (Joule m™2 y 1) or mass (carbon m=2 y 1),
using conversion from wet or dry masses. The application of secondary production in ecological
studies includes: the quantification of energy flow in food webs, finding limits and drivers of
production, addressing the ecological performance of populations, and the use of production as
a response variable to environmental change (Benke 1996). For example, Dolbeth et al. (2012)
showed that density and biomass may contradict trends of benthic production following
disturbance events, stressing the additional value in providing production estimates along with

these static measurements.

With research increasing in high latitudes, we are slowly beginning to understand more about
patterns and drivers of benthic production in these areas (Brey & Gerdes 1998, Kedra et al.
2013, Fuhrmann et al. 2015, Degen et al. 2016, Lin et al. 2016). Common to these studies is the
high variability in benthic production on local and regional scales. However, the ways in which
environmental factors influence benthic production is debated in the literature (Cusson &
Bourget 2005). Among the environmental factors, temperature, depth, food quality and food
supply due to tight bentho-pelagic coupling seems to be of major importance (Grebmeier &
McRoy 1989, Piepenburg 2005, Bolam & Eggleton 2014, Degen et al. 2015, Degen et al. 2016).
Additionally, sediment characteristics (Bolam et al. 2010, Lin et al. 2016) and disturbances like
trawling (Jennings et al. 2001) strongly affect inherent biological traits (abundance, size
structure, composition, diversity) of the community present and may result in different
production and P/B patterns. Trophic interactions, such as predation, is known to structure
benthic communities (e.g. Virnstein 1977, Gilinsky 1984, Quijon & Snelgrove 2005). A few
direct attempts have been made to link benthic predation and secondary production (Evans
1983, 1984, De Lange et al. 2004), but our understanding of how exploitation can affect

production processes in a benthic community is generally poor.
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1.8 Main objectives

The goal for the Barents Sea management plan is to “maintain ecosystem structure, function
and productivity” (Anonym 2006, Falk-Petersen 2012), which calls for a close investigation of
participating species and their contribution to these properties. Yet, we are missing a
comprehensive approach investigating the role of the red king crab in the food web and how
these metrics of function and productivity could be affected by this new and abundant benthic
predator. At the same time, in order to assess future changes, we need data which describe the
status quo. Therefore, the overall objective of this thesis was to evaluate the role of the red king
crab in the food web and its impact on other species in the ecosystem. With respect to future
monitoring, we also aimed at quantifying energy flow and provided a baseline of soft bottom
macrofauna in Porsangerfjord. More specific, our objectives were to:

1. Estimate macrobenthic biomass, production and community characteristics along the fjord

with respect to environmental gradients and different red king crab densities (Papers I).

2. Characterize crab diet and feeding strategy related to body size and foraging location (Paper

1)

3. Investigate the king crab’s trophic position and niche overlap with potential native

competitors (Papers 1l and I11).

4. Use the obtained production and diet data from Papers I and Il as input to Ecopath models
constructed for Porsangerfjord, looking at energy flow and food web properties along the
fjord, specifically addressing trophic control and impact by the red king crab with help of
models and Ecosim simulations (Paper I11).
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2 Approach

2.1 Porsangerfjord — an ecological laboratory

Fjords are a major feature of the Norwegian coast, constantly subjected to human activity in the
form of fisheries, aquaculture, transportation, and increasing recreational use. Fjords experience
some of the same biological and oceanographic conditions as the open ocean, with additional
properties of enclosed systems, posing some advantages when studying ecological processes.
The Porsangerfjord (Fig. 3) is one of Norway’s largest fjord systems, covering an area of ca.
1800 km?along 70.1° to 70.9°N and 25° to 26.5°E. It is considered an open fjord, with depths
of over 300 m at the entrance, facing the Barents Sea towards the north. Water exchange with
the open sea is considerable and the middle and outer fjord are largely influenced by Atlantic
water. Because of its high latitude, water temperatures are generally low in Porsangerfjord,
often displaying a well-mixed water column (Mankettikkara 2013). The inner part of
Porsangerfjord is rather isolated, with a shallow sill and a narrowing separating it from the rest
of the fjord. This inner area comprises two deep basins at around 100 m depth, Austerbotn and
Roddenes (Fig. 3). Arctic water is locally formed in the inner area and lingers in the deep basins
during summer, causing bottom temperatures to remain around 0 °C throughout the year
(Mankettikkara 2013). The inner part also receives a considerable input of freshwater due to
river runoffs, resulting in a decreasing salinity gradient from the outer to the inner part, with
mean annual bottom salinities of approximately 34.7 %o and 33.8 %o, respectively. The
distribution of bottom sediments in Porsangerfjord is not well studied but is currently being
mapped by the Norwegian Geological Survey. Mud and sandy-mud sediments are common at
larger depths along the east and west side of the fjord and the inner fjord basins. Sandy, mixed,
and hard bottoms are present at shallow depths, mainly in the middle of the fjord and along

islands and skerries.
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Fig. 3 Map of the study area, Porsangerfjord in Northern Norway. The sill towards the inner
fjord is marked by the dotted line, the deeper basins towards the east are denoted by R
(Roddenessjgen) and A (Austerbotn).

Macroalgae comprise large and unique intertidal kelp formations in the inner part, mostly at the
west side (Sivertsen & Bjgrge 2015). Sublittoral macroalgae in the middle and outer part of the
fjord have been subject to intensive downgrazing by sea urchins (Strongylocentrotus
droebachiensis), which has affected the north-Norwegian coast since the 1970s (Norderhaug &
Christie 2009). In Porsangerfjord, previous macroalgae beds have not entirely recovered
(Sivertsen & Bjgrge 2015) and some areas remain barren grounds. Recent studies have given
rise to the hope that red king crabs can help in reestablishment of kelp beds, important for a
number of invertebrates and fish (Bodkin 1988, Norderhaug et al. 2005, Christie et al. 2009),
by predating on sea urchins (Falk-Petersen et al. 2011). Historically, cod was the target of the
major fishery, but the coastal cod population in Porsangerfjord has declined dramatically since
the 1990, likely due to a combination of fishery and loss of nursery grounds and/or a harp seal
invasion in the 1980s (Nilssen et al. 1992). Today, cod is mostly distributed in the outer and
middle fjord, while large cod remains absent from the inner area.
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The heterogenic environmental conditions and past and present ecological changes in
Porsangerfjord provide a field laboratory to investigate factors governing these processes. The
inner fjord, now also part of the quota-regulated fishery for red king crab, has been suggested
to be declared as a marine protected area (Miljadirektoratet 2004) but so far the initiative has
yet to overcome the planning phase. Since crabs had not invaded this part by the time of this
study in 2010, it presented us with the opportunity to study an “undisturbed” benthic
community. A few species, with mainly Arctic distribution, such as Clinocardium ciliatum,
Pectinaria hyperborea (Oug & Fuhrmann 2013), Sclerograngon boreas and the polar cod,
Boreogadus saida (Christiansen & Fevolden 2000) occupy the inner fjord. The cold
temperatures and ice coverage during the winter make Porsangerfjord suitable to study
ecological processes in high-latitude habitats and may give insights into the impact of the

invasion by decapods into these habitats.

2.2 EwE modelling

The open access software Ecopath (http://ecopath.org) was originally developed by Polovina
(1984) and has since advanced to dynamic modelling over time (Ecopath with Ecosim - EWE)
and space (Ecospace) (Christensen & Pauly 1992, Pauly et al. 2000, reviewed in Villasante et
al. 2016). Ecopath creates a model of resources and their trophic interactions over a limited
amount of time. It assumes mass-balance, with the option to allow for migration, biomass
accumulation or reduction, emigration, or immigration. Ecopath is based on two master

equations, describing (1) the production term, and (2) ensuring energy balance for each model

group.

(1) Production = catch + predation + net migration + biomass accumulation + other
mortality

(2) Consumption = production + respiration + unassimilated food

The main input parameters for groups are biomass (B), production per biomass (P/B),
consumption per biomass (Q/B), diet proportions, fishery catches and ecotrophic efficiency
(EE), which describes how much of the production is used in the system and equals 1 — other
mortality. Values are usually averaged over the time period of 1 year. Unit of material flow is
carbon and rates are expressed as carbon flow per year.
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In Ecopath, species may be grouped into functional ecological guilds, based on similarity in
diet, growth and consumption rates, habitats, and predators. Models developed for
Porsangerfjord (Paper I11) comprised 63 groups, including multi-stanzas for red king crabs and
three fish species. In contrast to most other published models, we aimed at high resolution in
the benthic compartments, allowing the capture and evaluation of trophic interactions with the
red king crab. Ideally, an Ecopath model needs to include the full habitat range of the included
species. Based on different environmental conditions and species distributions, sampling was
designed to establish 5 models, one for each subarea, developed for the core period of 2009 to
2011,

The impact of the red king crab was investigated by looking at mixed trophic impact, MTlI;,
which is a measure of how change in biomass of group i will affect other groups in the system,
and the total relative impact &; which is based on MTI; (Libralato et al. 2006), niche overlap
and Ecosim simulations. The keystoneness index implemented in EWE has been criticized for
not compensating sufficiently for high biomass in high impact species (Valls et al. 2015), for
example resulting in phytoplankton ranking high in keystoneness. This conflicts with the
original definition of a keystone species, where a species impact should be disproportional to
its biomass (Power et al. 1996, see above). Based on the good performance in a meta-analysis

by Valls et al. (2015) | instead calculated the therein suggested keystoneness (KSs) given as
KS; = IC;, X BC, (Vallsetal. 2015)

with IC . being the impact component (equals the relative total impact &; in Ecopath) and BCo

being the biomass component (equals in this case descending rank of the biomass of i).

Ecosim (Walters et al. 1997, Christensen & Walters 2004) is a dynamic model developed for
testing food web disturbances such as fishing and changes in primary production. Trophic flows
will vary with changing biomass of predator and prey. In nature, species display a range of
behaviours (such as seeking refugees, spatial displacements); Ecosim relies on principles
inherent to the foraging arena theory, where exchange rates between predator-prey are restricted
by spatial arenas (Walters et al. 1997, Christensen et al. 2005). A vulnerability parameter (which
can be set by the user) partitions prey populations to vulnerable and non-vulnerable
components, where foraging takes place in limited volumes. This represents a more realistic
picture and helps improving predictions of aquatic ecosystem responses (Ahrens et al. 2012).
Simulations with varying crab densities in EwE allowed us to investigate and quantify the

predation impact (in this case the change of biomass in other species groups) over time (Paper
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I11). Crab removal was implemented by increasing fishing mortality at the beginning, followed
by applying a forcing function to increase biomass. Initiating biomass at low levels and forcing
biomass with the help of a time series has been shown to perform well in modelling invasive
species impacts in EwWE (Langseth et al. 2012). Despite looking at the effect on individual
groups, we “sampled” the ecosystem at certain points in time and were able to compare how
system properties (omnivory, connectance, and biomass residence time) would be affected by
changing crab abundances.

2.3 Data collection

The assessment of macrobenthic biomass and production served three principle purposes:
identification of patterns along environmental and predation gradients, obtaining input data for
Ecopath models and establishing a status quo for future impact studies (with focus on the inner
fjord where crabs had not yet established by 2010).

Benthic macrofauna on soft bottom substrates (Paper I) were sampled by grabs in 2010,
following a random stratified design per area, with the aim of obtaining a large areal coverage
instead of increasing precision at a single station. Input parameters for the Ecopath models of
Porsangerfjord (Paper 111) were based on a combination of field work between 2008 and 2012,
regional literature data and estimates that could be obtained from catch statistics (mortality
rates). The cooperative work within the EPIGRAPH project made it possible to obtain
comprehensive biomass and diet data needed for the several species groups (details of sampling
methods are described in the appendix of Paper Ill). Biomasses and P/B values estimated in
Paper | were used as an input for most soft bottom taxa (infauna); sparsely distributed epifaunal
organisms (e.g. suspension feeders) were sampled by an epibenthic sledge standardized to
towing time. The estimated biomass of large infaunal and epifaunal bivalves such as Chlamys
islandica and Mytilus edulis was not high enough to meet predator demand in the Ecopath
models, mostly because sampling did not cover shallow habitats and sparsely distributed
“beds”, which is why biomass of this group was estimated in the model.

During the course of this study it became clear that benthic community structure was different
in the outer, middle, and inner fjord, but also showed quite a pronounced east-west disparity,
not entirely corresponding to strata (sub areas) chosen a priori in Paper | and I1l. Averages
given for defined areas (Paper | and I11) therefore do not represent spatial heterogeneity within

these subareas. Since we were constrained by effort and cost, grab samples were only taken
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during one year, and our estimates represent somewhat of a snapshot. However, some stations
from the inner area were resampled during similar seasons in 2006 and 2011. Resampling
showed that estimates for 2010 were representative for 2011 in this area (see section 3:
supplementary results to Paper I11). Data treatment in Paper | and I11 involved the aggregation
of species into taxonomical (Paper 1) and ecologically meaningful entities (Paper 1), resulting
in the loss of information concerning biodiversity estimates, but giving a reasonable
representation of community structure and energy flow. Conversion into a relevant unit for
energy flow (carbon or kJ) assured comparability to other studies and was performed for all

invertebrates and groups in the Ecopath model by established conversion factors from literature.

2.3.1 Red king crab distribution

One of the major challenges in this study was to capture red king crab distribution in the fjord,
with unknown effects of environment and substrate, crab behaviour (aggregations of size
classes and sexes) and catchability of small size classes. Commercial stock estimates did not
aim at predicting distribution patterns, and omit juvenile crabs < 70 mm carapace length, which
left us little information on crab densities at macrofaunal sampling locations. For Paper I, we
were interested in relative abundances of crabs at grab stations, representing an “average
relative impact” of predation at these localities. Kriging was thus applied on swept area based
catches from trawls, providing uncertainty estimates around predicted densities. Trawl catches
were verified using relative abundances from traps. Red king crab biomasses used in Ecopath
(Paper I11) were calculated from back-calculation procedures, using abundances of large crabs

estimated by crab trawls and represent averages for the subareas.

2.3.2 Diet analysis

In order to describe the diet and foraging patterns of red king crab (Paper I1) and obtain input
for the Ecopath models (Paper 111) in Porsangerfjord, we combined stomach and stable isotope
analysis. Since the crab is known to have a large variation in prey (Falk-Petersen et al. 2011)
and little was known for small size classes foraging in shallow water, local diet information
was needed. Stomachs were taken from crabs and various species, and diet data was included
in the Ecopath models, where quantitative information was needed as an input. Estimating diet
proportions is challenging in crabs, since stomach teeth grind content to small pieces, making
identification and quantification especially difficult. Prey proportions for Ecopath were

therefore based on frequency of occurrence, and adjusted during the balancing process.
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Stable isotopes were used to obtain a less invasive, time-integrated estimate for diet differences
in different size classes and sex of crabs. Together with stomach information, we applied the
isotopic niche concept (Newsome et al. 2007) (see section 1.5) and used metrics defined in
Jackson et al. (2012) in order to approximate trophic niche width and trophic overlap between
size classes and with other native predators in the system (see Paper I1). Trophic levels (TL)
and diet obtained from stable isotopes were used to validate input and structure of the Ecopath
models (Paper I11). Isotopic ecology is prone to a number of caveats and limitations regarding
sample treatments, tissues sampled (Post 2002, Post et al. 2007), fractionation factors, and
variability in baselines used in TL estimation (Solomon et al. 2008, Middelburg 2014, Jennings
& van der Molen 2015), often providing the researcher with local knowledge only. Intensive
baseline sampling and experimental work addressing fractionation factors in crab tissues would

likely improve data interpretation in this study.

2.3.3 Environmental data

Gradients in environmental data corresponded to decreasing temperature, depth, and salinity
from the outer towards the inner fjord. An extensive monitoring program by the University of
Tromsg provided data on temperature and salinity from fixed stations (see Paper I), which were
sampled at all depths, over several years and throughout seasons. Temperature was used to
estimate benthic production to biomass ratios (P/B) and adjust literature Q/B ratios for shrimps,
since the latter were expected to be smaller at low bottom temperatures of the inner eastern
basins (4E, Paper Il1). Substrate type likely influences benthic community structure and may
account for differences in biomass and production. A detailed investigation of drivers of benthic

production should therefore include substrate samples, but was outside the scope of this study.

2.4 Estimation of benthic production and P/B

Direct measurements of benthic production are usually based on cohort methods (see Allen
1971), growth rates or size frequency methods (see Benke 1996). The annual production to
biomass (P/B) ratio of a population is the weighted average of biomass growth rates of the all
individuals in that population over the course of a year (Benke 1996). The major determinant
of a species P/B ratio is lifespan (Robertson 1979) and more recently, indirect methods use the
empirical relationships between production and an organism’s lifespan or body mass (Banse &
Mosher 1980, Tumbiolo & Downing 1994), with particular attention to the role of temperature
affecting a species metabolism (Brey 1999a, Brey 2001, Tagliapietra et al. 2007). Brey
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(1999a,b) showed that natural mortality and P/B are linearly related in unexploited benthic
invertebrate populations. In order to estimate benthic P/B values in Porsangerfjord (given in
Paper | and as input to Paper I11), we adopted the annual neural network by Brey (2012) with
individual body mass as the major input. In addition to environmental variables (mean
temperature, depth and tidal elevation), it uses also taxonomic identity and habit (motility,
habitat, feeding), which improves estimates of benthic secondary production (Cartes et al. 2002,
Cusson & Bourget 2005), and perform better than common regression models (Brey et al. 1996,

Brey 2012). Production can then be calculated from P/B*Biomass.
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3 Summary of results

Paper |

Fuhrmann MM, Pedersen T, Ramasco V, Nilssen EM

Macrobenthic biomass and production in a heterogenic subarctic fjord after invasion by

the red king crab
Journal of Sea Research 106:1-13 (2015)

We found soft bottom community biomass and production to vary in the Porsangerfjord,
attributable to differences in community composition along environmental gradients and
possibly due to predation by the red king crab. Despite cold bottom temperatures and lower P/B
ratios, benthic biomass and production were larger in the inner fjord, due to a community
differing in terms of taxonomic composition and constituting larger taxa. Macrobenthic
communities were characterized by high productivity of tube-building Polychaeta, also
dominating biomass and abundance. Scarcity of larger and long-lived species (such as large
bivalves and echinoderms) in areas with high king crab densities, are hypothesized to be first
indications of predation (see also Paper I11). Consumption by the red king crab may have altered
the community resulting in high community P/B, but lowered standing stock biomass and
production. While benthic production in the outer and middle fjord was mostly below estimates
from fjord locations in the Barents Sea, the inner subarea exceeded values given for similar
latitudes and hot spots of production in Arctic seas. The study presents an important
contribution to monitor future development of macrobenthic communities in the inner

Porsangerfjord.

Paper Il

Fuhrmann MM, Pedersen T, Nilssen EM.

Trophic niche of the invasive red king crab (Paralithodes camtschaticus) in a native
benthic food web

Under review in Marine Ecology Progress Series (2016)
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Combining stomach analysis with §*°N and §*3C stable isotopes supported the hypothesis of a
generalist, opportunistic feeding strategy of red king crab, consuming prey resources at multiple
trophic levels. Common soft bottom taxa in Porsangerfjord, such as small bivalves and
polychaetes, dominated gut contents. Larger filtrating bivalves were likely also part of crab diet,
but were not detected by stomach analysis. We found variation in diet across size classes, related
to different foraging habitats and crab aggregation at certain depths. However, we did not find
indications for a distinct ontogenetic niche shift. Isotopic niches were similar among size
classes, with spatial variability possibly concealing size effects. Sea urchins were an important
diet item especially for small crabs residing in shallow water and feeding on more littoral
species. Stable isotopes signatures indicated site fidelity in some individuals, with stable isotope
signatures being similar among stations close to each other and §**C reflecting diet items found
in stomachs. Considering the variance in baseline isotopic value, red king crab fed on average
at trophic level 3.1, which is lower than all the fish species investigated, which also used more
pelagic pathways. Isotopic niche overlap with other decapods, predatory sea stars, and
gastropods indicated possible competition with the red king crab for similar food resources.

Paper 111

Pedersen T, Fuhrmann MM, Lindstrgam U, Nilssen EM, lvarjord T, Ramasco V, Jgrgensen LL,
Sundet JH, Sivertsen K, Kallgren E, Hjelseth A-M, Michaelsen C, Systad G, Norrbin F,
Svenning MA, Bjarge A, Steen H, Nilssen KT (2016).

Modelling ecosystem structure and trophic control by the invasive red king crab in

Porsangerfjord, northern Norway
Manuscript

Ecopath baseline models revealed differences in food web structure and properties along the
fjord, owing to differences in species distributions and trophic interactions. The inner cold
subareas were characterized by high benthic biomass and production by detritivores,
accompanied by lower benthic P/B values and biomass residence times. High benthic biomass
here was likely a combination of food supply, larger body masses at low temperatures and low
predation pressure. Red king crabs fed at trophic level 3 and were important predators of
herbivorous echinoids, predatory gastropods and asteroids, large suspension feeders and the

mud star Ctenodiscus crispatus, in which they caused high relative mortality rates. Feeding on
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several trophic levels, king crabs raised the system omnivory index. Other than for human
consumption, crabs were not of major importance as prey themselves. Trophic niche overlap
with red king crab was detected in predatory benthic invertebrate -and fish groups (such as
flatfish and large haddock) and invertebrate feeding birds in the outer areas. Next to important
demersal fish such as cod, medium red king crab had a high impact (mixed trophic impact,
relative total impact), mostly in the middle fjord where crabs were most abundant. Simulated
removal followed by a forced increase in biomass in EWE, suggested a strong top down control
on long lived prey groups (see above) as well as competitive effects in some of the same groups
and also in sea birds. Changes in biomasses in red king crab prey did not affect pelagic
compartments, due to little niche overlap with fish. Simulations indicated that red king crab
replaced major predators of large bivalves, resulting in little effect on this group. King crabs
had a positive impact on recruiting macroalgae through predation on sea urchins, the effect this
could have on macroalgae regrowth could not be realistically modelled. Part of the crab
predation was buffered by high benthic production, mostly in the inner area. Simulations
suggest that high red king crab densities affect P/B of the benthic invertebrate community,

leading to low maturity and high turnover systems.

3.1.1 Supplementary results to Paper I11: Keystoneness of red king crab

Keystoneness was calculated similar to the method defined in Valls et al. (2015) for all
functional groups (excluding detritus). In subarea 3 (middle fjord), where king crabs had high
biomass, KS3 for medium red king crabs was around 12, similar to subarea 4E (inner eastern
fjord) (Fig. 4). The red king crab ranked 6 and 7 (8 for large red king crab) in these areas
respectively. In the outer areas (1 and 2) and the inner western fjord (4 W), KSswas higher at

values around 20, but with similar ranks.
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Fig. 4 Keystoneness (KSz) versus relative total impact for the Ecopath model of subarea 3 and

4E in Porsangerfjord. Circles are scaled to biomass of groups.
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4 Discussion

In this thesis, 1 combined different approaches to investigate the role of the invasive red king
crab in the food web of Porsangerfjord. Through empirical and modelling work | provide
evidence that the red king crab serves an important role in the food web, and despite a wide
range of diet, controls biomass of some large invertebrates and with that, may impact biomass

and productivity of the benthic compartment in the food web.

4.1 Eating and being eaten— feeding strategy and predation pressure

Common to most alien species is the ability to use a wide range of prey organisms (Hanfling et
al. 2011, Griffen et al. 2012), which is likely also one of the reasons for the successful
establishment of the red king crab in the Barents Sea. Diet analysis (Paper 1) showed a high
diversity of prey, similar to results from previous diet studies (Rafter et al. 1996, Sundet et al.
2000, Falk-Petersen et al. 2011). We also found that the red king crab had one of the highest
omnivory indices of all species groups in the system (Paper Il1). The red king crab has been
documented to show high feeding plasticity with regard to handling and type of prey, in
laboratory experiments it was able to quickly adapt to offered prey items and showed individual
feeding techniques (Jargensen 2005, Jgrgensen & Primicerio 2007, Michelsen 2011). It is also
able to make use of seasonally available prey, such as post-spawning capelin (Mikkelsen 2013).
Prey size is constrained by the ability of crabs to handle it with their claws (Jgrgensen &
Primicerio 2007). Adult red king crabs have been hypothesized to be size selective feeders
(Falk-Petersen et al. 2011), targeting large animals first, with a high yield compromising for
longer handling times. Similar size targeting has been shown for other crabs, such as the
Portunid crab, Charybdis japonica (Townsend et al. 2015). However, results from Paper Il
showed that crabs frequently prey on small infaunal species or those that were most abundant
in grab samples (Paper I). This may be a result of feeding in an already “impacted” environment,
with fewer large organisms available or the fact that crabs did not ingest hard parts and these
were missed in stomach content analysis (such as bivalves, which were likely underestimated
in our diet study) (Jgrgensen 2005). Feeding on what is most abundant supports a true
opportunistic foraging strategy. Concomitant with the ability to switch between resources, the
red king crab likely has an advantage over other native predators in our study system. Selective
feeding was not observed in Paper I, but may need closer investigation using field and stomach

data from the same location. Additionally, size selective feeding, such as crab juveniles feeding
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on small sea urchins, may locally shift size distribution. Results from our stable isotope analysis
(Paper I1) indicated a certain side fidelity in crabs, which is likely due to the generalist feeding
strategy enabling crabs to stay within a foraging area for some time, instead of investing energy
to search for suitable prey. However, there may be considerable individual differences in how
much crabs move over time (Jargensen et al. 2007, Windsland et al. 2014) as movements have
been linked to other causes such as mating migrations (Jergensen & Nilssen 2011). Different
diets at different habitats were reflected in stomach contents and stable isotopes. Adults and
small size classes share similar resources in shallow waters at least part of the year. However,
larger crabs are mostly found at greater depths, and separate habitats likely contributing to less
intraspecific competition. We did not find a distinct ontogenetic niche shift linked to an increase
in trophic level with crab size. Such niche shift may be expected due to large crabs being able
to utilize a wider size range of organisms or different nutritional requirements for growth, as
this has been documented in other large decapods (Sainte-Marie & Chabot 2002, Griffen et al.
2012). Stable nitrogen isotope sigantures for prey organisms spanned over multiple trophic
levels (Paper I1), and did not neccecarily reflect size composition of species (see also Jennings
et al. 2002). This is likely why most studies on decapod crabs fail to detect clear increases in
TL with size, but instead emphasize the importance of foraging area for differences in diet
(Bodin et al. 2007, Divine et al. 2015). Trophic levels estimated for red king crab size classes
from 8*°N (3.0-3.1) was similar to Ecopath model results (around 2.8-2.9); small discrepancies

could be due to baselines used in TL estimation (Paper I1).

While invasive crustaceans may become a prey source for native fauna (De Rivera et al. 2005,
Wong & Dowd 2013), mega-decapods often have a low significance as prey for any organisms
other than humans (Boudreau & Worm 2012). Predation mortality for red king crabs estimated
from Ecopath models was relatively low (Paper I11), and confirms the assumption that red king
crabs experience low predation pressure from natural predators. This is most likely due to their
size and spiny armour, and may be one of the major reason for its success in colonizing new
areas (see Lockwood et al. 2013). Predators on king crabs in its native areas are mostly pacific
cod and large groundfish (reviewed in Falk-Petersen et al. 2011), feeding on crabs during or
shortly after moulting. Predation by mammals may also occur on adults in the Pacific Ocean
(Aydin et al. 2002). Some uncertainty around predators was given in our Ecopath models and
more stomach samples from potential predators are necessary to improve diet input. Falk-
Petersen et al. (2011) list salmon, saithe, a number of flatfish, skates and sculpins (Cottidae) as

probable predators on crab larval stages and post-recruits in the Barents Sea . Ecopath models
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indicated that a small change in proportion of abundant predators, such as cod, may have a large
impact on the crab population, despite the low proportions of crab in predator diets. Predation
on juvenile crabs by sculpins (Aydin et al. 2007) has been observed in Porsangerfjord (H. K.
Strand, IMR, pers. comm.) and may be significant in the inner area where sculpins are abundant
(Paper 111).

Cannibalism on small size classes was not documented in Porsangerfjord and is not seen as a
major source of mortality in our study area. Cannibalism for red king crab has been documented
from laboratory experiments (Borisov et al. 2007, Long et al. 2012) and Varangerfjord (Haugan
2004, own observations). It has to be noted that cannibalism may be difficult to distinguish
from consumption of own moults, common in crustaceans, leading to misconceptions about the

importance of cannibalism in the field.

4.2 Predation impact

Differences in the distribution and diet of small and large crabs leads to the assumption that
these factors may affect different habitats, with juvenile crabs impacting the sublittoral zone
and adults affecting deeper, soft bottom habitats. Small crabs have a higher consumption to
biomass ratio and are often aggregated, potentially causing a more concentrated effect on local
native fauna inhabiting the more shallow water. The most pronounced effect was caused
through predation by medium and large red king crabs, which affected mostly larger, epibenthic
invertebrates (Paper I11) with often relatively low P/B ratios (Paper I). In model simulations,
crab consumption exceeded production in these groups and resulted in a decline in biomass

with increasing red king crab abundance.

4.2.1 Direct predation impact on large, long-lived invertebrates

Slow moving, and long-lived benthic organisms take over important roles in ecosystem
functioning, such as bioturbation. However, large size and longevity are traits that often make
species vulnerable to disturbances (Tumbiolo & Downing 1994, Solan et al. 2004, Norkko et
al. 2013a).

One of the species heavily impacted by predation was the mud star, Ctenodsicus crispatus, a
species which is targeted mostly by large- and medium-sized red king crabs (Paper I1), likely
due to their occurrences in deeper waters on muddy sediments (Paper I). This is one of the

species which has shown to nearly disappear in heavy invaded areas of Varangerfjord (Oug et
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al. 2011) and may be a good indicator species of predation effects by larger crabs. Similar to
that study, the soft bottom sediments of outer and middle Porsangerfjord were characterized by
small maldanid and oweniid polychaetes, suggested that these may not be affected by predation
(Oug et al. 2011). In contrast, there was a low abundance and biomass of large bivalves (such
as Cardiidae) and large echinoderms, the latter consisting mostly of small, juvenile brittle stars.
Large infaunal bivalves were suggested to decrease as a result of predation in Russian areas of
crab invasion (Britayev et al. 2010). In EwE simulations (Paper I11), large bivalves did not seem
to be affected by crab predation, because the crab substituted predation by other predators.
Large infaunal bivalves constituted only a small proportion of the crab diet, which may be due
to either low abundance in the outer part and consequently not represented in the diet, or
misidentification since hard parts were not found in stomachs. Other diet studies have shown
large bivalves and other mollusks to be a major prey source when encountered (see reviews by
Britayev et al. 2010, Falk-Petersen et al. 2011), and consider these species especially vulnerable
to predation (Jargensen 2005, Jargensen & Primicerio 2007). In our study, very few stomach
samples from large crabs were obtained from the inner fjord soft bottom habitats (Paper I1),
where crabs may forage in the future for abundant large bivalves (such as Yoldia hyperborea).
A study in the northern Norwegian Sgrfjord, where crabs have not invaded, showed that large
bivalves contributed substantially to benthic biomass (Nilsen et al. 2006). Predatory snails
(Buccinum undatum, Neptunea spp., Naticidae) and large sea stars (e.g. Asterias rubens,
Henricia spp.) were affected by increasing king crab abundances in simulations (Paper I11) and
had low biomasses in the outer areas, supporting results from Oug et al. (2011) and epifaunal
surveys in Porsangerfjord, who had observed a decline in these species in areas with high crab
densities (E. Nilssen, UiT, pers. comm.). While these species often only contribute little to total
benthic production (Paper I11), a reduction in these large species has consequences for benthic

community composition and size structure.

4.2.2  Benthic production and P/B

It is well established that benthic community attributes such as species composition, biomass
and production change along environmental gradients (e.g. Rosenberg 1995, Cusson & Bourget
2005, Blanchard et al. 2013) . We show in Paper | that different spatial variability in production
to biomass ratios (P/B) and production was mainly driven by community structure, which
differed under heterogenic environmental conditions in the fjord (cold bottom temperatures in
the inner fjord). Biotic interactions, such as predation, have great potential to structure

ecological communities (e.g. Paine 1974, Virnstein 1977, Gilinsky 1984, Quijon & Snelgrove
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2005). Predation may affect benthic production processes (De Lange et al. 2004) and size
structure of benthic communities by removing large sized individuals or species (Blumenshine

et al. 2000), with unknown consequences for ecosystem functioning.

Soft sediments in the outer and middle Porsangerfjord were dominated by small sized species,
such as small bivalves (Yoldiella spp.) and polychaetes (Maldane sarsii and Oweniidae), raising
benthic community P/B. EwWE simulations from Paper 111 lend support to the hypothesis that
observed patterns in Paper | can partly be explained by red king crab predation. Predation
caused high mortality rates in some large, long-lived invertebrates, leading to an increase in
community P/B (as a combination of a change in group P/B and community composition) and
a reduction in benthic biomass. This was also reflected in lower system biomass residence times
(Paper I11). High production by detritivorous polychaetes buffered predation by the red king
crab, especially in the inner fjord. However, reduction of benthic biomass due to the removal
of some larger species, lead to a decrease in total benthic production, which was not entirely
compensated by elevated P/Bs. The northern Norwegian Ullsfjord-Sgrfjord system has a similar
trend in the distribution of smaller species with lower P/B dominating the outer and warmer
Ullsfjord, attributable to higher temperatures and predation mortalities (Pedersen et al. 2016).
Estimated P/Bs are lower in Ullsfjord (0.51) than in outer Porsangerfjord, however benthic
production is similar due to higher benthic biomass in Ullsfjord.

Bottom trawling has been documented to shift soft bottom habitats towards high turnover and
lower biomass systems (Jennings et al. 2001), ultimately with consequences for energy flow
(Dannheim et al. 2014). An increased production of opportunistic species or young individuals
may be seen in systems experiencing environmental pollution or weather extremes (Dolbeth et
al. 2011). Communities dominated by taxa exhibiting high renewal rates may be more resilient
towards perturbations because of fast recovery (Tumbiolo & Downing 1994). In contrast, fish
populations altered by fishing experience a high turn-over rates of species and a dominance of
younger age-classes and are proposed to make stocks more sensitive to environmental changes

with less capacity to buffer disturbances (Planque et al. 2010).

Overall, body size is a proxy for a number of species’ traits affecting food web structure and
dynamics (Woodward et al. 2005). Large organisms may contribute considerably to benthic
biomass, as we show in Paper | and Il11, and may also play important roles in other ecosystem
functions. For example, the removal of large individuals in bivalve populations from soft

sediments has been documented to affect oxygen and nutrient fluxes (Norkko et al. 2013b). The
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significance of size structure and resultant differences in P/B ratios for resilience and its ability

to absorb perturbations needs more investigation.

4.2.3 Predation on herbivorous echinoids

Herbivorous echinoids (Strongylocentrotus droebachiensis) were prey for both large and small
crabs foraging in shallow locations (Paper Il), and the mixed trophic impact, and model
simulations indicated that crabs had a substantial effect on sea urchin biomass (Paper I11). This
supports results from Russian studies, which reported substantial impact by juveniles on the sea
urchin population in Kola and Dal'nezelenetskaya Bay, potentially leading to a reduction of 10-
30 % of the sea urchin standing stock (Gudimov et al. 2003, Pavlova 2008, Pavlova 2009) and
a change in size structure (with a relative increase of large sea urchins (Britayev et al. 2010).
However, no production estimates were integrated in these studies. Predation on sea urchins
resulted in indirect positive effects on the recruitment of micro- and macroalgae (Paper IlI).
Whether this would also affect the regrowth of kelp could not be realistically modelled in EwWE,
due to the lack of a multi-stanza option for primary producers.

Macroalgae function as facilitating species, and dense macroalgae vegetation is often associated
with a rich benthic fauna (Christie et al. 2009), where kelp beds function as nursery areas for
fish, including cod (Keats et al. 1987). The artificial reduction of green sea-urchin abundance
in over-grazed areas has resulted in rapid regrowth of kelp in northern Norway (Leinaas &
Christie 1996). Support for successful regulation of juvenile sea urchin recruitment due to
predation by decapods, comes from the northwest Atlantic Ocean in the Gulf of Maine, where
large crabs (Cancer spp.) function as a new apex predator after a decline in local fish predators,
keeping sea urchins in check (Steneck et al. 2002). While more severe perturbations may be
needed to switch systems from barren grounds to vegetated states (Norderhaug & Christie
2009), decapod predators have been shown to substantially supress herbivory and thereby play
keystone roles in ecosystems (Snyder & Evans 2006, Boudreau & Worm 2012). There is no
empirical evidence of the hypothesis that predation by the red king crab will aid regrowth of

macro-algae along the northern Norwegian coast.

4.2.4 Keystoneness

Red king crab had an intermediate trophic level (approximately 3) and large and medium crabs
had relatively high keystoneness index, indicating a top-down role in the ecosystem (Papers Il
and I11, supplementary results). A high impact on other groups was coupled to high abundances

in the middle subareas of the fjord, pointing to the red king crab being a high impact-high
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biomass species rather than a true keystone predator (compare Valls et al. 2015). This was
supported by typical higher trophic level species (sea otters and seals) being ranked higher than
other species in Porsangerfjord. The indirect positive impact on macroalgae recruitment may
support the perception of the red king crab as a keystone species, considering the importance
for macroalgae as a habitat. Depending on which keystone index is used (from EwWE or Valls et
al. 2014), results of keystoneness differ substantially and the concept seems somewhat arbitrary.

Considering this, relative total impact (¢;) may be a better indicator for ecosystem impact.

425  Omnivory

The red king crab fed on different trophic levels including algae (Papers Il and I11) and increased
system omnivory (SOI) in the EWE simulations. The prevalence of trophic omnivory usually
increases connectivity of a food web, and with the introduction of multiple links in the food
web, can be seen as measure of complexity. Connectance was not affected in EwE models, due
to the inherent structure of models not being changed throughout simulations, which makes the
omnivory index a better indicator for food web connectivity (Christensen et al. 2005). Species’
feeding strategy and niche width strongly influence food web structure (Beckerman et al. 2006,
Ingram et al. 2009) and it has been shown in qualitative food web models that boreal generalist
fish such as cod alter food web structure and possibly function (Kortsch et al. 2015). The
importance of trophic omnivory for food web dynamics (especially in marine systems) is not
quite clear from ecological literature, but has been found to correlate with ecosystem stability
(Morissette 2007). Recent theoretical models suggests that weak omnivory stabilizes food webs
(Gellner & McCann 2012) through reducing the probability for strong top-down control,
weakening trophic cascades (Bascompte et al. 2005); whereas in general, the relationship
between omnivory and stability largely depends on the feeding behaviour and structure of the
studied food web (Vandermeer 2006). We show that despite being a highly omnivorous
predator, the red king crab has the potential to exert strong top down control on a few prey
species, and may lead to indirect effects on other species. Vasconcellos et al. (1997) did not
find a correlation in the SOI and stability (recovery time) in marine ecosystems after simulated
perturbation and it seems that the relationship between omnivory and stability in food webs
needs further investigation.

40



4.3 Niche overlap and competitive effects

Low competition in a system may facilitate the establishment of an alien species, based on the
theory that increased occupancy of available niches decrease invasiveness of a community
(Elton 1958). Trophic niche overlap is one of the reasons why competition could arise in the
first place, with consequences either for the invader or native species. In practice, competition
will only affect the native biota if either resources are limited or the invader acts superior and/or

is more efficient in using limited resources.

The king crab is an effective feeder on infaunal organisms, such as detritivorous polychaetes,
which are not utilised by many other species (Paper Ill), and at the same time had high
production in Porsangerfjord (Paper I). Results from stable isotopes (Paper 1) and Ecopath
niche overlap (Paper 111) show that the red king crab has a large overlap in trophic niche with
some predatory invertebrates, mainly native large crustaceans (Lithodes maja, Pagurus spp.,
Hyas spp.), predatory snails (Neptunea sp., Buccinum undatum) and sea stars (Henricia sp.,
Asterias rubens), with some of these also serving as prey. Ecopath models also indicated niche
overlap with crangonid shrimps (Sclerocrangon boreas and Sabinea septemcarinata) and
predatory polychaetes, not strongly overlapping in isotopic niches (Paper I1). For the two named
shrimps, stable isotopes is likely a better indicator because samples were taken locally, while
diet input to Ecopath models was taken from literature for these species. Among other things,
the little effect on these groups is owed to the high productivity in polychaetes, a major food
source. The large impact on some of the benthic predators (sea stars and predatory gastropods)

was mainly a result of predation, but competitive effects contributed to this.

Due to its size and claw strength, the king crab is assumed to be superior to most of these
predators with regard to competitive behaviour. Niche displacements by invasive crustaceans
have been documented in a number of freshwater habitats (Snyder & Evans 2006, Gherardi
2007), but are less documented for marine decapods and mainly inferred from experimental
behavioural studies (MacDonald et al. 2007, Weis 2010). The impact by the red king crab on
other benthic predators also depends on their ability to switch prey items, which may be limited

in certain species, for example predatory sea stars.

The further northwards expanding edible crab (Cancer pagurus) may become a new competitor
along the coast. So far, low habitat overlap between the red king crab and the snow crab
(Chionoecetes opilio) suggests little competition, despite large overlap in food sources (Sundet
& Bakanev 2014, Divine et al. 2015)
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The king crab niche overlap with fish species such as haddock, cod and flatfish was
considerably low (Paper Il and Ill), and these species were not affected by increasing
abundances of crabs. Most fish fed on pelagic pathways, while the crab utilised mostly detritus
pathways (Paper I11) and fed at higher trophic levels (Paper Il and 111), primarily due to the facts
that these crabs can utilize large and mobile (and mostly more predatory) prey species. Cottids
and haddock share similar prey resources with red king crabs (Paper I11), which is not indicated
by isotopic niches (Paper Il and Kéllgren et al. 2014). Our results demonstrated little effect on
these fish species in model simulations and this was likely due to the actual high production in
prey, such as polychaetes. A low negative impact on fish species would support the claim by
Dvoretsky and Dvoretsky (2015), who compared fluctuations in major commercial fish stocks
in the Barents sea (haddock, cod, saithe and capelin) to red king crab abundances (since its
introduction) and concluded that there was no effect by the crab. However, there is evidence
for an impact on lumpsucker (Cyclopterus lumpus) recruitment, due to predation on eggs
(Mikkelsen & Pedersen 2012). A few fish eggs were found in crab stomachs in this study (Paper
I1) but were not further identified to species. Fish eggs predation was not implemented in
Ecopath models. Thus, effects by egg predation could not be evaluated and competition with

fish at other localities cannot be excluded.

Ecopath models and simulations indicated a competitive effect on benthic invertebrate feeding
sea birds in the outer areas (Paper Ill). A negative impact on bird populations due to an
introduction of a decapods has, to our knowledge, not been documented, mostly because other
crabs may act as substitute prey species (Grosholz et al. 2000, Wong & Dowd 2013). Common
eider ducks (Somateria molissima), one of the dominating species in this group (Paper I11), are
unlikely to be able to use king crabs as major prey, while gulls have been observed to feed on
red king crabs (my observations), but it is very uncertain to what extent. Decline or behavioural
responses such as the switch of foraging areas may be a consequence of king crab invasion in
Porsangerfjord.

4.4 Applicability and limitations of this work

The present study built on extensive local field sampling which improved data quality and
accuracy of measures. Despite only looking at one fjord ecosystem, there is no reason why the
approach used in this study is not applicable to other high-latitude systems, and the role of the

red king crab in the food web and its impact are likely to be similar in other invaded areas.

42



As with many other ecological studies, the present study was restrained by cost and effort and
has a number of flaws and limitations, due to common fluctuations and imprecisions regarding

sampling and sample treatment.

One of the major restrictions is that we lack quality time series and pre-invasion data, which
would largely help in evaluating proposed impacts and separate environmental impacts from
predation impacts (see Paper I). Such data exists for the inner-eastern section of Porsangerfjord,
and this data illustrates that benthic inter-annual variation in biomass was considerably low
from 2006 to 2011, validating estimates given in Paper I (Fig. 5). Additionally, information on
sediment characteristics would likely help in explaining observed patterns of benthic production
(e.g. Linetal. 2016).
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Fig. 5 Macrobenthic biomass (g wet weight m) at sampled locations in inner Porsangerfjord
in the years 2006 (Oug & Fuhrmann 2013), 2010 (data from Paper 1) and 2011 (Oug &
Fuhrmann 2013). A high biomass in Laiva (shallow station located between Austerbotn and
Roddenessjgen, see Fig. 2) in 2010 was due to one large bivalve in the single replicate. Error

bars denote standard deviations.

We omitted how predation may affect benthic biodiversity. Biodiversity is considered
important for ecosystem function (McCann 2000, Hooper et al. 2005) and invasive species are

seen as a major threat causing species extinctions on a local and global scale (Bax et al. 2003,
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Molnar et al. 2008), with the latter scale being likely more uncertain (Gurevitch & Padilla
2004). There does not seem to be evidence for biodiversity per se as a major driver of benthic
production and looking at functional biodiversity or trait composition (including body sizes)
may be more relevant in this aspect (Bolam & Eggleton 2014 and Paper ). However,
biodiversity may have implications for energy flow, productivity and stability in food webs,
and may be worth addressing (Worm & Duffy 2003, Pedersen et al. 2016).

One should keep in mind that non-trophic interactions such as habitat facilitation and
modification also play an important role in ecological communities (Stachowicz 2001). We
have exclusively looked at trophic interactions, while the red king crab may affect habitats and,
as we show in paper I, structuring species (such as macroalgae). For instance, red king crabs
have been shown to effect sediment quality by removing bioturbating species (Oug et al. 2011).
More recently, mediating functions have been incorporated into EWE (Christensen et al. 2008),
allowing for a better representation of habitat provisions by certain species. These functions
may be applied in the future to our EwWE model for a closer investigation of the importance of
macroalgae as a habitat for benthic fauna and juvenile fish in areas where red king crab prey on

grazing sea urchins.

The grouping of species in Ecopath models may blur effects on species levels. Uncertainty in
Ecopath usually reflects the quality of the input data and could be reduced by more field data.
Diet input for red king crabs to Ecopath (Paper 111) was based on the frequency of occurrence
of prey in stomachs (Paper Il), which is not ideal for accurate estimation of diet proportions.
Stable isotopes can be used as an input to food web models (Ramsvatn 2013), but mixing
models tend to have difficulties dealing with multiple possible prey resources as is common in
generalists (Newsome et al. 2012). Grouping prey items usually introduces additional
uncertainty (Ward et al. 2011). Although Bayesian models can deal with numerous potential
resources, they are sensitive towards accurate discrimination factors AS**C and AS*°N (Bond &
Diamond 2011) in which these models are no longer applicable. The spread in benthic stable
isotope signatures was considerable between species groupings used in Ecopath models,
indicating different diets. In this way, Ecopath groupings present generalizations, and are a
consequence of trade-offs between minimizing complexity and obtaining sufficient resolution

in order to describe major energy flows.
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4.5 Conclusions and future perspectives

This thesis provides new knowledge on how predation by the red king crab may effect benthic
community productivity and pertubate the food web. Simultaneously, this thesis lays the
foundation for future monitoring in the Porsangerfjord and identifies important species (e.g.

long-lived benthic invertebrates and macroalgae) as indicators of predation effects.

Benthic communities in Porsangerfjord followed environmental and predation gradients, which
affected community traits, such as composition and size structure, resulting in different
production and P/B patterns. The red king crab is a generalist, opportunistic predator, feeding
on multiple trophic levels. Small and large crabs are likely to affect different habitats and prey
species, but took a similar trophic position in the food web. The red king crab played an
important role in the Porsangerfjord food web though top-down effects on large, long-lived
benthic invertebrate groups by medium and large sized crabs, but had little significance as prey
for higher trophic levels and effected mostly the benthic compartment of the food web. Niche
overlap and competitive effects with fish species was comparably low, but may be of
significance for benthic invertebrate feeding birds and large predatory invertebrates, the latter
also being prey for red king crabs. In the future, king crabs may partly replace these
invertebrates as major predators in the benthos. Figure 6 summarizes the role of the red king
crab, its trophic links and hypothetical impacts in the food web of Porsangerfjord. Predation
pressure by the red king crab may be buffered by high production in some prey, such as
polychaetes, but may lead benthic communities to an overall lower biomass and higher turnover
system, with unknown consequences for ecosystem stability and resilience. King crabs could
however help in the regrowth of macroalgae through predation on herbivorous sea urchins, but
this needs further empirical evidence and implementation in future models. The total impact of
the red king crab will largely depend on the abundance and the distribution of red king crabs.
Knowledge on local and regional distribution of different size classes and seasonal patterns in
red king crab migration would largely benefit future impact studies.
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Porsangerfjord food web without red king crab Porsangerfjord food web with red king crab
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Fig. 6 Conceptual model of a simplified food web in Porsangerfjord, illustrating the role and
hypothetical effect of invasion by the red king crab (in red). Excluded are pelagic primary
producers and detritus sources. Circle size is scaled to change in biomass due to an increase in
red king crab abundances obtained from the EwE scenario for subarea 3 (Paper 111).

EwE modelling can help to uncover indirect consequences, but time series data are needed to
validate possible mechanisms. Experimental studies are important for model parameterization
and uncertainty in consumption estimates could be overcome by future experiments imitating

local conditions of the system in question.

The dispersal of the red king crab is an ongoing process (Windsland et al. 2014) along with the
dispersal of snow crabs into the Arctic (Alvsvag et al. 2008, Sundet & Bakanev 2014). As red
king crabs become more abundant in the inner area of Porsangerfjord, results from this study
provide valuable pre-invasion data on benthic biomass and production. Because of the Arctic
nature of this inner fjord area, we hope that this time-series study can continue, as it will provide

valuable information on how Arctic benthic communities will respond to invasive species.
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In Varangerfjord, where red king crabs had reached high initial densities and caused a reduction
in benthic biomass (Oug et al. 2011), there were indications that crabs have exceeded the limits
of the natural carrying capacity (i.e. benthic production), which was reflected in lower
individual fecundity and a recent reduction in stock (Hjelset et al. 2012, Windsland 2014).
However, it remains difficult to distinguish the effects caused by high fishing pressure from the
crab’s invasion history. In Norway, red king crab management aims at sustaining a viable stock,
while further reducing the spread of the current population. In general, king crab management
in the Barents Sea still largely depends on the socio-economic benefits of the fishery (Falk-
Petersen 2012). With the results of this study in mind, it is crucial to continue the effort of
limiting the further expansion of this stock if the overall goal is to maintain ecosystem structure
and functionality.
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