Vis enkel innførsel

dc.contributor.authorMohapatra, Soumya R.
dc.contributor.authorSadik, Ahmed
dc.contributor.authorTykocinski, Lars-Oliver
dc.contributor.authorDietze, Jørn
dc.contributor.authorPoschet, Gernot
dc.contributor.authorHeiland, Ines
dc.contributor.authorOpitz, Christiane A.
dc.date.accessioned2020-01-23T08:50:02Z
dc.date.available2020-01-23T08:50:02Z
dc.date.issued2019-12-04
dc.description.abstractAbnormal circulation in solid tumors results in hypoxia, which modulates both tumor intrinsic malignant properties as well as anti-tumor immune responses. Given the importance of hypoxia in glioblastoma (GBM) biology and particularly in shaping anti-tumor immunity, we analyzed which immunomodulatory genes are differentially regulated in response to hypoxia in GBM cells. Gene expression analyses identified the immunosuppressive enzyme tryptophan-2,3-dioxygenase (TDO2) as the second most downregulated gene in GBM cells cultured under hypoxic conditions. TDO2 catalyses the oxidation of tryptophan to N-formyl kynurenine, which is the first and rate-limiting step of Trp degradation along the kynurenine pathway (KP). In multiple GBM cell lines hypoxia reduced TDO2 expression both at mRNA and protein levels. The downregulation of TDO2 through hypoxia was reversible as re-oxygenation rescued TDO2 expression. Computational modeling of tryptophan metabolism predicted reduced flux through the KP and lower intracellular concentrations of kynurenine and its downstream metabolite 3-hydroxyanthranilic acid under hypoxia. Metabolic measurements confirmed the predicted changes, thus demonstrating the ability of the mathematical model to infer intracellular tryptophan metabolite concentrations. Moreover, we identified hypoxia inducible factor 1α (HIF1α) to regulate TDO2 expression under hypoxic conditions, as the HIF1α-stabilizing agents dimethyloxalylglycine (DMOG) and cobalt chloride reduced TDO2 expression. Knockdown of HIF1α restored the expression of TDO2 upon cobalt chloride treatment, confirming that HIF1α controls TDO2 expression. To investigate the immunoregulatory effects of this novel mechanism of TDO2 regulation, we co-cultured isolated T cells with TDO2-expressing GBM cells under normoxic and hypoxic conditions. Under normoxia TDO2-expressing GBM cells suppressed T cell proliferation, while hypoxia restored the proliferation of the T cells, likely due to the reduction in kynurenine levels produced by the GBM cells. Taken together, our data suggest that the regulation of TDO2 expression by HIF1α may be involved in modulating anti-tumor immunity in GBM.en_US
dc.identifier.citationMohapatra, Sadik, Tykocinski, Dietze, Poschet, Heiland, Opitz. Hypoxia Inducible Factor 1α Inhibits the Expression of Immunosuppressive Tryptophan-2,3-Dioxygenase in Glioblastoma. Frontiers in Immunology. 2019en_US
dc.identifier.cristinIDFRIDAID 1778037
dc.identifier.doi10.3389/fimmu.2019.02762
dc.identifier.issn1664-3224
dc.identifier.urihttps://hdl.handle.net/10037/17197
dc.language.isoengen_US
dc.publisherFrontiers Mediaen_US
dc.relation.journalFrontiers in Immunology
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/FRIMED2/250395/Norway/The NAD metabolome of human cells - understanding a fundamental metabolic and signalling network//en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2019 The Author(s)en_US
dc.subjectVDP::Medical disciplines: 700::Basic medical, dental and veterinary science disciplines: 710en_US
dc.subjectVDP::Medisinske Fag: 700::Basale medisinske, odontologiske og veterinærmedisinske fag: 710en_US
dc.titleHypoxia Inducible Factor 1α Inhibits the Expression of Immunosuppressive Tryptophan-2,3-Dioxygenase in Glioblastomaen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel