Vis enkel innførsel

dc.contributor.authorRepisky, Michal
dc.contributor.authorKonecny, Lukas
dc.contributor.authorKadek, Marius
dc.contributor.authorKomorovsky, Stanislav
dc.contributor.authorMalkina, Olga L.
dc.contributor.authorMalkin, Vladimir G.
dc.contributor.authorRuud, Kenneth
dc.date.accessioned2016-03-04T12:54:57Z
dc.date.available2016-03-04T12:54:57Z
dc.date.issued2015-01-21
dc.description.abstractWe report the first implementation of real-time time-dependent density functional theory (RT-TDDFT) at the relativistic four-component level of theory. In contrast to the perturbative linear-response TDDFT approach (LR-TDDFT), the RT-TDDFT approach performs an explicit time propagation of the Dirac–Kohn–Sham density matrix, offering the possibility to simulate molecular spectroscopies involving strong electromagnetic fields while, at the same time, treating relativistic scalar and spin–orbit corrections variationally. The implementation is based on the matrix representation of the Dirac–Coulomb Hamiltonian in the basis of restricted kinetically balanced Gaussian-type functions, exploiting the noncollinear Kramers unrestricted formalism implemented in the program ReSpect. We also present an analytic form for the delta-type impulse commonly used in RT-TDDFT calculations, as well as a dipole-weighted transition matrix analysis, facilitating the interpretation of spectral transitions in terms of ground-state molecular orbitals. The possibilities offered by the methodology are illustrated by investigating vertical excitation energies and oscillator strengths for ground-state to excited-state transitions in the Group 12 atoms and in heavy-element hydrides. The accuracy of the method is assessed by comparing the excitation energies obtained with earlier relativistic linear response TDDFT results and available experimental data.en_US
dc.descriptionAccepted manuscript version. Published version at <a href=http://doi.org/10.1021/ct501078d>http://doi.org/10.1021/ct501078d</a>.en_US
dc.identifier.citationJournal of Chemical Theory and Computation 2015, 11(3):980-991en_US
dc.identifier.cristinIDFRIDAID 1239526
dc.identifier.doi10.1021/ct501078d
dc.identifier.issn1549-9626
dc.identifier.urihttps://hdl.handle.net/10037/8702
dc.identifier.urnURN:NBN:no-uit_munin_8266
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.projectIDNorges forskningsråd: 214095en_US
dc.relation.projectIDNorges forskningsråd: 179568en_US
dc.relation.projectIDNotur/NorStore: NN4654Ken_US
dc.relation.projectIDEU: 279619en_US
dc.rights.accessRightsopenAccess
dc.subjectVDP::Mathematics and natural science: 400::Chemistry: 440::Theoretical chemistry, quantum chemistry: 444en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Kjemi: 440::Teoretisk kjemi, kvantekjemi: 444en_US
dc.titleExcitation Energies from Real-Time Propagation of the Four-Component Dirac–Kohn–Sham Equationen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel