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Abstract—A large fraction of the Electronic Health Records
consists of clinical multivariate time series. Building models for
extracting information from these is important for improving
the understanding of diseases, patient care and treatment. Such
time series are oftentimes particularly challenging since they are
characterized by multiple, possibly dependent variables, length
variability and irregular samples. To deal with these issues when
such data are processed we propose a probabilistic approach
for learning pairwise similarities between the time series. These
similarities constitute a kernel matrix that can be used for many
different purposes. In this work it is used for clustering and
data characterization. We consider two different multivariate
time series datasets, one of them consisting of physiological
measurements from the Department of Gastrointestinal Surgery
at The University Hospital of North Norway and we show the
proposed method’s robustness and ability of dealing with missing
data. Finally we give a clinical interpretation of the clustering
results.

I. INTRODUCTION AND BACKGROUND

The digitalization of the healthcare systems has lead to
enormous opportunities for developing data-driven systems for
extracting useful information from Electronic Health Records
(EHRs) that can be used to improve the daily care and
treatment of the patients. However, the fact that the very nature
of the data is uniquely complex, has forced researchers to not
merely re-use methods that have been shown to work well in
other application domains, but to develop novel approaches
specially designed for this particular kind of data [1].

A large fraction of the data in the EHRs consists of measure-
ments over time such as blood tests and other physiological
variables. The blood tests are important for understanding
the patients’ health status and the dynamics of their disease.
Even small deviations over time can be indicators of serious
underlying complications or diseases. To manually identify
such changes is both a cumbersome and time consuming task
that can be very difficult as well. Therefore, a reliable system
that automatically discovers irregularities will benefit both the
patients and the care givers, since complications could be
identified at an earlier stage, and human resources could be
allocated more efficiently.

The task of interpreting data relative to blood measurements
could be thought of as comparing how similar or dissimilar
patients are to each other. If the clinician identifies a pattern

deviating from nominal conditions, an action is immediately
taken. In the machine learning field, many methods require to
evaluate a suitable similarity metric on the data. In the time
series domain, by providing a dissimilarity measure that is
meaningful for the application at hand, one can, in theory,
apply several kinds of classical clustering procedures, such as
e.g. k-means, hierarchical clustering or spectral clustering [2].

To compare time series, Dynamic time warping (DTW) [3]
is one of the most famous methods and it has become the state-
of-the-art dissimilarity measure in most applications. Many
other approaches have been proposed in the literature, which,
however, are limited to deal with univariate time series, where
the values are regularly sampled and have no missing data.

However, the time series from the are often more com-
plex. They can be characterized by multiple possibly inter-
dependent variables, length variability (patients are monitored
for different time periods), short time duration, and the time
series are usually irregularly sampled over time [4], [5].

The DTW is designed to deal with the issues of length
variability and different sampling rates, since one simply can
compute the dissimilarity between time series of different
length. There also exist several formulations for extending the
DTW to the multidimensional setting [6]. However, in the case
of multivariate time series with missing data no solution that
works well in every circumstance has been proposed [7].

There have been some other attempts to deal with the
aforementioned issues. Cruz et al. introduced a method based
on fuzzy clustering where first order derivatives are accounted
as features and imputation is used to deal with missing data
in univariate time series [8]. Ghassemi et al. proposed to
transform the irregularly sampled time series into a new latent
space using multi-task Gaussian processes (MTGP) models
to learn a similarity metric [9]. However, this was done in
a supervised setting. Lasko et al. proposed a method for
phenotype discovery using Gaussian process regression and
deep learning [10]. Marlin et al. introduced a probabilistic
approach to deal with the problem of missing data [11].
Specifically, they modeled the data using a mixture of diagonal
covariance normal distributions. Under a missing at random
(MAR) assumption [12], this method can effectively deal
with missing data. Furthermore, to create robustness against



sparsely-sampled data they put priors on the parameters and
used a maximum a posteriori (MAP) algorithm to estimate
the model. This yields estimates of the mean, which are
smoother than ordinary maximum likelihood expectation max-
imization (EM) estimation [13]. They showed that even though
the MAR assumption could be violated, the method still
works and manages to discover interesting patterns in EHR
data. However, a downside is the selection of three different
hyper-parameters, whose tuning is not obvious. In particular,
modeling the covariance in time is difficult; choosing a too
small hyper-parameter leads to a degenerate covariance matrix,
which cannot be inverted. On the other hand, a too large
choice will basically remove the covariance such that the prior
knowledge is not incorporated. In addition to the problem of
choosing hyper-parameters, the method does not provide an
obvious way of determining the number of clusters, which
has to be set a-priori.

The recently proposed probabilistic cluster kernel
(PCK) [14] is a promising approach that tackles the hyper-
parameter dependency problems by introducing consensus
clustering [15] into the Gaussian mixture model (GMM)
framework for learning a parameter–free kernel. This kernel is
supposed to account for probabilistic similarities at different
resolutions. Furthermore, one obtains a similarity measure,
embedded into a kernel matrix, that can be employed by
kernel methods for e.g. feature extraction, classification or
regression. So far, the PCK framework has been applied in
the classical case of regular multivariate time-independent
data [14].

In this work, we introduce a kernel approach that captures
similarities between time series and is able to deal with
the aforementioned real-data issues. The idea is to fuse the
best from two approaches by using the probabilistic approach
introduced by Marlin as a basis in the PCK framework.
More specifically, we perform the MAP-EM for the diago-
nal covariance GMMs multiple times with different hyper-
parameter choices and varying number of Gaussians. By doing
so, we learn a probabilistic cluster kernel, which is a robust
similarity measure for irregularly sampled multivariate time
series. After having learned the kernel, we apply standard
spectral clustering. We evaluate the proposed method both to
simulated time series, with and without missing data, and to
real-world medical data. In order to assess the effectiveness
of the novel method in a comparative study, we propose
several extensions of the DTW framework and to compare the
performance of these approaches with the proposed method
and the MAP-EM diagonal covariance GMM.

II. METHODS

This section consists of two different parts that can be read
separately. First, we explain the diagonal covariance Gaussian
mixture model framework. Thereafter, the PCK framework is
described. Due to space limitations we do not describe the
DTW framework here, but for the interested reader we refer
to [3], [6].

A. MAP-EM diagonal covariance GMM augmented with em-
pirical prior.

1) Notations and model description: Assume that there are
N multivariate time series, each of them consisting of V
variables that are observed over T time intervals. We define
a tensor X consisting of the entries xnvt, which are the
realizations of the stochastic variable Xnvt relative to variable
v at time t in the n-th time series. We let R be the tensor with
entries rnvt = 0 if the realization xnvt is missing and rnvt = 1
if observed. In the following, if nothing else is specified, letters
that appear with and without indices refer to tensors and their
entries, respectively.

Given a multivariate time series n, described by the matrix
xn, we want to assign it to one of the G Gaussian distributions.
With Zn = g, we denote the assignment of xn to cluster g
and let θg be the parameter of the discrete prior distribution
over the clusters. The density for the g-th cluster is completely
described by the first two moments, µgvt and σ2

gv , with the
assumption that the variance is assumed to be time indepen-
dent.

The basic model is described by the equations

P (Zn = g) = θg, (1)

P (Xnvt = xnvt | µgvt, σgv) = N (xnvt; µgvt, σ
2
gv). (2)

Under the MAR assumption, the missing data can be ignored
in the likelihood computation [11], [12] and the posterior can
be evaluated as

πng ≡ P (Zn = g | xn, rn, θ, µ, σ)

=
θg
∏V

v=1

∏T
t=1N (xnvt; µgvt, σ

2
gv)

rnvt∑G
k=1 θk

∏V
v=1

∏T
t=1N (xnvt; µkvt, σ2

kv)
rnvt

(3)

2) Parameter estimation using MAP-EM: To be able to
deal with large amounts of missing data one can introduce
informative priors for the parameters and estimate them using
MAP-EM. This will ensure that it is possible to obtain a
smooth mean over time in each cluster and that in clusters
containing few time series their parameters are similar to the
overall mean and covariance.

A kernel based Gaussian prior on the mean enforces
smoothness,

P (µgv |mv, Sv) = N (µgv; mv, Sv), (4)

where mv is the empirical mean and the prior covariance
matrix, Sv , is defined via the kernel,

Ktt′ = b0 exp(−a0(t− t′)2), (5)

and the empirical standard deviation sv as

Sv = svKtt′ , (6)

where a0, b0 are user-defined hyper-parameters. On the stan-
dard deviation σgv we put an inverse Gamma distribution prior,

P (σgv |N0, sv) ∝
1

σN0
gv

exp

(
−N0sv

2σ2
gv

)
, (7)



Algorithm 1 MAP-EM diagonal covariance GMM
1: for i = 1 to I do
2: for n = 1 to N , g = 1 to G do
3: πng ← P (Zn = g | xn, rn, θ, µ, σ)
4: end for
5: for g = 1 to G, v = 1 to V do
6:

θg ← N−1
∑N

n=1 πng

7:

σ2
gv ←

N0s
2
v +

∑N
n=1

∑T
t=1 rnvtπng(xnvt − µgvt)

2

N0 +
∑N

n=1 rnvtπng

8:
µgv ←

(
S−1v + σ−2gv

∑N
n=1 πngdiag(rnv)

)−1
·
(
S−1v mv + σ−2gv

∑N
n=1 πngdiag(rnv) xn

)
9: end for

10: end for
Output {θ, σ2, µ} and πn(q,G) = (πn1, . . . , πnG)

T for n =
1 : N , where q represent the initialization.

where N0 is a user-defined hyper-parameter.
The parameters are now estimated using MAP EM as

shown in Algorithm 1. The E-step is exactly the same as
for maximum-likelihood EM, however the M-step differs
because of the priors on the mean and variance. The speed of
convergence depends on the initial cluster assignments. Here,
we propose to kick-start by initially performing a single round
of k-means where missing data are replaced by mean values.

B. Probabilistic cluster kernel

MAP EM outcome heavily depends on the initial choices
that have to be made; hyper-parameters a0, b0, N0, number of
clusters K, initial mean vectors (and standard deviation) µkvt

and σ2
kv . To address this problem we propose to exploit a

more robust consensus framework, i.e. the probabilistic cluster
kernel. In this work, the framework is applied for the first time
to time series containing missing data.

The PCK similarity matrix, K, is built by fitting diagonal
covariance Gaussian mixture models to the multivariate time
series for a range of number of mixture components. By
generating partitions at different resolutions, one can capture
both the local and global structure of the data. For each reso-
lution (number of components) the model is estimated using
MAP-EM over a range of random initializations and randomly
chosen hyper-parameters. The posterior distribution relative to
the cluster assignment, that is computed for every time series,
is then used to build the PCK matrix following a consensus
clustering strategy, where one adds up the contribution from
every hyper-parameter configuration and initialization [15].
Algorithm 2 delivers the details of the method.

After having learned the probabilistic cluster kernel K, we
apply spectral clustering [2]. Note that we perform clustering
twice, first to learn K, thereafter to generate the final partition
according to K. A justification for this is given in [14].

Algorithm 2 PCK
Input Dataset X , Q initializations, C number of clusters.

1: for q = 1 to Q, c = 2 to C do
2: MAP-EM diagonal covariance GMM with c clusters

and initialization q over X → πn(q, c).
3: for n = 1 : N , m = 1 : N do
4: Knm ← Knm + πn(q, c)

Tπm(q, c)
5: end for
6: end for

Output K PCK kernel matrix, MAP-EM diagonal covariance
GMM clustering parameters.

III. EXPERIMENTS AND RESULTS

In this section we apply the proposed method to two
different datasets. First, we test our method on a synthetic
two-variate time series. Then, we present a real-world dataset
consisting of blood tests of patients at the University Hospital
of North-Norway (UNN) and we discuss the results obtained.

A. Simulated two-variate time series generated from a vector
autoregressive model

We generate a two-variate time series dataset from a first-
order vector autoregressive model [16], VAR(1), given by(

Xt

Yt

)
=

(
α1

α2

)
+

(
ρx 0
0 ρy

)(
Xt−1
Yt−1

)
+

(
ut
vt

)
(8)

It is easily shown that, if the noise (ut, vt)
T has zero mean,

the α-constants and the mean of the process are related by(
α1

α2

)
=

(
1− ρx 0

0 1− ρy

)
E

(
Xt

Yt

)
. (9)

To make Xt and Yt correlated with corr(Xt, Yt) = ρ it can
also be shown that we must choose the noise term such that

corr(ut, vt) = ρ (1− ρxρy) [(1− ρ2x)(1− ρ2y)]−1 (10)

We simulate 100 two-variate time series of length 50 from
the VAR(1)-model with parameters ρ = ρx = ρy = 0.8,
E[(Xt, Yt)

T ] = (0.5,−0.5)T . Furthermore, we simulate 100
time series using the parameters ρ = −0.8, ρx = ρy = 0.6,
E[(Xt, Yt)

T ] = (0, 0)T . Hence, the dataset consists of two
clusters.

We apply the MAP EM and the PCK to the simulated
VAR(1) dataset with different fractions of missing data. To
ensure the MAR assumption is satisfied, we sample uniformly
the time intervals and the features that are removed. We choose
to discard 0, 10, 20, 30, 40, 50 and 60 % of the values in the
dataset.

In our experience the most sensitive hyper-parameter is the
bandwidth of the time-kernel Ktt′ . For the MAP EM we use
three different choices for a0: 0.01, 0.1 and 1. We let b0 = 0.1
and n0 = 0.01. We run maximally 50 iterations of the E- and
M -steps and report the mean accuracy of 100 runs of the
algorithm.

For the PCK we use g = 2, . . . , 30 number of clusters
and 30 different, randomly chosen, initializations and sets of



hyper-parameters (a0, b0, N0). The initial cluster assignments
are made by running one round of k-means on one randomly
chosen variable. a0 is sampled with a uniform distribution
from (0.001, 1), b0 from (0.005, 0.2) and n0 from (0.001, 0.2).
We run 10 iterations of the MAP EM algorithm, varying each
time initialization and hyper-parameter configuration. If the
reciprocal condition number for Sv is lower than 10−15 we
draw a new value for a0.

We compare the proposed similarity measure to different
versions of DTW, which extend the basic formulation in
order to account for multivariate time series and missing data:
dependent (d) and independent (i) DTW with imputation of
the mean (I), imputation using linear interpolation (II), and
no imputation but instead using time series of different length
(III). DTW returns a dissimilarity matrix, D, from which we
compute K = exp(−D2/σ). To guarantee that this procedure
is not affected by a poorly chosen bandwidth, we select σ by
performing a grid search and picking the one that yields the
best accuracy. Finally, we apply spectral clustering to K.

TABLE I
ACCURACY ON SIMULATED VAR(1) DATASET OBTAINED USING THREE

DIFFERENT METHODS; PCK FOLLOWED BY SPECTRAL CLUSTERING,
DIAGONAL COVARIANCE GMMS ESTIMATED USING MAP EM AND DTW

FOLLOWED BY SPECTRAL CLUSTERING.

% missing 0 10 20 30 40 50 60
PCK 0.94 0.94 0.91 0.92 0.90 0.89 0.87

MAP, a0 = 0.01 Covariance matrix not invertible
MAP, a0 = 0.1 0.79 0.80 0.78 0.79 0.79 0.77 0.77
MAP, a0 = 1 0.80 0.82 0.80 0.82 0.82 0.81 0.83

DTW (d) I 0.76 0.75 0.75 0.73 0.73 0.70 0.66
DTW (d) II 0.76 0.75 0.74 0.75 0.74 0.74 0.73
DTW (d) III 0.76 0.74 0.73 0.72 0.70 0.65 0.65
DTW (i) I 0.64 0.74 0.75 0.69 0.80 0.55 0.67
DTW (i) II 0.64 0.69 0.71 0.72 0.74 0.71 0.69
DTW (i) III 0.64 0.65 0.55 0.59 0.62 0.57 0.52

The 6 last rows in Table I shows the accuracy obtained using
the different variants of DTW for the different fractions of
missing data. The first thing to notice is that the 6 approaches
behave quite differently. Hence, it will be difficult to choose
the best approach for a new dataset. We also notice that the
independent DTW provides unstable results. Dependent DTW
with linear interpolation gives the best results and a stable
accuracy as function of missing ratio. However, compared to
PCK and diagonal covariance GMM, we see that this method
gives the worst results. The accuracies obtained using diagonal
covariance GMM MAP EM remain stable as the fraction of
missing data increase and are, in general, better than the results
for DTW. However, the table also reveals a problem with the
MAP EM. If the bandwidth for the time-kernel is chosen to
small the (reciprocal) condition number of covariance matrix
becomes very small. On the other hand, if the bandwidth is
chosen to large there will not be any covariance in time.

The results obtained using the PCK are shown in the first
row in Table I and are much better than the other two methods.
The accuracy is also pretty stable as the fraction of missing
data increases. Figure 1 shows the mean in the two different
clusters for both variates in the simulated VAR(1) dataset with
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Fig. 1. Mean of the two variables (first variable in the upper plot) in
the simulated VAR(1) dataset with 0 % missing data for the two clusters
identified by the proposed method. The dashed red lines correspond to one
randomly selected time series from the red cluster (non-zero mean and positive
correlation) and the dashed black line represents one randomly chosen times
series from the cluster generated from the VAR(1) model with zero mean and
negative correlation.
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Fig. 2. Top: Fraction of missing data from 10 days before surgery to 20 days
after for each blood test. Bottom: Fraction of missing data from the day of
surgery to 10 days after for each blood test.

no missing data obtained using the PCK. The figure also shows
examples of one time series from each of the two clusters.

B. Clinical dataset

Through our close collaboration with UNN we have access
to the EHR for patients at the department of Gastrointestinal
Surgery from 2004 to 2012. In this work we consider phys-
iological measurements and, in particular blood tests. Blood
tests from the same database have earlier been used, either as
the only source or as one of several sources, for predicting
postoperative complications [17]. Here they are for the first
time used for clustering.

We have access to all blood tests for 1138 patients that have
undergone a major abdominal surgery. The dataset contains all
blood tests performed in the period from 10 days before the
surgery to 20 days after the surgery. Table II shows the 18
different blood tests available.



TABLE II
NAME OF THE 18 BLOOD MEASUREMENTS WE HAVE ACCESS TO.

Blood test Abbr. Unit
Hemoglobin Hb g/dl
Leukocytes Leu 109/l

Sodium Na mmol/l
Potassium K mmol/l
Albumin Alb g/l

C-Reactive Protein CRP mg/l
Creatinine C
Glucose G

Trombocytes T
potentia Hydrogenii pH
Pressure of oxygen pO2

Pressure of carbon dioxide pCO2

Alanine aminotransferase ALAT
Aspartate aminotransferase ASAT

Bilrubin total BT
Gamma-glutamyl transferase GT

Alkaline phosphatase AP
Lactate Lac

In each case, we see that the data have the usual character-
istics of clinical time series [4], namely multiple variables (18
different blood tests), short sampling period, irregular samples
and length variability. In fact, measurements span from 10
days before to 20 days after surgery, but for most patients
there are measurements only for a few of these days and not
all blood tests are reported. This is illustrated in Figure 2,
where we have plotted the fraction of missing data for the
different blood tests in two different time frames. We see that
for 6 blood tests, hemoglobin, leukocytes, sodium, potassium,
albumin and CRP, the missing ratio is approximately 50
percent in the time frame from the day of surgery to 10 days
after. For the rest of the blood tests, the missing ratio is higher
than 80 percent. If we consider a larger time frame from 10
days before surgery to 20 days after the ratio of missing data
is even higher. For this reason, we consider only these 6 blood
tests and exclude the rest of them. We restrict ourselves to all
available measurements in the time frame of length 10 days,
starting at the day of surgery. None of the patients have more
than one measurement each day.

To ensure that we consider patients where the ratio of
missing data is not too high, we create a cohort that consists
of those patients that have at least 5 measurements of each of
the 6 blood tests after the surgery. Hence patients that leave
the hospital within 5 days after the surgery are not considered.
This results in a cohort consisting of 139 patients.

We apply the PCK to this dataset and use exactly the same
setup as we did for the simulated dataset. We run spectral
clustering using the learned PCK similarity and report results
for two and three clusters.

Figure 3 and Figure 4 show the mean for each of the
six blood tests hemoglobin, leukocytes, sodium, potassium,
albumin and CRP in the 2 (or 3) clusters obtained using
PCK followed by spectral clustering. Table III shows some
characteristics of the clusters that are obtained. It seems like
cluster 1 contains weaker patients, they are older (73 and 75
years), have a higher fraction of non-planned surgeries (76 and
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Fig. 3. Plots of the mean as function of days after surgery for the 6 different
blood tests obtained running spectral clustering with two clusters using the
learned PCK similarity. Black represents cluster 1 and red cluster 2. Top left:
Hb, Top right: Leukocytes, middle left: Sodium. Middle right: Potassium.
Bottom left: albumin. Bottom right: CRP.
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Fig. 4. Plots of the mean for the 6 different blood tests obtained running
spectral clustering with three clusters.

TABLE III
CHARACTERISTICS (MEAN AGE, FRACTION MEN, FRACTION ELECTIVE

SURGERIES, FRACTION LAPAROSCOPIC SURGERIES, MEAN ASA-SCORE
AND FRACTION DEAD AT DISCHARGE) IN THE DIFFERENT CLUSTERS

OBTAINED USING PCK ON THE BLOOD DATA.

age frac. men elective lapa stoma ASA dead
Two clusters of size 17 and 122

1 73 0.59 0.31 0.06 0.59 2.75 0.18
2 66 0.56 0.66 0.11 0.28 2.58 0.07

Three clusters of size 16, 38 and 85
1 75 0.56 0.31 0.06 0.63 2.73 0.19
2 66 0.74 0.74 0.16 0.32 2.57 0.02
3 66 0.48 0.62 0.09 0.26 2.59 0.08

75 percent) where most of them are open (not laparoscopic)
(94 %). Most of them have had a stoma surgery (59 and 63
%). They also have a slightly higher ASA score, which shows
that their general health status is weaker than for the general
population. This is confirmed by the fact that a larger fraction
of the patients in cluster 1 are dead at discharge.
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Fig. 5. Plot of first eigenvector of the PCK matrix versus the second
eigenvector. The colors indicate the cluster assignment, the size age and the
symbol whether the patient is dead or alive at discharge.

By focusing on the two cluster case (Figure3) we can
see that in general, even though the differences are not very
clear everywhere, cluster 1 has lower hemoglobin levels, a
leukocytes level that increases more than for cluster 2, a higher
sodium level, a lower potassium level, a lower albumin level
and a high CRP level immediately after the surgery. All these
things (except the fact that the sodium level in cluster 1 is
higher than in cluster 2) could be indicators of complications
such as e.g. postoperative delirium.

Figure 5 shows an embedding of the EHR time series data
in the PCK space. The different colors represent the three
different clusters. Triangles represent patients that died at the
hospital after the surgery. We see that most of them are in
cluster 1 (red) or in close proximity. The size of the symbols
represents the age of the patients. The age distribution is not
clear, but it seems like most of the younger patients are placed
to the left in cluster 3 (blue).

The results presented above suggest that the proposed
method is able to identify sub-cohorts of patients in the data
of different characteristics. In particular, it is interesting to
see that one of the clusters contains patients that in general
are weak and probably more exposed to severe postoperative
complications. We are in the process of investigating these
results via our close collaboration with the clinicians at UNN.
However, due to time limitations a more thorough interpreta-
tion of the results is left for further work.

IV. CONCLUSION

In this work we have introduced the probabilistic cluster
kernel for (possibly) irregularly sampled multivariate time
series. This kernel learns similarities at different scales and
is robust in the sense that it is parameter-free. It can be used
as the starting-point for all kinds of machine learning methods,
not only clustering.

By applying the PCK to simulated data and comparing to
other methods we have shown that the proposed method is

robust and provides good results. The method managed to
identify clinically interesting sub-cohorts in a blood dataset.
Currently we are working on extensions that will include more
detailed comparisons with existing methodologies and further
applications to real world scenarios.
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