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Abstract 
 
The present study was aimed at investigating northern diatoms as sustainable sources 

of omega-3 fatty acids widely used and now much needed in salmon aquaculture as well 

as ingredients to be used in nutraceuticals in the human diet. 

As known, fish oil is currently the main source of physiologically requisite fatty acids 

such as eicosapentaenoic (EPA) and docosahexaenoic acids (DHA). Due to the rapid 

increase of aquaculture production volumes and the world population in the recent 

decades, the problem of omega-3 lipid deficiency has attracted increased attention the 

last years. An increase in wild fish catches cannot be considered as the optimal solution 

to this problem, this since the anthropogenic pressure on the fish populations nowadays 

is already too high.  

In the light of the universally accepted concept of sustainable development (Sustainable 

development paradigm), it is therefore essential to find completely new, 

environmentally friendly sources of the omega-3 fatty acids. Northern cold-water 

microalgae of the diatom group (Bacillariophyceae) are, in this context, potential 

candidates here due to their high growth rates and phylum- characteristic high content 

of omega-3 fatty acids, particularly EPA. However, knowledge on diatom lipidome is 

scarse, even less is known on how different abiotic parameters influence lipogenesis 

processes in a diatom cell. 

Therefore, in the present study the northen cold-water diatoms were investigated in 

terms of their lipid and fatty acid composition. Besides, the effects of different 

cultivation parameters (light, temperature, CO2/pH) on lipogenesis were studied.  

The results of the current research demonstrated that temperature decrease together 

with moderate light intensities may trigger accumulation of the polyunsaturated fatty 

acids (including physiologically requisite EPA) in diatom species. Besides, total lipid 

content and production of certain PUFAs in a diatom cell may be enhanced by means of 

CO2 aeration. However, it should be emphasized that the metabolic responses 

demonstrated by diatoms were highly variable and species - specific. Thus, for the 

purpose of mass cultivation every single species (and even strain) should be 

investigated individually.   
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Abstract (summary in Russian) 

Настоящее исследование посвящено поиску альтернативных источников омега – 

3 жирных кислот, широко применяемых в аквакультуре и в качестве пищевых 

добавок в рационе человека. Как известно, в настоящее время рыбий жир 

является главным источником таких физиологически важных жирных кислот, 

как эйкозапентаеновая кислота (ЭПК) и докозагексаеновая кислота (ДГК). В связи 

сo стремительным увеличением объёмов мировой аквакультуры в последние 

десятилетия, а также ростом населения Земли, проблема дефицита незаменимых 

жирных кислот стоит особенно остро.  Увеличение объёмов вылова дикой рыбы 

не является оптимальным решением данной проблемы, так как в настоящее 

время антропогенный пресс на популяции промысловых рыб итак слишком 

велик. Чтобы следовать повсеместно принятой концепции устойчивого развития 

(Sustainable development paradigm), необходимо найти принципиально новые 

экологичные источники незаменимых жирных кислот. 

В качестве таких альтернативных источников были рассмотрены обитающие в 

северных морях микроводоросли группы диатомовых (Bacyllariophyceae), 

которые имеют характерное для своего филума высокое содержание омега – 3 

жирных кислот, в частности ЭПК. Микроводоросли выращивались в 

фотобиореакторах с регулируемыми параметрами культивации (свет, 

температура, pH и др.). Было рассмотрено влияние абиотических факторов, таких 

как свет, температура, аэрация углекислым газом, на рост и липогенезис 

водорослевых культур в целях определения оптимальных параметров 

культивации.  

Результаты данного исследования показали, что при определенном сочетании 

параметров культивации, строго индивидуальных для каждого тестируемого 

вида микроводорослей, возможно существенно увеличить продукцию липидов, а 

также содержание незаменимых жирных кислот в культурах. Кроме того, была 

выявлена возможность применения водорослевых культур для секвестирования 

производственных выбросов углекислого газа.   
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I look forward with great optimism. I think that we undergo not only a historical, but a 
planetary change as well. We live in a transition to the noosphere.”   

                                               - V. I. Vernadsky (“The Biosphere and the Noosphere”, 1945) 

 

Introduction 

Cold water marine diatoms and their potential for production of high quality 

lipids in mass cultures 

The contemporary world is facing numerous ecological and environmental problems 

due to the exponentially growing population, the associated increase of industrialization 

and the anthropogenic pressure imposed upon wild nature. That is why the concept of 

sustainable development is a cornerstone of successful integration with nature, which in 

the longer run can secure the survival of humanity as a biological species. Vladimir 

Ivanovich Vernadsky, a famous Russian scientist and philosopher, stated that the human 

mind or cognition is a powerful geological force analogous to that of all the living 

organisms that in eons has changed the face of the Earth by creating a “bio-sphere”. 

According to Vernadsky, the next evolutional stage of the planet’s (biosphere) 

development is its transition to a “noo-sphere” (Greek: “nous – mind”), when humanity 

using its intellectual potential will create a unique planetary guise, where the human 

interests are perfectly balanced with nature (Vernadsky 1945). It is therefore a task of 

the science, in the service of the humankind, to meet this global challenge.  

The PhD study was meant as a contribution to the establishment of more sustainable 

environmental practices, thereby minimizing the pressure put on the wild nature today.  

One central issue that today’s lipid research is focused on is finding sustainable 

alternative sources of fish oils (omega – 3 lipids) widely used in aquaculture and as 

supplements for human nutrition. As recent studies have shown, the global lack of fish 

oil supply will be a huge problem within a few years (Ward and Singh 2005). Beside this, 

the pressure put on the wild fish stocks nowadays is severe, and this can, if continued, 

lead to a collapse (Pauly et al. 2002).  
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The aquaculture today hence is “struggling” with fish oil deficiency, and this is 

“compensated” by partial or total substitution of fish oils by fats originating from 

terrestrial plants. This practice has been shown not to be optimal due to unbeneficial 

fatty acid composition of the higher plants (high n-6/n-3 ratio) that is claimed to cause 

numerous health pathologies in farmed fish (Izquierdo et al. 2005; Montero et al. 2003; 

Morkore 2006; Seierstad et al. 2005). Therefore, sources of lipids with high omega-3 

content is constantly sought for, and here the microalgae of the diatom group may be  

promising candidates due to their beneficial, omega - 3 rich lipid content (Kates and 

Volcani 1966; Levitan et al. 2014). 

Diatoms (Bacillariophyceae) are unicellular autotrophic organisms that have a 

characteristic structure – frustules, comprising two thecas i.e. silica cell walls. Depending 

on the shape of the frustule, the diatoms are subdivided into two major orders – 

Centrales and Pennales. The Centrales are radially symmetric and the Pennales have 

bilateral symmetry (Hasle and Syvertsen 1997). The diatoms are a highly diverse taxon, 

comprising 100 000 - 200 000 species (Mann and Droop 1996). Being exceptionally 

productive (40-45 % of primary oceanic production), diatoms form the basis for 

sustaining of large fisheries. In fact, diatom productivity surpasses that of the world 

tropical rainforests. Diatoms also play an important part in the biogeochemical cycling 

of C and Si (Field et al. 1998). The ecological success of this microalgal group is usually 

associated with its high genomic plasticity and ability to adapt to highly variable 

habitats (Armbrust et al. 2004).   

In the high northern latitudes, cold water diatom species are an important part of the 

marine ecosystems since they accumulate solar energy in form of energy-rich molecules, 

i.e. fats that are transferred up the food chains. This is why northern marine organisms 

are highly dependent upon diatoms, especially during the winter darkness periods 

(Sargent et al. 1985). Microalgae, particularly diatoms, synthesizes de novo all fats in the 

marine ecosystems, implying that all other organisms obtain their fats directly or 

indirectly from the diatoms (Guschina and Harwood 2009). 

Though the diatom lipidome is in general similar to that of higher plants, some 

important differences exist. In contrast to higher plants’ lipid profile, which has linoleic 

acid as the dominating polysaturated fatty acid (PUFA), the most abundant diatom fatty 
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acids are EPA and palmitoleic acid (Kates and Volcani 1966).  This is in addition to 

phospholipids, nonpolar glycerolipids, glycolipids and betaine lipids commonly present 

in microalgae (Guschina and Harwood 2009). Neutral lipids in the form of 

triacylglycerols (TAGs), diacylglycerols (DAGs) and monoacylglycerols (MAGs) can 

amount to more than 60 % of total lipids in diatoms (Chen 2012). Due to their high 

productivity, elevated lipid content and beneficial fatty acid composition, diatoms are 

often perceived as promising candidates for production of food supplements, fish feed 

and biodiesel (Adarme-Vega et al. 2012; d'Ippolito 2015; Levitan et al. 2014; Ryckebosch 

et al. 2014; Spolaore et al. 2006). 

The idea to use microalgae as “biofactories” for lipid production is not a novel one. The 

attempts to “tame” microalgae dates back to the early 50’s, when alternative protein 

sources were intensively sought for. The major interest to commercial cultivation of 

microalgae was demonstrated by Asian countries where large microalgae industries 

(based mainly on Chlorella) emerged. Since then, the cultivation biotechnology has 

increased significantly in terms of scale and geographic coverage. Besides, many new 

species have been introduced (Spolaore et al. 2006). The main species dominating 

microalgae mass production initiatives nowadays are from genera Arthrospira, Chlorella, 

Dunaliella and Aphanizomenon (Spolaore et al. 2006), while diatoms are still 

underexploited (Levitan et al. 2014).  

Cultivation of microalgae may help to cope with another important environmental 

challenge, i.e. CO2 emissions from power plants and heavy industries. Carbon dioxide, 

one of the main atmospheric greenhouse gases, constitutes around 0.04 %, and its 

volume is claimed to increase due to the increasing industrialization rates (Ramanathan 

1988). The Kyoto Protocol (1997) aimed to reduce the emissions of the greenhouse 

gases by 5.2 % was ratified by more than 170 countries. There are two major groups of 

methods that were investigated to reduce the emissions of CO2: a) chemical reaction-

based; b) biological mitigation (Wang et al. 2008). The first group of methods is rather 

costly since expensive chemicals are needed, while the other is more economically 

beneficial and environmentally friendly. This since mitigation of CO2 from power plants 

and industries can be combined with production of algal biomass (Wang et al. 2008), 

and its further conversion to valuable products like biodiesel, fish feed, food 

supplements, etc.  
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Attempts to use microalgae to mitigate CO2 has also been made earlier (de Morais and 

Costa 2007b; Gomez-Villa et al. 2005; Scragg et al. 2002), however cold water diatoms 

have not been studied in terms of their tolerance to elevated CO2 levels and/or as CO2 

sequestrators.  

It should be noticed that diatom species were shown to be highly diverse either 

genetically (Lundholm et al. 2006; Sarno et al. 2005) or in terms of chemical 

composition (Huseby et al. 2013). This is likely to be the result of their complex 

evolutionary history and the fact that they were proved to encompass genes of both 

green and red algal origin (Moustafa et al. 2009). Some data have shown as well the 

presence of bacterial genes in diatoms (Bowler et al. 2008).  

Mapping of the diatom lipidome. Effects of light, temperature and CO2 aeration on 

lipogenesis in diatoms 

Though diatom lipid profiles have been reported frequently (Chen 2012; de Castro 

Araújo and Garcia 2005; Duerksen et al. 2014; Rampen et al. 2010), the diatoms living at 

low ambient temperatures have rarely been studied. Therefore, the current study has its 

focus on commonly occurring northern diatom bloom species cultivated at the ambient 

in the area temperatures.  

The mass cultivation of diatoms is a challenging task, since algae are grown at 

unnaturally high densities. Here a lot of density associated problems may emerge, such 

as self-shadowing, nutrient deficiency, bacterial contamination, etc. (Sheehan 1998). 

Besides, abiotic parameters, i.e. light (intensity/duration), CO2 aeration, temperature, 

pH, salinity, nutrients, etc. should be tested for the optimal microalgae growth and the 

desired lipid composition. The influence of three main cultivation parameters (light, 

temperature and CO2 aeration) on the lipogenesis in diatoms were therefore studied 

(Papers II & III). Besides, the diatom lipidome was mapped in terms of lipid - and fatty 

acid composition of two major lipid groups: phospholipids and neutral lipids (Paper I).  

Though there is a large number of abiotic factors effecting the growth and chemical 

composition of microalgae, the above mentioned parameters were chosen firstly due to 

their importance for the microalgal physiology and, secondly, due to the relative 

easiness of their control and adjustment under mass cultivation conditions.  
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There is a large amount of information on how light and temperature can influence lipid 

and fatty acid composition of microalgae, e.g. (Jiang and Gao 2004; Khoeyi et al. 2012; 

Roleda et al. 2013; Thompson et al. 1990), see Table 1. As it can be noticed, the 

metabolic responses to these variables are highly variable and species-specific, though 

some important common trends exist.  

Table 1. Influence of light, temperature and CO2 aeration on the lipogenesis in 

microalgae. 

Cultivation 

parameter 

The observed physiological effect Species of microalgae Reference 

Light The content of 20:5 (n-3) and some other polyunsaturated 
fatty acids decreased at higher light intensities (1100-1200 
µE m-2s-1). The concentration of 22:6 (in Isochrysis sp), on 
the contrary, increased. 

Isochrysis sp., 
Nannochloropsis oculata 
 

(Renaud et al. 
1991) 
 

The concentration of PUFA (n-3) increased with increasing 
light intensity (ranging from 83 to 1395 µE m-2s-1). 

Chaetoceros gracilis 
 

(Mortensen et al. 
1988) 

At the lowest light intensity (9 Wm -2) the highest content 
of EPA and DHA was found. 

Pavlova lutheri 
 

(Guedes et al. 
2010) 

The amount of EPA and the MGDG : DGDG ratio increased 
with the decreasing (2 µE m-2s-1) light intensity.  

Navicula gelida, 
Fragilariopsis curta, 
Nitzschia medioconstricta 
(mixed culture)  

(Mock and Kroon 
2002) 

The increasing light intensity (from 37.5 to 100µE m-2s-1) 
and duration caused decrease in PUFAs and monoens. 

Chlorella vulgaris (Khoeyi et al. 
2012) 

EPA concentration increased in lower light intensities, 
while DHA content, on the contrary, decreased. The 
concentration of 16:0 was positively correlated with light 
intensity. 

Chaetoceros 
calcitrans,Thalassiosira 
pseudonana, Chaetoceros 
simplex, Chaetoceros 
gracilis, Phaeodactylum 
tricornutum, Dunaliella 
tertiolecta, Pavlova 
lutheri, Isochrysis gabana 

(Thompson et al. 
1990) 

Total lipid content increased  with increase of light 
intensity (up to 150 µmol/m2/s) 

Isochrysis galbana LB987, 
Nannochloropsis oculata 
CCAP849/1, and 
Dunaliella salina, 

(Gim et al. 2016) 

Total lipid content increased from 24.8% to 37.5% with 
increasing light intensity. 

Chlorella protothecoides (Krzemińska et 
al. 2015) 

Temperature The total omega -3 PUFAs of Chlorella strain increased 
with the temperature decrease from 30 0C to 15 0C. In 
Nannochloropsis, the total omega -3 PUFAs increased with 
the temperature increase up to 25 0C with further decline 
(up to 35 0C). 

Chlorella strain MFD-1 
Nannochloropsis  strain 
MFD-2 

(James et al. 
1989) 

The ratio of n-3/n-6 and the content of unsaturated fatty 
acid increased at the lowest cultivation temperature (18 
0C). 

Chaetoceros gracilis 
 

(Mortensen et al. 
1988) 

The concentrations of EPA and total fatty acid (TFA) 
increased with the temperature decrease from 26 0C to 17 
0C. 

Nannochloropsis salina (Hoffmann et al. 
2010) 

The content of EPA and PUFAs increased with the 
temperature decrease from 25 0C to 10 0C.  

Phaeodactylum 
tricornutum 
 

(Jiang and Gao 
2004) 

The concentration of EPA increased with the temperature 
decrease from 40 0C to 24 0C. 

Phaeodactylum 
tricornutum,  Chaetoceros 
muelleri 

(Rousch et al. 
2003) 
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The content of PUFAs in Chaetoceros sp. increased with the 
temperature decrease from 35 0C to 25 0C. The total lipid 
content, EPA and DHA increased at the lowest cultivation 
temperature (25 0C).   
Rodomonas sp., Cryptomonas sp. and Isochrysis sp. had 
highest lipid content at 27-30 0C (medium temperature 
range). 

Chaetoceros 
sp.,Rodomonas sp., 
Cryptomonas 
sp.,Isochrysis sp.  

(Renaud et al. 
2002) 

PUFA concentrations decreased with the increasing 
temperature (from 10 to 35 0C) in N. paleacea, Isochrysis 
sp. and Nitzschia closterium  

Isochrysis sp.  
Nitzschia closterium, N. 
paleacea 

(Renaud et al. 
1995) 

Decrease of temperature from 30 0C to 20 0C triggered 
synthesis of longer fatty acid chains with more 
unsaturations (including EPA) in MGDG and DGDG.  

Haslea ostrearia, 
Phaeodactylum 
tricornutum 

(Dodson et al. 
2014) 

The total lipid concentration increased with the 
temperature decrease (from 30 0C to 25/20 0C). 

Chaetoceros cf. wighamii (de Castro Araújo 
and Garcia 2005) 

Temperature decrease induced significant lipid 
accumulation in all species but Nannochloropsis oculata. In 
N. oculata the increase of total lipid content was <2 %. 

Thalassiosira pseudonana, 
Odontella aurita, 
Nannochloropsis oculata, 
Isochrysis galbana 

(Roleda et al. 
2013) 

CO2 aeration High CO2 levels (30-50 %) enhanced the total lipid and 
PUFA accumulation.  

Scenedesmus obliquus, 
Chlorella pyrenoidosa 

(Tang et al. 
2011) 

CO2 supply increased lipid productivity of the culture. Chlamydomonas sp. JSC4 (Nakanishi et al. 
2014) 

CO2 aeration enhanced lipid productivity in Scenedesmus 
sp., Botryococcus braunii. 

Scenedesmus sp., 
Botryococcus braunii, 
Chlorella vulgaris 

(Yoo et al. 2010) 

CO2 supply increased lipid productivity but decreased the 
amount of PUFAs. 

Pavlova lutheri (Carvalho and 
Malcata 2005) 

High CO2 levels (10 -30 %) induced lipid accumulation in 
the culture. 

Chaetoceros muelleri (Wang et al. 
2014) 

 CO2 supply increased lipid productivity of the culture.  Nannochloropsis oculata (Chiu et al. 2009) 

CO2 supply did not influence lipid content of the culture Chaetoceros cf. wighamii (de Castro Araújo 
and Garcia 2005) 

Thus, temperature decrease was shown to enhance PUFAs accumulation in microalgae 

by a number of publications e.g. (Jiang and Gao 2004; Renaud et al. 1991; Roleda et al. 

2013), this due to necessity to maintain membrane fluidity at low temperatures 

(Harwood 1988). Since the northern diatoms live at low ambient temperatures, their 

lipid profile is likely to be naturally rich in polyunsaturates (Leu et al. 2006). 

Illumination is another important parameter that was proven to affect lipid composition 

of microalgae. However, the effect of light on the lipid content and fatty acid composition 

seems to be complicated and highly variable between the species (Table 1). In a number 

of publications the lower light intensities proved to induce PUFAs accumulation 

(including EPA), but differences between the species should be taken into consideration 

(e.g. Mortensen, 1988). This effect might be due to photooxidation of PUFAs in the 

higher light intensities as it was demonstrated by Leu et al. (2006). 

CO2 aeration is a relatively new cultivation parameter that is not properly studied yet. 

Though, the publications available (Table 1) point out the positive effect of CO2 on lipid 
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productivity and PUFAs accumulation (e.g. Tang et al., 2011; Nakanishi et al., 2014). The 

important issue here is to keep the levels of CO2 supply within the physiological 

optimum of the species in order to avoid the reduction of growth/production.  

There are four main strategies that are used nowadays to utilize the CO2 constituent of 

the flue gas coming from the plants (Thomas et al. 2016): 1) CO2 segregation using 

adsorbents; 2) CO2 segregation using adsorbents with consequent regeneration; 3) 

conversion of flue gas to liquid for direct mitigation by microalgae; 4) direct mitigation 

of flue gas. Depending on the applied strategy, the CO2 fixation rate and the biomass 

productivity may differ (see Table 2). 

Table 2. The main production parameters depending on the applied strategy 

(modified from Thomas et al. (2016)). 

Strategy applied Microalgal 

species 

CO2 fixation rate Biomass 

produced 

References 

CO2 segregation using adsorbents 

with consequent regeneration 

Desmodesmus sp. 1.5 % optimum utilized  (Brilman and 

Veneman 2013) 

Conversion of flue gas to liquid for 

direct mitigation by microalgae 

Scenadesmus sp. 216.4 mg CO2/L/day 115.7 mg 

/L/day 

(Choi et al. 2012) 

Direct mitigation of flue gas Spirulina sp. 37.9 % in the presence of  

6 % CO2(v/v) 

0.22 g /L/day (de Morais and Costa 

2007a) 

Objectives of the present study 

The main objectives of the current study were to:  

a) Analyse the lipid composition of northern marine diatoms and assess their suitability for 

production of high quality lipids (Paper I);  

b) Evaluate the influence of abiotic factors (light, temperature, CO2) on lipid production 

and growth of the microalgal cultures (Paper II, Paper III);  

c) Evaluate the potential of diatoms to CO2 mitigation (Paper III).   

Methods 

Species used in the study 
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All species but one used in the present study are common cold water diatoms belonging 

to the subdivision Centrales: Porosira glacialis, Chaetoceros socialis, Chaetoceros 

furcellatus, Coscinodiscus conncinnus, Attheya longicornis, Thalassiosira nordenskioeldii. 

One of the species analyzed is the prymnesiophyte Phaeocystis pouchetii. These species 

are typical representatives of the spring bloom assemblages of the northern fjords and 

the Barents Sea that rarely changes in time and space (Degerlund and Eilertsen 2010). 

Diatom cultivation  

Monocultures of the species used in the current research - Porosira glacialis, Chaetoceros 

socialis, Coscinodiscus conncinnus (Paper I); Porosira glacialis, Attheya longicornis (Paper 

III) were established from the stocks collected in the Barents Sea (80 oN) or from the 

coast of northern Norway (70o N). For Paper II, experimental data (cultivation 

conditions, growth rates) obtained during the 80-s by Tromsø University personnel and 

kindly analyzed for lipids by Jim Henderson were used for the analysis. The species 

analyzed in Paper II - Phaeocystis pouchetii, Chaetoceros furcellatus, Thalassiosira 

nordenskioeldii. 

The identification of the investigated species was performed by means of morphological 

and molecular methods as described by Huseby (2011). The isolation of species was 

performed manually by transferring a single cell or a colony with a micropipette to 50 

mL Nunclon culture flasks filled with f 10 medium (Guillard and Ryther 1962). When the 

cultures reached sufficiently high densities, they were transferred to sterilized 1.5 L soft 

drink (PET) bottles that were further used to inoculate large volume (100 - 300L) plexi 

columns with external illumination in temperature and irradiance controlled rooms 

(Paper I, III). For the cultivation of the microalgae used for the analysis in Paper II small 

volume bottles (1.5 L soft drink (PET)) were used. The temperature was kept at 5-7 0C 

(close to the ambient in the area) and the irradiance at 66 µmol quanta m-2 s -1 (Paper I) 

33, 2 µmol quanta m-2 s -1 (Paper III) at photoperiod 14:10 (light : dark). The microalgal 

cultures used for the analysis in Paper II were cultivated at varying light (76 -, 43-, 20 -, 

8 µmol quanta m-2 s -1) and temperature (2 and 5 0C) conditions at photoperiod 16:8 

(light : dark) . 

Surplus CO2 supply (Paper III) 20 - 25 % was provided to the microalgae culture three 

days before harvesting. For this purpose, the ambient air mixed with CO2 coming from 
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40 L pressured (200 atm) CO2 steel tank (AGA, UN 1013, Norway) was provided to the 

cultures.  

The harvesting was performed by means of vacuum filtration through plankton mesh 

(Sefar Nytal R) and the algal biomass was freeze-dried until further analysis was 

undertaken.   

Biochemical analysis 

For the biochemical analysis (Paper I) the freeze-dried microalgal pellets were 

transported to Prague Institute of Chemical Technology (ICT) and Biolab (Bergen) 

where they were analyzed for total lipid content (Biolab) and lipid composition (ICT). 

For the total lipid extraction a modified method of Bligh and Dyer (1959) was applied 

and then the quantification was performed gravimetrically. This method was originally 

developed for working with animal (cod) tissues and was shown to be efficient even 

with low (<2 %) lipid content in the samples (Iverson et al. 2001). Two non-polar 

solvents, chloroform and methanol in proportion 1:2 are used for the lipid extraction by 

the method. The sample to solvent proportion is 1:3.  

The separation of the lipid classes was done by means of the ultra-high pressure liquid 

chromatography–mass spectrometry (UHPLC-MS). Shortly, the method unites two 

different techniques; separation of the matters by means of liquid chromatography and 

their detection by means of mass spectrometry. First, the analyzed substances are 

partitioned between the mobile liquid phase and the stationary solid phase that is 

packed into the chromatographic column. Then the single compounds in the mixture are 

chromatographically separated and converted into the ions in the gas phase, while the 

eluent is discarded. The ionization methods that are widely used today include 

Electrospray ionization (EI) and Atmospheric pressure chemical ionization (APCI). The 

ions are sorted according to their mass to charge (m/z) ratio (molecular weights) in the 

mass analyzer. The mass anylizers may be of different types: Time of Flight, Ion Trap, 

Quadropole and Magnetyic sector (Pitt 2009).  

The total lipid analysis for Paper II was performed by means of two methods: a) the 

acid–dichromate method by Amenta (1964) that uses a nonspecific reaction for 

quantifying all the lipid species that were previously separated by chromatography; b) 
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the method by Folch et al. (1957) followed by gravimetric estimation. The method by 

Folch et al. (1957) uses the same solvent mixture as that of  Bligh and Dyer (1959) -  

chloroform and methanol, but in the proportions 2:1, while the sample : solvent ratio is 

1:20.  

For the analysis of the fatty acid composition the gas chromatography-mass 

spectrometry (GC-MS) was used. This method uses some inert gas (e.g. argon) as the 

mobile phase. The stationary phase is a packed capillary column covered by a polymeric 

film. The separation is dependent on the polarity and the retention time of the single 

compounds in the mixture. The operating temperature is usually about 300 0C that 

allows individual compounds elute from the GC column and enter the electron ionization 

detector where the compound are bombarded by electrons in order to fragment them 

and form ions. The resulting compounds are detected based on their m/z ratio  

(Sneddon et al. 2007).    

For Paper III the total lipid analysis was performed as described by Cequier–Sanchez et 

al. (2008) with slight modifications. This method uses dichloromethane: methanol (2:1 

v/v) as the extractant. The extraction of lipids was performed twice to increase the 

resulting yield. After centrifugation, the chlorophorm phase containing lipids was 

damped by nitrogen in EVAP. The lipid content was then quantified gravimetrically. The 

total fatty acid composition was determined applying a slightly modified method by 

Stoffel et al. (1959). The method uses modification (esterification) of the analyzed fatty 

acids prior to GC-MS analysis by means of methanol and sulfuric acid. For the reaction 

catalization, the reagent mixture was heated to 100 0C for 1 hour. Then salt water (5 % 

NaCL) with hexane was added (1:1) to the mixture. The phase containing lipids (hexane) 

was damped under nitrogen in EVAP and further used for the total fatty acid analysis by 

means of GC-MS. For the separation and quantification of the methylated fatty acids, the 

samples were transported to our collaborators Norut Northern Research Institute 

(Tromsø) where the GC-MS analyses were performed.  

Statistics 

Descriptive and univariate statistics (Paper I, II, III) was performed by using Excel 2013. 

For the multivariate statistical analysis of the data (Paper III) R version 3.0.2 was used.  
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Summary of results and discussion 

Influence of cultivation conditions on growth and total lipid content in diatoms 

The results obtained by the current study (Papers I - III) support the previously 

suggested assertion that diatoms are promising candidates for mass cultivation (Levitan 

et al. 2014; Mata et al. 2010). The species examined - Porosira glacialis, Chaetoceros 

socialis, Coscinodiscus conncinnus, Attheya longicornis, Chaetoceros furcellatus, 

Thalassiosira nordenskioeldii and also the haptophycean Phaeocystis pouchetii 

demonstrated reasonable amounts of lipids, though highly variable dependent on the 

cultivation conditions and the species examined (Papers II, III). Thus, when cultivated at 

2 °C, the lipid content of C. furcellatus varied from ca 2 % to 20 % depending on the light 

intensity it was cultivated at (Paper II). Similarly, T. nordenskioeldii demonstrated 

variation in lipid content from ca 3 to 30 % at different light intensities when cultured at 

5 °C. At 2 °C this variation was not that tremendous (from ca 3 to 7 %). The lipid content 

of haptophycean P. pouchetii also differed a lot depending on the light intensities it was 

cultivated at (from ca 4 to 27 % at 5 °C and from ca 6 to 12 % at 2 °C).  Previous studies 

(Gim et al. 2016; Krzemińska et al. 2015) demonstrated positive effect of the light 

intensity on the total lipid content in microalgae. In contrast, our study did not 

demonstrate any consistent trend in terms of lipid content variation as response to the 

light variable. However, the light – associated effects were not possible to test in terms 

of statistical significance in this study and thus the results should be interpreted with 

precaution.    

The temperature decrease from 5 to 2 °C did not show any statistically significant (p > 

0.05) effect on the total lipid content in either of species. This is opposing results of 

Roleda et al. (2013) and de Castro Araújo and Garcia (2005) that demonstarted negative 

correlation between total lipid content and temperature. Most likely, such decrease (Δ 3 

°C) was not significant enough to trigger changes in lipid accumulation reactions of the 

investigated species.   

CO2 supply (Paper III) was shown to increase the total lipid content in Porosira glasialis.  

Thus, the lipid content of the CO2 aerated culture constituted 10.57 % if compared to 

8.91 % in control. This result is in accordance with e.g. findings of Tang et al. (2011) 

(Wang et al. 2014) that showed positive effect of CO2 aeration on the total lipid content 

in Scenedesmus obliquus, Chlorella pyrenoidosa and Chaetoceros muelleri. 
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However, Attheya longicornis did not show any statistically significant (p > 0.05) 

increase in terms of total lipid abundance when subjected to CO2 aeration. Similarly, de 

Castro Araújo and Garcia (2005) did not find any significant difference in lipid content of 

Chaetoceros cf. wighamii when it was subjected to CO2 aeration. Thus, species-specific 

differences in response to this variable were obvious.  

The growth of the microalgae was proved to be dependent on the cultivation 

temperature for all species but T. nordenskioeldii, that did not demonstrate any 

statistically significant (p > 0.05) difference of the growth rates between the 

investigated temperatures. Thus, temperature increase from 2 to 5 0C positively 

influenced the growth of C. furcellatus and P. pouchetii, which is in coincidence with  the 

Eppley (1972) model.  

Additionally, the linear regression analysis did not show any significant (at 95 % level) 

correlation between the growth rate and the total lipid content in any of the investigated 

diatoms. 

The light also influenced growth of the examined species (that is biologically 

reasonable), though the statistical significance of this effect was not possible to test. 

Thus, C. furcellatus demonstrated increase in the growth rate with the reduction of the 

light intensity from 76 to 20 µE m-2s-1. Further decrease of the light intensity (from 20 

µE m-2s-1to 8 µE m-2s-1) resulted in the decrease of the growth rate in this species. In 

contrast, T. nordenskioeldii demonstrated increase of the growth rate with the increasing 

light intensity at both temperatures. 

CO2 aeration was shown to have an effect on the growth of the microalgal cultures, but 

similarly with other variables its influence was species-specific. Thus, the microalgal 

cultures demonstrated different grade of tolerance to the high levels (20 - 25 %) of CO2 

supply: while the growth rates of P. glacialis stayed almost unchanged (p > 0.05) if 

compared to the control, the cultures of A. longicornis are likely to undergo reduction of 

the growth rates (stress reaction). Multiple studies e.g. (Tang et al. 2011; Wang et al. 

2014; Yoo et al. 2010) demonstrated positive effect of CO2 aeration on microalgae 

growth, this since the tested aeration levels were within the tolerance borders of the 

investigated species.  

Lipid and fatty acid composition (EPA and DHA) of diatoms and its response to the 

abiotic variables  
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Qualitative analysis of the lipid content in the diatom species revealed their beneficial 

lipid composition with prevailing amounts of omega-3 fatty acids (Papers I - III), 

especially when the physiologically requisite EPA was considered. However, the 

variations between the species and the cultivation conditions were evident. Another 

important omega-3 fatty acid, DHA was either absent or present in significantly lower 

amounts than those of EPA, dependent on the species examined. Thus, in C. socialis no 

DHA was found, while P. glacialis demonstrated 6.3 % of DHA in its phospholipid profile. 

The haptophycean P. pouchetii showed naturally high content of this fatty acid (up to 9.8 

%), though extremely variable depending on the cultivation conditions (Paper II).  

In addition to the above mentioned omega-3 fatty acids, diatoms showed large amounts 

of palmitic, palmitoleic and myristic fatty acids (Papers II, III), that is typical for the 

microalgae of the diatom group (Kates and Volcani 1966).   

Neutral lipids (TAGs, DAGs, MAGs and FFA) were shown to be the most abundant lipid 

group, followed by phospholipids (Paper I). Among phospholipids, PC, PG, and PI were 

the dominating lipid species. The fatty acid composition of both lipid groups 

demonstrated that both neutral lipids and phospholipids had high amounts of EPA, 

while DHA was mostly concentrated in phospholipids.      

The fatty acid composition of the investigated diatoms was proven to be a function of 

cultivation variables and the species examined (Papers II, III). Thus, the principle 

correspondence analysis (PCA) revealed that the polyunsaturated fatty acids (including 

EPA) were most abundant in the species grown at low/moderate light intensities 

(mostly equal to 20 µE m-2s-1). Previous studies e.g. (Khoeyi et al. 2012; Renaud et al. 

1991) demonstrated negative correlation between light intensity and PUFAs content in 

microalgae. This since polyunsaturated fatty acids are prone to photooxidative damage 

when subjected to high light intensities as it was shown by study of Leu et al. (2006).    

The temperature variations also influenced the fatty acids distribution in the 

investigated species. Thus, temperature decrease resulted in an expected increase in the 

concentrations of polyunsaturated fatty acids in both P. pouchetii and T. nordenskioeldii, 

while the amount of saturates in these species correspondently decreased. This pattern 

of metabolic response to temperature lowering is well documented for both diatom and 

non - diatom species e.g. (Hoffmann et al. 2010; James et al. 1989; Jiang and Gao 2004; 

Renaud et al. 1995). 
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In contrast, C. furcellatus did not show any statistically significant (p > 0.05) differences 

in the fatty acid composition between the temperatures. That is in coincidence with a 

study by Renaud et al. (2002) which did not demonstrate any significant change in 

polyunsaturates abundances of Chaetoceros sp. when subjected to temperature 

decrease.   

CO2 supply was also shown to influence the fatty acid composition of the microalgal 

cultures, but similarly with other variables, this influence was species-specific. Thus, 

EPA content of P. glacialis decreased from ca 27 to 23 % in CO2 aerated cultures, while in 

A. longicornis the concentration of this PUFA did not show any statistically significant 

variations.  

 DHA concentration, on the contrary, significantly (p > 0.05) increased in P. glacialis 

cultures (from ca 4 to 6 %) when subjected to CO2, while in A. longicornis DHA content 

stayed almost unchanged.  

The concentration of total PUFAs demonstrated a slight increase (from 48.63 to 49.26 

%) in CO2-aerated cultures of A. longicornis, while in P. glacialis such effect was not 

statistically obvious (p > 0.05). These results are partly in coincidence with a study by 

Tang et al. (2011) that demonstrated elevated PUFAs content in CO2 aerated cultures of 

Scenedesmus obliquus and Chlorella pyrenoidosa. However, Carvalho and Malcata (2005) 

showed opposing results for Pavlova lutheri. 

Conclusion 

The current study has demonstrated that northern cold-water diatom microalgae have a 

great potential to become a sustainable source of high quality omega-3 lipids in the 

future. Besides, the results of the present research suggest that northern diatoms may 

be successfully used for industrial CO2 mitigation if species – specific tolerance 

thresholds are considered. However, we are just at the beginning of the path and a 

substantial research work has still to be done in order to find the optimum parameters 

for the diatom cultivation and investigate the diatoms ability for CO2 sequestration (here 

especially species-specific CO2 tolerance thresholds should be focused on).  

It should be pointed out that the species examined have a very low temperature 

optimum coupled with more than a moderate light demand due to the genetically 

comprised adaptation to the severe environments of the northern seas. These 
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outstanding physiological features of the northern diatoms makes possible their 

cultivation in the ambient in the area water temperatures i.e. without any substantial 

energy supply. This implies that the cost of the microalgae cultivation can be drastically 

reduced (given the increasing production volumes). Though we do not provide any 

economically based estimations in the frames of the current study, it looks reasonable to 

couple the future biologically oriented research with the economic advice.  
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