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Abstract

Background

Pneumonia remains difficult to diagnose in primary care. Prediction models based on signs

and symptoms (S&S) serve to minimize the diagnostic uncertainty. External validation of

these models is essential before implementation into routine practice. In this study all pub-

lished S&S models for prediction of pneumonia in primary care were externally validated in

the individual patient data (IPD) of previously performed diagnostic studies.

Methods and Findings

S&Smodels for diagnosing pneumonia in adults presenting to primary care with lower respi-

ratory tract infection and IPD for validation were identified through a systematical search.

Six prediction models and IPD of eight diagnostic studies (N total = 5308, prevalence pneu-

monia 12%) were included. Models were assessed on discrimination and calibration. Dis-

crimination was measured using the pooled Area Under the Curve (AUC) and delta AUC,

representing the performance of an individual model relative to the average dataset perfor-

mance. Prediction models by van Vugt et al. and Heckerling et al. demonstrated the highest

pooled AUC of 0.79 (95% CI 0.74–0.85) and 0.72 (0.68–0.76), respectively. Other models

by Diehr et al., Singal et al., Melbye et al., and Hopstaken et al. demonstrated pooled AUCs
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of 0.65 (0.61–0.68), 0.64 (0.61–0.67), 0.56 (0.49–0.63) and 0.53 (0.5–0.56), respectively. A

similar ranking was present based on the delta AUCs of the models. Calibration demon-

strated close agreement of observed and predicted probabilities in the models by van Vugt

et al. and Singal et al., other models lacked such correspondence. The absence of predic-

tors in the IPD on dataset level hampered a systematical comparison of model performance

and could be a limitation to the study.

Conclusions

The model by van Vugt et al. demonstrated the highest discriminative accuracy coupled

with reasonable to good calibration across the IPD of different study populations. This

model is therefore the main candidate for primary care use.

Introduction
Pneumonia is a major cause of death in developed countries [1,2] and requires clinical treat-
ment, whereas other lower respiratory tract infections (LRTIs) such as acute bronchitis are
self-limiting [3]. The accurate diagnosis of pneumonia by a general practitioner (GP) is there-
fore important, but challenging as the routine use of chest x-radiography (CXR) for all patients
presenting with LRTI is not feasible. Consequently, GPs mainly rely on signs and symptoms
(S&S) in the diagnosis of pneumonia.

Prediction models based on S&S have been proposed to decrease diagnostic uncertainty and
prevent improper prescription of antibiotics and accompanying bacterial resistance [4–7]. Before
considering the use of a prediction model in daily clinical practice, it is essential that its perfor-
mance is empirically evaluated in datasets that were not used in the model development [8–10].
Such a study, in which the discrimination and calibration [11] of a prediction model are evalu-
ated in new patients, is referred to as external validation [10,12]. Discrimination is the ability of
the model to differentiate between diseased and non-diseased patients, whilst calibration signifies
the agreement between predicted and observed probability of disease [12]. Evaluation of clinical
usefulness with regard to improving patients outcomes or changing GP behavior are not part of
external validation [13]. External validation is required to quantify optimism caused by model
overfitting [14] or deficiencies in the statistical modeling during model development, such as
incorrect handling of missing data or a small sample size. Validation is also important to assess
the model’s transportability to other sites with arguably similar patients [9,12,15].

External validation of newly developed prediction models is rarely performed and generally of
poor quality [13], but a necessary step before use in clinical care. Therefore, this type of study is
receiving increasingly more attention and has a central role in the recently published reporting
guideline for prediction research (TRIPOD statement [16] and S1 TRIPOD Checklist).

A limited number of external validation studies on diagnostic models or pneumonia have
been performed [17–19], but none included patient data of the multiple study sites and recently
developed models [19]. Therefore, a meta-analysis using individual patient data (IPD) from
multiple studies was performed in order to extensively assess and compare the performance of
all published S&S models for the diagnosis of pneumonia in primary care.

Materials and Methods

Selection of published models
Models eligible for inclusion were logistic regression models including S&S for predicting the
probability of pneumonia in primary care patients with acute cough or suspected LRTI.
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Because of the cross-sectional nature of our study and our dichotomous outcome (pneumonia
present or absent) we included only logistic regression models. These prediction models were
identified through the following strategy: (a) screening references of the European Respiratory
Society management guidelines for adults with LRTI [20]; (b) eligibility assessment of models
included in previously published validation studies [17–19]; (c) systematically searching
PubMed, EMBASE and the Cochrane Library, using the terms “pneumonia”, “LRTI”, “C-reac-
tive protein (CRP)” and a diagnostic filter [21,22] (S1 Appendix, reference date: August 2012,
21st). CRP, an inflammation marker, was incorporated in the search for the purposes of a sup-
plemental study on the added value of CRP over signs and symptoms alone [Minnaard MC
et al. 2015. In revision for CMAJ], but is not further investigated in the current study. After the
identification of all eligible models, experts in the field were asked to identify missing models.

Selection of IPD for validation of published models
IPD for model validation was identified using the same systematical search in PubMed,
EMBASE and the Cochrane Library as described above (S1 Appendix). Prospective studies
were included when recording disease status of pneumonia and clinical S&S. Pneumonia status
was included as a dichotomous variable (i.e. absent or present) and should have been deter-
mined by a physician using by CXR [23], CT or MRI imaging techniques. Individual studies
were included when containing patients who: (a) were at least 18 years old; (b) presented
trough self-referral in primary care, ambulatory care or at an emergency department with an
acute or worsened cough (�28 days of duration) or with a clinical presentation of LRTI; (c)
consulted for the first time for this disease episode; (d) were immunocompetent.

Methodological quality assessment of IPD
Two reviewers (AS, JG) independently assessed the characteristics and methodological quality
of the included IPD using the QUADAS-2 [24] in order to identify potential sources of bias
and improve the interpretation of results (S1 Table). IPD were compared to the original study
report on the total number of patients and the frequencies of single variables for error checking.
If necessary, authors were contacted for information on quality assessment criteria or when
datasets showed unexpected missing or invalid values.

Missing data
Missing values in IPD were regarded as missing at random (MAR). Single imputation was per-
formed on individual dataset level [25] when missingness per IPD dataset did not exceed 33%.
Predictors were considered absent when missingness exceeded 33% or when a predictor was not
recorded entirely. Models could not be validated in IPD datasets containing absent predictors.
This implies that the number of analyzed patients might differ between the models validated.

Statistical analysis
The performance of included prediction models was assessed by discrimination and calibra-
tion. All performance measures were determined using the original models, without adjust-
ment of model’s intercept and coefficients. This enables us to evaluate the performance of the
various models, when applied directly in another setting, as is often done in practice, without
updating or refitting the model to better accommodate the new setting.

Discrimination was quantified using the pooled Area Under the (ROC) Curve (AUC) and
the deltaAUC. Pooled AUC was quantified by first calculating the AUC and 95% confidence
interval (CI) for each model individually per IPD dataset, followed by combining the individual
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AUCs in a pooled AUC using inverse variance weighing [26,27]. This two-step approach
ensures accurate estimation of the pooled AUC in account for potential heterogeneity in AUC
estimates [28]. As the absolute value of discrimination may differ considerably between IPD
datasets, model performance was subsequently evaluated on a relative scale, using the del-
taAUC. The deltaAUC represents the difference in discriminative performance between an
individual model (AUC) and the average performance of all models (mean AUC) within an
IPD dataset. Calibration of included prediction models was assessed across different risk
groups in each individual dataset. Risk groups with a low (0–10%) predicted risk of pneumonia,
an intermediate risk (10–30%) and a high risk (30–100%) were defined. Per risk group the
average predicted probability was calculated and compared to the proportion of pneumonia
(i.e. the observed prevalence of pneumonia) in this group of patients. To obtain reliable esti-
mates, the average probabilities were only calculated when at least 5 subjects per risk group
could be included. In the case both a model and its development dataset were included in this
study, the IPD of such a study was excluded from the external validation process. Data were
analyzed with IBM SPSS statistics for Windows Version 20 (IBM Corp; Armonk, NY), R
(v.2.15) including the “RMS” and “ROCR” packages for R [29] and Excel 2010 for Windows
(Microsoft Inc; Redmond, Washington). A prospective study protocol was formulated, indicat-
ing the main study objectives of the IPD study and the general methods for the current external
validation study (S1 Protocol).

The Institutional Review Board of the University Medical Center Utrecht was not consulted
for this meta-analysis as the study used only anonymous data from previously performed stud-
ies for which both informed consent and ethical approval had already been obtained.

Results

Selection of models
After assessment of published studies validating S&S models [17–19] and the European Respi-
ratory Society guideline [20,30], six pneumonia prediction models for primary care use were
included [18,19,31–34]. No suitable additional models were identified neither through our sys-
tematic search, nor after inquiry with experts in the field. The prediction models included
between three to six predictors, the most frequent being fever (in 5 models), crackles (in 4 mod-
els), coryza (in 3 models), cough, dyspnea, diminished breath sounds and tachycardia (in 2
models). The predictors asthma, duration of illness, chest pain, diarrhea, fever (symptom),
myalgia, phlegm, sore throat, sweating and tachypnea were all included in one model (Table 1
and S2 Table). S3 Table presents the in- and exclusion criteria of all model development studies
and studies contributing IPD.

Selection of IPD for validation of published models
Eighteen of the 3676 identified studies appeared eligible for inclusion. Authors of these eigh-
teen studies were requested to provide additional information and original data. Six studies did
not fit the inclusion criteria, one author did not respond to our request and three authors were
unable to provide the original study data (Fig 1). Eventually, the IPD of eight studies
(N = 5308) were included [17,19,32,33,35–38].

Characteristics of IPD
Table 2 gives a detailed presentation of the baseline characteristics in all included IPD datasets.
Of the eight included studies, five included patients visiting a GP [17,19,32,36,38], one included
patients visiting a primary care out-of-hours service [33] and two studied self-referred patients
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to an emergency department [35,37] (Table 2). Of all IPD, 55% (N = 2820 patients) were con-
tributed by the study by van Vugt et al. The mean age was 49 years (SD = 18) when taking all
IPD patients together. The mean age of separate studies was lower in patients fromMelbye
et al. and Flanders et al., with a mean age of 33 (SD = 14) and 40 (SD = 16) years, respectively.
In individual datasets the proportion of males varied between 40 and 50%. The prevalence of
pneumonia ranged from 5% to 43%. In only one study providing IPD all predictors were pres-
ent [35], in all other studies proving IPD one or more predictors were not recorded. If predictor
were recorded the highest percentage of missing values per predictor never exceeded 33%
(max. 28%). No dataset showed missing values for the outcome pneumonia. One of the
included IPD datasets had previously been imputed using hot-deck imputation [35].

Methodological quality assessment of IPD
In general, the assessment of study quality of the included datasets raised little concern of bias
(S1 Table). Nonetheless, four studies showed a risk of bias and/or applicability concerns in the
patient selection [17,33,35,38]. Two studies presented potential bias concerning flow and tim-
ing [33,35], as the acquisition of the reference test was left up to the physician’s judgment (par-
tial verification), which may have induced misclassification of pneumonia. To adjust for
potential misclassification one of these two study performed the reference standard in a 25%
random sample (showing no additional cases of pneumonia) [33]. Furthermore, in one IPD

Table 1. Overview of included predictionmodels to diagnose pneumonia in a primary care setting and their incorporated predictors.

Model Total Diehr et al.
[31]

Singal et al.
[34]

Heckerling et al.
[18]

Melbye
et al. [33]

Hopstaken et al.
[32]

van Vugt et al.
[19]

Total predictors in
model

6 3 5 6 3 6

History

Absence of asthma 1 •

Duration of illness 1 •*

Symptoms
Chest pain 1 •

Coryza (absence) 3 • • •

Cough (dry) 2 • •

Diarrhea 1 •

Dyspnea 2 • •

Fever 1 •*

Myalgia 1 •

Phlegm 1 •

Sore throat 1 •

Sweats (night) 1 •

Signs

Crackles 4 • • • •

Diminished breath
sounds

2 • •

Fever 5 • • • • •

Tachycardia 2 • •

Tachypnea 1 •

• = predictor present

*combined predictor.

doi:10.1371/journal.pone.0149895.t001
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dataset the CXR results were missing; therefore the discharge diagnosis (primarily based on
CXR results) was used in the meta-analysis to define pneumonia [37]. Moreover, this study
reported a high prevalence of pneumonia (43%) [37], indicating a potential applicability con-
cern in the patient selection for the purposes of this validation study.

Performance of models in individual patient datasets
Each of the six included models could be externally validated in the IPD of at least three and up
to seven datasets (Table 3); the model by Diehr et al. in three datasets (N = 972), Singal et al. in
seven datasets (N = 4747), Heckerling et al. in four datasets (N = 3519), Melbye et al. in three
datasets (N = 540), Hopstaken et al. in four datasets (N = 3678) and the model by van Vugt
et al. in three datasets (N = 699).

Fig 1. PRISMA flow diagram of the selection process of IPD used for external validation of predictionmodels [39].

doi:10.1371/journal.pone.0149895.g001
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The model by van Vugt et al. demonstrated the highest pooled AUC of 0.79 (95% CI 0.74–
0.85), compared to an AUC of 0.7 in the development study. The model by Heckerling et al.
demonstrated a pooled AUC of 0.72 (95% CI 0.68–0.76, development AUC of 0.82), Diehr
et al. of 0.65 (0.61–0.68, development not available), Singal et al. of 0.64 (0.61–0.67, develop-
ment 0.73), Melbye et al. of 0.56 (0.49–0.63, development 0.75) and Hopstaken et al. of 0.53

Table 2. Baseline characteristics of included individual patient datasets used in the external validation of predictionmodels for pneumonia in pri-
mary care setting (numbers are percentages [%] per dataset or specified otherwise).

Characteristic Validation dataset

Melbye
et al. [33]

Hopstaken
et al. [32]

Flanders
et al. [35]

Graffelman
et al. [17]

Holm
et al.
[36]

Rainer
et al. [37]

Steurer
et al. [38]

van Vugt
et al. [19]

All
datasets

Patient
characteristics

Setting OHD GP ED/AC GP GP ED GP, ED GP AC/ED/
GP/OHD

Number of patients 402 243 168 129 364 561 621 2820 5308

Pneumonia 5% 13% 12% 20% 13% 43% 21% 5% 12%

Age, mean (SD) 33 (14) 52 (16) 40 (16) 50 (14) 50 (16) 53 (22) 47 (16) 50 (17) 49 (18)

Gender, Male 41% 47% 41% 47% 49% 53% 50%1 40% 44%

Duration illness in
days, mean (SD)

10 (14) Categorized2 7 (5) 9 (6) -- 17 (9) 7 (10) 10 (10) 8,4 (10)

Smoker 56% 33% 11% 36% 45% 17% 29% 28% 30%

Asthma 10% 19% 11% 6% 8% -- -- 10% 10%

Symptoms
Cough 91% 92% 100% 98% 98% 88% 97% 100% 97%

Chest pain (lateral) 53% 60% 40% 23% 64% 40% 29% 46% 45%

Coryza 80% 38% 69% 59% -- 50% -- 71% 67%

Diarrhea -- 8% 14% 24% -- 9% -- 7% 8%

(Daily) Fever,
subjective

31% 35% 59% 85% 42% 83% 56% 35% 47%

Dyspnea 69% 77% 51% 76% 72% 56% 36% 57% 57%

Myalgia 54% 62% 55% 59% -- 50% -- 50% 52%

Sore throat 73% 39% 65% 39% -- 50% -- -- 55%

Phlegm 88% 55% 55% 79% 81% 77% 49% 79% 75%

(Night) Sweats 84% 61% 58% -- -- 42% -- -- 60%

Signs
Crackles 11% 21% 9% 60% -- -- 20% 9% 573

Diminished breath
sounds

5% -- 17% 12% -- -- 12% 13% 13%

Heart rate, p.m. (SD) 79 (13) -- 85 (19) 82 (11) 81 (15) 98 (18) -- 77 (12) 81 (15)

Respiratory rate, p.m.
(SD)

-- Categorized3 18 (4) 21 (4) 19 (4) 19 (3) 17 (6) 17 (4) 18 (4)

Temperature, C° (SD) 37.3 (0.7) 37.5 (0.8) 37.3 (0.8) 37.9 (0.7) 37.4
(0.6)

37.8 (1.1) 37.4 (1) 36.7 (0.6) 37.1 (1)

OHD = Out of Hours Department, GP = General Practitioner, ED = Emergency Department, AC = Ambulatory Clinic
1Data from original publication
2 Categorized as �2, 3–7, 8–28 days
3Categorized as >20 p.m.

"--" = Variable missing

doi:10.1371/journal.pone.0149895.t002
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(0.5–0.56, development 0.7). When evaluating the individual model performance relative to
the average dataset performance, using the deltaAUC as measure, a similar ranking was dem-
onstrated compared to the ranking based on the pooled AUC. The model by van Vugt et al.
demonstrated a higher than average AUC in all datasets, with deltaAUCs ranging from 0.14 to
0.01 (Fig 2 and S4 Table), and was followed by Heckerling et al. (0.13 to -0.03), Diehr et al.
(0.07 to -0.02), Singal et al. (0.05 to -0.04), Melbye et al. (-0.01 to -0.14) and Hopstaken et al.
(0.02 to -0.17).

For each model [18,19,31–34], calibration curves were plotted by comparing the predicted
probability to the observed probability in each individual dataset (Fig 3). The calibration plot
of the model by van Vugt et al. demonstrated the closest agreement between the model’s pre-
dictions and the observed prevalence of pneumonia (Fig 3A). The model by Singal et al. lacked
the potential to assign patients to a low risk of pneumonia, but showed a rather uniform predic-
tion pattern in the other risk groups, where in general the model slightly overestimated the pre-
dicted probabilities (Fig 3B). The model by Hopstaken et al. showed a linear relation between
the predicted probabilities and prevalence of pneumonia in all datasets. However, this relation
varied considerably, from consistent overestimation in one dataset and an underestimation in
another (Fig 3C). The models by Heckerling et al. and Diehr et al. demonstrated consistent
overestimation of the predicted probabilities and lacked the potential to assign patients to a
low risk of pneumonia (Fig 3D and 3E, respectively). The model by Melbye et al. lacked a clear

Table 3. Discriminative performance of pneumonia predictionmodels per dataset, measured as Area Under the ROC Curve (AUC) and as pooled
AUC in all suited individual patient data (IPD).

Model Validation dataset Development
AUC (95% CI)

Pooled
AUC
(95%
CI)†

Patients in IPD
/development

(N =)

Melbye
et al.
[33]

Hopstaken
et al. [32]

Flanders
et al. [35]

Graffelman
et al. [17]

Holm
et al.
[36]

Rainer
et al.
[37]

Steurer
et al.
[38]

van
Vugt
et al.
[19]

Van Vugt
et al. [19]

0.78 X 0.89 0.60 X X X D 0.70 (0.65–
0.75)

0.79
(0.74–
0.85)

699/2820

Heckerling
et al. [18]

0.69 X 0.89 0.62 X X X 0.66 0.82 (0.78–
0.86)

0.72
(0.68–
0.76)

3519/1134

Diehr et al.
[31]

X 0.57 0.76 X X 0.64 X X NA 0.65
(0.61–
0.68)

972/474

Singal
et al. [34]

0.68 0.62 0.81 0.63 0.62 X 0.61 0.64 0.73 (0.69–
0.77)

0.64
(0.61–
0.67)

4747/255

Melbye
et al. [33]

D 0.57 0.62 0.49 X X X X 0.75 (0.66–
0.84)

0.56
(0.49–
0.63)

540/402

Hopstaken
et al. [32]

X D 0.58 0.61 X 0.52 X 0.56 0.70 (0.59–
0.80*)

0.53
(0.50–
0.56)

3678/243

X = Model not validated in dataset due to missing predictors, D = Development dataset (AUCs shown under “Development”), NA = Not available (none

reported in development study)

* 95% CI not available in original study report (recalculated in original dataset)
†AUC of Development dataset (“D”) not included.

doi:10.1371/journal.pone.0149895.t003
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linear relation between the observed probabilities and prevalence of pneumonia (Fig 3F). Pool-
ing of calibration results was not possible due to heterogeneity of results and, therefore, not fur-
ther pursued.

Discussion

Main findings
This study assessed discrimination (pooled AUC an deltaAUC) and calibration of six previ-
ously published primary care S&S models for patients with suspected LRTI in the IPD of eight
diagnostic studies (N = 5308).

Fig 2. Graphic representation of model performance relative to dataset average AUC, measured as delta AUC. Each point represents the
performance of an individual model relative to the average performance of all models per dataset (deltaAUC, calculated as individual model AUCminus [–]
the mean AUC of dataset). The figure shows how the discriminative performance per model, in the datasets in which it could be validated, is compared to the
discriminative performance of the other models in that same dataset. For example, we see that the model by van Vugt et al. performs above average in all
datasets in which it could be validated (i.e. Graffelman et al., Melbye et al, and Flanders et al). Furthermore, by studying the figure more closely, we can see
the order of what model performed best in what dataset. For example, the models by van Vugt et al. and Heckerling et al. perform best in the dataset by
Flanders et al., followed by the models by Singal et al., Diehr et al., Melbye et al. and Hopstaken et al.

doi:10.1371/journal.pone.0149895.g002

Validation of Primary Care Models for Pneumonia

PLOS ONE | DOI:10.1371/journal.pone.0149895 February 26, 2016 9 / 16



Fig 3. Calibration plots of predictionmodels clustered per risk group with low (0–10%), intermediate (10–30%) and high (30–100%) predicted
probabilities. Calibration results are presented for each validation dataset where the model could be validated. Plots show how well the predicted
probabilities (x-axis) agree with observed probabilities (y-axis). For perfect agreement, the calibration curve falls on the ideal diagonal line (optimal
calibration). Two vertical cut-off lines for 10% and 30% risk of pneumonia are depicted. (A) Calibration plot of the model by van Vugt et al. (B) Calibration plot
of the model by Singal et al. (C) Calibration plot of the model by Hopstaken et al. (D) Calibration plot of the model by Heckerling et al. (E) Calibration plot of the
model by Diehr et al. (F) Calibration plot of the model by Melbye et al.

doi:10.1371/journal.pone.0149895.g003
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The model by van Vugt et al., demonstrated the highest pooled and relative discriminative
performance, with a pooled AUC of 0.79 and deltaAUCs between 0.14 and 0.01. The model by
Heckerling et al. followed with a pooled AUC of 0.73 and deltaAUCs between 0.13 and -0.03.
The models by Diehr et al., Singal et al. Melbye et al. and Hopstaken et al., demonstrated lower
average and relative discriminative performance, with respective pooled AUCs of 0.65, 0.64,
0.56 and 0.53, and marginally positive or negative deltaAUCs values. Calibration of the models
by van Vugt et al. and Singal et al. was acceptable, demonstrating reasonable overall agreement
in the predicted probabilities and presence of pneumonia, and allows for optimization with
simple recalibrated methods. Calibration of the remaining models showed signs of overfitting
or varying degrees of systematic over- or underestimation of predicted probabilities between
different datasets, impeding simple recalibration.

Interpretation of findings
It is common that performance of a prediction model decreases when validated in new patients.
Such a decrease is typically caused by the difference in case-mix of, arguably similar, patients.
However, when the decrease in performance is larger than expected other mechanisms could
have caused overfitting of the model in the development study, such as a (too) small develop-
ment dataset or a too elaborate selection of candidate predictors [14]. Furthermore, in some
cases the replacement of absent predictors in the external validation data may have led to lower
discriminative performance of the model, e.g. ‘dry cough’ in the model of Hopstaken et al. was
only measured in a single dataset [17] and, therefore, the predictor ‘cough’ was used. The
model by van Vugt et al. showed a better discrimination in external validation compared to the
development study. This somewhat unusual finding might be caused by the partial verification
of the disease status in two of the included datasets [33,35]. In both datasets CXR acquirement
was dependent on physician judgment, whereas patients not receiving a CXR were considered
healthy. Consequently, clinical information (e.g. signs and symptoms) could have influenced
the disease status and lead to an overestimation of the discriminative performance of a predic-
tion model [40]. However, it is likely that all models would equally benefit from potential over-
estimation of the discriminative performance in these two datasets and also be of little impact,
as most models could be validated in these datasets.

Concern in performance differences would not have existed if all models would have been
validated in all IPD. In our study such a comparison was not conceivable as in five of the
included IPD dataset one or more required predictors were absent. To approach an equal com-
parison between models and minimize the performance differences we used the deltaAUC.
Here both methods (pooled and deltaAUC) demonstrated similar results.

Performance between models could also be affected by the inclusion criteria used in a study
contributing IPD. For example, when patients are selected on the basis of specific clinical char-
acteristics (e.g. fever) one might expect that the performance of models including such vari-
ables (predictors) will be negatively influenced in a validation study [41]. However, the good
performance of some of the included models, when evaluated in a mixed IPD population
including patients with various likelihoods of pneumonia, indicates that they can be used
beyond the first step of the diagnostic process.

In this study we performed a visual assessment of calibration in various clinically relevant
risk groups. Per group it was assessed how the predicted risk of pneumonia compared to the
true prevalence of pneumonia. In general, included models failed to assign extreme predictions
(closer to 0 or 1), meaning it is challenging to completely rule out or prove the presence of
pneumonia. Either such extreme predictions were not made at all by the model (e.g. for low
risks<10%) or did not correspond well with the true prevalence of pneumonia (e.g. for higher
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predicted risks>30%). This phenomenon can be expected when presenting patients are in gen-
eral reasonably healthy and when studying a clinically heterogeneous disease, like pneumonia,
where disease course is influenced by a variety in airway pathogens and patient characteristics
such as comorbidity and frailty. Future research should focus on the recalibration of original
models to ensure the accurate predictions in all types of patient populations, while preserving
discrimination [42]. However, in models lacking consistency in calibration (e.g. by overfitting),
simple recalibration methods may not suffice. Two of the included models cases (Diehr et al.
and Melbye et al.) included no intercept. This may be an explanation for the poor calibration
of these models. In subsequent investigations it is recommended to add an intercept to improve
performance of these models. However, such amendments were beyond the scope of this
review.

Finally, although various reference standards were allowed to determine pneumonia status,
all included studies diagnosed pneumonia using CXR. Arguably, the diagnostic properties
found in the present analysis may be lower, or higher, when applied to settings where alterna-
tive reference standards for pneumonia than CXR are applied. However, as no consensus on a
gold standard for pneumonia exists, none of the studies raised concern about the reference
standard in the QUADAS-2 assessment and because we used the same outcome definition for
both the included models as for the included datasets, we do not expect this to introduce bias
(e.g. diagnostic or selection bias) in our study.

Strengths and limitations
To our knowledge this IPD meta-analysis validated all primary care S&S prediction models for
pneumonia in a large composite dataset of IPD of high quality diagnostic studies. Included
models could be validated in at least three external data sources, providing reliable estimates of
the pooled AUC. Nonetheless, it is important when comparing models to focus on results
obtained within the same validation dataset, in a paired comparison using deltaAUCs, as the
absolute value of discrimination differed between validation datasets. Calibration of models in
multiple validation datasets is notoriously hard to quantify. Therefore, we created clinically rel-
evant risk groups to detect potential weaknesses in calibration that can be translated to the clin-
ical setting.

A potential limitation of this study was the use of alternative (definitions for) predictors
when specific predictors from published models were missing (S2 Table). However, we only
used these alternative predictors when sufficiently appropriate or when they could be calcu-
lated with the help of other predictors. Moreover, we presume that these types of predictors
(e.g. “sweats” for “night sweats”) are often used in a similar and interchangeable fashion in
daily practice and are therefore comparable. Even when alternative predictors were considered,
the performance evaluation of several models was hampered due to absence of predictors. This
complicates straightforward comparison of these models and could have theoretically induced
bias in model performance. However, by assessment of the discriminative performance accord-
ing to two different methods, which incorporated a within model comparison (i.e. deltaAUC)
this evaluation was arguably justified.

Lastly, in our study the prevalence of pneumonia ranged between 5–43% in the included
IPD datasets, which is generally higher than the prevalence of 6% typically found in a primary
care setting [43]. The large variation in prevalence reflects both a variation in setting of
included studies and a difference in the inclusion criteria applied in included studies. This may
have led to the inclusion of IPD with a broad case-mix, ranging from patients with acute cough
to suspected pneumonia. However, as the key purpose of an external validations study is to
evaluate the performance of prediction models in other–but arguably comparable–patients, the
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heterogeneity in the IPD patient population due to differences in inclusion criteria does not
interfere with the primary aim of our study.

Conclusions
Prediction models can be of value for GPs by discriminating between patients with and without
pneumonia but they fail to assign very high or low risks. Of all published primary care S&S
models, the model by van Vugt et al. demonstrated the highest discriminative accuracy coupled
with reasonable to good calibration in IPD of different study populations. This model is there-
fore the main candidate for use in primary care.
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