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Abstract: This paper presents an analytical study of sandwich structures. In this study, the Euler–Bernoulli beam equation is 

solved analytically for a four-point bending problem. Appropriate initial and boundary conditions are specified to enclose the 

problem. In addition, the balance coefficient is calculated and the Rule of Mixtures is applied. The focus of this study is to 

determine the effective material properties and geometric features such as the moment of inertia of a sandwich beam. The 

effective parameters help in the development of a generic analytical correlation for complex sandwich structures from the 

perspective of four-point bending calculations. The main outcomes of these analytical calculations are the lateral displacements 

and longitudinal stresses for each particular material in the sandwich structure. 

 

INTRODUCTION 

The Euler–Bernoulli beam theory states that stresses vary linearly with the distance from the neutral axis [1, 

2]. The classic formula for determining the longitudinal stress in a beam, as shown in Fig. 1 under simple bending, 

is given in Equation (1): 

 

 σ𝑥 =
𝑀|𝑐|

𝐼
 (1) 

 

where σ𝑥 is the longitudinal stress in 𝑃𝑎, 𝑀 is the moment about the neutral axis in 𝑁𝑚, 𝑐 is the perpendicular 

distance from the neutral axis in 𝑚 and 𝐼 is the second moment of area about the neutral axis in 𝑚4. 

 

 

FIGURE 1. Longitudinal stress (σ𝑥), shear stress (𝜏𝑥), shear force (𝑉) and bending moment (𝑀) in a beam 

 

Deflection in the beam is shown in Fig. 2 In a bending beam, the strain 𝜀 can be expressed by the radius of the 

neutral axis and the distance of the surface from the neutral axis. A correlation can be written as shown in Equation 

(2): 

https://en.uit.no/go/target/F623F5EDF37E802EE040F2818AA05F97/210116


 
 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.  Longitudinal strain (𝜀𝑥) in a bending beam 

 

 

 
 𝐶′𝐷′

 𝐴′𝐵′
=

(𝑅 + 𝑐)𝜃

𝑅𝜃
=

𝑅 + 𝑐

𝑅
 (2) 

 

where 𝑅 is the radius of the neutral axis, 𝑐 is the distance from the neutral axis and 𝜃 is the slope in radians. 

 

Thereafter, the strain 𝜀𝑥 at layer at  𝐶′𝐷′ is shown in Equation (3), where the line 𝐶𝐷 is in the original layer so 

that the length 𝐶𝐷 = 𝐴𝐵.  

 

 𝜀𝑥 =
 𝐶′𝐷′ − 𝐶𝐷

𝐶𝐷
=

 𝐶′𝐷′ − 𝐶𝐷

𝐴𝐵
=

 𝐶′𝐷′

𝐴𝐵
− 1 (3) 

 

Since  𝐴′𝐵′ and 𝐴𝐵 are on the neutral axis, there will no change in length; hence, Equation (4) is written as: 

 

  𝐴′𝐵′ =  𝐴𝐵  (4) 

 

By substituting Equation (2) in Equation (3), Equation (5) can be written: 

 

 𝜀𝑥 =
𝑐

𝑅
 (5) 

 

Since the beam is only subject to moments and it is in static equilibrium, the forces across the cross-section 

surface are entirely longitudinal (Fig. 3). The force on each small area in the cross-sectional area is given by 

Equation (6): 

 

 ∆𝑃 = 𝜎𝑥 ∙ 𝑏 ∙ 𝑑𝑦 (6) 

 

where 𝜎𝑥  is the longitudinal stress in 𝑃𝑎, 𝑏 is the width of the beam in 𝑚, and 𝑑𝑦 is the differential in the 𝑦 

direction. 

 

This result in moment is shown in Equation (7): 
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 ∆𝑀 = 𝑐 ∙ (𝜎𝑥 ∙ 𝑏 ∙ 𝑑𝑦) (7) 

where 𝑐 is the perpendicular distance from the neutral axis in 𝑚.  

 

 

FIGURE 3.  Bending moment in the cross-sectional area of a beam 

 

By summing the moment over the complete cross-sectional area, Equation (8) is given as: 

 

 𝑀 =  ∑(𝜎𝑥 ∙ 𝑐 ∙ 𝑏 ∙ 𝑑𝑦) (8) 

 

Considering the elasticity of the material, using Hooke’s law [3], Equation (9) is given as: 

 𝜎𝑥 = 𝐸𝜀𝑥 (9) 

where 𝐸 is Young’s modulus in 𝑃𝑎. 

 

By substituting Equation (5) in Equation (9), 𝜎𝑥 can be re-written in Equation (10): 

 

 𝜎𝑥 = 𝐸
𝑐

𝑅
 (10) 

 

Figure 4 shows the shape of the neutral axis when the beam is bending. 

 

As it is known, when the angle is very small, tan 𝜃 =
𝑑𝑦

𝑑𝑥
 can be written as 𝜃 =

𝑑𝑦

𝑑𝑥
 . By the definition of 𝜃 in 

radians (𝜃 =
𝑠

𝑅
, where 𝑠 is length of arc and 𝑅 is radius), since 𝑑𝑠 is very small so 𝑑𝑥 = 𝑑𝑠, resulting in Equation 

(11):  

 

 
1

𝑅
=

𝑑𝜃

𝑑𝑠
=

𝑑𝜃

𝑑𝑥
=

𝑑2𝑦

𝑑𝑥2
 (11) 

 

By substituting Equation (10) and Equation (11) into Equation (8), Equation (12) is given as: 

 

 



 
 

 𝑀 =
𝐸

𝑅
 ∑ 𝑐2𝑏. 𝑑𝑦 =

𝐸

𝑅
. 𝐼 (12) 

 

where 𝐼 is the moment of inertia in (𝑚4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. Shape of neutral axis of a bending beam 

 

By substituting Equation (11) in Equation (12), Equation (13) is derived as shown. 

 

 
𝑑2𝑦

𝑑𝑥2
=

𝑀

𝐸𝐼
 (13) 

 

Since it is known that 𝜃 =
𝑑𝑦

𝑑𝑥
, Equation (13) can be rewritten in the form of Equation (14):  

 

 𝜃 = ∫
𝑀

𝐸𝐼
𝑑𝑥 (14) 

 

In the end, the displacement y can be derived as shown in the form of Equation (15): 

 

 𝑦 = ∫ 𝜃 𝑑𝑥 = ∬
𝑀

𝐸𝐼
𝑑𝑥 (15) 

 

These equations [4] will later be applied to derive the correlation of displacement in the four-point bending 

beam.  

 

In four-point bending [5, 6], a total force is applied to two locations at equal distance from the supports placed 

at two ends of the beam, as shown in Fig. 5. The resulted shear force and the bending moment are also shown in 

Fig. 5.  

 

The advantage of four-point bending is that the moment is constant in the middle of the beam, however, it is 

function of x at both ends [7] as shown in Equation (16): 

 

 

𝑀(𝑥) =
𝑃𝑥

2
          0 ≤ 𝑥 ≤ 𝐿1 

𝑀 =
𝑃𝐿1

2
          𝐿1 ≤ 𝑥 ≤ (𝐿 − 𝐿1) 

𝑀(𝑥) =
𝑃(𝐿 − 𝑥)

2
          (𝐿 − 𝐿1) ≤ 𝑥 ≤ 𝐿 

 

(16) 

 

𝑑𝑥 

𝑑𝜃 

𝑑𝑦 

𝑑𝑠 



 
 

where 𝑃 is the total load in four-point bending in 𝑁, 𝐿1is the distance between the supporting points and the 

loading points on each side in 𝑚, and 𝐿 is the distance between the supports in 𝑚 as shown in Fig. 5.  

 

 

FIGURE 5.  Bending moment (𝑀) and shear force (𝑉) diagrams of a four-point bending beam  

 

By substituting Equations (16) in Equations (14) and (15), the following correlations can be derived as shown 

in Equations (17) to (22). 

 

When 0 ≤ 𝑥 ≤ 𝐿1 and 𝑀 =
𝑃𝑥

2
,  

 

 𝜃1 =
𝑃𝑥2

4𝐸𝐼
+𝐶1 (17) 

 𝛿1 =
𝑃𝑥3

12𝐸𝐼
+𝐶1𝑥 + 𝐶2 (18) 

 

When 𝐿1 ≤ 𝑥 ≤ (𝐿 − 𝐿1) and 𝑀 =
𝑃𝐿1

2
,  

 𝜃2 =
𝑃𝐿1𝑥

2𝐸𝐼
+𝐶3 (19) 

 𝛿2 =
𝑃𝐿1𝑥2

4𝐸𝐼
+𝐶3𝑥 + 𝐶4 (20) 

 

𝐿1 

𝐿 

𝑦 

𝑥 

𝑃

2
 𝑃

2
 

𝐿1 

𝑃

2
 

𝑃

2
 

𝑃

2
 

𝑀(𝑥) =
𝑝𝑥

2
 𝑀 =

𝑃𝐿1

2
 

𝑀 

𝑉 

𝑀(𝑥) =
𝑝(𝐿 − 𝑥)

2
 

−
𝑃

2
 



 
 

When (𝐿 − 𝐿1) ≤ 𝑥 ≤ 𝐿 and 𝑀 =
𝑃(𝐿−𝑥)

2
,  

 𝜃3 = −
𝑃𝑥2

4𝐸𝐼
+

𝑃𝐿𝑥

2𝐸𝐼
+𝐶5 (21) 

 𝛿3 = −
𝑃𝑥3

12𝐸𝐼
+

𝑃𝐿𝑥2

4𝐸𝐼
+ 𝐶5𝑥 + 𝐶6 (22) 

 

 

Since we have six unknowns 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, and 𝐶6 we need atleast six boundary conditions (BCs) to solve 

the equations to get the lateral displacement 𝛿 and angular displacement 𝜃. The BCs are given in Equations (23) 

to (27).  

 

 𝑥 = 0,                  𝛿1 = 0 (23) 

 𝑥 = 𝐿1,               𝛿1 = 𝛿2,               𝜃1 = 𝜃2   (24) 

 𝑥 = 𝐿/2,      𝜃2 = 0 (25) 

 𝑥 = 𝐿 − 𝐿1,               𝛿2 = 𝛿3,               𝜃2 = 𝜃3   (26) 

 𝑥 = 𝐿,                  𝛿3 = 0 (27) 

 

By solving the equations [8], the following results of lateral and angular displacements are obtained, as shown 

in Equations (28) to (33), 

 

𝜃1 =
𝑃𝑥2

4𝐸𝐼
+

𝑃𝐿1
2

4𝐸𝐼
−

𝑃𝐿1𝐿

4𝐸𝐼
 

 

(0 ≤ 𝑥 ≤ 𝐿1) (28) 

𝛿1 =
𝑃𝑥3

12𝐸𝐼
+

𝑃𝐿1
2𝑥

4𝐸𝐼
−

𝑃𝐿1𝐿𝑥

4𝐸𝐼  
 (0 ≤ 𝑥 ≤ 𝐿1) (29) 

𝜃2 =
𝑃𝐿1𝑥

2𝐸𝐼
−

𝑃𝐿𝐿1

4𝐸𝐼
 𝐿1 ≤ 𝑥 ≤ (𝐿 − 𝐿1) (30) 

𝛿2 =
𝑃𝐿1𝑥2

4𝐸𝐼
−

𝑃𝐿𝐿1𝑥

4𝐸𝐼
+

𝑃𝐿1
3

12𝐸𝐼
 

 

𝐿1 ≤ 𝑥 ≤ (𝐿 − 𝐿1) (31) 

𝜃3 = −
𝑃𝑥2

4𝐸𝐼
+

𝑃𝐿𝑥

2𝐸𝐼
−

𝑃𝐿1
2

4𝐸𝐼
−

𝑃𝐿2

4𝐸𝐼
+

𝑃𝐿𝐿1

4𝐸𝐼
 ((𝐿 − 𝐿1) ≤ 𝑥 ≤ 𝐿) (32) 

𝛿3 = −
𝑃𝑥3

12𝐸𝐼
+

𝑃𝐿𝑥2

4𝐸𝐼
−

𝑃𝐿1
2𝑥

4𝐸𝐼
−

𝑃𝐿2𝑥

4𝐸𝐼
+

𝑃𝐿𝐿1𝑥

4𝐸𝐼
+

𝑃𝐿3

12𝐸𝐼
+

𝑃𝐿1
2𝐿

4𝐸𝐼
−

𝑃𝐿2𝐿1

4𝐸𝐼
 ((𝐿 − 𝐿1) ≤ 𝑥 ≤ 𝐿) (33) 

 

where 𝐿  is the distance between the supports, 𝑃 is the total load of four-point bending, 𝐸 is the Young’s modulus 

and 𝐼 is the moment of inertia. 

 

In this study, a beam is analyzed by overlaying two different materials together to form a sandwich structure. 

Each layer of the material is uniformly distributed throughout and perfectly bonded, free of voids. The lamina is 

initially in a stress-free state (no residual stresses) and behaves as linear elastic material.  

 



 
 

ANALYTICAL STUDY 

Stress calculations in the beam are performed with respect to the neutral axis. The neutral axis of the beam 

goes through the centroid of its cross-section [9]. The centroid can be calculated using correlations given in 

Equations (34) to (36): 

 
 

𝐶𝑧 =
∫ 𝑧𝑑𝐴

𝐴
 (34) 

 

 𝐶𝑦 =
∫ 𝑦𝑑𝐴

𝐴
 (35) 

 

 𝐴 = ∫ 𝑓(𝑧)𝑑𝑧               𝑦 = 𝑓(𝑧) (36) 

 

where 𝐶𝑧 , 𝐶𝑦  are the coordinates of the centroid; 𝐴 is the area; 𝑧, 𝑦 are the values of the z-coordinate and y-

coordinate, respectively; 𝑓(𝑧) is a function which describes the shape. Since the beam is symmetric, 𝐶𝑧 , the 

coordinate of the centroid on the z-axis, is in the center.  

 

In this study, the beam is made of two different materials with thicknesses 𝑡1 and 𝑡2 and areas 𝐴1 and 𝐴2, 

respectively, as shown in Fig. 6 (a). The number of sandwiched layers was analyzed, as shown in Fig.6 (b), (c) and 

(d). In these samples, the total thickness was kept constant and the individual material thicknesses were divided 

equally by the number of sandwiched layers, 𝑠; for example, 𝑠 =  1 for Fig. 6 (a), 𝑠 =  2 for Fig.6 (b) and 𝑠 =  3 

for Fig. 6 (c).   

 

 
FIGURE 6. The cross-sectional area of a beam with different numbers of sandwiched layers 

 

It is valid to assume that, under tensile loading, the Young’s modulus 𝐸 of the beam with total cross-sectional 

area 𝐴 can be described as shown in Equation (37): 

  

 𝐸 = 𝐸1

𝐴1

𝐴
+ 𝐸2

𝐴2

𝐴
 (37) 

 

where 𝐸1 and 𝐸2are Young’s moduli of different materials with the respective net cross-sectional areas,  𝐴1 and 

𝐴2, respectively.  
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This beam contains two kinds of different materials. When it is bending, different materials have different 

stiffness because of the different Young’s modulus, 𝐸. Therefore, the Rule of Mixtures [10] is introduced to find 

the combined material properties.  

 

One of the methods of analyzing the composite beams is to use an equivalent area to represent the increase (or 

decrease) in stiffness. Therefore, it is important to bring in the conception of the balance coefficient, 𝑛 [11]. The 

new equivalent cross-section is assumed to be made completely from the first material, and the balance 

coefficient, 𝑛 is multiplied by the area of the second material for scaling the stiffness difference, as shown in Fig. 

7.  

 

The expansion factor, also known as the balance coefficient 𝑛, is given in Equation (38): 

  

 𝑛 =
𝐸2

𝐸1

           𝐸1 > 𝐸2 (𝑎𝑠𝑠𝑢𝑚𝑒𝑑) (38) 

 

 
FIGURE 7. Applying balance coefficient to scale the areas  

  

 

The location of the centroid and the moment of inertia change because of the difference in the Young’s moduli. 

The new value of centroid, 𝐶𝑦, is calculated as shown in Equation (39): 

 

 𝐶𝑦 =
𝐴1 ∙ ∑ 𝐷𝑖 + 𝑛. 𝐴2 ∙ ∑ 𝐷𝑖+1

𝑠 ∙ (𝐴1 + 𝑛. 𝐴2)
 (39) 

 

where 𝑖 = 1, 3, 5, 7, … , 2𝑠 − 1, 𝐷𝑖  and 𝐷𝑖+1 are the centroid coordinates of each layer and calculated as shown in 

Equations (40) to (43): 

 

 𝐷1 =
𝑡1

2𝑠
 (40) 

 

 𝐷2 =
𝑡1

s
+

𝑡2

2s
 (41) 

⋮ 
 

 𝐷𝑖 = 𝐷𝑖−2 +
𝑡1

s
+

𝑡2

𝑠
,       𝑤ℎ𝑒𝑛 𝑠 ≥ 2  (42) 
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 𝐷𝑖+1 = 𝐷𝑖−1 +
𝑡1

s
+

𝑡2

𝑠
,        𝑤ℎ𝑒𝑛 𝑠 ≥ 2 (43) 

 

The moment of inertia of each layer can be calculated using the parallel axis theorem [12, 13], as shown in 

Equation (44): 

 

 𝐼 = 𝐼𝑁.𝐴 
+ 𝑦 

2𝐴  (44) 

 

where 𝐼 is the moment of inertia for each layer, 𝐼𝑁.𝐴 is the local moment of inertia of the layer, 𝑦 is the distance 

from the neutral axis, and 𝐴 is the cross-sectional area of the layer. 

 

All the moment of inertia terms can then be added together to calculate the total moment of inertia 𝐼𝑡  of the 

lamina, as shown in Equation (45): 

 

 𝐼𝑡 = ∑(𝐼1, 𝐼2, … , 𝐼2𝑠−1, 𝐼2𝑠) (45) 

 

where 𝐼1 , 𝐼2 , ⋯ ,  𝐼2s−1 , 𝐼2𝑠 are given in Equations (46) to (49): 

 

 
𝐼1 =

𝑏 ∙ (
𝑡1

𝑠
)

3

12
+ 𝑏 ∙

𝑡1

𝑠
∙ (𝐷1 − 𝐶𝑦)2 

(46) 

 

 
𝐼2 =

𝑛 ∙ 𝑏 ∙ (
𝑡2

𝑠
)

3

12
+ 𝑛 ∙ 𝑏 ∙

𝑡2

𝑠
∙ (𝐷2 − 𝐶𝑦)2 

(47) 

 

⋮ 

 
𝐼2𝑠−1 =

𝑏 ∙ (
𝑡1

𝑠
)

3

12
+ 𝑏 ∙

𝑡1

𝑠
∙ (𝐷2𝑠−1 − 𝐶𝑦)2,       𝑤ℎ𝑒𝑛 𝑠 ≥ 2 

(48) 

 

 
𝐼2𝑠 =

𝑛 ∙ 𝑏 ∙ (
𝑡2

𝑠
)

3

12
+ 𝑛 ∙ 𝑏 ∙

𝑡2

𝑠
∙ (𝐷2𝑠 − 𝐶𝑦)2,        𝑤ℎ𝑒𝑛 𝑠 ≥ 2 

(49) 

 

where 𝑡1 and 𝑡2 are the thicknesses of material 1 and material 2, 𝑠 is half of the number of layers of the beam 

(number of sandwiches), 𝑏 is the width of the material 1, 𝑛 is the balance coefficient, and 𝐶𝑦 is the position of the 

neutral axis of the composite beam, as given in Equation (39).   

 

The longitudinal stresses can also be determined from the basic beam bending equation [14], as given in 

Equation (1). The longitudinal stresses in each layer are given in Equations (50) and (51): 

 

 𝜎𝑥,1 =
𝑀|𝑦 − 𝐶𝑦|

𝐼𝑡

  (50) 

 

 𝜎𝑥,2 =
𝑛𝑀|𝑦 − 𝐶𝑦|

𝐼𝑡

  (51) 

 

where 𝜎𝑥,1 and 𝜎𝑥,2 are the longitudinal stresses in the first material and the second material, respectively, and 𝑦 

is the position based on the reference axis (placed at the bottom of the sample). Please note that the positive value 

of (𝑦 − 𝐶𝑦)  indicates compressive longitudinal stresses and negative value of (𝑦 − 𝐶𝑦)  indicates tensile 

longitudinal stresses. 

 

Similarly, deflection and angles can be calculated using Equations (28) to (33) by substituting the lamina’s 

Young’s modulus and moment of inertia.  

http://www.ecourses.ou.edu/cgi-bin/eBook.cgi?doc=&topic=st&chap_sec=07.4&page=theory


 
 

The maximum deflection is in the center at 𝑥 =
𝐿

2
  and can be calculated by substituting the value of 𝑥 in 

Equation (31). The maximum deflection δ𝑚𝑎𝑥 is given in Equation (52):  

 

 δ𝑚𝑎𝑥 = 𝛿𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑃𝐿1

48𝐸𝐼𝑡

(4𝐿1
2 − 3𝐿2) (52) 

 

where 𝛿𝑐𝑒𝑛𝑡𝑒𝑟  is the deflection in the centre, 𝐿 is the total length, 𝐿1 is the distance between the support point and 

the loading point, 𝐸 is the combined Young’s modulus (Equation (37)) and 𝐼𝑡 is the total moment of inertia about 

the neutral axis (Equation (45)).  

 

CONCLUSION 

In this study, analytical correlations for displacements and longitudinal stress are derived from the Euler‒

Bernoulli beam equation for a four-point bending of a sandwich structure. Appropriate initial and boundary 

conditions are specified to enclose the problem. The Rule of Mixtures is applied to calculate the position of the 

neutral axis and the moment of inertia for a sandwich structure. The resulting correlation can be used to calculate 

the displacements and longitudinal stress at any point in a complex sandwich beam. 
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