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Abstract: This paper presents an analytical study of sandwich structures. In this study, the Euler–Bernoulli beam equation is 
solved analytically for a four-point bending problem. Appropriate initial and boundary conditions are specified to enclose the 
problem. In addition, the balance coefficient is calculated and the Rule of Mixtures is applied. The focus of this study is to 
determine the effective material properties and geometric features such as the moment of inertia of a sandwich beam. The 
effective parameters help in the development of a generic analytical correlation for complex sandwich structures from the 
perspective of four-point bending calculations. The main outcomes of these analytical calculations are the lateral displacements 
and longitudinal stresses for each particular material in the sandwich structure. 
 

INTRODUCTION 

The Euler–Bernoulli beam theory states that stresses vary linearly with the distance from the neutral axis [1, 
2]. The classic formula for determining the longitudinal stress in a beam, as shown in Fig. 1 under simple bending, 
is given in Equation (1): 

 

  (1) 

 
where  is the longitudinal stress in ,  is the moment about the neutral axis in ,  is the perpendicular 
distance from the neutral axis in  and  is the second moment of area about the neutral axis in . 

 

 
FIGURE 1. Longitudinal stress ( ), shear stress ( ), shear force ( ) and bending moment ( ) in a beam 

 
Deflection in the beam is shown in Fig. 2 In a bending beam, the strain  can be expressed by the radius of the 

neutral axis and the distance of the surface from the neutral axis. A correlation can be written as shown in Equation 
(2): 
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FIGURE 2.  Longitudinal strain ( ) in a bending beam 
 
 

  (2) 

 
where  is the radius of the neutral axis,  is the distance from the neutral axis and  is the slope in radians. 

 
Thereafter, the strain  at layer at  is shown in Equation (3), where the line  is in the original layer so 

that the length .  
 

  (3) 

 
Since  and  are on the neutral axis, there will no change in length; hence, Equation (4) is written as: 
 

  (4) 

 
By substituting Equation (2) in Equation (3), Equation (5) can be written: 

 

  (5) 

 
Since the beam is only subject to moments and it is in static equilibrium, the forces across the cross-section 

surface are entirely longitudinal (Fig. 3). The force on each small area in the cross-sectional area is given by 
Equation (6): 

 

  (6) 

 
where is the longitudinal stress in , is the width of the beam in , and  is the differential in the  
direction. 
 

This result in moment is shown in Equation (7): 
 

Neutral axis 

M M 
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  (7) 

where  is the perpendicular distance from the neutral axis in .  
 

 

FIGURE 3.  Bending moment in the cross-sectional area of a beam 
 
By summing the moment over the complete cross-sectional area, Equation (8) is given as: 
 

  (8) 

 
Considering the elasticity of the material, using Hooke’s law [3], Equation (9) is given as: 

  (9) 

where  is Young’s modulus in . 
 
By substituting Equation (5) in Equation (9),  can be re-written in Equation (10): 
 

  (10) 

 
Figure 4 shows the shape of the neutral axis when the beam is bending. 
 
As it is known, when the angle is very small,  can be written as  . By the definition of  in 

radians ( , where  is length of arc and  is radius), since  is very small so , resulting in Equation 
(11):  

 

  (11) 

 
By substituting Equation (10) and Equation (11) into Equation (8), Equation (12) is given as: 
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  (12) 

 
where  is the moment of inertia in ( ). 
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

FIGURE 4. Shape of neutral axis of a bending beam 
 
By substituting Equation (11) in Equation (12), Equation (13) is derived as shown. 
 

  (13) 

 
Since it is known that , Equation (13) can be rewritten in the form of Equation (14):  
 

  (14) 

 
In the end, the displacement y can be derived as shown in the form of Equation (15): 
 

  (15) 

 
These equations [4] will later be applied to derive the correlation of displacement in the four-point bending 

beam.  
 
In four-point bending [5, 6], a total force is applied to two locations at equal distance from the supports placed 

at two ends of the beam, as shown in Fig. 5. The resulted shear force and the bending moment are also shown in 
Fig. 5.  

 
The advantage of four-point bending is that the moment is constant in the middle of the beam, however, it is 

function of x at both ends [7] as shown in Equation (16): 
 

 

 

 

 
 

(16) 
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where  is the total load in four-point bending in , is the distance between the supporting points and the 
loading points on each side in , and  is the distance between the supports in  as shown in Fig. 5.  

 
 

FIGURE 5.  Bending moment ( ) and shear force ( ) diagrams of a four-point bending beam  
 
By substituting Equations (16) in Equations (14) and (15), the following correlations can be derived as shown 

in Equations (17) to (22). 
 
When  and ,  
 

  (17) 

  (18) 

 
When  and ,  

  (19) 

  (20) 
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When  and ,  

  (21) 

  (22) 

 
 
Since we have six unknowns , , , , , and  we need atleast six boundary conditions (BCs) to solve 

the equations to get the lateral displacement  and angular displacement . The BCs are given in Equations (23) 
to (27).  

 

  (23) 

  (24) 

  (25) 

  (26) 

  (27) 

 
By solving the equations [8], the following results of lateral and angular displacements are obtained, as shown 

in Equations (28) to (33), 
 

 
 

( ) (28) 

 ( ) (29) 

  (30) 

 
 (31) 

 ( ) (32) 

 ( ) (33) 

 
where is the distance between the supports,  is the total load of four-point bending,  is the Young’s modulus 
and  is the moment of inertia. 

 
In this study, a beam is analyzed by overlaying two different materials together to form a sandwich structure. 

Each layer of the material is uniformly distributed throughout and perfectly bonded, free of voids. The lamina is 
initially in a stress-free state (no residual stresses) and behaves as linear elastic material.  
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ANALYTICAL STUDY 

Stress calculations in the beam are performed with respect to the neutral axis. The neutral axis of the beam 
goes through the centroid of its cross-section [9]. The centroid can be calculated using correlations given in 
Equations (34) to (36): 

 (34) 

 

  (35) 

 

  (36) 

 
where ,  are the coordinates of the centroid;  is the area; ,  are the values of the z-coordinate and y-
coordinate, respectively;  is a function which describes the shape. Since the beam is symmetric, , the 
coordinate of the centroid on the z-axis, is in the center.  

 
In this study, the beam is made of two different materials with thicknesses  and  and areas  and , 

respectively, as shown in Fig. 6 (a). The number of sandwiched layers was analyzed, as shown in Fig.6 (b), (c) and 
(d). In these samples, the total thickness was kept constant and the individual material thicknesses were divided 
equally by the number of sandwiched layers, ; for example,  for Fig. 6 (a),  for Fig.6 (b) and  
for Fig. 6 (c).   

 

 
FIGURE 6. The cross-sectional area of a beam with different numbers of sandwiched layers 

 
It is valid to assume that, under tensile loading, the Young’s modulus  of the beam with total cross-sectional 

area  can be described as shown in Equation (37): 
  

  (37) 

 
where  and are Young’s moduli of different materials with the respective net cross-sectional areas,  and 

, respectively.  
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This beam contains two kinds of different materials. When it is bending, different materials have different 
stiffness because of the different Young’s modulus, . Therefore, the Rule of Mixtures [10] is introduced to find 
the combined material properties.  

 
One of the methods of analyzing the composite beams is to use an equivalent area to represent the increase (or 

decrease) in stiffness. Therefore, it is important to bring in the conception of the balance coefficient,  [11]. The 
new equivalent cross-section is assumed to be made completely from the first material, and the balance 
coefficient,  is multiplied by the area of the second material for scaling the stiffness difference, as shown in Fig. 
7.  

 
The expansion factor, also known as the balance coefficient , is given in Equation (38): 
  

  (38) 

 

 
FIGURE 7. Applying balance coefficient to scale the areas  

  
 
The location of the centroid and the moment of inertia change because of the difference in the Young’s moduli. 

The new value of centroid, , is calculated as shown in Equation (39): 
 

  (39) 

 
where ,  and  are the centroid coordinates of each layer and calculated as shown in 
Equations (40) to (43): 

 

  (40) 

 

  (41) 

 
 

  (42) 
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  (43) 

 
The moment of inertia of each layer can be calculated using the parallel axis theorem [12, 13], as shown in 

Equation (44): 
 

  (44) 

 
where is the moment of inertia for each layer,  is the local moment of inertia of the layer,  is the distance 
from the neutral axis, and  is the cross-sectional area of the layer. 

 
All the moment of inertia terms can then be added together to calculate the total moment of inertia of the 

lamina, as shown in Equation (45): 
 

  (45) 

 
where  ,  ,  ,  ,  are given in Equations (46) to (49): 

 

  (46) 

 

  (47) 

 
 

  (48) 

 

  (49) 

 
where  and  are the thicknesses of material 1 and material 2,  is half of the number of layers of the beam 
(number of sandwiches),  is the width of the material 1,  is the balance coefficient, and  is the position of the 
neutral axis of the composite beam, as given in Equation (39).   

 
The longitudinal stresses can also be determined from the basic beam bending equation [14], as given in 

Equation (1). The longitudinal stresses in each layer are given in Equations (50) and (51): 
 

  (50) 

 

  (51) 

 
where  and  are the longitudinal stresses in the first material and the second material, respectively, and  
is the position based on the reference axis (placed at the bottom of the sample). Please note that the positive value 
of  indicates compressive longitudinal stresses and negative value of  indicates tensile 
longitudinal stresses. 

 
Similarly, deflection and angles can be calculated using Equations (28) to (33) by substituting the lamina’s 

Young’s modulus and moment of inertia.  
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The maximum deflection is in the center at   and can be calculated by substituting the value of  in 
Equation (31). The maximum deflection  is given in Equation (52):  

 

  (52) 

 
where  is the deflection in the centre,  is the total length,  is the distance between the support point and 
the loading point,  is the combined Young’s modulus (Equation (37)) and  is the total moment of inertia about 
the neutral axis (Equation (45)).  

 

CONCLUSION 

In this study, analytical correlations for displacements and longitudinal stress are derived from the Euler‒
Bernoulli beam equation for a four-point bending of a sandwich structure. Appropriate initial and boundary 
conditions are specified to enclose the problem. The Rule of Mixtures is applied to calculate the position of the 
neutral axis and the moment of inertia for a sandwich structure. The resulting correlation can be used to calculate 
the displacements and longitudinal stress at any point in a complex sandwich beam. 
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