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Abstract. This work focuses on thermal problems, solvable using the heat equation. The fundamental question being 

answered here is: what are the limits of the dimensions that will allow a 3-D thermal problem to be accurately modelled 

using a 2-D Heat Equation? The presented work solves 2-D and 3-D heat equations using the Finite Difference Method, 

also known as the Forward-Time Central-Space (FTCS) method, in MATLAB®. For this study, a cuboidal shape domain 

with a square cross-section is assumed. The boundary conditions are set such that there is a constant temperature at its 

center and outside its boundaries. The 2-D and 3-D heat equations are solved in a time dimension to develop a steady state 

temperature profile. The method is tested for its stability using the Courant-Friedrichs-Lewy (CFL) criteria. The results are 

compared by varying the thickness of the 3-D domain. The maximum error is calculated, and recommendations are given 

on the applicability of the 2-D heat equation.  

INTRODUCTION 
 

Engineering problems need to be discretized in space dimensions in order to be solved using numerical techniques 

such as finite element method (FEM), finite difference method (FDM), finite volume method (FVM), etc. [1-10]. In 

order to solve such numerical problems, they need to be discretized in nodes and elements [11-13]. The nodes represent 

the position in space where parameters are being calculated (for example, displacement, pressure, density, temperature, 

etc.), and elements define the equations relating to the parameters (for example, Hooke’s law, laws of conservation of 

mass, momentum, energy, etc.) [14]. The geometry of the element defines the extent of calculations regarding space 

dimensions. These space dimensions categorize one-dimensional (1-D), two-dimensional (2-D) or three-dimensional 

(3-D) elements as shown in Fig. 1. 

With respect to Fig. 1, 1-D elements are referred to as link elements and can be categorized as 2-noded or 3-noded. 

Similarly, 2-D elements are referred to as shells. The shape of the shell can be triangular or quadrilateral with three 

and four nodes respectively. If there are mid nodes within the elements, then the triangular elements can have six 

nodes and quadrilateral elements can consist of eight nodes. The 3-D elements can be in the shape of a tetrahedron, 

hexahedron, or pentahedron. Tetrahedrons have four corners, hence the same number of corner nodes, but if there are 

mid nodes, the total number of nodes can be up to 10. The hexahedrons have eight nodes and, with mid nodes, there 

could be 20 nodes. Similarly, a pentahedron has six nodes and, with mid nodes, it has a total of 15 nodes. The shapes 

and positions of the elements and the number of nodes are not only limited to the aforementioned [15].       

Engineering structures are referred to as 1-D, 2-D, and 3-D. An example is a piece of string, which is referred to 

as 1-D; in reality, however, has a cross-sectional area, which, even though is very small, has some finite value. The 

same concept extends to a normal size piece of paper, which is a 2-D structure; however, it has a finite value of 

thickness, even though it is quite small in comparison to its length and width. In fact, every structure that we can 

perceive is 3-D.  

From the point of view of physics, it is often observed that certain physical parameters are not of significant value 

in a particular dimension. Let us consider a physical parameter: strength. A piece of a string is relatively strong when 

pulled; however, it will not provide any support in any other directions. This example can be extrapolated to a piece 



of paper: it is relatively strongly in its length and width, but it does not require much effort to bend. Therefore, from 

this observation, an equivalent mathematical model can be developed that limits the strength of string in 1-D and for 

a piece of paper in 2-D. 

This physical behavior of various real time structures and physical phenomenon, allows engineers and 

mathematicians to assume a realistic 3-D situations to be a 2-D or even a 1-D problems. The advantage of reducing 

the dimensions allows solving complex equations much easier and relatively faster [1].  

 

 

FIGURE 1. One-dimensional (1-D), two-dimensional (2-D) or three-dimensional (3-D) elements.  
 

The given study takes a thermal problem (because of its non-linear nature) and solves it in 2-D and 3-D. This paper 

focuses on finding the extent of the applicability of a 2-D heat equation. An attempt is made to evaluate the error in 

the temperature calculations when a 3-D problem is solved via a 2-D heat equation.  

  

METHODOLOGY 
 

The underlying physics of heat transfer through conduction in a solid medium can be solved mathematically using 

the heat equation [16] as given in Equation (1): 
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𝜕𝑇
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where 𝜌 is the density of the medium (kg/m3), 𝑐 is the specific heat capacity (J/kg K), �̇� is the volumetric energy 

generation term (W/m3), 𝑘 is the coefficient of thermal conduction (W/(m.K)), 𝑇 is the temperature (K), ∇ is the del 

operator and 𝑡 is time (s). 

 

The other forms of the above equation in two and three spatial dimensions with no energy generation term [17] 

are given in Equation (2) and Equation (3): 
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where 𝑥, 𝑦 and 𝑧 refer to spatial positions (m) in three dimensions and 𝛼 is the thermal diffusivity term (m2/s) as given 

in Equation (4): 

 𝛼 =
𝑘

𝜌𝑐
 (4) 

 

A finite difference method (FDM) is a numerical method for solving differential equations such as the heat 

equation given in Equation (2) and Equation (3). This method approximates the differentials with differences by 

discretizing the dependent variable (temperature) in the independent variable domains (space and time) [18]. Each 

discretized value of the dependent variable is referred to as a nodal value. In this case, the heat equations given in 

Equation (2) and Equation (3) are discretized using the FDM, forward-time central-space (FTCS). The discretized 

equations in two and three dimensions are given in Equation (5) and Equation (6). 
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where superscript 𝑡 and subscript 𝑖, 𝑗, 𝑘 refer to time and position respectively. ∆𝑡 is the time step size (s), and 

∆𝑥, ∆𝑦, ∆𝑧 are the differences in the spatial positions of temperature nodes.  

 

To solve Equations (5) or (6), initial and boundary conditions are required. Constant temperature boundary 

conditions were applied to the outer boundaries in both of the cases. A constant temperature of 273 K was specified 

for the 𝑥 and 𝑦 edges as boundary conditions in the case of the 2-D problem, as given in Equation (7) and illustrated 

in Figure 2. In the case of 3-D, a constant temperature of 273 K was specified for the 𝑥 and 𝑦 surfaces, and zero 

thermal derivative was specified for the 𝑧 surfaces, as given in Equation (8) and illustrated in Figure 2. The zero 

thermal derivative ensures that there are no heat losses in the z-direction, which is consistent with the 2-D problem. 
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where 𝑚𝑎𝑥 − 𝑥, 𝑚𝑎𝑥 − 𝑦 and 𝑚𝑎𝑥 − 𝑧 are the domain space limits in 𝑥, 𝑦 and 𝑧 dimensions, respectively. 



A constant temperature heat source of 298 K was specified in the middle of the 2-D and 3-D domains as illustrated 

in Figure 2. 

 

 

 
 

FIGURE 2. Boundary conditions applied in the 2-D and 3-D cases.  
 

The domains (2-D and 3-D) are discretized, as shown in Figure 3.  

 

 

 
 

FIGURE 3. The discretized 2-D and 3-D domains. 
 

As an initial condition, a constant temperature of 273 K was specified throughout the domain, except at the source. 

The initial condition was the same for 2-D and 3-D cases. The size of the 2-D space is 250 mm X 250 mm, and the 

size of the 3-D space is 250 mm X 250 mm X thickness. 

The study focuses on the variable Thickness in the 3-D case.  The material properties are given in Table 1. 
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TABLE 1. Values of constants and coefficients in heat equation. 

Constant Value Units 

Density (𝜌) 100 kg/m3 

Specific Heat Capacity (𝑐) 2000 J / (kg. K) 

Coefficient of Thermal Conductivity (𝑘) 1 W / (m. K) 

Thermal Diffusivity (𝛼) 5.0 x 10-6 m2/s 

 

 

It is vital for the stability and accuracy of the FDM to choose the correct time step value. In this work, the Courant–

Friedrichs–Lewy (CFL) condition [18, 19] is used to decide the time step size. The CFL condition for the heat equation 

is given in Equation (9): 

 

 

 2𝛼∆𝑡 ≤ min((∆𝑥)2, (∆𝑦)2, (∆𝑧)2 )   (9) 

 

 

where 𝛼 is the thermal diffusivity term (m2/s), ∆𝑡 is the time step size (s) and ∆𝑥, ∆𝑦, ∆𝑧 are the differences in the 

spatial positions of the temperature nodes.  

 

Equations (5) and (6) are solved and post-processed in MATLAB® [20]. The flow chart of the 2-D and 3-D codes 

is given in Figure 4. The results are discussed in the next section. 

 

 

RESULTS AND DISCUSSION 
 

The steady-state temperature profile of the 2-D case is given in Figure 5. The figure shows that the temperature is 

298 K in the center, gradually reducing to 273 K at the boundaries. Close to the center, the isothermal lines are circular 

and become square shaped close to the boundaries. The temperature variation from edge to edge of the 2-D space 

(passing through the center) is given in Figure 6. The maximum temperature is 298 K, which is in the center. The 

temperature drops parabolically to 273 K on either side, as expected from the solution of the heat equation [21, 22]. 

 

The parabolic behavior was also observed in the 3-D space. However, the parabolic behavior differs with different 

thicknesses, as shown in Figure 7. 

 

To quantify the error, the maximum temperature difference was calculated within 2-D and 3-D cases. The error 

values were normalized against maximum possible temperature difference (298-273 = 25 K). Similarly, the thickness 

was also normalized against the x dimension. It is to be noted that, for the simplicity of this analysis, the x and y 

dimensions are the same.   

 

The percentage errors with normalized thicknesses are given in Figure 8. 

 



 

FIGURE 4. Boundary conditions for the 2-D and 3-D cases.  
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FIGURE 5. The temperature profile of 2-D space.  

 

 

FIGURE 6. Temperature variation in 2-D space on the edge to edge line passing through the center.  
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FIGURE 7. Temperature variation in 3-D space on the edge to edge line passing through the center.  
 

 

 
 

FIGURE 8. Percentage error between 2-D and 3-D heat transfer cases. 

 

 

CONCLUSION 

 

The presented study demonstrates the extent of error when a 2-D heat equation is used to solve a 3-D problem. 

The study includes a partial differential (PDE) heat equation, which is solved using the forward-time centered-space 

(FTCS) finite difference method (FDM). It is concluded that the error is small in the solution of the 2-D heat equation 
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when the thickness is small in comparison to the other dimensions (normalized thickness to be around 0.05). The error 

values rise sharply for higher normalized thickness values. This study showed the maximum error to be about 38 %; 

however, this value can differ, depending on the problem domain, physical properties, initial and boundary conditions. 
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