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Abstract
Background/Aims: Subjective memory complaints (SMC) are strong predictors of mild cog-
nitive impairment (MCI) and subsequent Alzheimer’s disease. Our aims were to see if fully 
automated cerebral MR volume measurements could distinguish subjects with SMC and MCI 
from controls, and if probable parental late-onset Alzheimer’s disease (LOAD), apolipoprotein 
E ε4 genotype, total plasma homocysteine, and cardiovascular risk factors were associated 
with MR volumetric findings. Methods: 198 stroke-free subjects comprised the control (n = 
58), the SMC (n = 25) and the MCI (n = 115) groups. Analysis of covariance and receiver op-
erating characteristic curve was used to see if MR volumetry distinguished subjects with SMC 
and MCI from controls. Results: Subjects with SMC and MCI had significantly larger lateral 
ventricles and smaller hippocampal volumes than controls. The area under the curve in sub-
jects with SMC and MCI compared to that of controls was less than 0.68 for all volumes of 
intracranial structures. There was an interaction between sex and probable parental LOAD for 
hippocampal volume, with a significant association between probable parental LOAD and hip-
pocampal volume in women. Conclusions: Fully automated MR volumetry can distinguish 
subjects with SMC and MCI from controls in a general population, but insufficiently to assume 
a clear clinical role. Research on sporadic LOAD might benefit from a sex-specific search for 
genetic risk factors. © 2016 The Author(s) 
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Introduction

Alzheimer’s disease (AD) usually has a long preclinical phase with a gradual cognitive 
decline, until eventually appearing as mild cognitive impairment (MCI) and Alzheimer’s 
dementia [1]. Subjective memory complaints (SMC) may represent an early phase of cognitive 
decline, and may be an earlier harbinger of AD than MCI [2]. Persons with SMC score normally 
on standardized cognitive tests, and those with AD are interspersed among others with SMC 
due to various reasons [3, 4]. SMC can nevertheless predict dementia earlier than MCI [5, 6].

Cognitive tests have limited sensitivity and specificity in assessing cognitive impairment 
due to the wide span in normal cognitive function [7]. Self-reported and informant-reported 
memory complaints are more predictive of later cognitive decline than cognitive testing [8]. 
Since self-reported memory complaints have low diagnostic accuracy, it underlines the need 
for preclinical biomarkers of neurodegenerative diseases [9, 10]. For clinical utilization, they 
preferably have to be cost-effective and noninvasive.

Newer brain visualization methods are promising, and one of them is the application of 
fully automated brain MR volumetry [11, 12]. It is less expensive and time-consuming than 
manual or semiautomatic segmentation of brain structures, and more precise than quali-
tative visual assessment [13]. Volumetry of brain structures is a surrogate marker of AD, and 
many disorders can cause regional or global atrophy in the brain [14]. Earlier studies have 
shown that fully automated volumetry with the software package NeuroQuant cannot be 
used alone clinically, but that it can support other clinical investigations in diagnosing Alz- 
heimer’s dementia [15]. 

AD is the most prevalent cerebral degenerative disease and can be classified into early-
onset AD (<5% AD cases), and familial (15–25%) and sporadic (75%) late-onset AD (LOAD) 
[16–18]. First-degree relatives have a three- to fourfold risk of developing AD, and for those 
with a parent with LOAD the risk is especially high [18–20]. The ε4 allele of the apolipoprotein 
E (APOE) gene is the best documented genetic risk factor for sporadic LOAD, but is only asso-
ciated with half of the increased risk of AD in monozygotic twins, and other genes are clearly 
involved [17, 18, 21]. 

Coexisting cerebral small-vessel disease is often seen in AD, and there might be an overlap 
between vascular disease and AD [22–24]. Total plasma homocysteine (tHcy) and cardiovas-
cular risk factors are therefore possible risk factors for AD [25–27]. 

Our objective was to see whether fully automated MR volumetry could distinguish 
persons with SMC and MCI from controls. Furthermore, we aimed to examine if MR volu-
metric findings were associated with probable LOAD in parent(s), ApoE ε4 genotype, tHcy 
and cardiovascular risk factors.

Materials and Methods

Study Design, Population, Cognitive Testing, Interviews and Biochemical Analyses
Details on the design of the Tromsø Dementia Study have previously been described [19]. 

The Tromsø Dementia Study is a nested case-control study carried out in the sixth survey of 
the Tromsø Study (Tromsø 6). The Tromsø Study, a prospective cohort study, addresses 
cardiovascular and other chronic diseases [28]. The first survey took place in 1974 and 
Tromsø 6 in 2007–2008. The cognitive tests in Tromsø 6 were the finger-tapping test, the 
digit symbol-coding test, the Mini-Mental State Examination and the 12-word test (a modifi-
cation of the Californian Verbal Learning test) [7, 29–31]. The 12-word test measures verbal 
episodic memory using both immediate recall (word test part 1) and cued recall (word test 
part 2).
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Subjects with a Mini-Mental State Examination score of <24 and/or a cognitive test score 
below the 2.5th percentile in Tromsø 5 on one of the cognitive tests in Tromsø 6 and who 
reported SMC were considered to have MCI. We applied the MCI construct as originally 
proposed by Petersen et al. [32]. Subjects who did not fulfill the criteria for MCI, but reported 
subjective memory problems by answering ‘yes’ to ‘Has your memory declined?’ on a ques-
tionnaire in Tromsø 6, were considered to have SMC. Subjects who answered ‘no’ to ‘Has your 
memory declined?’, and whose cognitive test scores in Tromsø 6 were above the cutoffs, were 
eligible as controls.

The Tromsø Dementia Study also applied the Trail Making Test A, the Trail Making Test 
B, the Informant Questionnaire on Cognitive Decline in the Elderly, the clock-drawing test, the 
Montgomery-Åsberg Depression Rating Scale and the Rapid Disability Rating Scale-2 [19]. In 
addition, the Norwegian revised version of Greene et al.’s Behavior and Mood Disturbance 
(BMD) scale was used [33]. It has 20 questions on behavior and 13 questions on cognition. All 
answers are scored from 0 to 4, and scores of ≤40 for behavior (BMD behavior) and ≥26 for 
cognition (BMD cognition) are considered normal. 

Comprehensive interviews of subjects and informants on familial dispersion of probable 
LOAD identified subjects who had biological first-, second- and third-degree relatives with 
probable LOAD. We recorded age of onset of dementia and whether the onset was insidious or 
possibly caused by other diseases than LOAD, for instance Parkinson’s disease or stroke. For 
the few subjects who were unaccompanied by a family member or a close friend, a family 
member or a close friend mailed the information afterwards. In the present study, we included 
subjects with information on the dispersion of probable LOAD in first-degree relatives. If 
subjects had a parent or parents with probable LOAD, it was termed as probable parental LOAD, 
and if not, it was termed as no parental LOAD. 

All subjects were comprehensively interviewed regarding medication, earlier diseases 
and current health condition. None of the subjects had known neurodegenerative diseases or 
psychiatric disorders.

In addition to the 58 controls and 103 subjects with MCI described in our first paper on 
the Tromsø Dementia Study, 25 subjects who fulfilled the criteria for SMC and had no signs 
of cerebral stroke (not lacunar infarctions) on MRI were included. Further, 6 subjects with 
MCI who had not participated in our first study, due to incomplete information on probable 
LOAD in second- and third-degree relatives, and 6 subjects with MCI who reported earlier 
cerebral stroke, but whose MRI showed no signs thereof, were also included. The subjects 
thus constituted three groups: controls (n = 58), SMC (n = 25) and MCI (n = 115). 

Standard Protocol Approvals, Registration and Patient Consents
The study was approved by the board of the Tromsø Study, the Regional Ethics Commit- 

tee of Northern Norway and the Norwegian Social Science Data Services. All participants 
gave their informed consent.

Cerebral MRI
All examinations were performed using one of two identical Phillips 1.5T Intera scanners 

with a 6-channel head coil. A high-resolution 3D T1-weighted magnetization-prepared rapid-
gradient echo (MPRAGE) scan and an axial T2-weighted FLAIR scan were obtained for each 
subject. The MPRAGE scans were used for volumetric measurements. Key parameters for the 
MPRAGE sequence were the following: TE = 4.0 ms, TR = 2,300 ms, TI = 1,000 ms, flip 
angle = 8°, FOV = 240 × 240 mm2, and voxel size = 0.94 × 0.94 × 1.20 mm3.

The NeuroQuant software package release 1.1.0.1123 (http://www.cortechs.net/) was 
used for fully automatic volume measurements of total intracranial volume (ICV), cerebral 
cortical gray matter, cerebral white matter and several subcortical structures including the 
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amygdala and hippocampus. Except for ICV, volumes were reported for each hemisphere. 
NeuroQuant has been validated against manually traced volumes and semiautomatic methods 
[34, 35]. In order to adjust for differences in brain size, we used ICV-corrected volumes in the 
subsequent statistical analysis. These were obtained by summing the right and left hemi-
sphere volumes for each structure and expressing this as a percentage of the ICV. Two neuro-
radiologists examined all scans together for pathology and made consensus-based judgments. 
White matter hyperintensities (WMH) were segmented using a semiautomatic procedure by 
one rater (T. Vangberg). The ‘paint grow-fuzzy connectedness’ tool in MIPAV v 5.1.1 (http://
mipav.cit.nih.gov) was used for segmenting the WMH on FLAIR images. This was done by 
manually selecting WMH, and the segmentation algorithm would then segment the whole 
lesion. With a ‘fuzzy threshold’ of 0.8 this worked satisfactorily in most cases, but 25% of the 
cases required manual adjustment of the segmentation mask.

Table 1. Characteristics of the participants

Controls
(n = 58)

SMC
(n = 25)

MCI
(n = 115)

Age, years 70.6 (6.7) 70.0 (9.1) 74.5 (7.5)*
Females, n (%) 22 (38) 11 (44) 60 (52)
Education, years 11.5 (8.0–14.0) 7.0 (7.0–9.0)** 7.0 (7.0–10.0)**
APOE e4a, n (%) 24 (41) 13 (52) 39 (34)

Females, n (%) 10 (46) 6 (55) 21 (35)
Males, n (%) 14 (39) 7 (50) 18 (33)

Probable parental LOAD, n (%) 16 (28) 9 (36) 17 (15)
Females, n (%) 5 (23) 3 (27) 10 (17)
Males, n (%) 11 (31) 6 (43) 7 (13)

Probable LOAD in FD relative(s), n (%) 20 (34) 9 (36) 29 (25)
Females, n (%) 7 (32) 3 (27) 16 (27)
Males, n (%) 13 (36) 6 (43) 13 (24)

Cobalamin, pm 409.8 (160.3) 365.0 (111.1) 373.9 (159.7)
Folic acid, nmol 17.0 (13.5–22.0) 15.0 (12.5–18.0) 16.0 (13.0–21.0)
tHcy, μmol 14.7 (4.4) 16.1 (5.1) 18.3 (5.6)**
Risk factors for CVD
Smoking (ever), % 72.4 80 68.7
BMI 27.4 (4.1) 28.2 (5.4) 26.7 (4.4)
Hypertension (ever), % 32.8 40.0 33.0
Systolic BPb, mm Hg 144.9 (19.0) 133.9 (24.6) 144.8 (20.2)
BP medication (ever), % 37.5 40.0 36.3
Coronary disease (ever), % 20.7 20.0 16.5
Total cholesterol, mmol 5.6 (1.2) 5.5 (1.1) 5.6 (1.2)
Lipid-lowering medication (ever), % 35.1 44.0 32.4
Diabetes (ever), % 5.2 12.0 6.1
HbA1c, % 5.7 (5.5–5.9) 5.8 (5.4–5.9) 5.8 (5.5–6.1)
eGFR, ml/min/1.73 m2 83.3 (12.9) 86.2 (14.2) 82.4 (14.5)

Values are expressed as means (standard deviations) for continuous normally distributed variables, and as medians (in- 
terquartile ranges) for continuous skewed variables unless indicated otherwise. FD = First degree; CVD = cardiovascular dis- 
ease; BMI = body mass index; BP = blood pressure; ever = previous and/or current. 

* p < 0.05 (2-tailed) compared with controls and SMC. ** p < 0.05 (2-tailed) compared with controls. Independent samples 
t test for continuous normally distributed variables and Mann-Whitney test for continuous skewed variables. 

a Presence of one or both APOE e4 alleles. b Mean of the last two of three resting BP.
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Statistical Analyses
The distributions of lateral ventricle and WMH volumes were skewed and therefore log 

transformed. 
Analysis of covariance was used to see if sex- and age-adjusted volumes of cerebral struc-

tures were significantly different in SMC and MCI compared to controls. Receiver operating 
characteristic analysis was applied to test the validity of volumetric MR measurements.

Multivariate linear regression was used to test associations between volumes of cerebral 
structures and genetic risk factors, tHcy and cardiovascular risk factors. Associations were 
estimated in two models: adjusted for age and gender and in multivariate analysis. 

In age-adjusted analysis, there was a borderline significant interaction (p = 0.070) be- 
tween sex and probable parental LOAD for hippocampal volume. We therefore carried out 
additional analyses stratified by gender and probable parental LOAD.

All p values were two-tailed and considered significant when p < 0.05. SPSS version 22 
was used to analyze the data.

Results

Participant characteristics are presented in table 1. Subjects with MCI were significantly 
older than controls and subjects with SMC, and had significantly higher tHcy than controls. 
The controls had a significantly longer education than subjects with SMC and MCI. 

Table 2. Results (unadjusted) of cognitive tests and MRI

Controls
(n = 58)

SMC
(n = 25)

AUC (95% CI) 
SMC/controls

MCI
(n = 115)

AUC (95% CI)
MCI/controls

MMSE 29.0 (28.0–30.0) 27.0 (27.0–29.0)a 27.0 (26.0–28.0)b

Word test part 1 7.8 (1.6) 6.9 (1.3)c 5.4 (1.7)d

Word test part 2 22.0 (20.0–24.0) 20.0 (16.0–22.0)c 20.0 (16.0–22.0)a

DST 39.6 (10.6) 29.8 (11.1)a, e 25.7 (9.0)b

Trail A 36.9 (11.4) 48.6 (16.9)c, e 57.1 (23.2)b

Trail B 92.4 (36.0) 141.8 (61.2)a 162.8 (64.2)b

Finger-tapping test 51.6 (8.2) 47.2 (8.7)c 40.5 (11.7)d

IQCODE 3.0 (3.0–3.0) 3.2 (3.1–3.3)b 3.1 (3.0–3.3)b

Clock-drawing test 7.0 (6.8–7.0) 6.0 (6.0–7.0)c 6.0 (5.8–7.0)a

RDRS2 21.0 (21.0–22.0) 23.5 (22.0–25.0)b 23.0 (22.0–25.0)b

MADRS 1.0 (1.0–2.0) 3.0 (1.0–5.5)a 2.0 (1.0–5.0)b

BMD cognitiong 49.0 (47.0–52.0) 50.0 (44.5–51.0) 48.0 (44.0–52.0)c

BMD behaviorg 2.0 (0.00–5.00) 6.0 (2.5–10.0)a, d 3.0 (0.00–8.00)
Hippocampush 0.50 (0.04) 0.48 (0.06)c 0.67 (0.52–0.81) 0.48 (0.05)c 0.60 (0.52–0.69)
Amygdalah 0.22 (0.02) 0.21 (0.02) 0.53 (0.40–0.66) 0.20 (0.03)c 0.65 (0.56–0.73)
Lateral ventricleh 2.00 (1.53–3.18) 2.46 (1.87–3.18) 0.61 (0.48–0.74) 2.51 (2.03–3.84)c 0.66 (0.57–0.75)
Cerebral cortexh 30.88 (1.65) 30.49 (1.86) 0.53 (0.39–0.67) 30.24 (1.80)c 0.59 (0.51–0.68)
Cerebral white matterh 27.96 (2.34) 27.81 (2.54) 0.52 (0.38–0.65) 27.26 (2.33)f 0.59 (0.50–0.68)
Cerebrumh 72.55 (2.89) 71.78 (3.20) 0.57 (0.44–0.71) 70.98 (3.36)c 0.64 (0.56–0.73)
WMHh 0.002 (0.001–0.007) 0.005 (0.001–0.015) 0.59 (0.44–0.73) 0.006 (0.002–0.016)c 0.66 (0.57–0.74)

Values are expressed as means (standard deviations) for continuous normally distributed variables and medians (interquartile ranges) 
for continuous skewed variables. Independent samples t test for continuous normally distributed variables and Mann-Whitney test for 
continuous skewed variables. AUC = Area under the curve (component of receiver operating characteristic curve); DST = digit symbol-
coding test; WMH = white matter hyperintensities.

a p < 0.001 compared to controls. b p < 0.00001 compared to controls. c p < 0.05 (2-tailed) compared with controls. d p < 0.05 (2-tailed) 
compared with controls and SMC. e p < 0.05 (1-tailed) compared with MCI. f p < 0.05 (1-tailed) compared with controls. g Greene et al.’s 
Behavior and Mood Disturbance scale. h Total ICV-corrected volumes = (sum of bilateral volumes × 100) divided by ICV.
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Table 2 shows the unadjusted differences between cases and controls on cognitive tests 
and MR volumetry, together with receiver operating characteristic curve analysis for the 
measured ICV. Apart from BMD cognition and BMD behavior, the cognitive test scores of 
subjects with SMC and MCI were significantly different from those of controls. The Mont-
gomery-Åsberg Depression Rating Scale showed that none were more than mildly depressed. 
Hippocampal volume was significantly smaller in subjects with SMC and MCI compared to 
controls. In subjects with MCI, the volumes of the amygdala, lateral ventricles, cerebral cortex, 
cerebrum as well as WMH were significantly different from those of controls. The area under 
the curve in SMC and MCI compared to controls was less than 0.68 for all measured volumes 
of intracranial structures. 
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Fig. 1. Mean age- and sex-adjusted ICV-corrected volumes of WMH (a), hippocampus (b), amygdala (c), lat-
eral ventricles (d), cerebral cortex (e), and cerebrum (f) in the control, SMC and MCI groups. Lateral ven-
tricles and WMH are log transformed. ICV-corrected volumes = (sum of bilateral volumes × 100) divided by 
total ICV. Error bars represent 95% confidence intervals.
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In age- and sex-adjusted analyses of covariance, the mean volume of the hippocampus 
was significantly smaller and the mean volume of the lateral ventricles was significantly 
larger in subjects with SMC and MCI compared to controls. In subjects with MCI, the mean 
volumes of the amygdala, cerebral cortex and cerebrum were significantly smaller than those 
in controls. The mean volume of WMH was larger in subjects with MCI than in controls (fig. 1). 

Age- and sex-adjusted probable parental LOAD, ApoE ε4 and higher tHcy were associated 
with smaller hippocampal volume, as shown in table 3. In multivariate analysis, probable 
parental LOAD, ApoE ε4, higher estimated glomerular filtration rate (eGFR) and tHcy inde-
pendently predicted a smaller hippocampus. In multivariate analyses, higher tHcy was asso-
ciated with smaller hippocampal, amygdalar, cerebral cortical, and cerebral volumes, and 
larger lateral ventricles. Moreover, higher eGFR was associated with smaller hippocampal, 
cerebral cortical, and total cerebral volumes. Diabetes was associated with larger lateral 
ventricles. Adjusting for educational length did not alter the results.

With hippocampal volume as outcome variable in multivariate regression adjusted for age 
and sex, there was a borderline significant (p = 0.070) interaction between gender and probable 
parental LOAD. In our previous paper on the Tromsø Dementia Study in which there were 103 
cases with MCI and 58 controls, this interaction was significant (p = 0.027). We therefore strat-
ified by gender and probable parental LOAD, using the variables ApoE ε4, tHcy, cobalamin, 
eGFR, folic acid and age since these were the most relevant variables in table 3. Removing folic 
acid or adding total cholesterol to the analyses did not significantly alter the results.

In women, probable parental LOAD, presence of one or both ApoE ε4 alleles, higher eGFR 
and tHcy were independently associated with smaller hippocampal volume (table 4). In 
subjects with no parental LOAD, the presence of one or both ApoE ε4 alleles and higher tHcy 
were associated with smaller hippocampal volume. In subjects with probable parental LOAD, 
higher tHcy was associated with smaller hippocampal volume (p = 0.016). For higher eGFR, 
there was a borderline association with smaller hippocampal volume (p = 0.06).

Discussion

In our study, fully automated MR volumetry distinguished subjects with SMC and MCI 
from controls. MR volumetry of the hippocampus and the lateral ventricles distinguished 
both subjects with SCM and MCI from controls, while MR volumetry of the amygdala, cerebral 
cortex and cerebrum distinguished subjects with MCI from controls. This might reflect that 
AD first affects the medial temporal lobe and thereafter the cerebral cortex and cerebral 
volume [10, 13]. Both hippocampus and amygdala atrophy occur early in AD, but in our study, 
the amygdala was significantly smaller only in subjects with MCI, possibly because it has less 
distinct boundaries and is harder to quantify than hippocampus [10]. The volume of WMH 
was larger in subjects with MCI than in controls and suggests that WMH might be a risk factor 
for AD [36]. 

Receiver operating curve analysis showed that MR volumetry did not distinguish well 
enough between controls and SMC/MCI. However, the challenge in clinical practice is often 
to assess whether a person with possible cognitive decline has a neurodegenerative disease. 
If the first examination is equivocal, fully automated MR volumetry can be repeated to assess 
whether the atrophy rate is abnormal [37]. This suggests that fully automated MR volumetry 
together with other biomarkers can be useful in diagnosing preclinical LOAD [9, 13, 38].

Probable parental LOAD, ApoE ε4 genotype, higher eGFR and tHcy were independently 
associated with smaller hippocampal volume. To our knowledge, this has not been shown 
earlier, and might imply that sporadic LOAD has several etiologies [39]. In women, but not in 
men, probable parental LOAD was strongly associated with smaller hippocampal volume, as 

D
ow

nl
oa

de
d 

by
: 

U
iT

 N
or

ge
s 

ak
tis

ke
 u

ni
ve

rs
ite

t  
   

   
   

   
   

   
   

  
12

9.
24

2.
18

7.
42

 -
 3

/3
/2

01
7 

2:
52

:2
9 

P
M



536Dement Geriatr Cogn Disord Extra 2016;6:529–540E X T R A

Rogne et al.: Magnetic Resonance Volumetry and Prediction of Cognitive Impairment

www.karger.com/dee
© 2016 The Author(s). Published by S. Karger AG, BaselDOI: 10.1159/000450885

Ta
bl

e 
3.

 M
ul

tiv
ar

ia
te

 li
ne

ar
 re

gr
es

si
on

 w
ith

 v
ol

um
es

 o
f c

er
eb

ra
l s

tr
uc

tu
re

s a
s o

ut
co

m
e 

va
ri

ab
le

s. 

Ad
ju

st
ed

 fo
r a

ge
 a

nd
 se

x
M

ul
tiv

ar
ia

bl
e 

an
al

ys
is

β
95

%
 C

I
p

β
95

%
 C

I
p

H
ip

po
ca

m
pu

s
Ag

e
–0

.0
03

–0
.0

04
 to

 –
0.

00
2

<0
.0

00
00

1
Se

xa
–0

.0
21

–0
.0

35
 to

 –
0.

00
7

0.
00

3
Pr

ob
ab

le
 p

ar
en

ta
l L

OA
Db

–0
.0

18
–0

.0
34

 to
 –

0.
00

3
0.

01
9

–0
.0

15
–0

.0
31

 to
 0

.0
01

0.
05

8
Ap

oE
 ε4

c
–0

.0
21

–0
.0

33
 to

 –
0.

00
8

0.
00

1
–0

.0
16

–0
.0

29
 to

 –
0.

00
3

0.
01

5
Sm

ok
in

g 
(e

ve
r)

0.
00

00
4

–0
.1

50
 to

 0
.1

50
1.

00
0.

00
2

–0
.0

12
 to

 0
.0

16
0.

83
BM

I
0.

00
2

0.
00

0 
to

 0
.0

03
0.

03
6

0.
00

1
–0

.0
01

 to
 0

.0
02

0.
27

H
yp

er
te

ns
io

n 
(e

ve
r)

–0
.0

05
–0

.0
18

 to
 0

.0
08

0.
46

–0
.0

03
–0

.0
17

 to
 0

.0
11

0.
69

Sy
st

ol
ic

 B
P 

(m
m

 H
g)

0.
00

01
0.

00
02

 to
 0

.0
00

4
0.

42
0.

00
02

–0
.0

00
1 

to
 0

.0
01

0.
23

To
ta

l c
ho

le
st

er
ol

 (m
m

ol
)

0.
00

6
0.

00
0 

to
 0

.0
11

0.
04

9
0.

00
7

0.
00

1 
to

 0
.0

13
0.

01
5

Di
ab

et
es

 (e
ve

r)
–0

.0
00

1
–0

.0
26

 to
 0

.0
25

0.
99

–0
.0

00
3

–0
.0

33
 to

 0
.0

33
0.

99
H

bA
1c

 (%
)

0.
00

5
–0

.0
05

 to
 0

.0
15

0.
35

0.
00

5
–0

.0
07

 to
 0

.0
18

0.
38

eG
FR

 (m
l/

m
in

/1
.7

3 
m

2 )
–0

.0
00

4
–0

.0
01

 to
 0

.0
00

2
0.

17
–0

.0
01

–0
.0

01
 to

 –
0.

00
00

2
0.

04
5

Co
ba

la
m

in
 (p

m
ol

)
0.

00
00

3
–0

.0
00

01
 to

 0
.0

00
07

0.
15

0.
00

00
06

–0
.0

00
04

 to
 0

.0
00

05
0.

78
Fo

lic
 a

ci
d 

(n
m

ol
)

0.
00

04
–0

.0
00

5 
to

 0
.0

01
0.

41
–0

.0
00

4
–0

.0
01

 to
 0

.0
01

0.
39

tH
cy

 (μ
m

ol
)

–0
.0

02
–0

.0
03

 to
 –

0.
00

4
0.

01
0

–0
.0

02
–0

.0
04

 to
 –

0.
00

1
0.

00
4

Am
yg

da
la

*
BM

I
0.

00
1

0.
00

04
 to

 0
.0

02
0.

00
3

0.
00

1
0.

00
03

 to
 0

.0
02

0.
00

8
To

ta
l c

ho
le

st
er

ol
 (m

m
ol

)
0.

00
2

–0
.0

01
 to

 0
.0

05
0.

22
0.

00
4

0.
00

04
 to

 0
.0

07
0.

02
9

tH
cy

 (μ
m

ol
)

–0
.0

01
–0

.0
01

 to
 0

.0
00

1
0.

10
–0

.0
01

–0
.0

02
 to

 –
0.

00
01

0.
02

8
Ce

re
br

al
 co

rt
ex

*
eG

FR
 (m

l/
m

in
/1

.7
3 

m
2 )

–0
.0

15
–0

.0
36

 to
 0

.0
06

0.
16

–0
.0

28
–0

.0
50

 to
 –

0.
00

5
0.

01
6

Fo
lic

 a
ci

d 
(n

m
ol

)
–0

.0
21

–0
.0

52
 to

 0
.0

10
0.

19
–0

.0
47

–0
.0

84
 to

 –
0.

01
0

0.
01

3
tH

cy
 (μ

m
ol

)
–0

.0
22

–0
.0

67
 to

 0
.0

23
0.

34
–0

.0
80

–0
.1

37
 to

 –
0.

02
4

0.
00

6
Ce

re
br

um
*

To
ta

l c
ho

le
st

er
ol

 (m
m

ol
)

0.
00

4
0.

00
00

9 
to

 0
.0

07
0.

04
5

0.
00

4
0.

00
1 

to
 0

.0
08

0.
02

3
eG

FR
 (m

l/
m

in
/1

.7
3 

m
2 )

–0
.0

00
1

–0
.0

00
5 

to
 0

.0
00

2
0.

46
–0

.0
00

4
–0

.0
01

 to
 –

0.
00

00
4

0.
03

0
Fo

lic
 a

ci
d 

(n
m

ol
)

–0
.0

00
3

–0
.0

01
 to

 –
0.

00
02

0.
21

–0
.0

01
–0

.0
01

 to
 –

0.
00

02
0.

01
3

tH
cy

 (μ
m

ol
)

–0
.0

00
5

–0
.0

01
 to

 0
.0

00
3

0.
19

–0
.0

01
–0

.0
02

 to
 –

0.
00

04
0.

00
6

Ln
La

te
ra

l v
en

tr
ic

le
*

To
ta

l c
ho

le
st

er
ol

 (m
m

ol
)

–0
.0

24
–0

.0
44

 to
 –

0.
00

3
0.

25
–0

.0
30

–0
.0

52
 to

 –
0.

00
8

0.
00

7
Di

ab
et

es
 (e

ve
r)

0.
09

3
0.

00
1 

to
 0

.1
84

0.
04

7
0.

13
5

0.
01

2 
to

 0
.2

57
0.

03
1

tH
cy

 (μ
m

ol
)

0.
00

5
0.

00
01

 to
 0

.0
09

0.
04

4
0.

00
5

–0
.0

00
2 

to
 0

.0
11

0.
06

1

Ad
ju

st
ed

 fo
r 

ag
e 

an
d 

se
x 

an
d 

in
 m

ul
tiv

ar
ia

bl
e 

an
al

ys
is

. W
ith

 c
er

eb
ra

l w
hi

te
 m

at
te

r 
an

d 
ce

re
br

al
 W

M
H

 a
s 

ou
tc

om
e 

va
ri

ab
le

s, 
th

er
e 

w
er

e 
no

 s
ig

ni
fic

an
t/

bo
rd

er
lin

e 
si

gn
ifi

ca
nt

 a
ss

oc
ia

tio
ns

. A
ll 

ce
re

br
al

 v
ol

um
es

 a
re

 b
ila

te
ra

l. 
BM

I =
 B

od
y 

m
as

s 
in

de
x;

 B
P 

= 
m

ea
n 

of
 th

e 
la

st
 tw

o 
of

 th
re

e 
re

st
in

g 
bl

oo
d 

pr
es

su
re

s;
 L

n 
= 

na
tu

ra
l l

og
ar

ith
m

; 
W

M
H

 =
 w

hi
te

 m
at

te
r h

yp
er

in
te

ns
iti

es
. B

ol
d 

fo
nt

 =
 S

ig
ni

fic
an

t/
bo

rd
er

lin
e 

si
gn

ifi
ca

nt
. *

 O
nl

y 
va

ri
ab

le
s w

hi
ch

 w
er

e 
si

gn
ifi

ca
nt

/b
or

de
rl

in
e 

si
gn

ifi
ca

nt
 in

 m
ul

tiv
ar

ia
te

 a
na

ly
si

s 
ar

e 
di

sp
la

ye
d.

  a  F
em

al
e 

= 
0 

an
d 

m
al

e 
= 

1.
 b

 N
o 

pa
re

nt
al

 L
OA

D 
= 

0 
an

d 
pr

ob
ab

le
 p

ar
en

ta
l L

OA
D 

= 
1.

 c  N
o 

Ap
oE

 ε4
 a

lle
le

s =
 0

 a
nd

 p
re

se
nc

e 
of

 o
ne

 o
r b

ot
h 

Ap
oE

 ε4
 a

lle
le

s =
 1

. 

D
ow

nl
oa

de
d 

by
: 

U
iT

 N
or

ge
s 

ak
tis

ke
 u

ni
ve

rs
ite

t  
   

   
   

   
   

   
   

  
12

9.
24

2.
18

7.
42

 -
 3

/3
/2

01
7 

2:
52

:2
9 

P
M



537Dement Geriatr Cogn Disord Extra 2016;6:529–540E X T R A

Rogne et al.: Magnetic Resonance Volumetry and Prediction of Cognitive Impairment

www.karger.com/dee
© 2016 The Author(s). Published by S. Karger AG, BaselDOI: 10.1159/000450885

were ApoE ε4 genotype, higher eGFR and tHcy. This is in line with earlier studies that suggest 
sex differences in the etiology and pathophysiology of sporadic LOAD [40, 41]. Apart from 
ApoE ε4 genotype, there are clearly additional genetic risk factors for sporadic LOAD, but 
these still remain obscure [42]. Our findings suggest a sex difference between men and wom- 
en with probable parental LOAD in acquiring LOAD and underscore the need for sex-specific 
analyses in genetic studies of LOAD [21]. 

Although probable parental LOAD was associated with MR volumetry, we found no asso-
ciations between the subjects having first-degree relatives with probable LOAD and findings 
on MR volumetry. This may reflect that even though the risk of acquiring AD is increased in 
subjects who have first-degree relatives with LOAD, it is especially high in those who have 
parents with LOAD [20].

Higher eGFR was associated with smaller hippocampal volume. Earlier trials have given 
equivocal results regarding the association between eGFR and cognitive impairment [43]. 
Our finding suggests that this should be studied further.

tHcy was associated with smaller volumes of the hippocampus, cerebral cortex, and 
cerebrum, as shown in earlier studies [19]. Also, tHcy was associated with smaller volumes 
of the amygdala and larger volumes of the lateral ventricles. Our study is cross-sectional, but 
our findings of strong associations between higher tHcy and cerebral structures affected by 
AD add weight to previous studies which showed that vitamin B treatment slowed the devel-
opment of atrophy of gray matter regions affected by AD in elderly subjects with MCI and 
elevated tHcy [44, 45]. This suggests that homocysteine might be a risk factor for LOAD. 

Higher total cholesterol was independently associated with larger volumes of the hippo-
campus, amygdala, and cerebrum and smaller volumes of the lateral ventricles. Genome-wide 

Table 4. Multivariate-adjusteda linear regression analysis with hippocampal volume as outcome variable, stratified by sex and 
probable parental LOAD

Female (n = 93) Male (n = 105)

β 95% CI p β 95% CI p

Age –0.003 –0.004 to –0.001 0.0002 –0.003 –0.004 to –0.001 0.0003
Probable parental LOADb –0.032 –0.054 to –0.010 0.005 –0.005 –0.028 to 0.017 0.64
ApoE e4c –0.021 –0.038 to –0.003 0.024 –0.012 –0.031 to 0.007 0.22
eGFR (ml/min/1.73 m2) –0.001 –0.002 to –0.00002 0.044 –0.0001 –0.001 to 0.001 0.75
Cobalamin (pmol) –0.000003 –0.00006 to 0.00006 0.93 0.00001 –0.00005 to 0.00007 0.78
Folic acid (nmol) –0.001 –0.002 to 0.001 0.28 –0.001 –0.002 to 0.001 0.47
tHcy (μmol) –0.002 –0.004 to –0.0003 0.021 –0.002 –0.004 to 0.001 0.15

No parental LOAD (n = 156) Probable parental LOAD (n = 42)

β 95% CI p β 95% CI p

Age –0.003 –0.004 to –0.002 <0.000001 –0.001 –0.004 to 0.001 0.24
Sexd –0.034 –0.048 to –0.020 <0.00001 –0.008 –0.036 to 0.020 0.55
ApoE e4c –0.019 –0.033 to –0.004 0.012 0.002 –0.026 to 0.030 0.89
eGFR (ml/min/1.73 m2) –0.001 –0.001 to 0.00001 0.06 –0.0001 –0.001 to 0.001 0.85
Cobalamin (pmol) –0.00002 –0.00008 to 0.00003 0.37 0.00006 –0.00002 to 0.0001 0.14
Folic acid (nmol) –0.0002 –0.001 to 0.001 0.77 –0.002 –0.005 to –0.0001 0.039
tHcy (μmol) –0.002 –0.003 to –0.0001 0.035 –0.005 –0.009 to –0.001 0.016

Bold font = Significant. a Adjusted for age, sex, probable parental LOAD, ApoE e4, eGFR, cobalamin, folic acid, and tHcy.  
b No parental LOAD = 0 and probable parental LOAD = 1. c No ApoE e4 alleles = 0 and presence of one or both ApoE e4 alleles = 1. 
d Female = 0 and male = 1. 
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association studies have shown that the ApoE gene and some genetic risk loci for AD are asso-
ciated with cholesterol and lipid processing, and other studies have shown that the impact of 
cholesterol might vary during the life span [46–48]. 

Higher folic acid was associated with smaller cerebral and cerebral cortical volumes in 
our study. It is known that folic acid deficiency might be a risk factor for AD [49]. Folic acid 
supplementation has been promoted in Norway during the last two decades, and some par- 
ticipants may have used it.

ApoE ε4 genotype was present in 41, 52 and 34% of the controls, the subjects with SMC, 
and those with MCI, respectively. Approximately 40% of patients with AD have the ApoE ε4 
genotype, as compared to approximately 15% in the general population [18]. The prevalence 
of the ApoE ε4 genotype in the Norwegian population is not well known. Studies suggest that 
20% of control individuals and 60% of AD patients have the ApoE ε4 genotype [50]. The high 
prevalence of the ApoE ε4 genotype in our study suggests that subjects with LOAD in their 
families were more eager to participate, that ApoE ε4 is more prevalent in subjects with SMC 
and MCI, and that our subjects constituted a suitable sample.

Subjects with SMC scored significantly worse than controls on the informant-based ques-
tionnaires regarding cognitive function, anxiety, depression, and behavior. Earlier studies 
have shown that apart from cognitive decline, SMC also stems from anxiety and depression. 
Our findings are consistent with these studies [51].

The main limitations of our study are the cross-sectional design, rendering causative 
inferrals infeasible, and the small sample size, which increases the chance for spurious rela-
tionships and only enables detection of large effect sizes. Although atrophy of the hippo-
campus and other cerebral structures are widely used as surrogate endpoints for AD, other 
conditions also lead to atrophy [14]. 

Our results suggest that fully automated MR volumetry does not distinguish well enough 
between controls, subjects with SMC and subjects with MCI in a general population to assume 
a clear clinical role in assessing whether SMC and MCI are caused by AD. Our findings suggest 
that one might benefit from searching for genetic risk factors in men and women with probable 
parental LOAD, to find the cause of a probable sex difference in acquiring LOAD. tHcy, eGFR, 
and total cholesterol were associated with the volumes of cerebral structures central in the 
pathogenesis of AD, and further research is necessary to assess their roles in AD. 
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