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The Human Health Assessment Group has over the past decade recommended that effect studies be conducted

in the circumpolar area. Such studies examine the association between contaminant exposure in the Arctic

populations and health effects. Because foetuses and young children are the most vulnerable, effect studies are

often prospective child cohort studies. The emphasis in this article is on a description of the effects associated

with contaminant exposure in the Arctic. The main topics addressed are neurobehavioural, immunological,

reproductive, cardiovascular, endocrine and carcinogenic effect. For each topic, the association between

exposure and effects is described, and some results are reported for similar studies outside the Arctic.

Keywords: effects; contaminants; Arctic; neurobehavioural; immunological; reproductive; cardiovascular; endocrine; carcinogenic

*Correspondence to: Pal Weihe, Department of Occupational Medicine and Public Health, Sigmundargøta 5,
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Neurobehavioural effects

Mercury
Follow-ups of the first Faroese cohort, established from

1,022 consecutive singleton births in 1986 and 1987, have

demonstrated permanent negative neurobehavioural ef-

fects of foetal exposure to Hg, from the pregnant women’s

consumption of whale meat, even at low levels. As the

findings are among the most important at present, they are

summarized in some detail.

At age 7 years, clinical examination and neurophysio-

logical testing of 921 children did not reveal any clear-cut

Hg-related abnormalities. However, neuropsychological

dysfunctions were observed in language, attention and

memory, and to a lesser extent in visuospatial and motor

functions. These associations remained after adjusting for

covariates and after excluding children whose mothers

had hair MeHg concentrations over 10 mg/g (50 nmol/g).

Thus, the effects were widespread and detectable at ex-

posure levels currently considered safe (1).

In examinations of 878 children at age 14 years (2),

prenatal MeHg exposure was significantly associated with

deficits in finger-tapping speed, in reaction time on a

continued performance task and in confrontation naming.

Post-natal exposure had no discernible effect. These

findings are similar to those obtained at age 7 years, and

the relative contribution of MeHg exposure to the

predictive power of the multiple regression models was

also similar, and MeHg-associated test score differences

had not changed between the two examinations. In

structural equation model analyses with five latent vari-

ables, MeHg exposure was significantly associated with

deficits in motor, attention and verbal functions. These

findings were supported by independent assessment of

neurophysiological outcomes. Thus, the effects on brain

function appear to be multifocal and lasting.
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In brainstem auditory-evoked potential (BAEP) laten-

cies (3), latencies of peaks III and V increased by about

0.012 ms when the cord blood MeHg concentration

doubled. As seen at age 7 years, this effect appeared mainly

within the I�III interpeak interval. Despite lower post-

natal exposures, hair Hg level at age 14 years was

associated with prolonged III�V interpeak latencies. All

benchmark dose results were similar to those obtained for

dose�response relationships at age 7 years. Thus, the

persistence of prolonged I�III interpeak intervals indicates

that some neurotoxic effects from prenatal MeHg exposure

are irreversible. A change in vulnerability to MeHg toxicity

is suggested by the apparent sensitivity of the peak III�V

component to recent MeHg exposure (3).

Prenatal MeHg exposure was associated with de-

creased sympathetic and parasympathetic modulation

of the heart rate variability. Parallel MeHg-related delays

of BAEP latencies may be caused by underlying MeHg

neurotoxicity to brainstem nuclei (4).

At age 22 years, 830 of the cohort members were re-

examined and administered an extended neuropsycholo-

gical test battery, covering eight broad ability domains.

Effects of MeHg exposure on single neuropsychological

outcomes were tested in multiple regression analyses after

correction for the same obligatory covariate model as

applied in the 14-year-old study. Of the single test

variables, six were adversely affected by MeHg to a

statistically significant degree after correction for the

covariate model: Boston Naming Test, with and without

cues; Synonyms, Woodcock-Johnson III (WJ III); Anto-

nyms, WJ III; Block Design, Wechsler Adult Intelligence

Scale-Revised, last 3 items; California Verbal Learning

Test, Trial 1 (5). The vast majority of the variables were

affected in a negative direction, and for each broad ability

domain the balance was also in a negative direction, likely

reflecting a weak negative effect in the data set.

In a brief measurement model, a latent variable for general

intelligence was defined, affecting two subordinate latent

variables, fluid intelligence and crystallized intelligence, with

two and five manifest indicator variables, respectively, all

corrected for a preselected set of 11 covariates. Another

measurement model was defined for a latent MeHg exposure

variable with three logarithmically transformed manifest

indicator variables. A structural model was then specified

with the latent exposure variable affecting the latent variable

for general intelligence (5). The model fit was acceptable to

good. The standardized effect of the latent exposure variable

on the latent variable forgeneral intelligence was �0.145 and

was significant (p�0.002). Transformed to the intelligence

quotient (IQ)-scale, with mean 100 and standard deviation

15, this signifies a loss of 2.2 IQ-points for a 10-fold increase

in MeHg exposure.

An extended measurement model was subsequently

defined with general intelligence broadly specified to affect

as many as seven subordinate ability domains (Verbal com-

prehension, Visuo-Spatial Processing, Short-Term Memory,

Long-Term Storage and Retrieval, Cognitive Processing

Speed, Timed Reaction and Decision Speed, Psychomotor

Speed, and Dexterity), with between two and seven manifest

indicator variables each. This model also fitted the data well.

The effect on general intelligence was �0.093 and significant

(p�0.041). This corresponds to a loss of 1.4 IQ-points for a

10-fold increase in MeHg exposure.

In a model for the seven broad ability domains alone,

all were negatively affected by MeHg, with the effect on

crystallized intelligence being highly significant.

These results have wide implications, because domain-

independent general mental ability enters into all specific and

differential abilities and is recognized as the strongest single-

most predictor in the social sciences for success in education

and occupation, as well as in many other areas of life. It also

decreases the possibilities for neural or behavioural com-

pensation as late as age 22 years, thereby substantiating a

lasting impairment of the intellect and an adverse impact on

the future life outcomes of the exposed individuals.

This was demonstrated in recent analyses which found

that as latent educational attainment at 16 years is

significantly dependent on general cognitive ability at 7

years which again is significantly negatively affected by

prenatal MeHg, a highly significant mediated (or indirect)

negative effect of prenatal MeHg on educational attain-

ment at 16 years can be seen (6). No direct effect or total

effect was found. The same indirect effects were observed

at the level of the individual school subjects. Still for

Danish spelling, a direct and a total negative effect were

observed. Similarly, a highly significant indirect negative

effect of prenatal MeHg was seen on the educational status

reached at age 22 years (high school graduation or start of

advanced studies).

In the mixed composition of determinants of educa-

tional attainment (7,8), some are significantly negatively

affected by MeHg (cognitive factors), whereas others may

be less so (factors of personality and mental health),

thereby attenuating direct and total effects of prenatal

MeHg on educational attainment and status.

In the Nunavik Child Development Study (NCDS), a

prospective mother�child cohort study taking place in

Nunavik (Arctic Quebec), results obtained through both

neurobehavioural and electrophysiological testing with chil-

dren aged 11 years suggested that prenatal Hg exposure is

associated with poorer perceptual processing, attentional

mechanisms, memory and intellectual function (9�13).

Behavioural assessments of 11-year-old children were

obtained from two questionnaires completed by their

classroom teacher providing scores of attention, interna-

lizing or externalizing problems and four clinical diag-

noses. Cord blood MeHg concentrations were significantly

related to attention problems (14), and they showed for the

first time that prenatal MeHg exposure constitutes a risk

factor for attention deficit hyperactivity disorder (ADHD)
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likely to interfere with learning and performance in the

classroom. Likewise, cross-sectional evidence links MeHg

exposure to autism spectrum disorder (15). However, the

evidence available is limited and so conclusions regarding

autism or ADHD must be drawn with caution.

Negative effects on the visual system from exposure to

MeHg have been shown in an adult-exposed population

in the Amazon. None of the environmental contaminants

considered in the NCDS were associated with negative

effects on visual acuity, colour perception or contrast

sensitivity, but a significant association between cord

blood MeHg and event-related potential (ERP) ampli-

tude at the highest contrast level suggests deficits in

the parvocellular system, which is specialized in high-

contrast vision, visual acuity and colour vision. This is

supported by deficits in acuity and colour vision reported

in association with prenatal Hg exposure in other studies

(16�18). A lack of significant neurotoxic effects on visual

evoked potentials (VEP) in school-age children from

Greenland (19) and in 7-year-old Faroese children (1,20)

may have been due to differences in testing protocols. By

manipulating visual contrast levels, the NCDS protocol

was designed to optimally detect subtle effects. Changes

in VEP latency in association with cord Hg concentra-

tions were previously reported in preschoolers from

Nunavik (21). NCDS results at age 11 years show that

this negative effect on latency persists at school age.

The MeHg effects seen in the NCDS corroborate those

reported in the Faroe Islands and New Zealand. Results

from the higher exposed Faroese and Nunavik cohorts

are also observed in studies conducted in lower Hg-

exposed populations like the Project Viva study in

Boston, where fish consumption is higher than average

for the United States. Here, mean maternal hair Hg

concentration of 0.55 mg/g (22) was associated with a

reduction in children’s cognition at 6 months of age and

again at age 3 years. Comparable results were obtained in

New York City at similar exposure levels (23).

The available evidence suggests that cognitive impair-

ment occurs at MeHg exposure levels prevalent in general

populations elsewhere and is a matter of public health

concern. Since 2000, prevention efforts have relied on the

recommendations of the US National Research Council

to maintain MeHg exposure below a reference dose of 0.1

mg/kg body weight per day (24). However, prudent advice

is to minimize exposure to the extent possible, because a

threshold for adverse effects on brain development may

not exist (25).

Adverse effects of MeHg and beneficial effects of

seafood nutrients on neurodevelopment may mask each

other (26). Studies in Boston and New York City both

showed that benefits from the mother’s seafood diet to the

child’s brain development were less when Hg exposure was

higher. Data from the NCDS showed that the prenatal Hg

effect on intellectual function became stronger when cord

docosahexaenoic acid was also considered (13). Data from

the Seychelles show that cognitive development in children

is associated with neither maternal fish intake nor MeHg

exposure, when examined one at a time. Only if maternal

fish intake and Hg are accounted for simultaneously fish

intake is clearly beneficial, while Hg has negative effects

(27). Thus, the positive and negative effects appeared to

offset one another.

Post-natal exposure to MeHg is also likely to cause

adverse effects on the continued development of the

nervous system. Inconsistent evidence may be due to

difficulties in characterizing the trajectory of post-natal

exposure. Neurophysiological assessment shows that post-

natal exposure up to the teenage years can cause harm (3).

Thus, both pregnant women and children should be

considered populations at increased risk (28).

Effects associated with MeHg exposure have been

documented in humans at successively lower exposures

as a result of better study designs, larger groups of

subjects, more sensitive methodology and better control

of confounding factors. It is likely that future studies will

continue to identify effects at lower exposures than those

considered safe today.

Lead
In the first Faroese birth cohort, the effect of prenatal lead

(Pb) exposure in the presence of similar molar level in cord

blood to MeHg was evaluated. A total of 896 cohort

subjects participated in a clinical examination at age 7

years and 808 subjects in a follow-up at age 14 years. The

association between cord-blood Pb concentration and

cognitive deficits (attention or working memory, language,

visuospatial, memory) was evaluated using multiple re-

gression models. After including statistical interaction

terms, Pb-associated adverse effects on cognitive function

were observed in subjects with a low MeHg exposure. In

particular, higher cord-blood Pb was associated with a

lower digit span forward score on the Wechsler Intelligence

Scale for Children-Revised (b��1.70, 95% confidence

interval (CI) �3.12 to �0.28) at age 7 years and a lower

digit span backward score (b��2.73, 95% CI �4.32 to

�1.14) at age 14 years. Some interaction terms between Pb

and MeHg suggested that the combined effect of the

exposures was less than additive (29).

In the NCDS, results obtained with 5- and 11-year-old

children through both neurobehavioural and ERP testing

suggested that prenatal Pb is related to poorer cognitive

development and intellectual function (9,13). Further-

more, 11-year-old blood Pb concentrations were asso-

ciated with externalizing problems (14). NCDS results

relating to post-natal Pb exposure and child behaviour

replicate those of several previous studies (reviewed by

Eubig et al. (30)), although the main source of Pb exposure

in Nunavik, lead shot, is unique in the Pb exposure

literature.
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Persistent organic pollutants
Grandjean et al. (31) analysed banked cord blood from the

first Faroese birth cohort to determine the possible

neurotoxic impact of prenatal exposure to polychlorinated

biphenyls (PCBs). A total of 917 members completed a

series of neuropsychological tests at age 7 years. Major

PCB congeners (PCB118, PCB138, PCB153 and PCB180),

the calculated total PCB concentration and the PCB

exposure estimated in a structural equation model showed

weak associations with test deficits, with statistically

significant negative associations only with the Boston

Naming Test. Likewise, neither hexachlorobenzene

(HCB) nor p,p’-dichlorodiphenyldichloroethylene (p,p’-

DDE) showed clear links with neurobehavioural deficits.

In a structural equation model with motor and verbally

mediated latent variables, the PCB effects remained weak

and virtually disappeared after adjusting for MeHg

exposure, whereas Hg remained statistically significant.

Thus, in the presence of elevated MeHg exposure, PCB

neurotoxicity may be difficult to detect, and PCB exposure

does not explain the MeHg neurotoxicity previously

reported in this cohort (31).

Traditional and electrophysiological testing in the

NCDS found negative effects of prenatal PCB exposure

on child cognitive development in participants that had

been breastfed for a short period. In addition, post-natal

PCB exposure affects processes associated with error

monitoring (11,12). However, the NCDS failed to con-

firm the adverse effects of prenatal PCB exposure on IQ

reported in Michigan (32) and Oswego (33) but compari-

son of the congener profile in Nunavik with that in the

Michigan cohort suggests that the PCB mixture to which

the children were exposed was likely to be less neurotoxic

than in the Michigan study.

Immunological effects
Certain environmental pollutants can adversely affect the

development of the immune system (34�41).

The high incidence of infectious diseases � particularly

meningitis, bronchopulmonary infections and middle ear

infections � in young children from Nunavik has been

known for many years (42). In view of the immunotoxic

properties displayed by some organochlorines (OCs), in

particular following perinatal exposure, it has been hy-

pothesized that part of the high infection incidence among

Inuit infants could be related to the relatively high

maternal body burden of these contaminants and their

partial transfer to newborns during breastfeeding. To test

this hypothesis, three epidemiological studies have been

conducted during the past 20 years in Arctic Quebec to

investigate the relationship between pre- or post-natal OC

exposure, immune status and the occurrence of infectious

diseases among Inuit infants. Results in three different

groups of Inuit children indicated that prenatal exposure

to OCs increases susceptibility to infectious diseases, and

in particular to otitis media (38,43,44).

The Faroese studies provide epidemiological data on

human immunotoxicity � as reflected by a reduction in

serum antibody production after routine childhood im-

munizations � in relation to developmental exposures to

environmental chemicals (45�47). The studies showed that

developmental and perinatal exposure to PCBs and

Perfluorinated Chemicals (PFCs) from marine food and

other sources may inhibit immune function, as indicated

by deficient serum concentrations of antibodies against

childhood vaccines. Results from the Faroe Islands show

that the riskof having an antibody concentration below 0.1

IU/mL at age 7 years increased at higher levels of exposure

to PCBs and PFCs. The results suggest that PFCs have an

even stronger negative effect than PCBs on serum antibody

concentrations (45�47). For PCBs, a doubling of the serum

concentration at age 18 months was associated with a

decline of 20% in the antibody level at age 7 years. After the

completion of breastfeeding and associated transfer of

PCBs, the child at age 18 months has an average serum

PCB concentration similar to that of the mother (46), after

which the concentration declines as the body lipid

compartment continues to expand. For PFCs, the recent

accumulation was found to be the most important

predictor of immunotoxicity: A doubling in serum PFC

concentration measured at age 5 years was linked to a

decrease of up to 50% in the antibody concentration at age

7 years (pB0.001). Due to the long half-life of PFCs (48),

serum concentrations at early school age are expected to be

relatively stable.

Reproductive effects
In 1992, Carlsen and co-workers published a combined

analysis of results from 61 papers published between 1939

and 1991 and showed a significant decline in sperm count

over the 50-year period. A detailed reanalysis of the results

found that their conclusion was supported by the under-

lying studies (49,50). Following the 1992 publication,

many researchers retrospectively analysed their historical

data for temporal trends, some finding a decline and others

not.

The causes of decreased semen quality are not clear, but

it is feasible that many cases may have been caused by

exposure to environmental factors in utero, during adoles-

cence or in adulthood (51), probably also acting against

a backdrop of different genetic susceptibility to environ-

mental exposure.

The median sperm concentration of fertile men in a

semen quality study conducted in Greenland in 2004 was

53 million/mL, with a median sperm cell volume of 3.2 mL,

a total sperm count of 186 million and a median motility

of 60% (52). No regional difference was found in sperm

count, but sperm cell motility differed among regions.

In a following study, Toft et al. (52) found that sperm

Pál Weihe et al.

4
(page number not for citation purpose)

Citation: Int J Circumpolar Health 2016, 75: 33805 - http://dx.doi.org/10.3402/ijch.v75.33805

http://www.circumpolarhealthjournal.net/index.php/ijch/article/view/33805
http://dx.doi.org/10.3402/ijch.v75.33805


concentration was not impaired by increasing serum PCB153

or p,p’-DDE levels in Greenlanders. Also, that there was

no association between the proportion of morphologically

normal sperm and either PCB153 or p,p’-DDE concentration

in blood. However, sperm motility was inversely related to

PCB153 concentration in this population.

Results concerning male reproductive toxicity in the

CLEAR study (see AMAP Assessment 2015: Human

Health in the Arctic, Chapter 2) indicated that exposure

to perfluorooctanesulfonic acid (PFOS) was associated

with more abnormal sperm morphology (53) but that

PFCs were not consistently associated with other markers

of male reproductive function, including reproductive

hormones and markers of sperm DNA damage (54). There

was no observed change in male reproductive function at

higher levels of polybrominated diphenyl ethers (PBDEs)

and Hg exposure (55,56). However, menstrual cycle

characteristics were adversely affected at higher levels of

exposure to PFCs as indicated by longer menstrual cycles

in women in the highest tertile of PFOS exposure

compared to the lowest (57).

In a recent study on testicular function in the Faroe

Islands, Halling et al. (58) found lower sperm concentra-

tions for Faroese men than for Danish men (crude median

40 million/mL vs. 48 million/mL, pB0.0005). However,

because semen volume was higher in the Faroese men, the

total sperm counts did not differ (159 million vs. 151

million, p�0.2). Similarly, there was no overall difference

between the two populations in terms of sperm motility or

morphology. Recent data have shown sperm count to be

low in young men from several European countries, but

slightly higher than among the Danes (59�61). This

indicates that semen quality for both Danish and Faroese

men seems to be low compared to men from other

European countries.

The inhibin B:follicle-stimulating hormone (FSH) ratios

for the Faroese men were lower than for the Danes (64 vs. 76,

p�0.001). Similarly, a lower total testosterone:luteinizing

hormone ratio (T:LH; 4.6 vs. 6.0, pB0.0005) and a lower

calculated free-testosterone:luteinizing hormone ratio

(FT:LH; 94 vs. 134, pB0.0005) were detected for the

Faroese men (58). The low inhibin B:FSH ratio for the

Faroese men corroborates the finding of low sperm count

and provides independent evidence of poorer testicular

function in the Faroese men than in the Danes, although the

medians were at a level where the association between sperm

count and inhibin B is weakened (62). The lower T:LH and

FT:LH ratios indicate a lower Leydig cell capacity among

Faroese men compared to Danes. Thus, the level of total

testicular function among Faroese men may be the same or

lower than for the Danes.

The reason for low testicular function in the Faroese

young men is unclear, but could be due to high exposure to

persistent organic pollutants (POPs). Studies have shown

associations between high PCB levels and low semen

quality, and because PCBs and p,p’-DDE have the

potential to interfere with sex hormone function (63,64),

it could be assumed that these compounds can affect the

function of the hormone-producing organs (65). Some

reports on the effect of POPs on male reproduction in

humans indicate weak negative effects on sperm motility

(65�67). Among the Faroese men, this study found the

percentage of motile cells to be significantly lower com-

pared to Danish men, indicating that increased exposure to

endocrine disruptors may be one explanation for the

difference.

Serum steroid hormone-binding globulin (SHBG) levels

for the Faroese men were much higher than for the Danes.

One explanation could be the high PCB levels among the

Faroese. Grandjean et al. (68) reported that SHBG

increased at higher PCB exposure, both prenatally and

post-natally. Because PCBs are known to affect a number

of liver functions, it may be that PCB-induced hepatic

SHBG synthesis could play a role, although this remains to

be confirmed (68).

Contaminant effects have also been observed on foetal

growth and growth during childhood. In the NCDS,

weight, height and head circumference were measured at

birth and during childhood. Path analyses were conducted

to model the longitudinal relations between exposure

variables and growth outcomes in newborns and children.

Detailed results were presented by Dallaire et al. (69).

Prenatal exposure to PCB153 and Pb was not associated

with foetal growth. However, prenatal exposure to Pb, but

not childhood Pb exposure, was related to shorter height in

childhood. Plasma PCB levels in 11-year-olds were mod-

erately related to smaller height, weight (controlled for

height), head circumference and body mass index (BMI) at

school age. In the sample of children followed at 11 years of

age, in utero exposure to PCB153 was not related to foetal

growth, but in another sample from the same population

(n�248 pregnant women) cord PCB153 and Hg concen-

trations were related to shorter duration of pregnancy, a

recognized determinant of foetal growth (69), and their

associations with reduced foetal growth were mediated

through their relation with a shorter gestation duration.

PCBs are present in the environment as complex mixtures

of different congeners, and the relative proportions of the

congeners that comprise these mixtures can differ mark-

edly between various geographic regions. Failure to detect

direct effects on foetal growth, as observed in studies in

Europe and elsewhere, suggests that the congeners forming

the PCB mixture found in the Arctic might be less toxic.

The NCDS results support findings from two other studies

on children moderately exposed to PCBs, indicating that

chronic exposure to PCBs during childhood can adversely

affect skeletal growth and body weight (70,71). Consistent

with results from the NCDS, cord blood Pb concentrations

are not related to foetal growth in most studies (72�76),

with one exception (76). The NCDS is the first study
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providing empirical evidence that prenatal Pb exposure is

related to poorer growth in school-age children.

Cardiovascular effects

Mercury
Possible cardiovascular effects of Hg have recently

emerged in the scientific literature (77). A growing body

of evidence suggests that MeHg exposure can increase

risk of adverse cardiovascular impacts in exposed popu-

lations. The link between MeHg and acute myocardial

infarction or sudden cardiac death is still debated in low

Hg exposed populations (78,79).

Contradictory results have been reported on Hg ex-

posure and the risk of hypertension (80). In Nunavik

adults, a retrospective analysis of the 1992 survey reported

no association between Hg and high blood pressure (81).

Based on the 2004 data, however, Hg was associated with

increased blood pressure and pulse pressure (82,83). In the

Faroe Islands, high blood pressure was found to be

associated with Hg exposure among male whale hunters

(84). In Greenland, no association was found between Hg

exposure and high blood pressure (85). Associations

between Hg exposure and blood pressure were also studied

in children. Associations were reported between prenatal

Hg exposure and lower systolic blood pressure in 7-year-

old Faroese children (86) and for lower diastolic blood

pressure in the Seychelles (87). In Nunavik children, no

associations were found between blood pressure and

either cord blood or contemporary Hg exposure at age

11 years (88).

Heart rate variability has also been studied in Arctic

populations. An association was reported between Hg

exposure and decreased heart rate variability in adults

from Nunavik (82). Similar results were reported among

James Bay Cree adults (89). In children from Nunavik,

cord blood Hg concentrations were not related to heart

rate variability parameters at age 11 years, but child blood

Hg levels were associated with decreased overall heart rate

variability parameters, and these associations remained

significant after adjusting for cord blood Hg, n-3 poly-

unsaturated fatty acids (PUFA) and selenium. In Faroese

children, cord blood Hg concentrations were related to

reduced low-frequency (LF) activities at age 7 years as well

as with reduced LF, high frequency (HF), HF variation

and coefficient of variation for the R�R interval of the

electrocardiogram at age 14 years, and hair Hg at age 7

years was associated with LF and LF variation coefficient

(4). A difference that is likely to explain discrepancies

between findings with regard to cardiac autonomic activity

in childhood is the consideration of cord n-3 PUFA and

selenium in Nunavik: A significant negative association

between cord blood Hg and NN (standard b��0.13,

p�0.05) was observed after adjusting for most of the

traditional risk factors used in the Faroe Islands studies

(age, sex, birthweight, child BMI and smoking during

pregnancy), but these associations were no longer signifi-

cant after adjusting for cord n-3 PUFA and selenium. This

indicates that not adjusting for the nutrients found in

abundance in fish could overestimate the prenatal Hg

effect. Differences in study findings might also be attribu-

table to differences in Hg exposure between cohorts. In

fact, average cord blood Hg was about 1.5-fold higher

among Faroese children (90) than those from Nunavik,

and hair Hg at age 7 years was three times higher in the

Faroese study than the Nunavik study. Prenatal Hg

exposure was also higher in the Seychelles study than in

Nunavik (87).

The predictive value of heart rate variability parameters

in healthy children and risk of chronic diseases are

unknown. Nevertheless, results from the Faroese and

Nunavik cohorts provide evidence that Hg exposure

during childhood is related to changes in cardiac auto-

nomic activity at school age.

Endocrine effects
Endocrine-disrupting chemicals (EDCs) interfere with the

endocrine system and can result in adverse developmental,

reproductive, neurological, cardiovascular, metabolic and

immune effects. An EDC is defined as ‘‘an exogenous

substance or mixture, that alters the function(s) of the

endocrine system, and consequently causes adverse health

effects in an intact organism or its progeny or (sub)-

population’’ (91).

Biomarkers of POPs exposure and their
hormone-disrupting effects
Since 2000, parallel studies have been undertaken in

Greenland on the human monitoring of biomarkers for

POPs exposure and biomarkers of POPs effects, focusing

on hormone-disruptive potentials and genetic sensitivity

biomarkers (63,64). In Greenland, regional differences

and sex differences (highest in men) are observed in

serum POP levels. The highest levels are found in Inuit

living on the east coast (Ittoqqortoormiit and Tasiilaq)

and in the north-west (Qaanaaq) (92�94).

Today, it is well known that the levels and profiles for the

various POP groups vary among Greenlandic districts (64).

Studies on biomarkers of toxicological effects have shown

that individual POPs have very different biological potentials.

For example, some PCB congeners possess an estrogenic

potential (e.g. some hydroxy-PCBs), whereas others are

antiestrogenic (e.g. PCB153, PCB180 and PCB138) and

antiandrogenic (PCB138), and some have dioxin-like poten-

tials (e.g. PCB126). Likewise, for OC pesticides, both es-

trogenic potentials (e.g. toxaphene, b-hexachlorocyclohexane

(HCH), dichlorodiphenyltrichloroethane (DDT) and di-

chlorodiphenyldichloroethylene (DDE)) and antiandrogenic

effects (e.g. DDE) have been reported (64), and a-HCH was

shown to antagonize the androgen receptor (AR)-mediated
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effects of the natural ligand dihydrotestosterone (95).

Enantioselective effects of a-HCH were demonstrated by

Pavlikova et al. (96) and data suggested an interaction with

multiple regulatory events controlling AR activity. Further-

more, additive enhancement of hormone actions has been

reported in vitro for xenoestrogen and xenoantiandrogen

mixtures (97�99) and in vivo for antiandrogens (100).

Studies in human adrenocortical carcinoma cells

(H295R) demonstrated that PCB118, PCB153 and

PCB126 decrease protein expression and alter steroido-

genesis (101). Exposure to PCB118 increased oestradiol

and cortisol secretion, whereas exposure to PCB153

elevated oestradiol secretion. PCB126 was the most potent

congener, increasing oestradiol, cortisol and progesterone

secretion in exposed H295R cells. The alterations in

protein regulation and steroid hormone synthesis suggest

that exposure to PCB disturbs several cellular processes,

including protein synthesis, stress response and apoptosis.

Human ex vivo studies on the combined effect
of the actual serum legacy POP mixture
In Greenland, district and gender differences were ob-

served for POP exposure biomarkers and biomarkers of

the combined effect of extracted lipophilic serum POPs on

nuclear receptors (Fig. 4.2). A general inverse relationship

was found between higher serum legacy POP concentra-

tions and oestrogen receptor (ER), AR and aryl hydro-

carbon receptor (AhR) transactivity. A higher frequency

of serum samples with antagonistic ER and AR effects was

observed for both sexes on the east (Ittoqqortoormiit,

Tasiilaq) and north-west (Qaanaaq) coast of Greenland,

whereas higher frequencies of serum samples with agonistic

ERand AReffects were observed for both sexes on the west

coast (Qeqertarsuaq, Narsaq, Nuuk, Sisimiut). However,

for men in Nuuk and Sisimiut, a tendency towards

increased serum POP-induced AR activity was observed

(Fig. 4.2) (93,94).

Using a specific method for serum extraction of dioxin-

like compounds, more than 75% of the serum POP extracts

from both sexes elicited AhR-mediated dioxin-like activ-

ities. As seen for the hormone receptor transactivities, the

tendency was the higher the serum legacy POP levels the

lower the AhR transactivities (Fig. 4.2). The lowest

medians of the tetrachlorodibenzo-p-dioxin (AhR-

TCDD) and toxic equivalence (AhR-TEQ) values were

observed in Ittoqqortoormiit (East) and Qaanaaq (North-

west), with higher AhR-TEQ levels for both sexes observed

in Tasiilaq (only five individuals), Narsaq, Sisimiut and

Nuuk, and the highest in Disko Bay (Qeqertarsuaq) (Fig.

4.2) (93,94). A tendency towards an inverse relation

between the dioxin-like-induced AhR and ER activity

supports the perception that dioxins exert an antiestro-

genic effect. Thus, the actual mixtures of serum POPs in

Greenlandic Inuit have a hormone-disrupting potential.

Similar data for ER and AhR transactivity were

observed using the same extraction method for whole

blood from East Greenlandic polar bears. Compared to

Inuit, a higher frequency of agonistic xenohormone

activity and higher AhR-TEQ levels were found in polar

bears which might be explained by higher levels of blood

hydroxylated PCBs and higher overall POPs, respectively

(102).

In a comparison of Inuit and young Danish women, the

POPs levels in Inuit were found more than 10 times higher

than in Danes. Moreover, levels were positively associated

with age in both study groups. The AhR-TEQ level was

significantly higher in Inuit and was positively associated

with plasma POPs, whereas no correlations were found

for the Danish samples (94,103). Comparisons between

European and Greenlandic male serum POP levels showed

significantly higher levels in Inuit, and as a result lower ER

and AhR transactivity and a tendency towards higher AR

activity for the Greenlandic serum samples. However, in

the same study, Inuit had significantly lower sperm DNA

damage (94).

Determinants and effects of AhR function
Plasma POP interaction with the AhR signalling pathway

was studied by AhR-mediated transcriptional activity in

plasma extracts from 874 Inuit adults in Nunavik. Several

sociodemographic, anthropometric, dietary and lifestyle

variables were considered as possible modulating factors in

the AhR-mediated activity in multivariate statistical ana-

lyses. The geometric mean AhR-mediated activity expressed

as 2,3,7,8-TCDD equivalents was 8.9 mg/kg lipid. PCB153

concentration (Pearson’s r�0.53, pB0.001), age and n-3

fatty acids in erythrocyte membranes (pB0.001) correlated

positively with AhR-mediated activity, but negatively for

body fat mass (p�0.037). The AhR-mediated transcrip-

tional activity was suggested as linked to plasma OC body

burden, dioxin-like PCBs, polychlorinated dibenzo-p-dioxins

and polychlorodibenzofurans (104).

Perfluoroalkyl acids and endocrine disruption
Ex vivo and in vitro studies have demonstrated endocrine-

disrupting potentials of the perfluoroalkyl acids (PFAAs).

Estrogenic properties of PFAAs were reported in human

Michigan Cancer Foundation-7 breast cancer cells (105),

and the endocrine-disrupting potential of seven PFAAs was

demonstrated in mammalian cell culture models (106,107).

Agonistic effects on ER transactivity were elicited by PFOS,

perfluorooctanoic acid (PFOA) and perfluorohexane sulfo-

nate (PFHxS); perfluorooctanesulfonate (PFOS), PFOA,

PFHxS, perfluorononanoic acid (PFNA) and perfluorode-

canoic acid elicited antagonistic effects on AR transactivity,

while the mixture including all seven PFAAs showed addi-

tive combined mixture effects. PFDA also weakly decreased

the aromatase activity at a high test concentration (106).

The seven PFAAs tested also affected thyroid-hormone
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function by inhibiting rat pituitary growth hormone (GH3)

cell growth, and four also antagonized the T3-induced GH3

cell growth (107). Only perfluorododecanoic acid and

PFDA elicited an activating effect on AhR transactivation

(107). In human serum extracts containing the actual PFAA

mixtures, a concentration-dependent agonistic xenoestro-

genic activity was found (108). Perfluorinated compounds,

and their metabolites present in food packaging materials,

were reported to affect steroidogenesis in H295R human

adrenal cortico-carcinoma cells (109). A case-control study

showed a significant association between PFAA serum level

and breast cancer risk (110).

Contaminant exposure and hormone levels

Impact on the hypothalamo-pituitary-gonadal axis
A study of reproductive hormones in men from Greenland

and three European cohorts (Swedish fishermen, Warsaw

Poland, Kharkiv Ukraine) (111) reported significant

variation in associations between exposure to PCB153

and p,p’-DDE and the outcomes. For the Kharkiv group,

statistically significant positive associations were found

between levels of both PCB153 and p,p’-DDE and SHBG,

as well as luteinizing hormone, while for the Greenlandic

Inuit men there was a positive association between PCB153

exposure and luteinizing hormone. For the pooled data set,

there was a positive association between p,p’-DDE and

FSH levels (b�1.1 IU/L; 95% CI 1.0�1.1 IU/L), whereas

the association between PCB153 and SHBG was of

borderline significance. Thus, gonadotropin levels and

SHBG seem to be affected by POPs exposure, but in a

considerable geographic variation (112). Studying differ-

ences between men living in south and north of the Arctic

Circle in Norway, Haugen et al. (113) found no geogra-

phical differences in either mean levels of PCB153 or sperm

parameters. However, mean levels of p,p’-DDE were higher

in the south than that in the north (p�0.02), as were levels

of total and free testosterone, whereas FSH levels were

lowest in the south. A strong relationship was observed

between PCB153 and SHBG levels. The regional differ-

ences observed for p,p’-DDE, testosterone and FSH were

not reflected in semen quality.

In the Faroe Islands, Grandjean et al. (68) studied the

possible endocrine disruption of PCBs and found in boys

that higher prenatal PCB exposure was inversely asso-

ciated with serum luteinizing hormone and testosterone;

SHBG level was positively associated with both prenatal

and concurrent PCB exposure. The findings suggest that

delayed puberty might be due to a PCB-affected central

hypothalamo-pituitary mechanism.

Impact on the hypothalamo-pituitary-thyroid axis
There is substantial evidence that perinatal exposure to

PCBs and their hydroxylated metabolites decreases

thyroid hormone in the offspring. In man, similar effects

have been indicated in several epidemiological studies

(114). In a systematic review, Salay and Garabrant (115)

evaluated 22 studies to look for a possible association

between PCB exposure and circulating thyroid hormones

and thyroid-stimulating hormone levels in adults and

found that PCBs can interfere with thyroid hormone

homeostasis.

Dallaire et al. (116) investigated the potential impact of

transplacental exposure to PCBs and HCB on thyroid

hormone concentrations in neonates from two remote

coastal populations in Canada, Nunavik (n�410) and the

Lower North Shore of the St Lawrence River (n�260),

and found no association between OC levels and reduction

in thyroid hormones in neonates from the two populations.

Essential nutrients derived from seafood, for example,

iodine, may have prevented the negative effects of OCs on

thyroid function during foetal development. Dallaire et al.

(117,118) found a positive association between hydroxy-

lated metabolites of PCBs and total tT3 concentrations in

pregnant Nunavik women (b�0.57, p�0.02), whereas in

cord blood PCB153 concentrations were negatively asso-

ciated with Thyroxine-binding globulin (TGB) levels

(b��0.26, p�0.01). Maternal pentachlorophenol levels

and cord blood fT4 concentrations were inversely related,

whereas at 7 months of age no association between

exposure and thyroid hormones was observed. In Inuit

adults (n�623) from Nunavik, Dallaire et al. (117) found

that exposure to several polyhalogenated compounds was

associated with modifications of the thyroid parameters,

mainly by reducing tT3 and thyroxine-binding globulin

circulating concentrations.

Audet-Delage et al. (119) found in Inuit women of

reproductive age in Nunavik, Canada, that hydroxylated

PCBs, pentachlorophenol and PFOS compete with T4-

binding sites on transthyretin (TTR), although the data

suggested that circulating levels of TTR-binding com-

pounds were not high enough to affect TTR-mediated

thyroid hormone transport. Schell et al. (120) observed in

breastfed participants, young adults of the Akwesasne

Mohawk Nation, Canada (in contrast to non-breastfeed

adults), a significant, positive relationships between anti-

thyroid peroxidase antibody levels and all PCB groupings,

except non-persistent PCBs, p,p’-DDE, HCB and mirex.

Bloom et al. (121) observed significant associations

between POPs and thyroid hormones in ageing residents

of upper Hudson River communities (age range 55�74

years). Among women, DDT�DDE increased T4 and

T3; SPCBs in conjunction with PBDEs elicited increases

of T3, and SPCBs in conjunction with DDT�DDE

elicited increases of T4. For men, estrogenic PCBs and

the sum of estrogenic PCBs in conjunction with

DDT�DDE were associated with a T3 decrease. Thus,

POPs’ influence on thyroid hormones may have clinical

implications in ageing populations.
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Dioxin-like PCBs in relation to bone quality/strength
Results from experimental and population studies sug-

gest that some dioxin-like compounds can alter bone

metabolism and increase bone fragility. Bone strength in

Inuit appears to be lower than in non-indigenous people.

In Cree women of Eastern James Bay (Canada), Paunescu

et al. (122) found that for plasma extracts, dioxin-like

transactivity, related to PCB105 and PCB118, was

inversely associated with the stiffness index. Age, height,

smoking status, menopausal status and the percentage of

n-6 PUFAs in erythrocyte membranes were negatively

associated with one of the ultrasound parameters, while

the percentage of n-3 PUFAs in these membranes and

levels of physical activity and education were positively

associated. Thus, increase in plasma concentrations of

PCB105 and PCB118 was negatively and n-3 PUFAs was

positively associated with bone stiffness index. In con-

trast, in Inuit women from Nunavik, neither total plasma

dioxin-like compounds nor specific dioxin-like PCBs were

associated with stiffness index after adjusting for several

confounding and co-varying factors (123).

POPs and Type 2 diabetes
Several descriptive epidemiology studies suggest that

certain POPs can contribute to the development of

Type 2 diabetes (124,125). Persistent environmental

chemicals still in current use are suspected to be

diabetogenic, for example, the brominated flame retar-

dants and perfluorinated compounds. A causal relation-

ship is supported by follow-up of subjects poisoned by

PCBs and related substances (126). Most of the recent

epidemiological evidence is from cross-sectional case-

control studies and found increased serum POP concen-

trations to be a major determinant of diabetes (127) and

metabolic syndrome (128).

Genetic predisposition to Type 2 diabetes seems to play

a role, but most genetic variants so far identified are

associated with b-cell function and account for no more

than about 10% of the risk. Thus, it is very likely that

POP exposure may trigger gene�environment interac-

tions with effects on insulin resistance and/or secretion.

Experimental data-based effects of crude fish oil

compared to fish oil that had been cleaned of POPs

have shown that certain POPs may increase insulin

demand by decreasing insulin sensitivity in target tissues

(129). In addition, 2,3,7,8- TCDD is known to cause

toxicity to pancreatic b-cell lines, such as interference

with mitochondrial membrane potential, and induction

of increased Ca scientific justification therefore exists for

exploring the possible role of POP toxicity in Type 2

diabetes aetiology and pathogenesis.

In the Faroe Islands in 713 septuagenarians with a high

POP exposure, a fasting insulin concentration decreased

by about 8% for each doubling of the serum concentration

of PCBs and a similar increase in the fasting glucose level.

Along with higher PCB exposure in subjects with Type 2

diabetes and impaired fasting glycaemia, the results

suggest that PCB-induced b-cell deficiency may be in-

volved in the disease pathogenesis (130). Individuals with

vitamin D levels B50 nmol/L doubled their risk of newly

diagnosed Type 2 diabetes suggesting vitamin D may

provide protection against Type 2 diabetes (131).

Carcinogenic effects
Throughout the 20th century, the cancer patterns of the

Inuit population have been characterized by a high risk of

Epstein�Barr virus -associated carcinomas of the naso-

pharynx and salivary glands, and a lower risk of tumours

common in Caucasian populations, including cancer of

the breast, prostate, testis and hemopoietic system. Both

genetic and environmental factors seem to be responsible

for this pattern. Over the past 50 years, Inuit societies

have undergone major changes in lifestyle and living

conditions. The incidence of traditional Inuit cancers

(nasopharynx and salivary glands cancer) has remained

relatively constant, whereas the incidence of lifestyle-

associated cancers, especially cancer of the lung, breast,

stomach and colorectal, has increased considerably

following changes in lifestyle (smoking, alcohol), diet

and reproductive factors (132).

The age-standardized cancer incidence rate for all

cancer sites (1998�2007) was found to be 14% lower for

the Inuit Nunangat male population and 29% higher for

the female population compared to the rest of Canada.

Cancers of the nasopharynx, lung and bronchus, color-

ectal, stomach (males), and kidney and renal pelvis

(females) were elevated in the Inuit compared to the rest

of Canada, whereas prostate and female breast cancers

were lower. Higher smoking prevalence within Inuit

Nunangat and distinct socio-economic characteristics

between the respective populations may have contributed

to the incidence differentials (133).

Some cancer incidence, such as nasopharyngeal, oeso-

phagus, biliary, ventricle, cervical, lung, liver, pancreas

and colorectal cancer, in Greenland is several times

higher compared to Denmark(The Danish National

Patient Register).

The indigenous coastal Chukchi and Inuit living in

Chukotka (Russia) are at higher risk of death from cancer

during 1961�1990 than the Russian population nationally,

among men and women twice and 3.5 times, respectively.

Particularly high mortality from oesophageal cancer and

lung cancer is seen in the indigenous people of coastal

Chukotka. The mortality pattern of incidence corresponds

to other indigenous people of the Russian Arctic (134). The

incidence of colorectal cancer is currently higher in

Alaskan Inuit than in Caucasians living in the United

States (132). Cancer is now the leading cause of death

among Alaska Native people, and cancer mortality rates in
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Alaska are significantly higher than in the mainland

United States (135).

According to epidemiological studies, about 80% of all

cancers are suspected to be related to environmental

factors such as contaminant exposure and lifestyle.

Contaminant exposure, oxidative stress and
carcinogenicity
Oxidative stress plays an important role in carcinogenicity

(136). Epigenetic mechanisms not involving DNA attack

or heritable genetic alterations have been shown to produce

tumours in laboratory animals for several chemicals (137).

These non-genotoxic carcinogens may target nuclear recep-

tors, cause aberrant DNA methylation at the genomic level

and post-translational modifications at the protein level,

thereby affecting key regulatory proteins, including onco-

proteins and tumour suppressor proteins (138).

Recently, PCBs and polybrominated biphenyls were

classified by the International Agency for Research on

Cancer as ‘‘human carcinogen’’ and ‘‘possible human

carcinogen,’’ respectively (139). Overall, PCBs possess

carcinogenicity through inducing formation of reactive

oxygen species, genotoxic effects, immune suppression, an

inflammatory response, and endocrine effects to various

extents and via different pathways. The dioxin-like PCBs

exert their effects mainly through AhR activation; less-

chlorinated PCBs act more readily through metabolic

activation. Mixtures might have more than additive effects.

OC pesticides elicit carcinogenicity mainly through non-

genotoxic effects. The o,p’-DDT, p,p’-DDE, and p,p’-

dichlorodiphenyldichloroethane (p,p’-DDD) are able to

modulate several cancer-related processes in breast cancer

cell lines (140).

Perfluorinated chemicals are suspected carcinogens, and

oxidative stress is a possible mechanism of action (141�
144). Oxidative stress is also involved in the carcinogenetic

effect of PBDEs (145) and heavy metals including arsenic,

cadmium, chromium, cobalt, lead, mercury and nickel

(146�151). Cadmium can also mimic the in vivo effects of

oestrogen in reproductive tissues (152). Thus, cadmium

might be related to the development of hormone-dependent

cancer such as breast cancer (153).

In blood samples of an Inuit population from Salluit (70

women, 33 men, Canada), the known oxidative lesion,

8-oxodG, DNA adduct was predominant. Some individual

adducts appear to accumulate with increasing PCB level,

but a definitive association between PCBs and other newly

detected DNA adducts could not be made (154). Further

investigation of Inuit from Salluit (56 women, 27 men)

showed the DNA adduct levels to be inversely associated

with the ratio of selenium and PCB levels. In the high

Se:PCB ratio group, a significantly negative effect on 8-

oxodG (r��0.38, p�0.014) and total adducts

(r��0.41, p�0.009) was observed, while there was no

correlation within the low Se:PCB group (155).

Contaminant exposure and cancer risk in Arctic
regions

Lung cancer
The incidence of lung cancer has increased remarkably in

all Inuit populations over the past 40 years and now

constitutes about 20% of all cancers in Inuit (132). The

lung cancer incidence in circumpolar Inuit is among the

highest in the world, for men and women. The age-

standardized incidence rate of lung and bronchus cancer

during 1998�2007 of male Inuit from Nunangat was 113

per 100,000 which was double that for the rest of Canada

(50.6 per 100,000) (133). Greenland Inuit have double the

standardized incidence rate of lung cancer in Denmark

(NORDCAN). The smoking pattern among Inuit, possi-

bly combined with co-factors related to environment and

diet, is believed to be the relevant causal factors (156).

Although modern housing conditions have decreased

exposure to fumes from lamps and open fires for cooking,

many Inuit still spend substantial periods out on the land,

cooking on open stoves inside tents. Marijuana smoking in

85% of adults (of Nunavik, Canada) might also play a role

in the high incidence of lung cancer (157).

Breast cancer
Breast cancer is the most common cancer for women in the

western world. The established risk factors include genetic

inheritance, for example, mutations in the BRCA1 and

BRCA2 genes (158), lifelong exposure to oestrogens,

obesity after menopause, alcohol, smoking and high fat

intake (159). The known risk factors explain less than a

third of all cases and more than 70% of women diagnosed

with breast cancer have no inherited or sporadic cancer.

Risk is thought to be modified by lifestyle and environ-

mental exposure (160). Although still lower in the Arctic

Inuit, the frequency is now approaching incidences re-

corded in Western populations (161) and today about 12 to

15 women are diagnosed every year in Greenland. From

1988 to 1997, the age-adjusted incidence rate for women in

Greenland was 46.4 per 100,000. For comparison, the rate

in the United States was 124 per 100,000 for 2001 to 2008

and in Denmark about 100 per 100,000 in 2010 (159). The

age-adjusted incidence rate for breast cancer in the Arctic

Inuit Nunangat was lower than for the rest of Canada (45

vs. 81 per 100,000) (133). A significant increase in breast

cancer rate in Alaska Native women was reported during

1974�2003 (162).

The enormous transition in health conditions and

lifestyle in the Arctic might be contributing to the known

risk factors. PCB exposures have been associated with

effects relevant to breast cancer development such as

estrogenic tumour promotion (163). Although conflicting

data for PFOA exposure in rats and fibroadenomas risk

(164), in mice PFOAwas associated with altered mammary

gland development and differentiation among exposed
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dams (165). Bonefeld-Jørgensen et al. (110) observed for

the very first time a significant association between serum

PFC levels and the risk of breast cancer breast cancer risk

in Greenlandic Inuit during 2000�2003. The breast cancer

cases also had a significantly higher concentration of PCBs

at the highest quartile. Also, the combined serum legacy

POP-induced agonistic AR transactivity showed an in-

creased odds ratio, and cases elicited a higher frequency of

samples with significant POP-related hormone-like ago-

nistic ER transactivity. The AhR toxic equivalent was

lowest in breast cancer cases possibly owing to receptor

inhibition by non-dioxin-like POPs. The level of serum

POPs, particularly PFCs, might be a risk factor in the

development of breast cancer in Inuit. Hormone disrup-

tion by the combined serum POP-related xenoestrogenic

and xenoandrogenic activities may contribute to the risk of

developing breast cancer in Inuit (110). Moreover, genetic

analyses showed that the BRCA1 founder mutations and

polymorphism in P450 1A1 and CYP17 might increase

risk among Greenlandic women (166) A study in southern

Quebec found an association between increased levels of

PCBs, particularly PCB105, PCB118 and PCB156, and

breast cancer (167).

Ovarian cancer and prostate cancer
The aetiology of ovarian cancer is not fully understood.

Previous results support the hypothesis of long-term

elevated oestrogen concentrations as etiologically impor-

tant for this disease (168). For Arctic populations, the age-

standard incidence rate of ovarian cancer among Alaska

Native women was significantly lower than for US white

women (5.2 vs. 10.5 per 100,000) in 1999�2003. No

significant change in the rate of developing ovarian cancer

was observed for Alaska Natives during 1973�2003 (162).

Germ-line mutations in the tumour suppressor proteins

BRCA1 and BRCA2 predispose individuals to breast and

ovarian cancer. About 10% of all breast and ovarian

cancers are dominantly inherited mainly by mutations in

the BRCA1 and BRCA2 genes. Harboe et al. (169) found

three patients out of nine with ovarian cancer (33%), and

one out of 10 breast cancer patients (10%) carrying the

BRCA1 mutation in Greenland. Risk of prostate cancer in

Inuit is 10�20% of the risk in the respective national white

population (161,170). A recent study showed that the age-

standard incidence rate for prostate cancer during 1998�
2007 was lower in the Inuit Nunangat population than in

the rest of Canada (17 vs. 85 per 100,000) (133).

Pancreatic cancer
A comprehensive meta-analysis has suggested that tobacco

smoking, obesity, Type 2 diabetes mellitus and chronic

pancreatitis are risk factors for pancreatic cancer. Kirkegaard

(171) reported that the age-standardized incidence rate for

pancreatic cancer is 138% higher in Greenland Inuit than in

Denmark. This could be partly explained by a higher

prevalence of smoking and Type 2 diabetes (171).

Genetic modifiers

Gene�Environment interactions in relation to cancer
risk
Polymorphisms in relation to environmental cancers are

those that modify either the exposure dose or the

carcinogenic effect of a given exposure. A functional

effect of the polymorphism is a prerequisite for a

biological effect. Much of the current molecular epide-

miological research aims at identifying those functional

polymorphisms and their interaction with environmental

factors. These differences in risk of cancer are often called

‘‘genetic susceptibility.’’

Genetic polymorphisms and contaminants in the
Arctic
The indigenous Arctic population is of Asian descent, and

their genetic background is different to that of the

Caucasian populations. Relatively little is known about

the specific genetic polymorphisms in genes involved in the

activation and detoxification mechanisms of environmen-

tal contaminants in Inuit and their relation to health risk.

Ghisari et al. (172) compared the genotype and allele

frequencies of the cytochrome P450 CYP1A1 Ile462Val

(rs1048943), CYP1B1 Leu432Val (rs1056836) and catechol-

O-methyltransferase (COMT) Val158Met (rs4680) in

Greenlandic Inuit (n�254) and Europeans (n�262) and

found that the genotype and allele frequency distributions

of the three genetic polymorphisms differed significantly

between the Inuit and Europeans. For Inuit, the genotype

distribution was more similar to those reported for Asian

populations. A significant difference in serum PCB153 and

p,p’-DDE levels between Inuit and Europeans was found,

and for Inuit associations were also found between POP

levels and genotypes for CYP1A1, CYP1B1 and COMT.

The data provide new information on gene polymorphisms

in Greenlandic Inuit that might support evaluation of

susceptibility to environmental contaminants (172).

Studying polymorphisms in genes involved in xenobiotic

metabolism and oestrogen biosynthesis, CYP1A1,

CYP1B1, COMT and CYP17, CYP19 and the BRCA1

founder mutation in relation to breast cancer risk, Ghisari

et al. (164) found that the BRCA1 founder mutation and

polymorphisms in CYP1A1 and CYP17 can increase

breast cancer risk among Inuit women and that risk

increases with higher serum levels of PFOS and PFOA.

Serum PFAS levels were a consistent risk factor for breast

cancer, but inter-individual polymorphic differences might

cause variations in sensitivity to the PFAS/POP exposure.

In the INUENDO study population, including proven-

fertile men from Greenland, Warsaw (Poland) and

Kharkiv (Ukraine), the effect of exposure to POPs on

sperm concentration was seen only in men with a short

androgen receptor (AR) gene nucleotide CAG sequence

repeat. The data were supported in vitro showing that
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4,4’-DDE had the most pronounced effect on the AR

activity containing 16 CAG repeats, whereas 28 CAG was

the most sensitive variant to a mixture of PCB153 and

4,4’-DDE (173). In another INUENDO study, a linear

association was found between sperm DNA fragmentation

index and CAG and inhibin B and GGN length, respec-

tively, indicating an association with CAG or GGN repeat

length and male reproductive function (174).

Genetics in relation to lifestyle factors in Arctic
populations
Nicotine, the psychoactive ingredient in tobacco, is

metabolically inactivated by CYP2A6 to cotinine.

CYP2A6 also activates pro-carcinogenic tobacco-specific

nitrosamines (TSNA). Genetic variation in CYP2A6 is

known to alter smoking quantity and lung cancer risk in

heavy smokers. In a cross-sectional study of Alaska

Native people, cigarette smokers, smokeless tobacco users

and iqmik (mixture of tobacco and ash) users with lower

CYP2A6 activity had lower urinary total nicotine

equivalents and 4-(methylnitrosamino)-1-(3)pyridyl-1-

butanol (NNAL) levels (a biomarker of TSNA exposure).

Levels of N-nitrosonornicotine (NNN), a TSNA meta-

bolically bioactivated by CYP2A6, were higher in smo-

kers with lower CYP2A6 activities. Light smokers and

smokeless tobacco users with lower CYP2A6 activity

reduced their tobacco consumption. Thus, tobacco users

with lower CYP2A6 activity are exposed to lower pro-

carcinogen levels (NNAL) and have lower pro-carcinogen

bioactivation (higher urinary NNN) being consistent

with a lower risk of developing smoking-related cancers.

The study demonstrates the importance of CYP2A6 in

the regulation of tobacco consumption behaviours, pro-

carcinogen exposure and metabolism (175).

Genetic variability and hepatitis in the Arctic
Hepatitis B virus (HepB) infection is highly prevalent in

circumpolar indigenous peoples. However, the clinical

outcome is extremely variable, such that while hepatocel-

lular carcinoma is uncommon in Canadian Inuit, its

incidence is slightly higher in Greenlanders than in

Danes, and it is especially high in Alaskan Native people

infected with HepB genotypes F (HepB/F) and C (HepB/

C). The rate, nature and regional susceptibility of HepB

genomic mutations among circumpolar indigenous in-

dividuals infected by HepB/B6 (Canada), HepB/D

(Greenland) and Alaskan Native people, having subse-

quently developed hepatocellular carcinoma, found mu-

tations associated with severe outcomes predominated in

HepB/F. Differing mutational profiles and genetic varia-

bility was observed among different HepB genotypes

predominating in circumpolar indigenous patients. The

persistently high genetic variability with HepB/B6 despite

clinical inactivity could be because of the evolution of a

host�pathogen balance (176).

Genetics in relation to HI in the Arctic
In a cross-sectional survey, the genetic causes of hearing

impairment (HI) were investigated among the Inuit with a

high prevalence. Mutations in the GJB2 gene have been

identified as a frequent cause of HI. GJB2 encodes the gap

junction protein connexin-26 (Cx26), involved in cochlear

K� homeostasis and is important for mechano-sensory

sound transduction. Cx26 mutations explain 15�50% of all

non-syndromic HI, but apart from that gene, there is a

huge genetic heterogeneity with more than 75 loci or genes

for autosomal recessive HI identified. The study group

comprised 45 East Greenlanders with HI (median age

of 35 years; range: 5�76) and 108 East- and 109 West-

Greenlanders as controls. In connexin-26 GJB2, the

c.35delG allele frequency was 3.3%. Thus the c.35delG

GJB2 mutation occurs in Greenlandwith LF, and the main

causes behind the prevalence of HI in this group are

chronic otitis, noise traumas and/or unidentified genetic

causes (177).

Epigenetics
Altered programming may result from epigenetic altera-

tions related to environmental contaminant exposure.

Epigenetic alterations are now being linked to several

important reproductive outcomes, including early preg-

nancy loss, intrauterine growth restriction, congenital

syndromes, preterm birth and pre-eclampsia (178). The

molecular processes in epigenetic regulation that influ-

ence pregnancy and the possible diseases in adult life

need further research.

Rusiecki et al. (179) analysed the relationship between

plasma POP concentrations and global DNA methyla-

tion (percent 5-methylcytosine) in DNA extracted from

blood samples from 70 Greenlandic Inuit and estimated

the global DNA methylation via Alu and LINE-1 assays.

They found statistically significant inverse correlation

between methylcytosine percent and many of the POP

concentrations. This first study on environmental expo-

sure to POPs and DNA methylation levels in an Arctic

population has shown that global methylation levels are

inversely associated with blood plasma levels for several

POPs, and further research is required.

Changes in genome methylation with n-3 PUFA intake

and the associations between the diabetes- and cardiovas-

cular disease-related traits were studied in a cross-sectional

study of 185 Yup’ik Alaska Native individuals and found

27 differentially methylated CpG sites at biologically

relevant regions with epigenome-wide significance

(pB1�10�7): Regions on chromosomes 3 (helicase-like

transcription factor), 10 (actin a2 smooth muscle/Fas cell

surface death receptor) and 16 (protease serine 36/C16

open reading frame 67). This indicates an association

between biologically relevant epigenetic markers and long-

term intake of marine-derived n-3 PUFAs (180).
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Genetic predisposition and methylmercury
neurotoxicity
Cognitive consequences at school age associated with

prenatal MeHg exposure may need to take into account

nutritional and sociodemographic cofactors as well as

relevant genetic polymorphisms. At low background

exposure equivocal associations between MeHg exposure

and adverse neuropsychological outcomes were observed

in a Bristol cohort. Heterogeneities in several relevant

genes suggest possible genetic predisposition to MeHg

neurotoxicity (181).

Effect modifiers
Most environmental research on the effects of chemicals

focuses on single exposures. However, exposure to

mixtures of chemicals is ubiquitous in real life (182).

Certain chemical substances may target the same organ

and induce similar effects in an additive or non-additive

way (183). Recent studies suggest a synergistic effect of

metal mixtures with neuropsychological outcomes (184)

or kidney disease (185). However, studies that examine

the effects of chemical mixtures remain limited in hu-

mans, and even in experimental animal studies (183).

Methylmercury can cause adverse effects on the

developing nervous system, however, long-chain n-3

PUFAs in seafood provide beneficial effects on brain

development. In the Faroe Islands and NCDS cohort

studies, associations between prenatal exposure to MeHg

and neurobehavioural deficits at school age were

strengthened after fatty acid adjustment (186).

Conclusions

Neurobehavioural effects
Effects associated with MeHg exposure have been docu-

mented in humans at successively lower exposures, and it is

clear that the developing brain is the most vulnerable organ

system. Prenatal exposure to MeHg has been associated

with clear effects on the developing brain. Cohort studies

in the Faroe Islands have demonstrated that children

exposed to MeHg in utero exhibit decreased motor

function, attention span, verbal abilities, memory, and

other mental functions. Follow-up of these children up to

the age of 22 years indicates that these deficits, together

with deficits in general mental ability, appear to be

permanent. Similarly, a study in Nunavik of child devel-

opment at age 11 years showed that Hg exposure was

associated with poorer early processing of visual informa-

tion, lower estimated IQ, poorer comprehension and

perceptual reasoning, poorer memory functions, and

increased risk of attention problems and ADHD beha-

viour. Some of the adverse effects of MeHg on neurode-

velopment may be masked by beneficial effects of seafood

nutrients. Neurophysiological assessments of brain func-

tion also indicate that post-natal exposure up to the

teenage years can cause harm. Thus, both pregnant women

and children are at increased risk from MeHg exposure.

New studies indicate that certain genetic factors may

increase vulnerability to MeHg toxicity. Neurophysiologi-

cal assessments of children from the Faroe Islands and

Nunavik have been less clear with regard to the effects of

prenatal exposure to PCBs.

Immunological effects
Certain environmental pollutants can adversely affect the

development of the immune system. Young children in

Nunavik have had a high incidence of infectious diseases

(meningitis, bronchopulmonary infections, and middle ear

infections) for many years. Recent studies to investigate the

possibility that this could be partly due to maternal

transfer of OCs with known immunotoxic properties

during breastfeeding show that prenatal exposure to OCs

does increase susceptibility to infectious diseases (in

particular otitis media). Most experimental evidence

points to the role played by the dioxin-like PCB congeners.

Immunotoxic effects have also been seen on routine

childhood immunizations. Faroese children exhibiting

elevated levels of PCBs and especially perfluorinated

compounds showed reduced immune response to routine

vaccinations. These findings suggest a decreased effect of

childhood vaccinations and may indicate a more general

immune system deficit. The implications of inadequate

antibody production highlight the need to significantly

reduce immunotoxicant exposure in Arctic populations, as

well as the need for long-term assessments of the health

risks associated with exposure to immunotoxic contami-

nants.

Reproductive effects
Many Danish and Faroese men have a low level of semen

quality compared with men from other European coun-

tries, and there are also indications of lower capacity for

testosterone production. Studies of semen quality did not

show a relationship with PCB153 or p,p’-DDE levels

in the blood of Greenlanders; however, sperm motility

was inversely related to PCB153 concentration in this

population.

Cardiovascular effects
Conflicting results have been reported regarding the

impact of prenatal Hg exposure on blood pressure, with

7-year-old Faroese children exhibiting elevated blood

pressure and children from Nunavik showing no associa-

tion between blood pressure and prenatal Hg exposure.

However, elevated blood pressure was found to be

associated with Hg exposure among adults from the Faroe

Islands and Nunavik. Decreased heart rate variability was

associated with cord blood Hg concentrations in Faroese

children at ages 7 and 14 years but not in 11-year-old

children from Nunavik; however, contemporary blood Hg

concentrations in these children from Nunavik were
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associated with decreased overall heart rate variability

parameters. This was also the case for adults from Nunavik

and James Bay Cree adults.

Endocrine effects
EDCs can mimic, interfere or block the function of

endogenous hormones and so cause adverse developmental,

reproductive, neurological, cardiovascular, metabolic and

immune effects in humans. The endocrine-disruptive

potential of the actual human serum POP mixture is

documented. Exposure during early stages of foetal and

neonatal development is especially critical and can disrupt

the normal pattern of development in later life. Higher

prenatal PCB exposure was associated with lower serum

concentrations of luteinizing hormone and testosterone in

Faroese adolescent boys, while sex hormone-binding glo-

bulin was positively associated with both prenatal

and concurrent PCB exposures. DDE was highly correlated

with PCBs and showed slightly weaker associations with

the hormone profile. These findings suggest that delayed

puberty with low serum luteinizing hormone concentrations

associated with development exposure to non-dioxin-like

PCBs may be due to a central hypothalamo-pituitary

mechanism.

Exposure to several polyhalogenated compounds has

been associated with modifications in thyroid hormone

parameters in Inuit adults from Nunavik. An association

between POPs levels and thyroid hormones has also been

observed in aging residents in upper Hudson River

communities. This influence of POPs on thyroid hor-

mones in aging populations may have clinical significance

and merits further investigation.

A potential influence of POPs on type 2 diabetes

pathogenesis has also been observed among septuagenar-

ian Faroese with a high POPs exposure free of type 2

diabetes and pre-diabetes: The fasting insulin concentra-

tion decreased (8%) for each doubling of the serum

concentration of PCBs, and a similar increase in the

fasting glucose level. Along with higher PCB exposures

in persons with Type 2 diabetes and impaired fasting

glycaemia, these results suggest that PCB-induced b-cell

deficiency may be involved in the disease pathogenesis.

Impaired insulin secretion appears to constitute an im-

portant part of the type 2 diabetes pathogenesis associated

with dietary exposure to lipophilic POPs. In Faroese, a

vitamin D status of less than 50 nmol/L doubled the risk of

newly diagnosed type 2 diabetes. Thus, vitamin D may

provide protection against type 2 diabetes in older persons.

Carcinogenic effects
During the latter half of the 20th century, cancer

incidence increased substantially among all circumpolar

Inuit in the Arctic region, especially for the lifestyle-

associated lung, breast and colon cancers. Lung cancer

now constitutes about 20% of all cancers in Inuit. Overall

cancer rates now seem comparable to those of the United

States, Canada and Denmark. The recent change in

lifestyle and diet and thus environmental contaminant

exposure of the Inuit might play a role in this.

Effect modifiers
Different chemical substances can interact and induce

similar effects in an additive, synergistic or non-additive

way and may target the same organ. Because most studies

concern human exposure to single chemicals rather than

chemical mixtures, negative confounding could cause

underestimation of those chemicals causing toxicity (e.g.

MeHg and PCBs in seafood) and those having benefits

(e.g. long-chain n-3 PUFAs in seafood).
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