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Abstract

In [14] we investigated some Vilenkin–Nörlund means with non-increasing coefficients.
In particular, it was proved that under some special conditions the maximal operators of
such summabily methods are bounded from the Hardy space H1/(1+α) to the space weak -
L1/(1+α), (0 < α 5 1). In this paper we construct a martingale in the space H1/(1+α),
which satisfies the conditions considered in [14], and so that the maximal operators of these
Vilenkin–Nörlund means with non-increasing coefficients are not bounded from the Hardy
space H1/(1+α) to the space L1/(1+α). In particular, this shows that the conditions under
which the result in [14] is proved are in a sense sharp. Moreover, as further applications,
some well-known and new results are pointed out.

1. Introduction and statement of the main result

Denote by N+ the set of the positive integers, N := N+ ∪ {0}. Let m :=
(m0, m1, . . . ) be a sequence of the positive integers not less than 2. Denote
by Zmk

:= {0, 1, . . . ,mk − 1} the additive group of integers modulo mk.
Define the group Gm as the complete direct product of the groups Zmi ,

with the product of the discrete topologies of Zmj .
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The direct product µ of the measures µk
(
{j}

)
:= 1/mk (j ∈ Zmk

) is the

Haar measure on Gm with µ(Gm) = 1.
In this paper we discuss bounded Vilenkin groups, i.e. the case when

supnmn <∞.
The elements ofGm are represented by sequences x := (x0, x1, . . . , xj , . . . )

(xj ∈ Zmj ).
It is easy to give a base for the neighborhoods of Gm:

I0(x) := Gm, In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1},

where x ∈ Gm, n ∈ N. Denote In := In(0) for n ∈ N+, and In := Gm\In.
If we define the so-called generalized number system based on m in the

following way:

M0 := 1, Mk+1 := mkMk (k ∈ N),

then every n ∈ N can be uniquely expressed as n =
∑∞

j=0 njMj , where

nj ∈ Zmj (j ∈ N+) and only a finite number of nj ‘s differ from zero.
Next, we introduce on Gm an orthonormal system which is called the

Vilenkin system. At first, we define the complex-valued function rk(x) :
Gm → C, the generalized Rademacher functions, by

rk(x) := exp (2πixk/mk) , (i2 = −1, x ∈ Gm, k ∈ N).

Now, define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as:

ψn(x) :=

∞∏
k=0

rnk
k (x), (n ∈ N).

Specifically, we call this system the Walsh–Paley system when m ≡ 2.
The Vilenkin system is orthonormal and complete in L2(Gm) (see [17]).
The norm (or quasi-norm) of the space Lp(Gm) and weak -Lp(Gm)

(0 < p <∞) are respectively defined by

∥f∥pp :=
∫
Gm

|f |p dµ, ∥f∥pweak-Lp
:= sup

λ>0
λpµ (f > λ) < +∞.

If f ∈ L1(Gm) we can respectively define the Fourier coefficients, the
partial sums of the Fourier series, the Dirichlet kernels with respect to the
Vilenkin system in the usual manner:

f̂(n) :=

∫
Gm

fψn dµ, (n ∈ N),
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Snf :=
n−1∑
k=0

f̂(k)ψk, Dn :=
n−1∑
k=0

ψk, (n ∈ N+)

Recall that

(1) DMn(x) =

{
Mn, if x ∈ In,

0, if x /∈ In.

The σ-algebra generated by the intervals
{
In(x) : x ∈ Gm

}
will be de-

noted by zn (n ∈ N). Denote by f = (f (n), n ∈ N) a martingale with respect

to zn (n ∈ N). (for details see e.g. [18]).
The maximal function of a martingale f is defined by

f∗ = sup
n∈N

|f (n)|.

For 0 < p <∞ the Hardy martingale spaces Hp(Gm) consist of all mar-
tingales for which

∥f∥Hp
:= ∥f∗∥p <∞.

If f = (f (n), n ∈ N) is a martingale, then the Vilenkin–Fourier coefficients
must be defined in a slightly different manner:

f̂(i) := lim
k→∞

∫
Gm

f (k)ψi dµ.

A bounded measurable function a is a p-atom (p > 0), if there exists an
interval I, such that∫

I

adµ = 0, ∥a∥∞ 5 µ(I)−1/p, supp(a) ⊂ I.

We also need the following auxiliary result (see [19]):

Lemma 1. A martingale f = (f (n), n ∈ N) is in Hp (0 < p 5 1) if

and only if there exists a sequence (ak, k ∈ N) of p-atoms and a sequence
(µk, k ∈ N) of real numbers, such that, for every n ∈ N,

(2)

∞∑
k=0

µkSMnak = f (n),

∞∑
k=0

|µk|p <∞.
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Moreover, ∥f∥Hp
v inf (

∑∞
k=0 |µk|

p)
1/p

, where the infimum is taken over

all decompositions of f of the form (2).

Let {qk : k = 0} be a sequence of nonnegative numbers. The n-th Nör-
lund mean for a Fourier series of f is defined by

(3) tnf =
1

Qn

n∑
k=1

qn−kSkf,

where Qn :=
∑n−1

k=0 qk.
We always assume that q0 > 0 and limn→∞Qn = ∞. In this case it is

well-known that the summability method generated by {qk : k = 0} is regu-
lar if and only if

lim
n→∞

qn−1

Qn
= 0.

Concerning this fact and related basic results, we refer to [6].
The (C,α)-means (Cesáro means) of the Vilenkin–Fourier series are de-

fined by

σαnf =
1

Aα
n

n∑
k=1

Aα−1
n−kSkf,

where

Aα
0 = 0, Aα

n =
(α+ 1) . . . (α+ n)

n!
, α ̸= −1,−2, . . .

When α = 1 the Cesáro means coincide with the Fejér means

σnf =
1

n

n∑
k=1

Skf.

For the martingale f we consider the following maximal operators:

t∗f := sup
n∈N

|tnf |, σ∗f := sup
n∈N

|σnf |, σα,∗f := sup
n∈N

∣∣σαnf ∣∣ .
In the one-dimensional case the result with respect to the a.e. conver-

gence of Fejér is due to Pál and Simon [11] (c.f. also [2]) for bounded Vilenkin
series. Weisz [20] proved that the maximal operator of the Fejér means σ∗

is bounded from the Hardy space H1/2 to the space weak-L1/2. Simon [12]
gave a counterexample, which shows that boundedness does not hold for
0 < p < 1/2. A counterexample for p = 1/2 was given in [16].

In [4] Goginava investigated the behaviour of Cesáro means of Walsh–
Fourier series in detail. The a.e. convergence of Cesáro means of f ∈ L1 was
proved in [5]. Furthermore, Simon and Weisz [13] showed that the maximal
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operator σα,∗ (0 < α < 1) of the (C,α) means is bounded from the Hardy
space H1/(1+α) to the space weak -L1/(1+α). Moreover, Goginava [3] gave

a counterexample, which shows that boundedness does not hold for 0 < p 5
1/(1 + α).

Móricz and Siddiqi [7] investigated the approximation properties of some
special Nörlund means of Walsh–Fourier series of Lp functions in norm. In
the two-dimensional case approximation properties of Nörlund was consid-
ered by Nagy (see [8]–[10]). In [1] and [15] it was proved strong convergence
theorems for Nörlund means of Vilenkin–Fourier series with monotone coef-
ficients. Moreover, there was also shown boundedness of weighted maximal
operators of such Nörlund means on martingale Hardy spaces. Recently,
in [14] it was proved that the following is true:

Theorem A. a) Let 0 < α 5 1. Then the maximal operator t∗ of
summability method (3) with non-increasing sequence {qk : k = 0}, satis-
fying the conditions

(4)
nαq0
Qn

= O(1),
|qn − qn+1|
nα−2

= O(1), as n→ ∞,

is bounded from the Hardy space H1/(1+α) to the space weak-L1/(1+α).

b) Let 0 < α 5 1, 0 5 p < 1/(1+α) and {qk : k = 0} be a non-increasing
sequence, satisfying the condition

(5)
q0
Qn

= c

nα
, (c > 0).

Then there exists a martingale f ∈ Hp, such that

sup
n∈N

∥tnf∥weak-Lp
= ∞.

c) Let {qk : k = 0} be a non-increasing sequence, satisfying the condition

(6) lim
n→∞

q0n
α

Qn
= ∞, (0 < α 5 1).

Then there exists an martingale f ∈ H1/(1+α), such that

sup
n∈N

∥tnf∥weak-L1/(1+α)
= ∞.

In this paper we complement this result by proving sharpness of both
conditions of (4). Our main result reads:
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Theorem 1. Let 0 < α 5 1 and {qk : k = 0} be a non-increasing se-
quence, satisfying the conditions

(7) lim
n→∞

|qn − qn+1|
nα−2

= c, (c > 0),

and

(8)
nαq0
Qn

= c, (c > 0, n ∈ N).

Then there exists a martingale f ∈ H1/(1+α), such that

sup
n∈N

∥tnf∥1/(1+α) = ∞.

The proof can be found in the Section 2 and some applications and final
remark in the Section 3.

2. Proof of Theorem 1

Proof. Under the condition (7), there exists an increasing sequence
{nk : k ∈ N} of positive integers such that

(9)
Mα

2nk+1

QM2nk
+1

> cα > 0, k ∈ N.

Let {αk : k ∈ N} ∈ {nk : k ∈ N} be an increasing sequence of positive
integers such that:

∞∑
k=0

1/α
1/(1+α)
k <∞,(10)

λ
k−1∑
η=0

M1+α
αη

αη
<
M1+α

αk

αk
(11)

and

(12)
32λM1+α

αk−1

αk−1
<
Mα+1

[αk/2]

αk
,
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where λ = supnmn and [αk/2] denotes the integer part of αk/2.
We note that such increasing sequence {αk : k ∈ N} which satisfies con-

ditions (10)–(12) can be constructed.

Let the martingale f := (f (n) : n ∈ N) be defined by

(13) f (n) =
∑

{k:αk<n}

λkθαk
,

where

(14) λk =
λ

αk
and θαk

=
Mα

αk

λ

(
DMαk+1 −DMαk

)
.

Since

SMA
θk =

{
θk, if αk < A,

0, if αk = A,

supp(θk) = Iαk
,

∫
Iαk

θk dµ = 0, ∥θk∥∞ 5M1+α
αk

= (supp θk)
1+α,

if we apply Lemma 1 and (10) we can conclude that f ∈ H1/(1+α).
Moreover, it is easy to see that

(15) f̂(j) =


Mα

αk
αk

, if j ∈
{
Mαk

, . . . ,Mαk+1 − 1
}
, k = 0, 1, 2 . . . ,

0, if j /∈
∞∪
k=1

{
Mαk

, . . . ,Mαk+1 − 1
}
.

Let s = 0, . . . , k − 1. We can write that

tMαk
+Msf

=
1

QMαk
+Ms

Mαk∑
j=0

qjSjf +
1

QMαk
+Ms

Mαk
+Ms∑

j=Mαk
+1

qjSjf

:= I + II.

Let Mαs 5 j 5Mαs+1, where s = 0, . . . , k − 1. Moreover,∣∣Dj −DMαs

∣∣ 5 2j 5 λMαs , (s ∈ N)
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so that, according to (1) and (15), we have that

|Sjf |(16)

=

∣∣∣∣Mαs−1+1−1∑
v=0

f̂(v)ψv +

j−1∑
v=Mαs

f̂(v)ψv

∣∣∣∣
5

∣∣∣∣ s−1∑
η=0

Mαη+1−1∑
v=Mαη

Mα
αη

αη
ψv

∣∣∣∣
+
Mα

αs

αs
|
(
Dj −DMαs

)
|

=

∣∣∣∣ s−1∑
η=0

Mα
αη

αη

(
DMαη+1 −DMαη

)∣∣∣∣
+
Mα

αs

αs
|
(
Dj −DMαs

)
|

5 λ

s−1∑
η=0

Mα+1
αη

αη
+
λMα+1

αs

αs

5 λMα+1
αs

αs
+
λMα+1

αs

αs
5

2λMα+1
αk−1

αk−1
.

Let Mαs−1+1 +1 5 j 5Mαs , where s = 1, . . . , k. Analogously to (16) we
find that

|Sjf | =

∣∣∣∣∣
Mαs−1+1−1∑

v=0

f̂(v)ψv

∣∣∣∣∣ =
∣∣∣∣∣
s−1∑
η=0

Mαη+1−1∑
v=Mαη

Mα
αη

αη
ψv

∣∣∣∣∣
=

∣∣∣∣ s−1∑
η=0

Mα
αη

αη

(
DMαη+1 −DMαη

)∣∣∣∣ 5 2λMα+1
αk−1

αk−1
.

Hence,

|I| 5 1

QMαk
+Ms

Mαk∑
j=0

qj |Sjf |(17)
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5
2λMα+1

αk−1

αk−1

1

QMαk
+Ms

Mαk∑
j=0

qj

5
2λMα+1

αk−1

αk−1
.

Let x ∈ Is/Is+1. Since

(18) Dj+Mn = DMn + ψMnDj = DMn + rnDj , when j < Mn,

if we now apply Abel transformation, (15) and inequalities of (8) and
(9) we get that

|II| = 1

QMαk
+Ms

∣∣∣∣∣Mα
αk

αk

Mαk
+Ms∑

j=Mαk
+1

qMαk
+Ms−j

(
Dj −DMαk

)∣∣∣∣∣
=

1

QMαk
+Ms

∣∣∣∣∣Mα
αk

αk

Ms∑
j=1

qMs−j

(
Dj+Mαk

−DMαk

)∣∣∣∣∣
=

1

QMαk
+Ms

∣∣∣∣∣ψMαk
Mα

αk

αk

Ms∑
j=1

qMs−jDj

∣∣∣∣∣
=

Mα
αk

αkQMαk
+Ms

∣∣∣∣∣
Ms∑
j=1

qMs−jj

∣∣∣∣∣
= c

αk

∣∣∣∣∣
Ms∑
j=1

(
qMs−j − qMs−j−1

)
j2

∣∣∣∣∣
= cM2

s

αk

Ms∑
j=[Ms/2]

∣∣qMs−j − qMs−j−1

∣∣

= cM2
s

αk

[Ms/2]∑
j=0

|qj − qj+1|

= cM2
s

αk

[Ms/2]∑
j=0

jα−2
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= cMα−1
s M2

s

αk
= cMα+1

s

αk
.

Let [αk/2] < s 5 αk. Therefore, it yields that∫
Gm

∣∣ tMαk
+Msf(x)

∣∣1/(1+α)
dµ(x)(19)

= |II| − |I| = cM1+α
s

αk
−

4λMα+1
αk−1

αk−1
= cM1+α

s

αk
.

By combining (17) and (19) we get that∫
Gm

|t∗f |1/(1+α) dµ

=
αk∑

s=[αk/2]+1

∫
Is/Is+1

∣∣ tMαk
+Msf

∣∣1/(1+α)
dµ

= c

αk∑
s=[αk/2]

Ms

Msα
1/(1+α)
k

= c

αk−3∑
s=[αk/2]

1

α
1/(1+α)
k

= c

α
1/(1+α)
k

αk∑
s=[αk/2]

1 = cαk

α
1/(1+α)
k

= cα
α/(1+α)
k → ∞, as k → ∞.

The proof is complete. �

3. Applications and final remark

Remark 1. We note that under the both conditions of (7) in Theorem 1
the conditions (4) in Theorem A can still be fulfilled. So our main result
shows that under the both conditions of (7) in part a) of Theorem A are in
a sence sharp and the point p = 1/(1 + α) is the smallest number for which
we have boundedness from the Hardy space H1/(1+α) to the space weak -
L1/(1+α).



A NOTE ON THE MAXIMAL OPERATORS OF VILENKIN–NÖRLUND MEANS 11

Our main result Theorem 1 immediately implies the following results of
Goginava [3] and Tephnadze [16]:

Corollary 1 (Goginava). The maximal operator of the (C,α)-means
σα,∗ is not bounded from the Hardy space H1/(1+α) to the space L1/(1+α),

where 0 < α 5 1.

Corollary 2 (Tephnadze). The maximal operator of the Fejér means
σ∗ is not bounded from the Hardy space H1/2 to the space L1/2.

Let θαn denote the Nörlund mean, where {q0 = 0, qk = kα−1 : k = 1}, that
is

θαnf =
1

Qn

n∑
k=1

(n− k)α−1Skf.

It is easy to see that

|qn − qn+1|
nα−2

=
1

nα−2

(
nα

n
− (n+ 1)α

n+ 1

)
(20)

5 1

nα−2

(
nα

n
− nα

n+ 1

)
=

1

nα−2

nα

n(n+ 1)

5 1

nα−2

2

n2−α
= O(1), as n→ ∞.

Since

Qn :=

n−1∑
k=0

kα−1 =
n−1∫
1

xα−1 dx = cnα

we obtain that

(21)
nαq0
Qn

= O(1), as n→ ∞.

By combining inequalities (20) and (21) we get the following new result:

Corollary 3. The maximal operator of the θαn-means

θα,∗ := sup
n∈N

|θnf |

is not bounded from the martingale Hardy space H1/(1+α) to the Lebesgue

space L1/(1+α), where 0 < α 5 1.
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