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DXOI:(10:1035/3000000000¢ The study of high-order absorption properties of molecules is a field of growing importance.

Quantum-chemical studies can help design chromophores with desirable characteristics. Given
that most experiments are performed in solution, it is important to devise a cost-effective strategy
to include solvation effects in quantum-chemical studies of these properties. We here present an
open-ended formulation of self-consistent field (SCF) response theory for a molecular solute cou-
pled to a polarizable continuum model (PCM) description of the solvent. Our formulation relies on
the open-ended, density matrix-based quasienergy formulation of SCF response theory of Thor-
valdsen et al. [J. Chem. Phys., 2008, 129, 214108] and the variational formulation of the PCM, as
presented by Lipparini et al. [J. Chem. Phys., 2010, 133, 014106]. Within the PCM approach to
solvation, the mutual solute—solvent polarization is represented by means of an apparent surface
charge (ASC) spread over the molecular cavity defining the solute—solvent boundary. In the vari-
ational formulation, the ASC is an independent, variational degree of freedom. This allows us to
formulate response theory for molecular solutes in the fixed-cavity approximation up to arbitrary
order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue
analyses of the response functions naturally lead to the identification of excitation energies and
transition moments. We document the implementation of this approach in the Dalton program
package using a recently developed open-ended response code and the PCMSolver libraries and
present results for one-, two-, three-, four- and five-photon absorption processes of three small
molecules in solution.
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1 Introduction

An important challenge in molecular sciences is the study at the
quantum molecular mechanical level of systems of growing com-
plexity. The behavior of simple, isolated molecules is in general

by spectroscopic techniques, in which photons interact with the
system and the response of the system to these perturbations is
monitored. Simultaneously, technological improvements both in
the intensity of the photon source and the sensitivity of detectors

well understood, but large systems that include multiple con-
stituents pose additional problems, both due to their sheer size
and the interaction of the different components. On the experi-
mental side, the best tools to address such systems are provided

@ Centre for Theoretical and Computational Chemistry, Department of Chemistry, Uni-
versity of Tromsg—The Arctic University of Norway, N-9037 Tromsg, Norway; E-mail:
roberto.d.remigio@uit.no

1 Electronic Supplementary Information (ESI) available: contains code and build
toolchain details, input and output files, data harvesting scripts, collected data
and plotting scripts. See DOI: https://dx.doi.org/10.6084/m9.figshare.
3971661 .v2

1 Present address: Laboratoire de Mathématiques et de Physique, Université de Per-
pignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan cedex 9, France.

This journal is © The Royal Society of Chemistry [year]

allow new experimental techniques to be developed and applied
to complex systems. As a result, methods that used to be proof-of-
principle concepts are today routinely employed to study increas-
ingly complex systems.

An example of such a class of experiments is multiphoton ab-
sorption (MPA): the simultaneous absorption of several photons.
The effect, originally predicted for two-photon absorption (2PA)
by Goppert-Mayer in 1931, is too weak to be detected unless
laser sources are employed. As a consequence, the first mea-
surement was only made possible in 1961.2 2PA is still not as
widespread as one-photon absorption (1PA), but its use is increas-
ing. In part this is due to its different symmetry selection rules,
that allow to explore excited states that are dark in 1PA. In addi-
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tion, 2PA experiments afford a greater focality than in 1PA, due to
their quadratic dependence on the intensity of the incident radia-
tion. More recently, higher-order methods such as three-,3 four-+
and five-photon® absorption have emerged, although their use is
in no way as widespread as 1PA and 2PA.

The growth in available spectroscopic techniques and their ap-
plication to systems of ever increasing complexity calls for a cor-
responding effort on the theoretical side to describe correctly the
underlying molecular phenomena and to tackle the complexity of
the system in a manageable way.

Olsen and Jgrgensen have shown how transition moments be-
tween ground and excited states can be calculated from residues
of response functions of a molecule in its ground state.® The
residues of the linear response function can thus be used to cal-
culate the strength of transitions in UV/Vis spectroscopy (1PA).
2PA and three-photon absorption (3PA) can in turn be calculated
from the residues of the quadratic and cubic response functions,
respectively.®-8  Similarly, four- and five-photon absorption cross
sections (4PA and 5PA) can be calculated from the correspond-
ing higher-order response functions. The higher the order of the
response functions needed, the more complex the working equa-
tions become, in particular if attention is given to computational
efficiency.

Our group has in the last few years developed an open-ended
formulation of response theory® and implemented it using re-
cursive programming techniques, 1 enabling the calculation of
response properties to any order at the Hartree-Fock (HF) and
density-functional theory (DFT) level and limited only by the de-
gree of generality in connected modules for perturbed one- and
two-electron integrals and exchange—correlation (XC) contribu-
tions. %11 The approach has recently been extended to include
single residues of response functions.!! Single residues of these
high-order response functions have already been used by our
group to calculate 4PA 11 and 5PA!2 absorption cross section. Ar-
bitrary, higher-order processes are also accessible from this open-
ended approach. The open-ended response formalism is there-
fore able to address the challenge of the ever-growing variety of
spectroscopic methods available, significantly reducing the devel-
opment effort and the time required to model new spectroscopic
processes for relevant applications.

Several approaches have been developed to tackle large and
complex systems, such as solutions and proteins, in the presence
of external fields. When the phenomenon studied is localized
to a single molecule and its immediate surroundings—as is of-
ten the case for MPA where the majority of the response arises
from a chromophore in the complex—an efficient strategy is to
use focused models that only treat a small portion of the sys-
tem (e.g. the chromophore molecule) using quantum-mechanical
(QM) methods, whereas the rest (the environment) is treated
classically. A distinction can be drawn between methods keep-
ing atomistic detail in the classical environment, and those which
disregard it. The former are commonly known as Molecular Me-
chanics (MM) methods, whereas the latter are referred to as Di-
electric Continuum (DC) methods. Both models have strengths
and weaknesses: MM methods are able to describe specific in-
termolecular interactions but require configurational sampling,
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whereas DC methods are more effective at addressing long-range
interactions. 13-15 Both methods can be augmented with a super-
molecular approach (including one or more solvent molecules in
the QM system) to address specific quantum effects. A three-layer
model which combines a description of the specific effects near
the chromophore by an MM part with pre-averaged long-range
effects described by the DC part has also been reported.® For
details we refer to the relevant literature. 16-19

The abovementioned open-ended approach to response theory
has recently been extended to include molecular environment ef-
fects for electric dipole properties through a Polarizable Embed-
ding (PE) Quantum Mechanics/Molecular Mechanics (QM/MM)
approach.?® In this work, we will present an open-ended re-
sponse formalism for the polarizable continuum model (PCM), 21
in its Integral Equation Formalism (IEF) formulation, %2 which is
the most versatile DC method available. For details about the
PCM, the reader is referred to two authoritative reviews. 1323
The model features a molecule-shaped cavity made of interlock-
ing spheres, 2425 is able to describe a wide variety of environ-
ments due to the generality of the IEF formalism, 22227 and can
treat dynamical processes thanks to the nonequilibrium formal-
ism. 2829 All such features are available in the PCMSolver mod-
ule, an application programming interface (API) for the PCM. 30
Additional features not yet available in PCMSolver are the treat-
ment of non-electrostatic terms in the solvation energy, 3132 and
the state-specific formalism. 33-36

Crucial aspects of our work are the variational formulation of
the PCM equations37 and the modular approach employed in the
implementation. Both PCMSolver and the open-ended response
code !0 are two independent modules which can be interfaced to
any quantum chemistry software. This approach has several ad-
vantages over a monolithic code: modules can be developed and
tested separately, new features can be made available to several
programs at once, avoiding lengthy, tedious and error-prone mul-
tiple implementations, and the master program can be chosen
freely, for instance based on the availability of different function-
ality.

The rest of the paper is organized as follows: In Section 2 we
present the theory for the quasienergy formalism in the context of
the PCM. In Section 3 we discuss the details of our modular im-
plementation. After briefly discussing the computational details
(Section 4), we will present our results on the MPA processes (up
to 5PA) on para-nitroaniline (PNA), para-dinitrobenzene (PDNB)
and methylenecyclopropene (MCP) in Section 5. In Section 6 we
summarize the main conclusions and future implications of our
work.

2 Theory

2.1 Variational formulation of the polarizable continuum
model

The variational formulation of the PCM was first presented by

Lipparini et al. in ref. 37 and is based on the weak approach to

boundary integral equations (BIEs)38 The weak formulation of

partial differential equations (PDEs), boundary value problems

(BVPs) and associated BIEs is a well-known tool in mathemat-
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ics. 3840 Given a partition of Euclidean space R? into a closed sub-
domain C, the cavity, with a sufficiently regular boundary I' = dC,
we want to solve the following transmission problem for a solvent
with a homogeneous, isotropic relative permittivity &:

V2u(r) = —4np(r) VrecC (1a)
eVZiu(r)=0 Vr¢cC (1b)
\r\gglC'u(r) - \r\grgcf u(r) 1o

e tm 50 im 7D ag
lul < Cllx]| =" for [[x]] — oo (1e)

where n is the outward-pointing normal vector to the cavity
boundary I'. The electrostatic potential u(r) in space is sought,
given the jump conditions for its traces and conormal derivatives
across the boundary, eqn 1c and eqn 1d, respectively, and the ap-
propriate radiation condition at infinity, eqn le. This can be recast
in terms of an integral equation:

Re S G = —Ro® )

with o(s), the apparent surface charge (ASC), representing the
reaction potential arising from solvent polarization and ¢(s) the
molecular electrostatic potential (MEP). The integral operators
595 and %.. are given in terms of the components of the Calder6n
projector, . and Z,384! and the identity operator .#:

N 1 PN ~ N ~
,@s:{zn(—” )J—@}, R—lim Be=21—9, (3
e—1 £—ro0

such that the operator % = %' %,. is self-adjoint and positive
definite. The . and & boundary integral operators are mappings
between Sobolev spaces of fractional order, which thus are the nat-
ural mathematical setting for integral formulations of BVPs, 38-40
These are normed spaces, equipped with the scalar product:

Jasss1s6) = (Fror- @
The polarization energy functional:
1 N
Upo] = 5(0'-,410')1"+(0'~,(P)r 5)

is strictly convex and has a unique minimum, op. This is the

unique solution to the IEF-PCM eqn 2: 3742
aU, o
Z7pl _ g -0 6
3o c+o ©

This allows us to treat the ASC as an additional, independent,
variational density to be optimized. This offers distinct advan-
tages from a theoretical point of view:

e there is no need to invoke a nonlinear coupling in the
Hamiltonian to introduce the classical solute-solvent inter-
action, 1343

e the functional clearly describes a charge distribution inter-
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acting (unfavorably) with itself and (favorably) with its in-
ducing external field and constitutes the polarization energy
of the medium, 37

e a classical analogue of the Hellmann-Feynman theorem nat-
urally holds for the variational ASC: +4
dUpol _ d Upol
da aA

aUpol (976 - aUpol
do dr  IA

7

Simultaneous optimization algorithms can also be successfully
employed in practical implementations, *> but this is not the main
topic of this work. Finally, let us note that the use of the term weak
formulation of PDEs and BVPs originates from the weaker regular-
ity requirements that can be imposed on the solution, while still
handling a well-posed problem (in the sense of Hadamard). The
terms "weak" and "variational" formulation are here used inter-
changeably, given that the weak formulation of the PCM satisfies
the hypotheses of both the Lax-Milgram lemma and its variational
corollary. 3°

2.2 PCM-SCF open-ended response theory
Notation The PCM equations will be written in the “complete ba-
sis”: we will introduce the usual boundary-element method (BEM)
discretization at the very end of the derivation. In other words, we
will be working with the exact integral equation and not with its dis-
cretized counterpart. As a consequence, the apparent surface charge
o and the electrostatic potential ¢ will have a continuous depen-
dence on a “cavity surface” index s. Whenever a charge-potential
product is present, it is to be interpreted as the surface integral, i.e.
the scalar product in the suitable, infinite-dimensional vector space
on the cavity boundary I'. The following shorthand notation will be
adopted: ¢ = (0,¢)r. We use lowercase Latin letters (a,b,c...) as
a composite index for the pertubation operator and the frequency in-
dex (cf eqns. 7-16 in ref. 9). The perturbation strength for a given
perturbing one-electron operator A associated with a frequency o,
will thus be written as €,. Pertubation-strength derivatives will be
denoted by lowercase Latin superscripts (a,b,c...) to the differenti-
ated quantities. Finally, a tilde will be used for quantities that are
considered at general field strengths and thus, in general, are time
dependent. As an example, the overlap matrix and its derivative
with respect to &, at general perturbation strength will be § and
8, respectively. Equivalently, S and $¢ denote the overlap matrix
and its pertubation-strength derivative at zero field strength, respec-
tively. I ill denote that the trace of the expression to follow should
be taken. (T will additionally denote that the tracing is followed
by time-averaging over a period T of the collected perturbations.

Our derivation follows closely the one in ref. 9 and the sub-
sequent developments in ref. 10. The original expressions were
developed for a system considered to be in vacuo, and in order
to incorporate the effects of the PCM, any energy-like term that
appears in these expressions will be augmented by the appropri-
ate solvent term. The solvent term will be derived according to
the polarization energy functional given in eqn 5 and the classical
Hellmann-Feynman theorem it satisfies, namely eqn 7.

Response functions can be expressed as perturbation-strength
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derivatives of the perturbation-strength-differentiated time-
averaged quasienergy Lagrangian evaluated at zero perturbation
strengths. For example, the linear response function can be writ-
ten as

_ A{IY(C.A,6,0))r

((a:8)) g, = TS — 1,

{e}=0

Wy = —Wp. ®

In an atomic orbital-based density matrix parametrization, the
time-averaged quasienergy derivative needed to evaluate re-
sponse functions is given as

PO Trir P

14(D,6,1) "7 go0a g ©

where an element of the overlap matrix § is given by

Suv = <7~Cu ‘ZV>: (10)

and where the generalized, energy-weighted density matrix W
was introduced and is given by

W = D7D+ = (DSD — D3D). (11)

This expression for W involves the density matrix D, its time-
differentiated analogue D and the generalized Kohn-Sham (KS)
matrix .7 given by

ﬁ:mv’mnb)ﬁxﬁa@f%f (12)

The expression for .7 includes both vacuum-like and PCM contri-
butions. The vacuum-like contributions are expressed in terms of
the one-electron matrices h and V’, and the two-electron matrix

Due to the implicit time dependence of D and &, higher-order
derivatives of the KS generalized energy will require application
of the chain rule. The mn,abc. .. superscript describes how and to
what extent the chain rule was applied for a given term, i.e. the
number of explicit differentiations with respect to the variational
densities, so that

3m+n+3g

%mn,abc _
(DT )mdc"de,d€,0€,
(18)

3
gmtn+ Upol

_ (gam.ahc + .
d(DTYmdc"de,d€,0¢,

In this notation, the index m denotes the order of differentiation
with respect to the density matrix D, while the index n symbol-
izes the order of differentiation with respect to the ASC den-
sity 0. Differentiation with respect to the density matrix will
result in a 2m-rank tensor, while differentiation with respect to
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Gy(b), which are, respectively, defined in the following way:

i’uv = <9~Cﬂ

Viy = Y exp(—ioat)ea (Zp | a| 2v),
a

Zk
|Rg — |

oo
,EV ,;

Zv>; (13a)
(13b)

GZV(D) :ZDﬁa(guvaﬁfyguﬁav>- (1309
ap

Another part of the vacuum-like contribution is the functional

derivative matrix FXC,“V of the XC potential, whose elements are

given by

aEXC
ap(r)

Fxc.yv = /dx{zpv

- [wuie,  a®
p(r)=p(r)

where the integration involves the overlap distribution Q. =
Zi%v and the functional derivative of the XC functional in the
adiabatic approximation. The x variable refers to both spatial and
spin coordinates. The last vacuum-like contribution in eqn 12 is
the anti-Hermitian, time-differentiated overlap matrix 7 whose
elements are given by

Tﬂv:<iu‘fv>*<5€p|5{v>- (15)

Finally, the PCM contribution 6@ involves the electrostatic poten-
tial integrals

—1
|r—sl

Puv(s) = <;zu

The first term in eqn 9, 9%, involves the generalized
KS energy & as shown in eqn 97 in ref. 9. The free energy
term ¢ including PCM effects is produced by addition-

ally considering solute-solvent interaction terms, so that

Zv>- (16)

5T | D+Exe[p(D)) + e + 5696+ 6¢D. 17

the ASC density will result in a function of the continuous cav-
ity index s. For higher-order properties, mixed terms involving
both density matrix and ASC density differentiation may gener-
ally occur. In the fixed-cavity approximation, the cavity is kept
frozen at a given molecular geometry.*® Under this simplifying
assumption, only the linear interaction term in the polarization
functional eqn 5 will be affected by the movements of the nuclei
via the dependence of basis functions on the molecular geometry.
Its perturbation-strength derivative will then be

3 (Upa}y = 69D, (19)

a
where the second term only involves derivatives of the electro-
static potential integrals. We remark that, under the fixed-cavity

approximation, both the density matrix — m — and ASC density
- n — differentiation indices in eqn 18 can only assume the val-
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3m+n+3Upn| b
m term not to be zero.

By construction, the density matrix dependence in the polariza-
tion functional is at most linear, while, by virtue of the classical

ues 0 or 1 in order for the

99D, &,1) = %+ 6Te(§°D) = (h°

where the matrix F ?C“ denotes the the functional derivative ma-
trix defined in terms of the perturbed overlap distributions Q4. so

that
R, = / A (1, 1) (1.1). @1

¢ {T;}T%OO,(J _SW

1b {T;}vgoo,ab L gl0aph | gOlagh  gaby _ gayyb

FV

Hellmann-Feynman theorem, eqn 7, the ASC variational density
will also appear at most linearly in 400,
The free energy term perturbation strength derivative is given as

GV‘“(D) T %T )D + 1+ 59°D (20)

Response functions can then be obtained by straightforward
differentiation with respect to additional perturbations and
subsequent evaluation at zero perturbation strength, so that

(22a)

(22b)

abe (T 700,abe L gl0acpb | gl0abpe | 20apbpe | gl0aphe | gllapb e

_,'_gOl.ach+g01‘ab60_,'_gOl.aGbc_,_gl],aGbDr

_ sabcw _ sabwc _

and similarly for higher-order response functions. More detailed
expressions for the derivatives of the generalized KS free energy
are shown in Appendix A. The expressions 22a-22¢ adhere to the
n+ 1 formulation, whereby perturbation-strength derivatives of
the variational densities up to order n are required in order to as-
semble response functions of order n+ 1. It is possible to make
other formulations of response theory for which truncation rules
for perturbed arguments between and including the n+ 1 and
2n+ 1 rules are possible.”1047 This entails the introduction of
Lagrange multipliers 4, and C , to take into consideration the
idempotency of the density matrix and the time-dependent SCF
(TD-SCF) equations, respectively, so that the idempotency con-
dition is expressed with the matrix ¥ and the TD-SCF condition
with the matrix Z, where

Y=DSD-D=0 (23)

and

5 (5 izd)aal”
Z:[(E—ESJ)DS] =0, 24

Aq=[D"SDF, (25)

and ]
{.=[F4D5-}) - (FD- i8D-i8D)5"". (26)
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Saowb _

(22¢)

saWbc

The operators [M] and [M]® used in the above expressions were
defined in ref. 9. Response properties including PCM effects can
then be calculated from the expression

{Tr}y

(AB.C... ). = e gibe — (SWybe:

(Saw)kfn

(}‘Yﬁn ng;nZ
27

where the subscript integers k and n in the various forms shown
in this expression denote a given choice of truncation rule. The
original expression for systems considered in vacuo contains an
energy term 61”? instead of the free energy term %,fﬁf but is
otherwise unchanged upon solvation, and we will therefore omit
further details here about the derivation leading up to eqn 27,
referring instead to previous work for more information and for
details about the (k,n) truncation rules that can be chosen and ap-
plied. >1° We note that the task of evaluating eqn 27 and obtain-
ing terms needed for this evaluation can be cast in recursive form,
as shown in ref. 10, and we further remark that these routines
can be augmented to enable the calculation of single residues of
response functions. !! However, the methodological and algorith-
mic development needed for residues calculations is not changed
by the inclusion of PCM effects, and we will therefore again refer
to previous work %11 for details.
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2.3 Parametrization of the perturbed densities and response
equations

In order to compute response properties from eqn 27, the var-
ious perturbed D, F and S matrices and the derivatives of the
ASC density o that enter into this expression must be obtained.
The perturbed overlap matrices can be directly assembled from
the relevant one-electron integral derivatives, while the perturbed
density and Fock matrices can be obtained from a procedure that
involves solving the appropriate response equations. The first step
in this procedure is to take perturbation-strength derivatives of
the idempotency and TD-SCF conditions of eqns. 23 and 24 and
evaluating them at zero perturbation strength.10 The evalua-
tion of the perturbation-strength differentiated ASC density in-
troduces an additional response equation, which is constructed
by differentiating the equation governing the ASC:

Bo+e=0 (28)

Differentiating eqn 23 and introducing a decomposition of the
density matrix into frequency components leads to

DYySD+DSDYy — Dy =KUY, 29)
where by is the tuple of applied perturbations and w, is the
sum of the associated frequencies. The right-hand side matrix
K 55’71) = 7(DSD)ZH’;V_”7l contains all terms that contain derivatives
of the density matrix up to order n— 1.

The perturbed density matrix is partitioned into a particular

Di,’” and a homogenous Dﬁ“’ term (H/P partition) as

Dy =Db + Db (30)

The former may be evaluated in terms of K, S,ffl), i.e. lower-order

density matrices and differentiated overlap integrals, so that
iy = PkUVPT — gkl ot (31)

where the projectors P = DS, Q = 1 — P were used. The homo-
geneous component is parametrized in terms of the n-th order
response parameters XV as

DY — pSX'* — X" SD = [D, X", (32)

The governing equations for the perturbed ASC densities are
obtained in analogy with the handling of perturbed density ma-
trices outlined above. We introduce a decomposition of the ASC

Physical Chemistry Chemical Physics

derivative of eqn 28, so that

Bl 1+ TeoDly = @Y. (33)

The symbol <I>£f,171) has been introduced in analogy to the Kg’ -

matrix, where

(n—1) Tr

@y = —(@D)y B4

wn—1’

and it contains all terms that depend on lower-order density
matrices and differentiated electrostatic potential integrals, for
which the latter acts as the metric matrix S in the definition of

K 5},’71). The term <1>§',’ - always contains at least a first derivative
of the electrostatic potential integrals and is thus zero if the basis

set is independent of the perturbation tuple being considered. We
now introduce the H/P partitioning of G,f,’”, so that

ou = ot + ol (35)
and apply eqn 30, which leads to a separation of the response
integral equation into the following system of equations:

F ol +TreD¥ =0 (36a)

Pl + TreDl = ol ). (36b)
We note that the particular ASC is nonzero if and only if the basis
set depends on the external perturbation.

We finally turn our attention to the TDSCF equation. The
perturbation-strength differentiated generalized KS matrix is first
separated into its frequency components .5y . The H/P partition
introduced for the variational densities will induce a similar par-

tition into these frequency components:
o by
Fo =GO )+l o+ 7y 37)

The two-electron and XC contributions depending on the ho-
mogeneous perturbed density matrix have been collected in the
GKS(Df’{’") matrix, while all other contributions are collected in
F z‘;’. A more detailed discussion of these aspects can be found
in refs. 9 and 10. The parametrization of the homogeneous part
of the perturbed density matrix can be exploited to conveniently
reformulate the perturbed TDSCF equation, so that

[E2— @, ] X = My, (38)

where the generalized Hessian EP and metric S? ma-
trices were introduced and are defined by their trans-

density into frequency components into the perturbation-strength formations on the response parameters Xv:48:49
|
EPIx" = GXS([x", D]5)DS — SDGXS (X"~ Dls) + F[X"",D]sS — S|X®", D|sF + o} 9DS — SD@o) (39
sPxt — §[x" DJsS. (40)
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The generalized Hessian matrix E includes two types of solvent
contributions: implicit terms included in the zeroth-order Fock
matrix, F, and explicit terms, involving the N-th order homoge-
nous ASC variational density. The latter are the last two terms
in eqn 39. The theoretical treatment of frequency-dependent
properties in solution within the PCM requires adoption of a
nonequilibrium response framework. 1350 The explicit PCM terms
in eqn 39 are then evaluated using the optical permittivity €. of
the solvent instead of the static permittivity & used to compute
the implicit contributions. In contrast to E2/, the generalized met-
ric matrix §@ is unchanged. The right-hand side (RHS) in the
response equation only includes terms that depend on particular
contributions up to the desired order or lower-order perturbed
density matrices:

wn —[(7-is9\ps] " 41
RHS 2% dr P

2.4 PCM-SCF linear response: comparison with previous

formulations
Derivations of the linear3%>! and nonlinear response func-
tions5%>3 for the PCM-SCF model have previously appeared in
the literature. All previous derivations exploit the definition of
a solute Hamiltonian which is nonlinearly coupled to the classi-
cal dielectric continuum. 343 In such a framework, the solvent
polarization is not treated as an independent, variational degree
of freedom. Solvent contributions to the Hamiltonian are parti-
tioned based on their order dependence on the density matrix:
zeroth, first (linear) or second (quadratic) order. We remark that
one- and two-electron contributions to the energy are also linearly
and quadratically dependent, respectively, on the density matrix.
Solvent contributions will thus enter into response theory expres-
sions in much the same way as the proper one- and two-electron
terms do.

A derivation of open-ended response theory for an SCF solute
coupled with a classical description of the solute has already been
presented in the context of the PE MM model. 20 There, the above-
mentioned order dependence on the density matrix of solvent
contributions, which arises when a nonlinear Hamiltonian is in-
voked, was used to facilitate the identification of the polarization
terms to be included in the open-ended formulation of electric
response properties. That derivation can also be used when the
classical solvent model is implicit, such as the PCM considered in
the present work, and will in this case lead to a specific imple-
mentation strategy, vide infra. However, the converse is also true.
As shown by Lipparini et al. ,°* a variational formulation can also
be used for classical polarizable explicit solvation models.

To the best of our knowledge, the first derivation of the lin-
ear response function exploiting the variational formulation for a
quantum/classical polarizable Hamiltonian was presented by Lip-
parini et al. in ref. 19. Our derivation naturally includes general
perturbations, if the fixed-cavity approximation is assumed, and
avoids the use of nonlinear Hamiltonians, representing a clear

theoretical advantage.
An explicit example: first-order, electric response properties

We here report explicit expressions for the first-order response
equations. The differentiated TDSCF condition of eqn 24 evalu-
ated at zero perturbation strength is

Zb bl b p]” 1 ]
0= [#*Ds+FD s} — w,SD"S + [FDs ] -5 [sns} .
(42)
Decomposing into frequency components and introducing the
H/P partition for the variational densities yields:

Fb = GXS(DY) + oo+ Fh (43)

contributions  not  depending on
. <b
collected into #,, so that

where all  the
H-type

terms are

Ty =+ G (D) + GV (DY) + Vi + Fly — %TZ, +olo+oel, (44)

b s PR
where F,., contains derivative terms of the XC ma-

We refer to eqn A26 of the original paper for its ex-

trix that are independent of the response parameters. plicit expression.? Reorganizing eqn 43 to have all terms
dependent on X" on the left-hand side (LHS) yields
G*5([X”,D)5)DS — SDG*3([X”,D|s) + F|X",D)sS — S|X",D|sF + o},¢DS — SD@c}; — ,S[X",D|sS = [E[ZJ - wbS[z]] x°, (45)

where we recognize the action of the propagator {E 2,8 [2]}

on the response vector X?. Finally, the right-hand side My, be-
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comes

. o 1 ®
My = [#0 DS+ FDS + FDsﬁ,} -5 [SD{;S + spsl,;,] :
(46)
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letting us cast the first-order response equations in the usual form
[E[Z] - ca,,s[zl] X0 — Ml a7

Since perturbation-independent basis sets are usually em-
ployed in the calculation of electric response properties, consid-
erable simplifications arise in all expressions. As an example, we
will illustrate how the equations look when only electric dipole
perturbations are considered, and we will use the symbol f for
such perturbations. First of all, the particular perturbed varia-
tional densities are identically zero:

pl=pPkOPt 0k =0 (48)

since KE,()J> = 7DSé,D = 0. Moreover, since QDEI?) = 7Tr(p{;,D =0,
one also has G]{ = 0. Therefore, only terms including ﬁz, will
enter the RHS and among these, only those involving VL’,b will be

nonzero, so that

[£71 0,52 x> = [v?] ° (49)

3 Implementation

The algorithmic realization of the open-ended PCM-SCF response
theory presented requires the solution of the coupled response
equations for the homogeneous density matrix, eqn 38, and ASC,
eqn 36a. Hence, one can envision two possible strategies for a
computer implementation of the open-ended scheme:

Strategy 1 eqn 36a and eqn 38 are simultaneously solved, in
much the same way as described by Lipparini et al. for
the SCF equations.*> A suitable initial guess is provided
for both densities and the appropriate iterative linear equa-
tion solvers are employed. 5556 A convergence acceleration
scheme might also be exploited. 578

Strategy 2 Given the initial guess for the response parameters,
the homogenous density matrix is formed and the perturbed
MEP calculated. Eqn 36a is solved, eventually allowing the
computation of the linear transformation in eqn 39 and the
solution of eqn 38.

The two strategies are of course expected to lead to identical
results. Strategy 1 could be advantageous when large molecu-
lar solutes are considered and might show better convergence
properties, at the expense of a nontrivial extension to both the
quasienergy derivative Lagrangian framework for the efficient
elimination of response parameters®*7 and to the corresponding
recursive implementation. '%!! The implementation we present
in this work follows Strategy 2. This avoids excessive modifi-
cations to the recursive core of the open-ended response code
and allows a straightforward use of efficient response parameter
elimination schemes. 4’ The resulting computer code exploits in-
terfaces between the Dalton program package,> the PCMSolver
library,3® the implementation of the open-ended, recursive ap-
proach to atomic orbital-based density matrix response theory '°
and the subsequent development of the latter for the calculation
of single residues of response functions.!! The interface to PCM-
Solver provides an alternative implementation of PCM capabili-
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ties at the SCF level of theory to the one presented by Cammi et
al.%° To test the linear transformations of the generalized Hes-
sian and metric matrices of eqns 39 and 40, a non-recursive
PCM-SCF linear response code was implemented exploiting the
PCMSolver library.3° Further testing for the linear, quadratic and
cubic response functions and corresponding single residues for
electric dipole perturbations was achieved by comparing to previ-
ously published, non-recursive implementations available in Dal-

ton .50—53

4 Computational details

4.1 Molecular structures
The molecules investigated in this work are PNA, PDNB and MCP,
shown in Fig. 1.

H,,
c'N‘@*NOz OZNQNOZ >=
"

(a) PNA (b) PDNB (c) MCP

Fig. 1 Molecules investigated in this work: para-nitroaniline (PNA),
para-dinitrobenzene (PDNB) and methylenecyclopropene (MCP).

The geometries were optimized in vacuo using Gaussian 09, °!
the B3LYP XC functional®2-%5 and the cc-pVQZ basis set.®® No
constraints were used on the symmetry during the geometry op-
timization, yielding point groups Cs, Dy, and C,, for PNA, PDNB
and MCP, respectively. The structures of PDNB (identical to the
one used in ref. 12) and MCP are planar, whereas the structure of
PNA (identical to the one used in ref. 11) is non-planar with a H-
N-C-C dihedral angle of 21°. All PCM calculations are done on
the vacuum geometry so that all differences arise from direct sol-
vent effects rather than from indirect (geometrical) effects. The
ESI contains the molecular structures used in the calculations, in
Dalton input format.

4.2 MPA calculations

The calculations were performed in a development version of the
Dalton program using the open-ended response code of Ringholm
et al. 1° One-electron property integrals and their arbitrary-order
derivatives were provided by the Gen1Int library®’. The XC func-
tionals library XCFun®® and the integrator library XCint were
used for the evaluation of the XC terms and their derivatives.
Finally, the PCM functionality was provided by the PCMSolver
library.3® The ESI contains details about software versions and
build toolchain used in this work."

Vertical excitation energies were calculated for the 7 lowest ex-
cited states of the molecules in Fig. 1. MPA transition moments
S were calculated for the same excitations from the residues of
the response functions using the implementation described in ref.
11. The CAM-B3LYP XC functional® and the aug-cc-pVDZ basis
set® were chosen based on previous results in ref. 11.

Rotationally averaged transitions strengths (§MPA) were calcu-
lated from the transition moments S and their complex conjugates

This journal is © The Royal Society of Chemistry [year]
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S as70
1 -
o™ yss (50)
a
N 5 S
(874 = 15 Y (2Sa6Sab + SaaSes) GY
ab
) ] _
(58— = Y (2SapeSabe + 3SaabShec) (52)
abc

- 1 _ _ _
(884 = 315 Y (8SabcaSabed +24SaabeSheda + 3SaapbSecda) (53)
= abed

<55PA) _ L
693 abcde
(54

The dimensionality, in atomic units, of the MPA strengths is sys-
tematically given by !

[<6MPA>} :aon'EhZ(M—l) (55)

where ag and Ej, are the atomic units for length and energy,
respectively, and M is the number of photons involved. MPA
strengths in atomic units are used throughout unless otherwise
stated.

4.3 PCM details
The calculations of the transition moments were performed in
a range of solvents with different static (&) and dynamic (€.)
relative permittivities: vacuum (& = 1.0, &. = 1.0), n-heptane
(& =1.92, €. =1.918), cyclohexane (g =2.023, €., =2.028), tetra-
chloromethane (& = 2.228, €. = 2.129), benzene (& = 2.247, €x =
2.244), 1,4-dioxane (g = 2.250, €. = 2.023), toluene (& = 2.379,
£, = 2.232), chloroform (& = 4.90, €., = 2.085), chlorobenzene
(& = 5.621, &, = 2.320), aniline (& = 6.89, &, = 2.506), tetrahy-
drofurane (& = 7.58, €. = 1.971), dichloromethane (& = 8.93,
€. = 2.020), dichloroethane (& = 10.36, €. = 2.085), acetone
(&5 =20.7, €. = 1.841), ethanol (& = 24.55, €. = 1.847), methanol
(&5 = 32.63, €. = 1.758), acetonitrile (& = 36.64, €. = 1.806), ni-
tromethane (& = 38.20, &. = 1.904), dimethylsulfoxide (&, =46.7,
£, =2.179), propylene carbonate (& = 64.96, €., = 2.019) and wa-
ter (& = 78.39, €. = 1.776) No local field effects were included in
this study. 71-76

The molecular cavities were generated from the van der Waals
surface, i.e. from a set of atom-centered, interlocking spheres. For
every molecule this was computed from the Bondi-Mantina set of
van der Waals radii:77-78 1.20 A for hydrogen, 1.70 A for car-
bon, 1.55 A for nitrogen and 1.52 A for oxygen. All radii were
scaled by a factor of 1.2. Cavity generation and discretization
was performed according to the one-point centroid collocation
GePol scheme, deactivating the addition of non-atom-centered
spheres. 2425 Since vacuum geometries are used in all calcula-
tions, the cavity is the same across all solvents.

This journal is ® The Royal Society of Chemistry [year]

Z (SSnbchEHbcde +4OSaabcd‘§bcdee + lssaabbz‘gcddee) .

5 Results

The excitation energies of the lowest electronic excitations in
PNA, PDNB and MCP are shown in Fig. 2 as a function of the
Onsager factor ‘c‘s—:l, where & is the static relative permittivity.”7?

PNA
0.22
0.20 y , T ann
0.18 3"
Foael LTI e o 240
ﬁ 0.14 "-~++-|+____NM“ bt 3AY
0.12 4+ =+ 2A
0.10 —+ 1A"
0.08 )
00 02 04 06 08 10
PDNB

AE[E4]

MCP

— 2A
+ 1A2
2B;
1B2
1B,

AE[Ex]

0.0 0.2 0.4 0.6 0.8 10
(8s — 1)/es

Fig. 2 Selected excitation energies AE [E}] as a function of the Onsager
factor ((&; — 1)/&, where & is the static permittivity) for

para-nitroaniline (PNA), para-dinitrobenzene (PDNB) and
methylenecyclopropene (MCP). See the ESI for the plot containing all
states included in this study.

For some states, the excitation energy increases (e.g. 3A’ in
PNA) or decreases (e.g. 1B,, in PDNB) considerably with solvent
polarity, leading to a change in the ordering of the different ex-
cited states. The non-monotonic behavior of the excitation energy
when going from chloroform (& = 4.90, %’1 =0.80, €. = 2.085)
to chlorobenzene (& = 5.621, 56;1 =0.82, €., = 2.320) and ani-
line (& = 6.89, CSTSI =0.85, €. = 2.506) can be explained by the
increase in the optical dielectric constant (e..) in the two latter
solvents. Thus, the occurrence of these discontinuities is an effect
of the non-equilibrium formulation of PCM that we employ.

MPA strengths and dominating orbitals for selected excitations
in PNA are shown in Figs. 3 and 4.

Journal Name, [year], [vol.], 1-15 |9

Page 10 of 17



Page 11 of 17

ok 2AY AA"

~N
\

™) [a.0.]

-

0
00 02 04 06 08 10
5 3.0
2PA a5l 3PA j
— 4 A 137
5 -- 5
S 5 J‘? *#g s 20
b -
= .- Bg 15 #
=2 P 1=
£l £ 10 ]
w )
21 1< o5l
0 L . 1 i 0.0 b m mim = = =t = -
00 02 04 06 08 10 00 02 04 06 08 L0
5 5
4PA 5PA
— 4 — 4
3 5
=3 1 3
2 ©
2 1 =2t :
g H
L, 1 %
ok==c-- e - 0
00 02 04 06 08 10 00 02 04 06 08 10
(&5 — 1)/es (85 — 1)/es

Fig. 3 MPA sirengths (5MPA) [a.u.] (see eqgn (55)) for increasing solvent
polarity for two selected electronic excitations in para-nitroaniline (PNA).
See the ESI for the plot containing all states included in this study.

HOMO LUMO LUMO+2

Fig. 4 Molecular orbitals involved in the electronic excitations of
para-nitroaniline (PNA} discussed in this work. The 2A’ excitation is
dominated by a HOMO—LUMO transition and the 4A” excitation is
dominated by a HOMO—LUMO-+2 transition. An isosurface value of
0.05 is used to make the plots.

Among the first five excitations of PNA (thus excluding the 4A”
state), the 2A’ excitation is the strongest excitation in vacuo for
1PA up to 5PA, as has been observed for 1PA-4PA before.!! This
state is also the brightest in 1PA and 2PA for all solvents exam-
ined. The sixth excitation (4A”), however, is one of the excita-
tions that has a higher strength for 3PA-5PA in the more polar
solvents. This illustrates that even qualitative results are poorly
transferable from vacuum to solvent and from 1PA to MPA.

The discontinuities in the MPA strengths when increasing the
solvent polarity can again be related to the use of the non-
equilibrium formulation of PCM. Whereas the static permittivity
(&) increases monotonously from left to right due to the choice
of the x-axis, the dynamic permittivity (&.) does not. The dis-
continuities thus reflect the variation in €. with non-monotonous
behaviours observed for aniline (=L = 0.85) and dimethylsulfox-

&

ide (% = 0.98). This effect is hardly observable for 1PA, but is
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pronounced for the higher-order MPA strengths, and for 3PA and
5PA in particular (Fig. 3).

MPA strengths can be selectively enhanced by an intermediate
state at a defined fraction of the energy of the state in question. 12
The 2PA strength of a state with energy ® can be enhanced if
another state has an energy 9. In the same way, the 3PA strength
can be enhanced if another state has an energy £ or 2. When
another state has an energy of 3T"’, the 4PA strength (but not the
2PA strength) is selectively enhanced. For 5PA, the most likely
resonance condition is another state at “Sﬁ

This resonance enhancement explains the dramatic increase
of the 4PA strength of the 4A” state in the vacuum calculation.
The excitation energy of the 2A’ excitation happens to be at
0.749 times the excitation energy of the 4A” excitation (Fig. 2),
giving rise to a resonance condition and enhancement of the
4PA strength. Resonance enhancement also contributes to the
high 3PA strength of the 4A” in dimethylsulfoxide (& = 46.7,
%
is 0.678 times the excitation energy of the 4A” excitation. It
is important to note that our response theory approach breaks
down close to such resonance and the results cannot be consid-
ered quantitatively accurate. To circumvent this divergence in the
MPA strengths, damped response theory should be used, 58! as
reported for 2PA by Kristensen et al. 52

The variation of the MPA strengths with solvent polarity clearly
increases with the number of photons. This has also been ob-
served experimentally, comparing 1PA and 2PA for the same ex-
citation in PNA.83 The inclusion of solvent effects thus becomes
increasingly important for quantitative MPA calculations with in-
creasing number of photons. Comparison with experimental cross
sections®2 indicates that the absolute value of the 2PA cross sec-

= 0.98), where the excitation energy of the 2A’ excitation

tion is underestimated by up to a factor of 2 in the calculations,
while the relative strengths accross different solvents are not re-
produced in the calculations (Appendix B). The underestimation
of the 2PA cross sections may be partially caused by the use of
TDDFT and can be related to underestimated difference dipole
moments. 345> Indeed, TDDFT/CAM-B3LYP has been shown to
underestimate difference dipole moments in PNA,84:86

We now turn our attention to a centrosymmetric molecule,
para-dinitrobenzene (PDNB). MPA strengths and dominating or-
bitals for selected excitations in PDNB are shown in Figs. 5 and
6.

This journal is © The Royal Society of Chemistry [year]
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Fig. 5 MPA sirengths (5MPA) [a.u.] (see eqgn (55)) for increasing solvent
polarity for two selected electronic excitations in

para-dinitrobenzene (PDNB) See the ESI for the plot containing all
states included in this study.

HOMO-5 HOMO-1 LUMO

Fig. 6 Molecular orbitals involved in the electronic excitations of
para-dinitrobenzene (PDNB) discussed in this work. The 1By, excitation
is dominated by a HOMO-5—LUMO transition and the 1B3, excitation is
dominated by a HOMO-1—LUMO transition. An isosurface value of 0.05
is used to make the plots.

The high point group symmetry determines whether the differ-
ent excited states will be allowed for the diffent one- and multi-
photon absorption processes. The 1Bs, excitation is the bright-
est excitation for 1PA, 3PA and 5PA among the first seven excita-
tions, while the By, excitation is the brigthest for 2PA and 4PA. We
note that the intensities of the different odd- or even-order pho-
ton excitation processes follow each other both in vacuum and in
the different solvents. This is due to the fact that the intensity
of odd- and even-order multiphoton absorption processes can be
shown to be proportional to the one- or two-photon absorption
cross section, respectively, 12 with exceptions arising due to near-
resonances.

As a final example, we have considered methylenecyclopropene
(MCP): some of its excited states undergo a sign change in dipole
moment across the solvent polarity scale chosen in this study. The
MPA strengths and dominating orbitals for selected excitations in

This journal is © The Royal Society of Chemistry [year]
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MCP are shown in Figs. 7 and 8.
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Fig. 7 MPA strengths (6M™) [a.u.] (see eqgn (55)) for increasing solvent
polarity for three selected electronic excitations in
methylenecyclopropene (MCP) See the ESI for the plot containing all
states included in this study.
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)
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Fig. 8 Molecular orbitals involved in the electronic excitations of
methylenecyclopropene (MCP) discussed in this work. The 1B,
excitation is dominated by a HOMO—LUMO transition, the 2B,
excitation is dominated by a HOMO—LUMO+2 transition and the 2A,;
excitation is dominated by a HOMO—LUMO+5 transition. An isosurface
value of 0.05 is used to make the plots.

The © — 7 2A; transition has significant orbital overlap be-
tween the occupied and the virtual orbitals (Fig. 8) and is the only
strong transition in 1PA. The 1B, and 2B, states, however, are
accessible via multi-step processes and are indeed the strongest
states in 2PA/4PA and 3PA/5PA, respectively. The maximum in
the 4PA strength for the 2A; excitation is a resonance due to the
1B, state which is located at 0.759 times the excitation energy of
the 2A, state for n-heptane (& = 1.920, % = 0.48).

The kink in the 1PA strength of the 2A; state between 1,4-
dioxane (& = 2.250, esgl =0.56), toluene (& = 2.379, ESEZ =0.58)
and chloroform (& = 4.90, % = 0.80) can be related to the
excited-state dipole moment, which changes sign between 1,4-
dioxane and toluene. The excited-state dipole moment of the 1B,
state also has a different direction in vacuum than in solvent. We
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report the relevant plots of the difference between ground- and
excited-state dipole moments in the ESL."

The results presented serve as an illustration of the applica-
bility of our implementation. When interpreting the results, one
should bear in mind the limitations of our methodology. First
of all, we have calculated vertical excitation energies and ne-
glected vibronic effects, which have been demonstrated to play
a role in 2PA.87:88 Secondly, we have not taken into account
the indirect effect of the solvent on the geometry of the chro-
mophore. Indirect solvent effects can be taken into account by
using PCM also in the geometry optimization, which has how-
ever not been done here to allow for a comparison of the di-
rect contribution of the various solvents on the MPA strength.
Thirdly, the solvent model used here does not include explicit
local field effects in the molecular cavity,”~7¢ non-electrostatic
effects 31328990 and explicit solute-solvent interactions. Finally,
DFT is not likely to give MPA strengths (and, in general, excited-
state properties) of high accuracy, as shown for 2PA using a
coupled-cluster benchmark.8> There is a clear need for bench-
marking DFT MPA strengths against methods of higher accuracy
also beyond 2PA.8%91 All these factors are important if a realistic
comparison with experiment is to be attempted. We note that the
recent coupling of our open-ended response code to a PE QM/MM
framework is able to take into account indirect solvent effects, lo-
cal field effects and explicit solute—solvent interactions. 20

6 Conclusion

We have presented the theory and implementation for calculat-
ing molecular response properties to arbitrary order in solution
within the framework of the polarizable continuum model. The
theoretical derivation is based on an energy functional where
both the density matrix and the electrostatic polarization in the
medium are treated as variational degrees of freedom. Contrary
to previous work, the quantum/classical polarizable coupling is
not achieved by assuming a nonlinear interaction potential in the
Hamiltonian. We have shown that, in the fixed-cavity approxima-
tion, molecular response functions to arbitrary order are straight-
forwardly obtained as higher-order derivatives of the proposed
functional. Moreover, differentiation of the stationarity condi-
tions naturally leads to the appropriate response equations de-
termining higher-order perturbed wave function and polarization
parameters. Our implementation relies on modular components
encapsulating the different tasks required to carry out a response
calculation, in line with previous work by some of us. %! In par-
ticular, we added the PCM terms to the workflow by means of
the PCMSolver library,30 in the spirit of the PE implementation
recently presented by Steindal et al. 2° We have illustrated the im-
plementation by calculating MPA strengths for three small organic
molecules. The enhancement of the MPA strength from vacuum to
different solvents increases with the number of photons involved
in the excitation, clearly emphasizing the importance of including
solvent effects in MPA calculations. Relative intensities between
features corresponding to different electronic excitations in one-
or multiphoton absorption spectra are not necessarily preserved
between phenomena involving different numbers of photons ab-
sorbed, which is partially related to molecular symmetry. We have
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also described resonance enhancements in our MPA calculations.
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A Derivatives of the generalized KS free en-
ergy

The generalized KS energy derivatives are given by:

gOO‘a _ (§0~“+ {GTr(anD)}T (56a)
@W0.ab _ o0.ab | {GTr((P”bD)}T (56b)
gO0abe _ glabe 4 (G Ty( @ D)}y (56¢)
@'%9ph = £19DP 1 {Tr(9"D")}7 (56d)
@Olagh _ {obTr(q)“D)}r (56e)
gl0acpb — glacpb 4 (6Te(@* D)}y (566
@10abpe — £labpe | {6Tr(p* D)}y (56g)
@apbpe _ g2apbpe (56h)
glO,anc _ gLquE 4 {GTI‘<¢anC)}T (561)
@llagepb — {6°Tr(9 DY)} 7 (56))
{401 Jac Gb _ {GbTr(¢ucD) }T (561()
@b 6¢ = {c“Tr(¢“’D)}r (56D
@Olaghe — (6P Tr(@ D)}y (56m)
gllaghpe _ {c;bTr(qJ“D")}r (56n)

B Comparison with experimental data
2PA strengths for PNA in three solvents were converted to cross
sections for comparison with available experimental data8? us-
ing85
g
472 aad >
oA _ AT a0

2PA
e CHE (57)
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where a is the fine structure constant, ag is the bohr radius, c is
the velocity of light, o is the photon energy (i.e. half the exci-
tation energy) and I is the half-width half-maximum (HWHM)
of the (Lorentzian) broadening function describing homogeneous
broadening. The HWHM for 1,4-dioxane, propylene carbonate
and dimethyl sulfoxide was taken from reported experimental
work (FWHW 4672 cm™!, 4490 em™!, 4014 cm™!),8 giving
I'=0.2897 eV, 0.2783 €V and 0.2488 €V, respectively. The dimen-
sionality of the 2PA cross section is cm*-s-photon~! with 1.107>°
cm*-s-photon~! commonly referred to as 1 GM.

Table 1 Calculated excitation energies AE [E}], 2PA strengths (52PA)
lag - E}] and MPA cross sections 6™ [GM] and experimental 8 o2P*

[GM] for the 2A” excitation in para-nitroaniline (PNA) in various solvents.

solvent AE (857PA) oA oo
1,4-dioxane 0.14031 3334 6.1 8.04
dimethyl sulfoxide 0.13250 3438 5.9 12.17
propylene carbonate 0.13300 3171 6.1 9.52
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