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tion, 2PA experiments afford a greater focality than in 1PA, due to
their quadratic dependence on the intensity of the incident radia-
tion. More recently, higher-order methods such as three-,3 four-4

and five-photon5 absorption have emerged, although their use is
in no way as widespread as 1PA and 2PA.

The growth in available spectroscopic techniques and their ap-
plication to systems of ever increasing complexity calls for a cor-
responding effort on the theoretical side to describe correctly the
underlying molecular phenomena and to tackle the complexity of
the system in a manageable way.

Olsen and Jørgensen have shown how transition moments be-
tween ground and excited states can be calculated from residues
of response functions of a molecule in its ground state.6 The
residues of the linear response function can thus be used to cal-
culate the strength of transitions in UV/Vis spectroscopy (1PA).
2PA and three-photon absorption (3PA) can in turn be calculated
from the residues of the quadratic and cubic response functions,
respectively.6–8 Similarly, four- and five-photon absorption cross
sections (4PA and 5PA) can be calculated from the correspond-
ing higher-order response functions. The higher the order of the
response functions needed, the more complex the working equa-
tions become, in particular if attention is given to computational
efficiency.

Our group has in the last few years developed an open-ended
formulation of response theory9 and implemented it using re-
cursive programming techniques,10 enabling the calculation of
response properties to any order at the Hartree–Fock (HF) and
density-functional theory (DFT) level and limited only by the de-
gree of generality in connected modules for perturbed one- and
two-electron integrals and exchange–correlation (XC) contribu-
tions.9–11 The approach has recently been extended to include
single residues of response functions.11 Single residues of these
high-order response functions have already been used by our
group to calculate 4PA11 and 5PA12 absorption cross section. Ar-
bitrary, higher-order processes are also accessible from this open-
ended approach. The open-ended response formalism is there-
fore able to address the challenge of the ever-growing variety of
spectroscopic methods available, significantly reducing the devel-
opment effort and the time required to model new spectroscopic
processes for relevant applications.

Several approaches have been developed to tackle large and
complex systems, such as solutions and proteins, in the presence
of external fields. When the phenomenon studied is localized
to a single molecule and its immediate surroundings—as is of-
ten the case for MPA where the majority of the response arises
from a chromophore in the complex—an efficient strategy is to
use focused models that only treat a small portion of the sys-
tem (e.g. the chromophore molecule) using quantum-mechanical
(QM) methods, whereas the rest (the environment) is treated
classically. A distinction can be drawn between methods keep-
ing atomistic detail in the classical environment, and those which
disregard it. The former are commonly known as Molecular Me-
chanics (MM) methods, whereas the latter are referred to as Di-
electric Continuum (DC) methods. Both models have strengths
and weaknesses: MM methods are able to describe specific in-
termolecular interactions but require configurational sampling,

whereas DC methods are more effective at addressing long-range
interactions.13–15 Both methods can be augmented with a super-
molecular approach (including one or more solvent molecules in
the QM system) to address specific quantum effects. A three-layer
model which combines a description of the specific effects near
the chromophore by an MM part with pre-averaged long-range
effects described by the DC part has also been reported.16 For
details we refer to the relevant literature.16–19

The abovementioned open-ended approach to response theory
has recently been extended to include molecular environment ef-
fects for electric dipole properties through a Polarizable Embed-
ding (PE) Quantum Mechanics/Molecular Mechanics (QM/MM)
approach.20 In this work, we will present an open-ended re-
sponse formalism for the polarizable continuum model (PCM),21

in its Integral Equation Formalism (IEF) formulation,22 which is
the most versatile DC method available. For details about the
PCM, the reader is referred to two authoritative reviews.13,23

The model features a molecule-shaped cavity made of interlock-
ing spheres,24,25 is able to describe a wide variety of environ-
ments due to the generality of the IEF formalism,22,26,27 and can
treat dynamical processes thanks to the nonequilibrium formal-
ism.28,29 All such features are available in the PCMSolver mod-
ule, an application programming interface (API) for the PCM.30

Additional features not yet available in PCMSolver are the treat-
ment of non-electrostatic terms in the solvation energy,31,32 and
the state-specific formalism.33–36

Crucial aspects of our work are the variational formulation of
the PCM equations37 and the modular approach employed in the
implementation. Both PCMSolver and the open-ended response
code10 are two independent modules which can be interfaced to
any quantum chemistry software. This approach has several ad-
vantages over a monolithic code: modules can be developed and
tested separately, new features can be made available to several
programs at once, avoiding lengthy, tedious and error-prone mul-
tiple implementations, and the master program can be chosen
freely, for instance based on the availability of different function-
ality.

The rest of the paper is organized as follows: In Section 2 we
present the theory for the quasienergy formalism in the context of
the PCM. In Section 3 we discuss the details of our modular im-
plementation. After briefly discussing the computational details
(Section 4), we will present our results on the MPA processes (up
to 5PA) on para-nitroaniline (PNA), para-dinitrobenzene (PDNB)
and methylenecyclopropene (MCP) in Section 5. In Section 6 we
summarize the main conclusions and future implications of our
work.

2 Theory

2.1 Variational formulation of the polarizable continuum

model

The variational formulation of the PCM was first presented by
Lipparini et al. in ref. 37 and is based on the weak approach to
boundary integral equations (BIEs)38 The weak formulation of
partial differential equations (PDEs), boundary value problems
(BVPs) and associated BIEs is a well-known tool in mathemat-
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ics.38–40 Given a partition of Euclidean space R
3 into a closed sub-

domain C, the cavity, with a sufficiently regular boundary Γ = ∂C,
we want to solve the following transmission problem for a solvent
with a homogeneous, isotropic relative permittivity ε:

∇2u(rrr) =−4πρ(rrr) ∀rrr ∈C (1a)

ε∇2u(rrr) = 0 ∀rrr /∈C (1b)

lim
|rrr|→∂C+

u(rrr) = lim
|rrr|→∂C−

u(rrr) (1c)

ε lim
|rrr|→∂C+

∂ u(rrr)

∂nnn
= lim

|rrr|→∂C−

∂ u(rrr)

∂nnn
(1d)

|u| ≤C‖x‖−1 for ‖x‖→ ∞ (1e)

where nnn is the outward-pointing normal vector to the cavity
boundary Γ. The electrostatic potential u(rrr) in space is sought,
given the jump conditions for its traces and conormal derivatives
across the boundary, eqn 1c and eqn 1d, respectively, and the ap-
propriate radiation condition at infinity, eqn 1e. This can be recast
in terms of an integral equation:

R̂εŜ σ =−R̂∞ϕ (2)

with σ(sss), the apparent surface charge (ASC), representing the
reaction potential arising from solvent polarization and ϕ(sss) the
molecular electrostatic potential (MEP). The integral operators
R̂ε and R̂∞ are given in terms of the components of the Calderón
projector, Ŝ and D̂ ,38,41 and the identity operator Î :

R̂ε =

[

2π

(

ε +1

ε −1

)

Î − D̂

]

, R̂∞ = lim
ε→∞

R̂ε = 2π − D̂ , (3)

such that the operator Ŷ = R̂−1
∞ R̂εŜ is self-adjoint and positive

definite. The Ŝ and D̂ boundary integral operators are mappings
between Sobolev spaces of fractional order, which thus are the nat-
ural mathematical setting for integral formulations of BVPs.38–40

These are normed spaces, equipped with the scalar product:
∫

Γ
dsss f (sss)g(sss) = ( f ,g)Γ. (4)

The polarization energy functional:

Upol =
1

2
(σ , Ŷ σ)Γ +(σ ,ϕ)Γ (5)

is strictly convex and has a unique minimum, σ0. This is the
unique solution to the IEF-PCM eqn 2:37,42

∂ Upol

∂σ
= Ŷ σ +ϕ = 0 (6)

This allows us to treat the ASC as an additional, independent,
variational density to be optimized. This offers distinct advan-
tages from a theoretical point of view:

• there is no need to invoke a nonlinear coupling in the
Hamiltonian to introduce the classical solute–solvent inter-
action,13,43

• the functional clearly describes a charge distribution inter-

acting (unfavorably) with itself and (favorably) with its in-
ducing external field and constitutes the polarization energy
of the medium,37

• a classical analogue of the Hellmann–Feynman theorem nat-
urally holds for the variational ASC:44

dUpol

dλ
=

∂ Upol

∂λ
+

∂ Upol

∂σ

∂ σ

∂λ
=

∂ Upol

∂λ
(7)

Simultaneous optimization algorithms can also be successfully
employed in practical implementations,45 but this is not the main
topic of this work. Finally, let us note that the use of the term weak

formulation of PDEs and BVPs originates from the weaker regular-
ity requirements that can be imposed on the solution, while still
handling a well-posed problem (in the sense of Hadamard). The
terms "weak" and "variational" formulation are here used inter-
changeably, given that the weak formulation of the PCM satisfies
the hypotheses of both the Lax–Milgram lemma and its variational
corollary.39

2.2 PCM-SCF open-ended response theory

Notation The PCM equations will be written in the “complete ba-

sis”: we will introduce the usual boundary-element method (BEM)

discretization at the very end of the derivation. In other words, we

will be working with the exact integral equation and not with its dis-

cretized counterpart. As a consequence, the apparent surface charge

σ and the electrostatic potential ϕ will have a continuous depen-

dence on a “cavity surface” index sss. Whenever a charge-potential

product is present, it is to be interpreted as the surface integral, i.e.
the scalar product in the suitable, infinite-dimensional vector space

on the cavity boundary Γ. The following shorthand notation will be

adopted: σϕ = (σ ,ϕ)Γ. We use lowercase Latin letters (a,b,c . . .) as

a composite index for the pertubation operator and the frequency in-

dex (cf. eqns. 7–16 in ref. 9). The perturbation strength for a given

perturbing one-electron operator A associated with a frequency ωa

will thus be written as εa. Pertubation-strength derivatives will be

denoted by lowercase Latin superscripts (a,b,c . . .) to the differenti-

ated quantities. Finally, a tilde will be used for quantities that are

considered at general field strengths and thus, in general, are time

dependent. As an example, the overlap matrix and its derivative

with respect to εa at general perturbation strength will be S̃SS and

S̃SS
a
, respectively. Equivalently, SSS and SSSa denote the overlap matrix

and its pertubation-strength derivative at zero field strength, respec-

tively.
Tr
= will denote that the trace of the expression to follow should

be taken.
{Tr}T
= will additionally denote that the tracing is followed

by time-averaging over a period T of the collected perturbations.

Our derivation follows closely the one in ref. 9 and the sub-
sequent developments in ref. 10. The original expressions were
developed for a system considered to be in vacuo, and in order
to incorporate the effects of the PCM, any energy-like term that
appears in these expressions will be augmented by the appropri-
ate solvent term. The solvent term will be derived according to
the polarization energy functional given in eqn 5 and the classical
Hellmann–Feynman theorem it satisfies, namely eqn 7.

Response functions can be expressed as perturbation-strength
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derivatives of the perturbation-strength-differentiated time-
averaged quasienergy Lagrangian evaluated at zero perturbation
strengths. For example, the linear response function can be writ-
ten as

〈〈A;B〉〉ωb
=

d{L̃a(C̃CC, λ̃λλ , σ̃ , t)}T

dεb

∣

∣

∣

∣

∣

{ε}=0

= Lab; ωa =−ωb. (8)

In an atomic orbital-based density matrix parametrization, the
time-averaged quasienergy derivative needed to evaluate re-
sponse functions is given as

L̃a(D̃DD, σ̃ , t)
{Tr}T
= G̃

00,a − S̃SS
a
W̃WW (9)

where an element of the overlap matrix S̃SS is given by

S̃µν =
〈

χ̃µ

∣

∣ χ̃ν

〉

, (10)

and where the generalized, energy-weighted density matrix W̃WW

was introduced and is given by

W̃WW = D̃DDF̃ D̃DD+
i

2
( ˙̃DDDS̃SSD̃DD− D̃DDS̃SS ˙̃DDD). (11)

This expression for W̃WW involves the density matrix D̃DD, its time-
differentiated analogue ˙̃DDD and the generalized Kohn–Sham (KS)
matrix F̃ given by

F̃ = h̃hh+ṼVV
t
+ G̃GG

γ
(D̃DD)+ F̃FFxc + σ̃ ϕ̃ϕϕ −

i

2
T̃TT . (12)

The expression for F̃ includes both vacuum-like and PCM contri-
butions. The vacuum-like contributions are expressed in terms of
the one-electron matrices h̃hh and ṼVV

t , and the two-electron matrix

G̃GG
γ
(D̃DD), which are, respectively, defined in the following way:

h̃µν =

〈

χ̃µ

∣

∣

∣

∣

∣

−
1

2
∇2 −∑

K

ZK

|RRRK − rrr|

∣

∣

∣

∣

∣

χ̃ν

〉

, (13a)

Ṽ t
µν = ∑

a

exp(−iωat)εa

〈

χ̃µ

∣

∣a
∣

∣ χ̃ν

〉

, (13b)

G̃
γ
µν (D̃DD) = ∑

αβ

D̃βα (g̃µναβ − γ g̃µβαν ). (13c)

Another part of the vacuum-like contribution is the functional
derivative matrix F̃xc,µν of the XC potential, whose elements are
given by

F̃xc,µν =
∫

dxxxΩ̃µν
∂ Ẽxc

∂ρ(rrr)

∣

∣

∣

∣

ρ(rrr)=ρ̃(rrr,t)

=
∫

dxxxΩ̃µν ṽxc, (14)

where the integration involves the overlap distribution Ω̃µν =

χ̃∗
µ χ̃ν and the functional derivative of the XC functional in the

adiabatic approximation. The xxx variable refers to both spatial and
spin coordinates. The last vacuum-like contribution in eqn 12 is
the anti-Hermitian, time-differentiated overlap matrix T̃TT whose
elements are given by

T̃µν =
〈

χ̃µ

∣

∣ ˙̃χν

〉

−
〈

˙̃χµ

∣

∣ χ̃ν

〉

. (15)

Finally, the PCM contribution σ̃ ϕ̃ϕϕ involves the electrostatic poten-
tial integrals

ϕ̃µν (sss) =

〈

χ̃µ

∣

∣

∣

∣

−1

|rrr− sss|

∣

∣

∣

∣

χ̃ν

〉

. (16)

The first term in eqn 9, G̃ 00,a, involves the generalized
KS energy Ẽ as shown in eqn 97 in ref. 9. The free energy
term G̃ including PCM effects is produced by addition-
ally considering solute–solvent interaction terms, so that

G̃ = Ẽ +
1

2
σ̃ Ŷ σ̃ + σ̃Tr(ϕ̃ϕϕD̃DD)

Tr
=

[

h̃hh+ṼVV
t
+

1

2
G̃GG

γ
(D̃DD)−

i

2
T̃TT

]

D̃DD+ Ẽxc[ρ̃(D̃DD)]+hnuc +
1

2
σ̃ Ŷ σ̃ + σ̃ ϕ̃ϕϕD̃DD. (17)

Due to the implicit time dependence of D̃DD and σ̃ , higher-order
derivatives of the KS generalized energy will require application
of the chain rule. The mn,abc . . . superscript describes how and to
what extent the chain rule was applied for a given term, i.e. the
number of explicit differentiations with respect to the variational
densities, so that

G
mn,abc =

∂ m+n+3G

∂ (DDDT )m∂σn∂εa∂εb∂εc

= E
m,abc +

∂ m+n+3Upol

∂ (DDDT )m∂σn∂εa∂εb∂εc

.

(18)

In this notation, the index m denotes the order of differentiation
with respect to the density matrix DDD, while the index n symbol-
izes the order of differentiation with respect to the ASC den-
sity σ . Differentiation with respect to the density matrix will
result in a 2m-rank tensor, while differentiation with respect to

the ASC density will result in a function of the continuous cav-
ity index sss. For higher-order properties, mixed terms involving
both density matrix and ASC density differentiation may gener-
ally occur. In the fixed-cavity approximation, the cavity is kept
frozen at a given molecular geometry.46 Under this simplifying
assumption, only the linear interaction term in the polarization
functional eqn 5 will be affected by the movements of the nuclei
via the dependence of basis functions on the molecular geometry.
Its perturbation-strength derivative will then be

d

dεa

{

Upol

}

T

{Tr}T
= σ̃ ϕ̃ϕϕaD̃DD, (19)

where the second term only involves derivatives of the electro-
static potential integrals. We remark that, under the fixed-cavity
approximation, both the density matrix – m – and ASC density
– n – differentiation indices in eqn 18 can only assume the val-
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ues 0 or 1 in order for the ∂ m+n+3Upol

∂ (DDDT )m∂σ n∂εa∂εb∂εc
term not to be zero.

By construction, the density matrix dependence in the polariza-
tion functional is at most linear, while, by virtue of the classical

Hellmann–Feynman theorem, eqn 7, the ASC variational density
will also appear at most linearly in G̃ 00,a.
The free energy term perturbation strength derivative is given as

G̃
00,a(D̃DD, σ̃ , t) = Ẽ

0,a + σ̃Tr(ϕ̃ϕϕaD̃DD)
Tr
= (h̃hh

a
+ṼVV

t,a
+

1

2
G̃GG

γ,a
(D̃DD)+ F̃FF

Ωa

xc −
i

2
T̃TT

a
)D̃DD+ha

nuc + σ̃ ϕ̃ϕϕaD̃DD (20)

where the matrix F̃FF
Ωa

xc denotes the the functional derivative ma-
trix defined in terms of the perturbed overlap distributions Ω̃a, so
that

F̃Ωa

xc,µν =
∫

dxxxΩ̃a
µν (rrr, t)ṽxc(rrr, t). (21)

Response functions can then be obtained by straightforward
differentiation with respect to additional perturbations and
subsequent evaluation at zero perturbation strength, so that

La {Tr}T
= G

00,a −SSSaWWW (22a)

Lab {Tr}T
= G

00,ab +G
10,aDDDb +G

01,aσb −SSSabWWW −SSSaWWW b (22b)

Labc {Tr}T
= G

00,abc +G
10,acDDDb +G

10,abDDDc +G
20,aDDDbDDDc +G

10,aDDDbc +G
11,aDDDbσ c

+G
01,acσb +G

01,abσ c +G
01,aσbc +G

11,aσbDDDc

−SSSabcWWW −SSSabWWW c −SSSacWWW b −SSSaWWW bc

(22c)

and similarly for higher-order response functions. More detailed
expressions for the derivatives of the generalized KS free energy
are shown in Appendix A. The expressions 22a-22c adhere to the
n+ 1 formulation, whereby perturbation-strength derivatives of
the variational densities up to order n are required in order to as-
semble response functions of order n+ 1. It is possible to make
other formulations of response theory for which truncation rules
for perturbed arguments between and including the n + 1 and
2n+ 1 rules are possible.9,10,47 This entails the introduction of
Lagrange multipliers λ̃λλ a and ζ̃ζζ a to take into consideration the
idempotency of the density matrix and the time-dependent SCF
(TD-SCF) equations, respectively, so that the idempotency con-
dition is expressed with the matrix ỸYY and the TD-SCF condition
with the matrix Z̃ZZ, where

ỸYY ≡ D̃DDS̃SSD̃DD− D̃DD = 0 (23)

and

Z̃ZZ ≡

[(

F̃ −
i

2
S̃SS

d

dt

)

D̃DDS̃SS

]⊖

= 0, (24)

and where the Lagrange multiplier terms are given by

λ̃λλ a = [D̃DD
a
S̃SSD̃DD]⊖, (25)

and
ζ̃ζζ a =

[

F̃
a(D̃DDS̃SS− 1

2
)− (F̃ D̃DD− i

2
˙̃SSSD̃DD−iS̃SS ˙̃DDD)S̃SS

a]⊕. (26)

The operators [MMM]⊖ and [MMM]⊕ used in the above expressions were
defined in ref. 9. Response properties including PCM effects can
then be calculated from the expression

〈〈A;B,C, . . .〉〉ωbc··· = L
abc···
k,n

{Tr}T

= G
abc···
k,n − (SW)abc···

nW
− (Sa

W)bc···
kS,n′W

− (λλλ a
Y)bc···

kλ ,n
′
Y
− (ζζζ a

Z)bc···
kζ ,n

′
Z
,

(27)

where the subscript integers k and n in the various forms shown
in this expression denote a given choice of truncation rule. The
original expression for systems considered in vacuo contains an
energy term E abc···

k,n instead of the free energy term G abc
k,n but is

otherwise unchanged upon solvation, and we will therefore omit
further details here about the derivation leading up to eqn 27,
referring instead to previous work for more information and for
details about the (k,n) truncation rules that can be chosen and ap-
plied.9,10 We note that the task of evaluating eqn 27 and obtain-
ing terms needed for this evaluation can be cast in recursive form,
as shown in ref. 10, and we further remark that these routines
can be augmented to enable the calculation of single residues of
response functions.11 However, the methodological and algorith-
mic development needed for residues calculations is not changed
by the inclusion of PCM effects, and we will therefore again refer
to previous work9,11 for details.
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2.3 Parametrization of the perturbed densities and response

equations

In order to compute response properties from eqn 27, the var-
ious perturbed DDD, FFF and SSS matrices and the derivatives of the
ASC density σ that enter into this expression must be obtained.
The perturbed overlap matrices can be directly assembled from
the relevant one-electron integral derivatives, while the perturbed
density and Fock matrices can be obtained from a procedure that
involves solving the appropriate response equations. The first step
in this procedure is to take perturbation-strength derivatives of
the idempotency and TD-SCF conditions of eqns. 23 and 24 and
evaluating them at zero perturbation strength.9,10 The evalua-
tion of the perturbation-strength differentiated ASC density in-
troduces an additional response equation, which is constructed
by differentiating the equation governing the ASC:

Ŷ σ +ϕ = 0 (28)

Differentiating eqn 23 and introducing a decomposition of the
density matrix into frequency components leads to

DDD
bN
ω SSSDDD+DDDSSSDDD

bN
ω −DDD

bN
ω = KKK

(n−1)
ω , (29)

where bN is the tuple of applied perturbations and ωbN
is the

sum of the associated frequencies. The right-hand side matrix
KKK
(n−1)
ω =−(DDDSSSDDD)bN

ω,n−1 contains all terms that contain derivatives
of the density matrix up to order n−1.

The perturbed density matrix is partitioned into a particular
DDD

bN

P and a homogenous DDD
bN

H term (H/P partition) as

DDD
bN
ω = DDD

bN

P +DDD
bN

H . (30)

The former may be evaluated in terms of KKK
(n−1)
ω , i.e. lower-order

density matrices and differentiated overlap integrals, so that

DDD
bN

P = PPPKKK
(n−1)
ω PPP† −QQQKKK

(n−1)
ω QQQ†, (31)

where the projectors PPP = DDDSSS, QQQ = 111−PPP were used. The homo-
geneous component is parametrized in terms of the n-th order
response parameters XXXbN as

DDD
bN

H = DDDSSSXXXbN −XXXbN SSSDDD = [DDD,XXXbN ]SSS. (32)

The governing equations for the perturbed ASC densities are
obtained in analogy with the handling of perturbed density ma-
trices outlined above. We introduce a decomposition of the ASC
density into frequency components into the perturbation-strength

derivative of eqn 28, so that

Ŷ σbN
ω +TrϕϕϕDDD

bN
ω = Φ

(n−1)
ω . (33)

The symbol Φ
(n−1)
ω has been introduced in analogy to the KKK

(n−1)
ω

matrix, where
Φ
(n−1)
ω

Tr
=−(ϕϕϕDDD)bN

ω,n−1 , (34)

and it contains all terms that depend on lower-order density
matrices and differentiated electrostatic potential integrals, for
which the latter acts as the metric matrix SSS in the definition of
KKK
(n−1)
ω . The term Φ

(n−1)
ω always contains at least a first derivative

of the electrostatic potential integrals and is thus zero if the basis
set is independent of the perturbation tuple being considered. We
now introduce the H/P partitioning of σbN

ω , so that

σbN
ω = σbN

P +σbN

H , (35)

and apply eqn 30, which leads to a separation of the response
integral equation into the following system of equations:

Ŷ σbN

H +TrϕϕϕDDD
bN

H = 0 (36a)

Ŷ σbN

P +TrϕϕϕDDD
bN

P = Φ
(n−1)
ω . (36b)

We note that the particular ASC is nonzero if and only if the basis
set depends on the external perturbation.

We finally turn our attention to the TDSCF equation. The
perturbation-strength differentiated generalized KS matrix is first
separated into its frequency components F

bN
ω . The H/P partition

introduced for the variational densities will induce a similar par-
tition into these frequency components:

F
bN
ω = GGGKS(DDDbN

H )+σbN

H ϕϕϕ + F̆
bN

ω . (37)

The two-electron and XC contributions depending on the ho-
mogeneous perturbed density matrix have been collected in the
GGGKS(DDDbN

H ) matrix, while all other contributions are collected in

F̆
bN

ω . A more detailed discussion of these aspects can be found
in refs. 9 and 10. The parametrization of the homogeneous part
of the perturbed density matrix can be exploited to conveniently
reformulate the perturbed TDSCF equation, so that

[

EEE [2]−ωbN
SSS[2]

]

XXXbN = MMM
bN

RHS, (38)

where the generalized Hessian EEE [2] and metric SSS[2] ma-
trices were introduced and are defined by their trans-
formations on the response parameters XXXbN :48,49

EEE [2]XXXbN = GGGKS([XXXbN ,DDD]SSS)DDDSSS−SSSDDDGGGKS([XXXbN ,DDD]SSS)+FFF [XXXbN ,DDD]SSSSSS−SSS[XXXbN ,DDD]SSSFFF +σbN

H ϕϕϕDDDSSS−SSSDDDϕϕϕσbN

H (39)

SSS[2]XXXbN = SSS[XXXbN ,DDD]SSSSSS. (40)
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The generalized Hessian matrix EEE [2] includes two types of solvent
contributions: implicit terms included in the zeroth-order Fock
matrix, FFF , and explicit terms, involving the N-th order homoge-
nous ASC variational density. The latter are the last two terms
in eqn 39. The theoretical treatment of frequency-dependent
properties in solution within the PCM requires adoption of a
nonequilibrium response framework.13,50 The explicit PCM terms
in eqn 39 are then evaluated using the optical permittivity ε∞ of
the solvent instead of the static permittivity εs used to compute
the implicit contributions. In contrast to EEE [2], the generalized met-
ric matrix SSS[2] is unchanged. The right-hand side (RHS) in the
response equation only includes terms that depend on particular
contributions up to the desired order or lower-order perturbed
density matrices:

MMM
bN

RHS =

[(

F̃ −
i

2
S̃SS

d

dt

)

D̃DDS̃SS

]⊖,bN

P

. (41)

2.4 PCM-SCF linear response: comparison with previous

formulations

Derivations of the linear50,51 and nonlinear response func-
tions52,53 for the PCM-SCF model have previously appeared in
the literature. All previous derivations exploit the definition of
a solute Hamiltonian which is nonlinearly coupled to the classi-
cal dielectric continuum.13,43 In such a framework, the solvent
polarization is not treated as an independent, variational degree
of freedom. Solvent contributions to the Hamiltonian are parti-
tioned based on their order dependence on the density matrix:
zeroth, first (linear) or second (quadratic) order. We remark that
one- and two-electron contributions to the energy are also linearly
and quadratically dependent, respectively, on the density matrix.
Solvent contributions will thus enter into response theory expres-
sions in much the same way as the proper one- and two-electron
terms do.

A derivation of open-ended response theory for an SCF solute
coupled with a classical description of the solute has already been
presented in the context of the PE MM model.20 There, the above-
mentioned order dependence on the density matrix of solvent
contributions, which arises when a nonlinear Hamiltonian is in-
voked, was used to facilitate the identification of the polarization
terms to be included in the open-ended formulation of electric
response properties. That derivation can also be used when the
classical solvent model is implicit, such as the PCM considered in
the present work, and will in this case lead to a specific imple-
mentation strategy, vide infra. However, the converse is also true.
As shown by Lipparini et al. ,54 a variational formulation can also
be used for classical polarizable explicit solvation models.

To the best of our knowledge, the first derivation of the lin-
ear response function exploiting the variational formulation for a
quantum/classical polarizable Hamiltonian was presented by Lip-
parini et al. in ref. 19. Our derivation naturally includes general
perturbations, if the fixed-cavity approximation is assumed, and
avoids the use of nonlinear Hamiltonians, representing a clear
theoretical advantage.
An explicit example: first-order, electric response properties

We here report explicit expressions for the first-order response
equations. The differentiated TDSCF condition of eqn 24 evalu-
ated at zero perturbation strength is

0 =
[

F
bDDDSSS+FFFDDDbSSS

]⊖
−ωbSSSDDDbSSS+

[

FFFDDDSSSb
]⊖

−
1

2
ωb

[

SSSDDDSSSb
]⊕

.

(42)
Decomposing into frequency components and introducing the
H/P partition for the variational densities yields:

F
b
ω = GGGKS(DDDb

H)+σb
Hϕϕϕ + F̆

b
ω (43)

where all the contributions not depending on
H-type terms are collected into F̆

b
ω , so that

F̆
b
ω = hhhb

ω +GGG
γ,b
ω (DDD)+GGGγ (DDDb

P)+VVV
t,b
ω + F̆FF

b
xc,ω −

i

2
TTT b

ω +σb
P ϕϕϕ +σϕϕϕb

ω , (44)

where F̆FF
b
xc,ω contains derivative terms of the XC ma-

trix that are independent of the response parameters.
We refer to eqn A26 of the original paper for its ex-
plicit expression.9 Reorganizing eqn 43 to have all terms
dependent on XXXb on the left-hand side (LHS) yields

GGGKS([XXXb,DDD]SSS)DDDSSS−SSSDDDGGGKS([XXXb,DDD]SSS)+FFF [XXXb,DDD]SSSSSS−SSS[XXXb,DDD]SSSFFF +σb
HϕϕϕDDDSSS−SSSDDDϕϕϕσb

H −ωbSSS[XXXb,DDD]SSSSSS =
[

EEE [2]−ωbSSS[2]
]

XXXb, (45)

where we recognize the action of the propagator
[

EEE [2]−ωbSSS[2]
]

on the response vector XXXb. Finally, the right-hand side MMMb
RHS be-

comes

MMMb
RHS =

[

F̆
b
ω DDDSSS+FFFDDDb

PSSS+FFFDDDSSSb
ω

]⊖
−

1

2
ωb

[

SSSDDDb
PSSS+SSSDDDSSSb

ω

]⊕
,

(46)
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report the relevant plots of the difference between ground- and
excited-state dipole moments in the ESI.†

The results presented serve as an illustration of the applica-
bility of our implementation. When interpreting the results, one
should bear in mind the limitations of our methodology. First
of all, we have calculated vertical excitation energies and ne-
glected vibronic effects, which have been demonstrated to play
a role in 2PA.87,88 Secondly, we have not taken into account
the indirect effect of the solvent on the geometry of the chro-
mophore. Indirect solvent effects can be taken into account by
using PCM also in the geometry optimization, which has how-
ever not been done here to allow for a comparison of the di-
rect contribution of the various solvents on the MPA strength.
Thirdly, the solvent model used here does not include explicit
local field effects in the molecular cavity,71–76 non-electrostatic
effects31,32,89,90 and explicit solute–solvent interactions. Finally,
DFT is not likely to give MPA strengths (and, in general, excited-
state properties) of high accuracy, as shown for 2PA using a
coupled-cluster benchmark.85 There is a clear need for bench-
marking DFT MPA strengths against methods of higher accuracy
also beyond 2PA.85,91 All these factors are important if a realistic
comparison with experiment is to be attempted. We note that the
recent coupling of our open-ended response code to a PE QM/MM
framework is able to take into account indirect solvent effects, lo-
cal field effects and explicit solute–solvent interactions.20

6 Conclusion

We have presented the theory and implementation for calculat-
ing molecular response properties to arbitrary order in solution
within the framework of the polarizable continuum model. The
theoretical derivation is based on an energy functional where
both the density matrix and the electrostatic polarization in the
medium are treated as variational degrees of freedom. Contrary
to previous work, the quantum/classical polarizable coupling is
not achieved by assuming a nonlinear interaction potential in the
Hamiltonian. We have shown that, in the fixed-cavity approxima-
tion, molecular response functions to arbitrary order are straight-
forwardly obtained as higher-order derivatives of the proposed
functional. Moreover, differentiation of the stationarity condi-
tions naturally leads to the appropriate response equations de-
termining higher-order perturbed wave function and polarization
parameters. Our implementation relies on modular components
encapsulating the different tasks required to carry out a response
calculation, in line with previous work by some of us.10,11 In par-
ticular, we added the PCM terms to the workflow by means of
the PCMSolver library,30 in the spirit of the PE implementation
recently presented by Steindal et al.20 We have illustrated the im-
plementation by calculating MPA strengths for three small organic
molecules. The enhancement of the MPA strength from vacuum to
different solvents increases with the number of photons involved
in the excitation, clearly emphasizing the importance of including
solvent effects in MPA calculations. Relative intensities between
features corresponding to different electronic excitations in one-
or multiphoton absorption spectra are not necessarily preserved
between phenomena involving different numbers of photons ab-
sorbed, which is partially related to molecular symmetry. We have

also described resonance enhancements in our MPA calculations.

Acknowledgements

The authors thank Daniel H. Friese and Radovan Bast (Univer-
sity of Tromsø—The Arctic University of Norway) for discussion
and technical help. R. D. R. thanks Filippo Lipparini (Johannes
Gutenberg Universität, Mainz) for discussions on the weak formu-
lation of the PCM and Jógvan Magnus Haugaard Olsen (Univer-
sity of Southern Denmark) for helping with the implementation
and testing of the open-ended response scheme within Dalton .

The authors acknowledge support from the Research Coun-
cil of Norway through a Centre of Excellence Grant (Grant
No. 179568/V30), from the European Research Council through
a Starting Grant (Grant No. 279619) and from the Norwegian Su-
percomputer Program through a grant for computer time (Grant
No. NN4654K). A. H. S. acknowledges financial support from
Tromsø Forskningsstiftelse (SurfInt grant).

A Derivatives of the generalized KS free en-

ergy

The generalized KS energy derivatives are given by:

G
00,a = E

0,a +{σTr(ϕϕϕaDDD)}T (56a)

G
00,ab = E

0,ab +{σTr(ϕϕϕabDDD)}T (56b)

G
00,abc = E

0,abc +{σTr(ϕϕϕabcDDD)}T (56c)

G
10,aDDDb = E

1,aDDDb +{σTr(ϕϕϕaDDDb)}T (56d)

G
01,aσb = {σbTr(ϕϕϕaDDD)}T (56e)

G
10,acDDDb = E

1,acDDDb +{σTr(ϕϕϕacDDDb)}T (56f)

G
10,abDDDc = E

1,abDDDc +{σTr(ϕϕϕabDDDc)}T (56g)

G
20,aDDDbDDDc = E

2,aDDDbDDDc (56h)

G
10,aDDDbc = E

1,aDDDbc +{σTr(ϕϕϕaDDDbc)}T (56i)

G
11,aσ cDDDb = {σ cTr(ϕϕϕaDDDb)}T (56j)

G
01,acσb = {σbTr(ϕϕϕacDDD)}T (56k)

G
01,abσ c = {σ cTr(ϕϕϕabDDD)}T (56l)

G
01,aσbc = {σbcTr(ϕϕϕaDDD)}T (56m)

G
11,aσbDDDc = {σbTr(ϕϕϕaDDDc)}T (56n)

B Comparison with experimental data

2PA strengths for PNA in three solvents were converted to cross
sections for comparison with available experimental data83 us-
ing85

σ2PA =
4π2αa5

0ω2

cΓ
〈δ 2PA〉 , (57)
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where α is the fine structure constant, a0 is the bohr radius, c is
the velocity of light, ω is the photon energy (i.e. half the exci-
tation energy) and Γ is the half-width half-maximum (HWHM)
of the (Lorentzian) broadening function describing homogeneous
broadening. The HWHM for 1,4-dioxane, propylene carbonate
and dimethyl sulfoxide was taken from reported experimental
work (FWHW 4672 cm−1, 4490 cm−1, 4014 cm−1),83 giving
Γ=0.2897 eV, 0.2783 eV and 0.2488 eV, respectively. The dimen-
sionality of the 2PA cross section is cm4·s·photon−1 with 1·10−50

cm4·s·photon−1 commonly referred to as 1 GM.

Table 1 Calculated excitation energies ∆E [Eh], 2PA strengths 〈δ 2PA〉

[a4
0 ·E

2
h ] and MPA cross sections σ2PA [GM] and experimental 83 σ2PA

exp

[GM] for the 2A′ excitation in para-nitroaniline (PNA) in various solvents.

solvent ∆E 〈δ 2PA〉 σ2PA σ2PA
exp

1,4-dioxane 0.14031 3334 6.1 8.04
dimethyl sulfoxide 0.13250 3438 5.9 12.17
propylene carbonate 0.13300 3171 6.1 9.52
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