
	 1	

Oxidative stress in two tropical species after exposure to diesel oil  

Adriana E. Sardi1, 2*, Leonardo Sandrini-Neto3, Leticia da S. Pereira4, Helena Silva de Assis4, 

Cesar C. Martins3, Paulo da Cunha Lana3 and Lionel Camus1,2  

1 Akvaplan-niva, Fram Centre for Climate and the Environment, 9296 Tromsø, Norway. 

2 University of Tromsø, Faculty of Science and Technology, Department of Engineering & Safety, 

N-9037 Tromsø, Norway. 

3 Centro de Estudos do Mar, Universidade Federal do Paraná (UFPR), PO Box 61, CEP 83255-

000, Pontal do Paraná, Paraná, Brazil. 

4 Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal do 

Paraná (UFPR), CEP 81531-990 Curitiba, Paraná, Brazil. 

 

*Address for correspondence: 

Akvaplan-Niva,  

High North Research Centre for Climate and the Environment, 

9296 Tromsø, Norway  

Phone: +47 77 75 351 

Fax: +47 77 75 03 01 

e-mail: ads@akvaplan.niva.no 

  



	 2	

ABSTRACT  

Recent offshore petroleum exploration has increased the risks of oil spills worldwide. We 

investigated biomarker responses to diesel oil exposure in two tropical and subtropical species, 

the clam Anomalocardia flexuosa and the polychaete Laeonereis culveri. Animals were exposed 

to oil-spiked sediment at two different concentrations (0.5 L m-2 and 1.0 L m-2). Activities of 

antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase 

(GPx); glutathione transferase (GST), and lipid peroxides (LPO) were assessed in bivalve 

digestive glands and polychaete whole-body homogenates at 36 h and 60 h of exposure. 

Significant variation in enzymatic antioxidant activity depended on the sampling time after 

exposure. No similar response patterns, either increases or decreases, were detected for the 

two target species, and biomarker responses were species-specific. L. culveri showed clearer 

patterns in its antioxidant response and should be prioritized over other species in biomonitoring 

studies involving oil exposure. Understanding the temporal variability of these biomarkers is a 

necessary action before implementing them as indicators measures in oil contamination 

biomonitoring programs. Our results provide a better understanding of biomarker responses in 

subtropical species, evidencing their potential use as sentinels of oil contamination. 

Keywords: Antioxidant enzymes, Diesel oil, Estuaries, Clams, Polychaete, Oil biomonitoring. 
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Introduction 

Crude or light oil and their by-products can enter the marine environment through riverine 

discharges, shipping activities, sewage disposal, offshore production, and transport, or oil spills. 

The negative effects of oil on biota, including changes in abundance and composition at various 

levels of biological organization, are well known (Peterson et al. 2003; Sanchez et al. 2006; 

Serrano et al. 2006; Sandrini-Neto et al. 2016). 

Diesel oil is a complex mixture of aliphatic (AHs) and polycyclic aromatic hydrocarbons 

(PAHs); with light volatile n-alkanes and alkylated PAHs as principal components  (Wang et al. 

1999; Wang et al. 2003). Freshly spilled diesel will remain in the water or sediment interface and 

spread with wind action and waves. Given its low specific gravity, low viscosity, and moderately 

volatile characteristics, diesel oil spills will disperse and evaporate naturally within a day or less. 

Assessments of the effects of the non-soluble fraction of diesel oil on benthic fauna are still 

scarce, due to its highly volatile nature and associated methodological issues. However, diesel 

can persist after adhering to fine-grained suspended sediments, or by direct contact with tidal flat 

sediments (Gong et al. 2014). Contaminated sediments are a risk both pelagic and benthic 

fauna, since contaminated sediments can yield toxic effects following a re-suspension event 

(Edge et al. 2015).  

The term biomarker describes physiological responses to environmental stressors 

(Goodsell et al. 2009). Biomarkers were first developed as tools to detect sublethal effects of 

pollution in exposed organisms. Once in the water and contact with animals, petroleum, and its 

metabolic products induce a broad range of such biochemical responses, related to oil 

biotransformation and excretion (Luchmman et al. 2011). Among these, the activity of phase II 

enzymes like glutathione sulfotransferase (GST) is characterized by the addition of an 

endogenous polar compound to either, a hydrophobic xenobiotics compound, or processed 

products from phase-I biotransformation reactions (Ribalta et al. 2015). During biotransformation 

the production of reactive oxygen species (ROS) is enhanced, ultimately promoting cellular 

damage through protein oxidation, DNA damage and lipid peroxidation (LPO) (Livingstone 

2001). LPO is considered a primary mechanism by which oxyradicals can cause injury, impairing 

cellular function and resulting in the failure of normal cell function (Livingstone 2001). Therefore, 

to cope with increased ROS formation, enzymatic and non-enzymatic antioxidant defenses are 

activated. Among the enzymatic antioxidants, superoxide dismutase (SOD) dismutases the 

superoxide anion radical (O2
•−) into hydrogen peroxide (H2O2), which is degraded by catalase 
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(CAT) and glutathione peroxidase (GPx) (Luchmman et al. 2011). Altogether, these mechanisms 

are expected to maintain the redox homeostasis, which is essential for the physiological health 

of organisms (Livingstone 2003; Valavanidis et al. 2006). Such biochemical responses after a 

contamination event have been long used as indicators of pollution. 

Polychaetes and bivalve mollusks from temperate regions have been widely used as 

sentinel organisms for estuarine and marine contaminants monitoring (Viarengo and Canesi 

1991; Reish and Gelinger 1997; Rittschof and McClellan-Green 2005; Kimbrough et al. 2008). 

However, information on the biochemical responses of tropical and subtropical species remain 

scarce (Monserrat et al. 2007; Egres et al. 2012; Marques et al. 2014; Sandrini-Neto et al. 2016).  

In this study, we assess the antioxidant responses of the polychaete Laeonereis culveri 

(also known as Laeonereis acuta) and the bivalve Anomalocardia flexuosa (also known as 

Anomalocardia brasiliana) in diesel oil-spiked aquaria under laboratory conditions. Antioxidant 

responses were expressed by the activity of the enzymes CAT, GPx, SOD, GST; and levels of 

lipid peroxidation. We hypothesize that biomarker responses in L. culveri and A. flexuosa will 

significantly differ between control and oil-exposed treatments and will depend on the 

concentration of oil and time of exposure. The two selected species are numerically dominant 

benthic species in impacted and non-impacted estuarine areas all along the Brazilian coast. L. 

culveri is a detritus-feeding infaunal polychaete and, as such, potentially more vulnerable to the 

diesel oil fraction adsorbed to the sediment. As a filter feeder, the also infaunal A. flexuosa, a 

commercially important food source (Silva-Cavalcanti et al. 2011), may provide a better 

indication of water-soluble toxic compounds, following desorption of diesel from the sediment. L. 

culveri shows antioxidant stress when exposed to copper (Geracitano et al. 2004a), arsenic 

(Lima et al. 2007), hydrogen peroxide (da Rosa et al. 2008) and nanomaterials (Marques et al. 

2013). Less information is available concerning the antioxidant and biomarker responses of A. 

flexuosa when exposed to pollutants, as PAHs (Martins et al. 2005; Sandrini-Neto et al. in 

press). With this experimental protocol, we aim to assess the efficacy of biomarker measures as 

monitoring tools for diesel oil contamination in benthic habitats from subtropical estuaries, such 

as the Paranaguá Estuarine System (PES). 

Materials and Methods  

Sampling and bioassay conditions 
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The subtropical Bay of Paranaguá, located in southern Brazil, is a large and multihabitat 

estuarine system. The Bay sustains artisanal fisheries, urban and touristic activities, industries, 

fuel terminals, and host the main South-American grain shipping port (Combi et al. 2013). 

Although sewage discharge represent the main source of contamination in the Bay (Souza et al. 

2013), the Paranaguá harbor hosts the Transportation Terminal of Paranaguá (TEPAR), which 

operates refining, storing and transporting of oil and its derivatives (Egres et al. 2012). Field 

sampling was done in austral summer 2013. Only adults specimens were collected. 

Anomalocardia flexuosa individuals ranging from 20 to 30 mm length were collected at Papagaio 

Island, Bay of Paranaguá, Brazil (25°32'55” S; 48°26'03”W). Laeonereis culveri specimens, 

ranging between 30 to 50 mm (500 µm), were collected from the saltmarsh Saco do Limoeiro at 

Mel Island (25°33'36” S; 48°18'52"W). Both locations are considered as non-contaminated by 

petroleum or oil by-products (de Abreu-Mota et al. 2014). Sediment samples were also taken 

from both collection sites, and it is predominantly composed of fine and very fine sand with low 

organic matter content (1.2 – 4.7%) (Sandrini-Neto, 2015). 

Individuals of A. flexuosa were directly handpicked from the sediment. L. culveri 

specimens were obtained after sieving sediment samples through a 0.5 µm sieve. After 

collection, animals were transported to the lab on cold seawater (4°C, 30‰) and kept in 

acclimation aquaria. Lab temperature and photoperiod were fixed at 20° C and 12 light-12 dark 

regime respectively. Salinity, pH and water temperature were recorded daily during 96 h of 

acclimation. Average and standard deviation values during acclimation for salinity, temperature, 

and pH for A. flexuosa acclimation aquaria were 31.6 ± 1.5; 21.4 ± 0.9; 7.76 ± 0.25 respectively. 

Similarly, average and standard deviation values for L. culveri salinity were 31.3 ± 4.6 

temperature 21.6 ± 1 and pH 7.98 ± 0.05. Water was changed every day. Animals were not fed 

during acclimation neither the experiment.  

A 2-factor experimental design was conducted to assess biomarker responses to diesel 

oil, with oil concentration and time of exposure as fixed factors. Diesel oil was purchased from a 

local fuel station, where is commercialized under the name of Marine Diesel Oil (MDO). MDO 

results from a mix of heavy oil fractions obtained by atmospheric distillation together with 

fractions from secondary crude oil processing. MDO is used by small and medium vessels as 

also within the auxiliary engines of large ships (Leite et al. 2014).   

Each treatment combination included 3 replicated aquaria; making a total of 36 aquaria. 

For L. culveri, glass beakers of 600 mL capacity were employed, and each aquaria consited on 
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200 g of sediment (around 5 cm of sediment deep) and 400 mL of filtered seawater. Up to 7 

polychaetes were added at each aquaria (maiking about 1 g wet weight of L. culveri). For the 

clam A. flexuosa, 1 L capacity glass beakers included 400 g of sediment (around 5-7 cm deep), 

600 mL of filtered seawater and 5-6 bivalves. The average weight and length of each of the 

clams employed was around 8 g (including the shell) and 25 mm. Diesel oil concentration in 

aquaria (treatments C1 and C2) was equivalent to 0.5 L m-2 and 1 L m-2 oil spills respectively. 

Concentrations were chosen based on a pilot experiment that evaluated mortality on both 

species exposed to diesel oil under laboratory conditions. Before mounting the aquaria, 

sediments were diesel oil-spiked by spilling diesel over the sediment surface and mixing it 

briefly. With this procedure, we intended to simulate putative real-world conditions where the 

non-soluble fraction of diesel oil originated from chronic vessels leakages is adhered to 

suspended matter and settle into the sediment. Water and animals were added to each beaker. 

A control treatment, using non-exposed sediment from the sampling site, was simultaneously 

done. All control beakers were covered to avoid cross-contamination. In each aquarium, 

bubbling was included for aeration and water was only changed after 24h. At 36h and 60h, 

whole L. culveri individuals or pieces of digestive glands from 3 individuals of A. flexuosa were 

dissected, and tissue samples freeze in liquid nitrogen. Samples remained stored at -80°C until 

further analysis. The time length for each sampling was deliberately short, to simulate short-term 

biomarker responses after a hypothetical oil spill. A sediment sample was collected for each 

experimental treatment to determine the concentration of PAHs. The top 2 cm of surface 

sediment was collected with a spoon placed in pre-cleaned aluminium foil and stored at -20°C. 

Only one replicate of sediment per treatment was collected. The material was freeze-dried, 

carefully homogenized with a mortar, and stored in clean glass bottles at room temperature prior 

to PAHs analysis. 

Polycyclic aromatic hydrocarbons analysis in sediment samples 

The analytical procedures for PAH analysis were based on the United Nations Environment 

Program method (UNEP 1992), with minor modifications described in Bícego et al. (2006). 10 – 

15 g of freeze-dried sediment was extracted using 80 mL of a (1:1) dichloromethane (DCM) and 

n-hexane mixture over 8 h. The surrogates acenaphthene-d10, phenanthrene-d10, chrysene-d12, 

and perylene-d12 were added before each blank or sample extraction. The organic extract was 

purified by column chromatography using 5% deactivated alumina and silica. The elution was 

performed with 10 mL of n-hexane (fraction 1 – aliphatic hydrocarbons; not analyzed) and 15 mL 

of a (3:7) DCM/n-hexane mixture (fraction 2 – PAHs). A 1 mL aliquot of each concentrated 
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extract from fraction 2 was injected in an Agilent GC (Model 7890A) coupled to a mass 

spectrometer (Agilent 5973N inert MSD with Triple-Axis Detector). Detailed instrumental 

analyzes are described in Dauner et al. (2016). PAHs were identified by matching the retention 

times and ion mass fragments for a standard mixture (NIST 2260) at concentrations from 0.10 to 

1.50 µg L−1. Procedural blanks analyzed with each series of eleven extractions showed that no 

peaks interfered with the analyses of the target compounds. The measured target PAH 

concentrations in the reference material provided by the International Atomic Energy Agency 

were in agreement with the certified values, within 85-110%.  

Laboratory procedures 

For each replicate, a pool of 2 to 3 L. culveri individuals or pieces of digestive glands from 3 

individuals of A. flexuosa (~100 mg) were homogenized. Regarding L. culveri Ferreira Cravo et 

al. (2007 and 2009) have described differences in the antioxidant activity regarding to the 

polychaete body section in a similar species. Based in our objective, we decided to not include 

body sections as another source of variation within the experimental design, which as a fixed 

and orthogonal factor would make harder the interpretation of the effects of diesel oil 

concentration and length of exposure. Homogenization buffer consisted of cold 0.1 mol L-1 

phosphate buffered saline solution (PBS) at pH 7 (1:10 w/v). Samples were then centrifuged at 

15000 g for 30 min at 4° C in a Heraeus Biofuge fresco microcentrifuge. The supernatant of 

each sample was collected and stored at -80° C until further analysis. Total protein content was 

measured at 595 nm following Bradford’s method (Bradford, 1976) with bovine serum albumin 

as standard. 

Catalase activity was measured following the decrease in absorbance at 240 nm due to 

H2O2 consumption (Aebi 1974). Samples were analyzed by quadruplet for 1 min at intervals of 

15 s in a multimode microplate reader Biotek Synergy HT. We use UV-star microplates (Greiner 

Bio REF. 655801). A linearity curve of absorbance vs. time was constructed to obtain the best 

range of kinetics. Final concentrations in a volume of 300 µL were 1 mol L-1 Tris/5 mmol L-1 

EDTA buffer (pH 8) and 20 mmol L-1 H2O2. Molar extinction coefficient used was 40 M -1 cm-1.  

Superoxide dismutase activity was determined following the inhibition of the autoxidation 

of pyrogallol as described by Gao et al. (1998). Room temperature was 23 °C and SOD activity 

was obtained by comparing pyrogallol autoxidation with control, which contained 1 mol L-1 HCl 

as an oxidation inhibitor. The reaction medium contained 40 µL of sample diluted 1:10 in 0.1 mol 

L-1 PBS buffer pH 7, 885 µL of buffer 1 mol L-1 Tris acid buffer containing 5 mmol L-1 EDTA pH 8, 
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and 50 µL of 15 mmol L-1 pyrogallol (NEON, REF.: 00311). 25 µL of 1 mol L-1 HCl were added to 

test tubes after 30 min of incubation in the dark while, for control tubes, hydrochloric acid was 

added following the addition of pyrogallol. Then, 300 µL of this reaction medium were pipetted 

by triplicate in a 96 well microplate, and absorbance was read at 440 nm in a TECAN Sunrise 

absorbance microplate reader.  

Glutathione peroxidase activity was assayed following the rate of NADPH oxidation at 

340 nm by the coupled reaction with glutathione reductase (GR). In this case, the velocity of the 

oxidation of NADPH is proportional to the velocity of GSSH production from GSH in the 

presence of H2O2 catalyzed by GPx (Hafeman et al. 1974). Final concentrations in a final volume 

of 130 µL were 0.1 mol L-1 PBS buffer pH 7, 2 mmol L-1 sodium azide, 0.2 mmol L-1 NADPH, 0.2 

mmol L-1 GSH, 1 U mL-1 glutathione reductase and 1.5 mmol L-1 H2O2. Samples were analyzed 

in triplicate during 3 min at intervals of 10 s in a TECAN Sunrise absorbance microplate reader. 

An extinction coefficient for NADP+ of 6.22 mM -1cm-1 was used. 

Glutathione S-transferase (GST) activity was measured following increases in 

absorbance at 340 nm due to conjugation of this enzyme with chloro-2,4-dinitrobenzene (CDNB) 

as a substrate (Keen et al. 1976). Final concentrations in a volume of 200 µL were 3 mmol L-1 

GSH, 3 mmol L-1 CDNB, and 0.1 mol L-1 potassium phosphate buffer, pH 6.5. Samples were 

analyzed for 3 min at intervals of 15 s in a TECAN Sunrise absorbance microplate reader. The 

extinction coefficient of GS-DNB conjugate was 9.6 mM -1 cm-1. 

Lipid peroxidation (LPO) was measured as described by Jiang et al. (1991) using the 

ferric/xylenol orange reaction. Sample aliquots of 100 µL were diluted (1:2) in methanol and 

centrifuged at 5000 g for 5 min at 4 oC. The resulting supernatant (100 µL) was transferred to 

clean tubes and mixed with 900 µl of a reaction solution containing 0.1 mmol L-1 xylenol orange, 

25 mmol L-1 sulfuric acid, 2.5 mmol L-1 ammonium ferrous sulfate, and 4 mmol L-1 BHT and 

incubated for 30 min at room temperature. Then, 300 µL aliquots were placed in a 96-well 

microplate by triplicate and absorbance was measured at 560 nm in a TECAN Sunrise 

absorbance microplate reader. For the hydroperoxide quantification, an extinction coefficient of 

4.3 x 10-4 mol -1 cm-1 was used. For each step of quantification, three blanks were put together in 

the microplate and analyzed in the same step of the samples. Blank values were obtained 

following analysis of the reagent mixture. 

Data processing  
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Enzyme activity for each treatment combination was standardized regarding the activity 

recorded for their corresponding control and presented as the mean percentage change in 

activity from control. A similar standardization was done by Limaye et al. (2003) and Persichetti 

et al. (2014); being a conventional practice in medicine tests that want to identify departures 

from normal or basal status. Before such standardization, the variation of the control treatment 

between sampling times was also tested. For each enzyme, significant differences among 

treatments were tested by permutational analysis of variance. The significance level adopted 

was 5% (α = 0.05). For those terms that were found to be significant at P < 0.05, means were 

compared using pairwise t-test using the Bonferroni correction. Analyzes and figures were 

performed within the R environment (R Development Core Team, 2009) using vegan (Oksanen 

et al. 2013) and ggplot2 (Wickham and Chang 2012) packages. Raw un-standardized enzyme 

activities expressed as mean ± standard deviation are available in supplementary material 

(Table S1). 

Results 

Polycyclic aromatic hydrocarbons 

Total concentration of PAHs and related parameters are summarized in Table I. Higher ΣPAHs 

concentrations, including the 16 USEPA PAHs, alkyl naphthalenes and phenanthrenes, were 

detected in impacted sediments (4738 – 5,034 ng g-1; mean = 4,886 ± 208.8) than in control 

sediments (1,325 – 1,514 ng g-1; mean = 1,420 ± 134). ΣPAHs levels were compared to the 

effect concentrations (TEL) (MacDonald et al., 1996), and the effects range low (ERL) (Long et 

al., 1995) thresholds. Both thresholds are specified by the National Oceanic and Atmospheric 

Administration under the National Status & Trends Program (NS&T) sediment quality guideline, 

as indicators of biological effects. Reported mean values from impacted sediments have higher 

total PAHs values than TEL (1,684 ng g-1) and ERL (4,022 ng g-1) thresholds. 

The ratio between low molecular weight (LMW- 2 and 3 rings) and high molecular weight 

PAHs (4-6 rings) was high in impacted sediments (19.4 – 47; mean = 33.2 ± 15.9) indicating 

diesel oil contamination. The petrogenic source of PAHs for the impacted sediments was 

confirmed by the evaluation of the following isomer pair ratios (Yunker et al., 2002): (a) 

anthracene/anthracene + phenanthrene (An/178); and (b) fluoranthene/fluoranthene + pyrene 

(Fl/Fl + Py). For interpretation, the former ratios indicate dominance of petroleum source when 

(a) An/178 < 0.10 and (b) Fl/Fl + Py < 0.40. The mean values of these ratios in impacted 

samples were 0.02 ± 0.01 and 0.19 ± 0.05, respectively. The PAH isomer-pair ratios values in 
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control sediments were higher, mainly to the Fl/Fl + Py (0.30 ± 0.10) and C0/C0+C1 P (0.51 ± 

0.05), confirming the changes in PAH distribution between control and impacted sediments. 

Biomarker responses in the clam A. flexuosa 

The relative percentage change in enzymes activities in the species A. flexuosa is summarized 

in Figure 1. No significant variation was detected between times in the control treatment. None 

of the enzyme biomarkers assessed was sensitive enough to distinguish the concentration 

treatment; and significant differences were observed between times of exposure only (Table II). 

CAT activity was increased after 36 h of exposure (T1) followed by a decrease 24 h later (T2). 

This response was significant and consistent for both concentration treatments (Table II). A 

similar pattern was observed for GST (Fig. 1). In addition, the interaction between time and 

concentration was also significant (Table II) with lower GST activity in individuals from C1 and 

higher activity in C2 (Fig. 1).  

The activities of SOD and GPx (Fig. 1) were not significantly different neither between 

concentration and time of exposure treatment. However, SOD activity was higher in all impacted 

treatments compared to control (from ~6 to 27%). On the contrary, GPx activity decreased in 

exposed treatments from control’s activity (from -7% to -13%).  

Changes in lipid peroxides levels in A. flexuosa were in all cases not significant (Table II, Fig. 3). 

At 36 h LPOs levels decreased in both concentrations. However, this pattern inversed after 60 h.   

Biomarker responses in the polychaete L. culveri 

Enzymes activity was not significantly different between concentration treatments, and 

differences in the relative change of antioxidant enzymes in the polychaete L. culveri were 

mostly explained by the factor time of exposure (Table II). SOD and CAT activities at 36 h and 

60 h of exposure were clearly decreased by diesel oil treatments (Fig. 2). On the other hand, 

GPx activity at 36 h after spiking sediments was similar to the control, which contrasted with 

results at 60 h, when there was a significant reduction (Table II, Fig. 2). The activity of GST 

significantly increased with time (Table II, Fig. 2).  

Lipid peroxides levels in L. culveri consistently increased from T1 to T2. There was an 

initial reduction of ~30% from control observed at T1 that after 24 h went up to 50% relative to 

the control, suggesting oxidative deterioration of lipids.  
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Discussion 

The hypothesis that the activity of antioxidant enzymes in A. flexuosa and L. culveri exposed to 

diesel oil would significantly differ from the control treatment was not refuted. Most of the 

measured antioxidant enzymes varied significantly after exposure to diesel oil. 

Results were presented as percentage changes from control, which can be interpreted 

as increase or decrease of the activity of the measured enzymes following a particular event of 

diesel oil exposure. Under the assumption of biomarkers being fast and early signs of pollution, 

the most significant difference from control levels was expected to occur within 36 h of exposure 

(T1) at the highest concentration (C2). Nonetheless, PAHs levels did not differ significantly 

between treatments, indicating that nominal concentration does not represent a real exposure 

scenario, and justifying the little variability in enzyme activities explained by the concentration 

treatment. The difference between nominal and recorded PAHs concentration in sediments may 

be potentially related to, i) sediment samples being only collected at the end of the experiment 

when the more volatile fraction of diesel could have already evaporated, and ii) turbulence 

created from bubbling the aquaria, which could have enhanced the evaporation rate by altering 

the air boundary layer (Fingas 2013). However, the fast evaporation of volatiles is the common 

scenario in the field, where tidal regimes, UV exposition, waves, elevated temperature and winds 

facilitate the evaporation of the volatile fraction of diesel oil. Previous studies on PAHs 

concentration in sediments from the same control area have reported contradictory results 

regarding the PAHs concentration found in sediments. In this context, Sandrini-Neto (2015) 

reported total PAHs 3.72 ng g-1 dry weight, while Gilbert (2011) reported total PAHs of 1410 ng 

g-1 dry weight. For both studies, sediment samples were collected directly in the field. Such 

variance may indicate patched contamination in field sediments and justify the high levels of 

PAHs encountered in control sediments. Another possible explanation for the differences 

between nominal and sediment concentration of PAHs, would be the rate PAHs are internalized 

and accumulated by the animals. Unfortunately, we did not conduct bioaccumulation analysis in 

animal tissues, which could have provided a hint in the results. Given the disagreement between 

nominal and actual PAHs concentration in the treatments, the biggest the change from control 

was expected to occur shortly after exposure (T1) regardless of the concentration treatment, 

with a putative recovery to normal control levels for the second sampling time.  

The rationale for using relative change from control values was to determine if these 

enzymatic measures could be employed as early signs and tools for monitoring diesel oil 
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contamination in the selected species, taking the behavior of control samples as the unexposed 

departure status. Most measured endpoints varied significantly between sampling times (36 h 

vs. 60 h after spiking sediments), even after standardizing treatment results with their respective 

control. This result indicates that the time scale at which biomarkers show significant variation is 

as short as 24 h and further highlights the need for reducing the sampling intervals after oil spills 

for impact assessment purposes. Moreover, the velocity in which the enzymatic response 

adjusts to the environmental conditions is species-specific, as observed for CAT values for A. 

flexuosa that showed a fast recovery, not evident for L. culveri. 

The overall pattern of the enzymatic response is also species dependent, indicating that 

none of the measured enzymes can be expected to respond in the same way (increasing or 

decreasing) for both species. In general, there was a reduction in the antioxidant capacity of L. 

culveri, whereas diesel exposure induced the activity of A. flexuosa enzymes. Acute sensitivity 

assessments showed that different taxonomic group and functional or feeding groups respond 

differently to contaminants (Brix et al. 2000). However, comparisons of biomarker response in 

various species belonging to different feeding guilds are still scarce. Brown et al. (2004) 

conducted a laboratory exposure to cooper using the omnivorous shore crab Carcinus maenas, 

the grazer limpet Patella vulgata and the filter-feeder mussel Mytilus edulis. Each species 

presented a different concentration threshold at which sublethal biomarker responses were 

significantly different from control. The authors attributed such variation in sensitivity to 

differences in the exposure route to cooper, also dependent on feeding mechanism of each 

species. Moreover, the mussel M. edulis, a common sentinel species, was found as the less 

sensitive of the tested species. The authors related the past result with a behavioral trait; M. 

edulis individuals avoided toxic exposure by remaining closed for most of the exposure (Brown 

et al. 2004).  

Different bioavailability of pollutants for both species may also explain the species-

specific biomarker responses. Bioavailability depends on partitioning properties of diesel oil 

between the sediment, pore water and overlying water (Di Toro et al. 1991; Gong et al. 2014). 

Clams are mostly exposed to the water-soluble fraction from diesel oil. Polychaetes as infaunal 

and detritivorous organisms are exposed to the fraction of diesel attached to the particulate 

matter. A. flexuosa as an intertidal species has a natural defense against the exposure, being 

able to close their valves for extended periods of time, which allows them to avoid, to a certain 

extent, the toxic effects diesel oil. 
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The conducted bioassay did not result in individual or mass mortality indicating that both 

species can stand short-term exposures to diesel oil. Nevertheless, the mean total PAHs 

concentration in the impacted samples exceeded the TEL and ERL, suggesting potential 

toxicological effects of chronic exposure. Under acute exposure, sublethal endpoints such as 

antioxidant enzymatic activities are considered as relevant indicators of PAHs pollution in marine 

organisms (Orbea et al. 2002; De Luca-Abbott et al. 2005; Sureda et al. 2011; Bebianno et al. 

2015). These ‘non-specific’ biomarkers have frequently been used for environmental monitoring 

assessments sometimes with results that are difficult to interpret (Vlahogianni et al., 2007; 

Valavanidis et al. 2006; Brooks et al. 2013; Nahrgang et al. 2013). The induction of antioxidant 

enzymes is suggested to be a response of exposed organisms, but the same antioxidants can 

be reduced if pollution levels are extreme (Regoli et al. 2011). Therefore, either increases or 

decreases in the enzymatic activity of antioxidant biomarkers can result from oxidative stress, 

with duration and intensity of the pro-oxidant stressor driving such opposite responses (Regoli et 

al. 2011). 

An in situ exposure to diesel oil at concentrations comparable to the ones used in the 

present study was conducted in Paranaguá Bay using L. culveri and A. flexuosa as study 

species (Sandrini-Neto et al. 2016). The comparison was made using exclusively the results 

from treatment 4d 250 mL 0.25 m-2 (Sandrini-Neto et al. 2016), which correspond to the same 

exposure concentration from C2 treatment. Our results for L. culveri were at least 3 times higher 

(approximate values for treatment 4d 250 mL 0.25 m-2: 250 U SOD mg prot-1) for SOD activity, 2 

times greater for GST and GPx activities (~25 µmol min-1 mg prot-1 and ~140 µmol min-1 mg prot-

1 respectively) and LPO levels up to 15 times higher (~1 nmol mg prot-1). On the other hand, 

CAT activity was similar to field and laboratory exposure (~13-15 µmol min-1 mg prot-1) (Sandrini-

Neto et al. 2016). 

Antioxidant biomarkers studies in the clam A. flexuosa are rare. Sandrini-Neto et al. 

(2016) also exposed this species under field conditions and reported lower values for all the 

measured endpoints. SOD, CAT and GPX activities under lab conditions were approximately 4, 

3 and 1.3 times higher than the values reported by Sandrini-Neto (SOD: 175 U SOD mg prot-1, 

CAT: 24 µmol min-1 mg prot-1, and GPx: 180 µmol min-1 mg prot-1). GST activity was slightly 

higher (~160 µmol min-1 mg prot-1) and LPO levels from our experiment were at least 16 times 

greater than those reported by Sandrini-Neto’s work. Summarizing, in all cases, except for CAT 

in L. culveri, the activity of enzymes was higher during lab versus field exposure. Such 

discrepancy between results from field and laboratory studies is expected given the many 
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mechanics and physical forces that favor the dilution and dispersion of diesel under field 

conditions; ultimately interfering with the exposure. 

L. culveri is tolerant to low oxygen levels, and often a numerically dominant species in 

organically enriched locations (Souza et al. 2013). High levels of basal antioxidant enzymes, 

such as that observed in CAT (see supplementary material), could be an adaptive response to 

this highly variable environment as also a response to the constant oxygenation employed 

during the bioassay. Nonetheless, additional exposure to pollutants, may in the long term 

overwhelm their redox homeostasis, as indicated by the 50% reduction in its activity for both 

concentration treatments and times of exposure.  

There was an evident induction in GST activity in L. culveri from T1 to T2 and a 

progressive increase regarding the concentration treatment. This increase indicates the 

elimination of xenobiotics and ROS by-products and corroborates the potential use of GST as a 

marker of PAH exposure. Similarly, GPx activity and LPO levels were significantly different 

between T1 and T2. There was an inverse relationship between GPx activity and the 

concentration of lipid hydroperoxides, suggesting that GPx is reducing lipid hydroperoxides to 

alcohol, with the concomitant oxidation of GSH to GSSG (Regoli et al. 2011).  

The constant levels of lipid peroxides in A. flexuosa indicated that the overall antioxidant 

response was not overwhelmed and that there was no oxidative lipid deterioration. Moreover, 

the induction of antioxidant defenses in response to increases in organic contamination could 

reverse lipid peroxidation, converting lipid hydroperoxides (LOOH) back to lipids and alcohol by 

the activities of GPx and GST enzymes (Regoli et al. 2011).  

Conclusions 

Our experimental design allowed for the assessment of the combined effects of diesel 

concentration and time after spiking diesel oil in experimental sediments. However, for most of 

the endpoints measured, the interaction of diesel concentration and time of exposure was not 

significant. Observed responses were primarily dependent on exposure time rather than to 

diesel concentration. This result is likely related to the small differences in measured PAHs 

between experimental replicates. CAT and GST enzymes activities responded towards diesel 

exposure in both species and; therefore, we recommend its use for future biomonitoring 

involving the two target species. Our results also shed light into biomarkers temporal variation 



	 15	

within an experimental laboratory exposure. However, it is still necessary to test biomarker 

responsiveness and temporal variability under field conditions. 

Our study is a first step to characterize two potential sentinel species and to validate the 

use of oxidative stress parameters as tools for monitoring oil impacts in tropical and subtropical 

regions. Both Laeonereis culveri and Anomalocardia flexuosa are suitable for impact 

assessment and monitoring. L. culveri should be prioritized since it showed clearer patterns in its 

antioxidant response. 
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Table 1. Concentrations of polycyclic aromatic hydrocarbons (PAHs), and related parameters 
from control and oil-exposed sediments. ΣPAHs, total polycyclic aromatic hydrocarbons (ng g−1 
dry weight); 2–3 rings, total PAHs with two to three aromatic rings (ng g−1 dry weight); 4–6 rings, 
total PAHs with four to six aromatic rings (ng g−1 dry weight). 
  

 
Control  

 

Low dosage 
spill (0.5 L m-2) 

 

High dosage 
spill (1 L m-2) 

  T1 T2   T1 T2   T1 T2 
Σ PAHs 1514.45 1324.83 

 
4950.12 5029.74 

 
5033.5 4738.24 

16 EPA PAHs 398.60 371.65 
 

1136.81 862.25 
 

903.78 663.97 
Alkyl-PAHs 1497.01 1306.58 

 
3793.30 4155.93 

 
4113.22 4043.17 

2-3 rings with alkylated 1115.85 952.66 
 

914.70 769.10 
 

723.97 495.25 
2-3 rings without 
alkylated 381.16 353.92 

 
4708.00 4925.03 

 
4837.19 4538.42 

4-6 rings 17.44 18.25   242.12 104.71   196.31 199.82 
 

 

 



 

Table 2. Permutational ANOVA for mean percentage change in activity from control 
of enzymatic activities and lipid peroxide levels after exposure to diesel oil. 
Abbreviations stand for df: degree of freedom; MS: mean squares; F: F-ratio; P: 
probability of F. 

 

    (i) Anomalocardia flexuosa   (ii) Laeonereis culveri 
  df MS F P   MS F P 

(a) SOD         
Concentration 1 370.79 0.35 0.72  619.23 2.26 0.17 
Time 1 45.78 0.04 0.94  104.66 0.38 0.55 
C x T 1 879.29 0.82 0.49  298.71 1.09 0.32 
Residual 8 1072.34    258.81   
         
(b) CAT         
Concentration 1 2002.60 2.56 0.16  98.886 0.38207 0.56 
Time 1 9994.70 12.77 <0.05   2.932 0.01133 0.92 
C x T 1 36.80 0.05 0.80  196.322 0.75855 0.41 
Residual 8 782.70    273.92   
         
(c) GPx         
Concentration 1 23.91 0.28 0.65  46.58 1.3058 0.26 
Time 1 33.80 0.40 0.58  912.48 25.5813 <0.01 
C x T 1 14.48 0.17 0.73  30.33 0.8504 0.37 
Residual 8 85.04    35.67   
         
(d) GST         
Concentration 1 168.70 0.91 0.37  400.13 1.3358 0.27 
Time 1 4010 21.72 <0.01  2147.59 7.1697 <0.05 
C x T 1 1229.60 6.66 <0.05   9.57 0.0319 0.88 
Residual 8 184.70    299.54   
         
(e) LPO         
Concentration 1 220.33 0.13 0.79  80 0.07 0.79 
Time 1 1676.35 0.98 0.39  31899 27.59 <0.01 
C x T 1 21.37 0.01 0.94  116 0.10 0.79 
Residual 8 1715.59       1156     
	



 

 

Figure 1. Percentage changes from control in activity of SOD, CAT, GPx and GST 
enzymes in Anomalocardia flexuosa, 36 h (T1) and 60 h (T2) after spiking sediment 
with diesel oil. Diesel oil concentration treatments were equivalent to 0.5 L m-2 (C1) 
and 1 L m-2 (C2) spills, respectively. Plots represent the mean in percentage change 
(n=3) plus standard errors.  A posteriori comparisons for time after exposure 
treatment are indicated with asterisks whereas letters indicate significant differences 
among combination of treatments (P < 0.05).  
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Figure 2. Percentage changes from control in activity of SOD, CAT, GPx and GST 
enzymes in Laeonereis culveri, 36 h (T1) and 60 h (T2) after spiking sediment with 
diesel oil. Diesel oil concentration treatments were equivalent to 0.5 L m-2 (C1) and 1 
L m-2 (C2) spills, respectively. Plots represent the mean in percentage change (n=3) 
plus standard errors. Asterisks indicate significant differences among times of 
exposure groups (p < 0.05). 
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Figure 3. Percentage changes from control in lipid peroxides from Anomalocardia 
flexuosa and Laeonereis culveri 36 h (T1) and 60 h (T2) after spiking sediment with 
diesel oil. Diesel oil concentration treatments were equivalent to 0.5 L m-2 (C1) and 1 
L m-2 (C2) spills, respectively. Plots represent the mean in percentage change (n=3) 
plus standard errors. Asterisks indicate significant differences among times of 
exposure groups (p <0.05). 
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Supplementary material 

TS1. Mean enzyme activity and standard deviation values for the clam species Anomalocardia flexuosa  and the nereid polychaete Laeonereis 
culvari obtained after spiking experimental sediments with diesel oil at two different concentrations equivalent to 0.5 L m-2 (C1) and 1 L m-2. T1, 
T2 and T2 correspond to 36h 60h and 84h post spiking sediments.  

Species Concentration 
treatment Time  SOD (U mg protein-1) CAT (µmol min-1 

mg protein-1) 
GPx (µmol min-1 
mg protein-1) 

GST (µmol min-1 
mg protein-1) 

LPO (nmol mg 
protein-1) 

Anomalocardia 
flexuosa 

CONTROL T1 657.54 ± 15.90 55.85 ± 16.70 278.11 ± 8.30 147.45 ± 15.10 18.11 ± 3.01 

 
T2 747.89 ± 18.43 62.80 ± 10.81 239.59 ± 6.67 159.70 ± 33.84 19.11 ± 7.21 

 
C1 T1 702.01 ± 126.43 80.12 ± 27.53 240.56 ± 21.04 202.13 ± 13.22 14.28 ± 4.87 

  
T2 955.72 ± 450.57 51.64 ± 15.75 210.02 ± 16.26 128.21 ± 21.50 19.08 ± 3.27 

 
C2 T1 741.48 ± 51.32 92.59 ± 2.89 242.30 ± 16.97 183.34 ± 17.00 15.35 ± 4.68 

  
T2 744.53 ± 113.24 70.06 ± 4.20 222.05 ± 33.85 172.52 ± 29.62 21.22 ± 13.75 

Laeonereis 
culveri 

CONTROL T1 889.69 ± 203.05 32.25 ± 12.56 260.36 ± 18.38 28.06 ± 1.15 32.21 ± 6.98 

 
T2 1228.11 ± 360.97 44.78 ± 23.30 320.75 ± 61.97 32.54 ± 11.36 7.84 ± 0.50 

 
C1 T1 703.85 ± 117.65 16.31 ± 2.99 268.30 ± 13.33 30.63 ± 4.01 24.03 ± 9.62 

 
  T2 1083.08 ± 155.02 24.47 ± 10.03 263.73 ± 26.55 44.82 ± 8.37 16.47 ± 7.15 

 
C2 T1 724.75 ± 225.25 14.89 ± 6.90 289.87 ± 34.98 34.38 ± 5.81 23.70 ± 6.63 

    T2 913.22 ± 95.18 13.56 ± 3.17 286.56 ± 22.27 47.99 ± 0.78 18.37 ± 5.81 
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