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1. Introduction21

The most effective mixing agency in neutral atmospheres is turbulence. Qualitatively,22

this process can be described as a random walk mediated by turbulent eddies [1].23

Turbulent transport in this sense is found also in laboratory plasma experiments, fusion24

related studies in particular [2]. In a number of cases it turns out, however, that25

the anomalous plasma losses across magnetic field lines are due to propagating large26

structures that appear randomly distributed in space and time [3]. In some cases these27

structures span large parts of the main plasma and appear as “streamers” [4, 5]. In other28

cases the structures are best described as individual “blobs” that can become detached29

from the main plasma and propagate towards the walls of the plasma confining vessel30

[6, 7, 8, 9, 10, 11, 12, 13, 14]. Such models were found useful also for modeling random31

plasma signals and probability densities [5].32

The properties of individual plasma blobs have been studied in detail by a33

combination of numerical and analytical models [15], often using some prescribed34

analytical spatial form, for instance an initial Gaussian shape that subsequently evolves35

in time. Analytical results, supported by numerical simulations predict, for instance, a36

“blob velocity” perpendicular to magnetic field lines. In the small density perturbation37

limit, ∆n/n ≪ 1, the velocity scaling is38

U ∼

√
Rb

∆n

n
, (1)39

where 2Rb is the filament or blob width in the direction perpendicular to the local40

magnetic field B. For large ∆n/n, the velocity saturates [6, 15] and becomes nearly41

independent of∆n/n. A summary for blob velocity models can be found in the literature42

[13]. The results from the present study can serve as a useful reference or test-case for43

other more elaborate models. Models of individual blob structures will in general be44

quite complicated, and a simple solvable model have some advantages for discussing45

basic properties. Such a model is suggested here by assuming a circular “top-hat”46

density variation of the plasma density, i.e. the plasma density is n0 inside a circular47

cross section and vanishes outside. With the steep gradients at the edges of the blobs48

in the present model we can not assume quasi-neutrality and the internal electric fields49

have to be determined from the charge separations. One feature of these top-hat models50

is to demonstrate that a scaling like (1) is model dependent, and thus not universal.51

Another feature of the present model is a limiting case where blobs move not with52

constant velocity, but constant acceleration in the major radius direction of the torus.53

The acceleration is found to be independent of the blob width perpendicular to the54

magnetic field, at least as long as this scale is much larger than the ion gyro radius,55

rLi. When Rb is comparable to rLi, the acceleration becomes smaller due to the spatial56

averaging [16, 17] of the electric fields associated with the blobs.57

The present study is organized as follows. In Section 2 we describe a simple model58

for polarization of a cylindrical form. For the assumed slow dynamics with variations59

on a time scale much larger than the ion gyro-time M/eB ≡ Ω−1

ci , where Ωci is the60
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ion gyro frequency, we have the dominant plasma polarization being due to the ion61

polarization drifts. The analysis assumes a toroidal geometry for the magnetic field. In62

this case the ions move across magnetic field lines due to curvature and magnetic gradient63

drifts [16]. The basic model allows a simple generalization to magnetized plasmas64

in gravitational fields as discussed in Section 3. Some straight forward extensions of65

these results are discussed in Section 4. The simplest model assumes that both the66

dominant electron and the ion motions are strictly perpendicular to the local magnetic67

field B. In Section 5.1 we relax this restriction on the electron dynamics and use a mixed68

plasma model analogous to what is known as the Hasegawa-Wakatani model [18], where69

the dominant ion motion remains perpendicular to B, but the electrons move along70

magnetic field lines, subject to a collisional drag, due to for instance collisions with a71

neutral background. Section 5.2 includes collisional friction in the ion dynamics. Finally,72

Section 7 contains our conclusions.73

2. A simple analytical model for blob polarization by ∇|B| drifts74

With the present model we include the spatial variation of the magnetic field. For a

toroidal geometry we find |B| = B0R0/R where R is the major radial position in the

torus and R0 is a reference position in the center of the toroidal cross section. For this

case we have |∇B| = B0R0/R2. In the vicinity of the central position R0, the ∇B ion

drift velocity averaged over a thermal particle population becomes

U∇B =
1

2

Mu2
thi

eB2
|∇B| =

1

2

Mu2
thi

eB0R0

,

with u2
thi = Ti/M being the ion thermal velocity. If we include also the curvature drift

for a particle population in thermal equilibrium [16] we find a simple modification of

this result to give

Ui =
3

2

Mu2
thi

eB2
|∇B| =

3

2

Mu2
thi

eB0R0

.

The corresponding expressions for the electron drifts are found be the replacements75

e → −e, M → m and Ti → Te. It can be demonstrated [16, 19] that the ∇B ion76

drift and the curvature drift velocities are in general additive for low-β plasmas where77

∇×B = 0.78

We consider a circular cross section of a blob-structure with a uniform density n0.79

The radius of the circular cross section turns out to be of minor importance for details in80

the analysis. We assume the space-time varying plasma density to be strictly toroidally81

aligned at all times. The ∇B-velocity caused by the inhomogeneous magnetic field is82

constant and in the ẑ-direction. The ∇B electron and ion drifts polarize the blob and83

the polarization charges give rise to an electric field E(r, t). In the moving frame of84

reference we have in addition to E an induced electric field due to the plasma motion85

across magnetic field lines. We take this additional field to be−Ui,e×B ≡ −dRi,e/dt×B,86

respectively for ions and electrons, as in ideal magneto hydrodynamics. Since the blobs87
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will be accelerated in general, the moving frame is in not always an inertial frame of88

reference, and the exact transformation will be more complicated.89

The basic equation of motion for the center-of-mass Ri(t) of the ion component is90

then91

d

dt
Ri(t) =

E(Ri(t), t)×B

B2
+

1

Ωci

d

dt

E(Ri(t), t)

B
+ Ui ẑ, (2)92

Through the ion cyclotron frequency Ωci, the ion mass appears explicitly due to inclusion93

of the ion polarization drift. A collisional drag on the ions was ignored here, to be94

discussed in the following Section 5.2.95

An expression similar to (2) for the electron dynamics becomes96

d

dt
Re(t) =

E(Re(t), t)×B

B2
− Ue ẑ . (3)97

In general we have |Ui| ≠ |Ue| because of different ion and electron temperatures. Note98

that the electric fields in (2) and (3) are to be obtained at Ri(t) and Re(t), respectively,99

so the two terms need not cancel at subtraction of the two expressions. The spatial100

variation of the magnetic field is included via the last terms in (2) and (3). It is an101

essential feature of the model that an initially circular contour will remain circular at102

all later times since Ui and Ue, as well as the E × B/B2 velocities are taken spatially103

constant inside the blob.104
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Figure 1. Schematic illustration of the polarization of a simple model here with a
circular cross section and uniform density. The ∇B direction as well as illustrative
ion and electron ∇B-drifts are shown for reference. The magnetic field vector points
into the plane of the figure. The z-axis is also the symmetry axis for the torus. The
magnetic field is here taken anti-parallel to the x-axis perpendicular to the plane of
the figure. The components of the vectors Ri,e are expressed in terms of coordinates
(R, z).

The electric field originates from time varying part induced by polarization of the105

plasma. With −e being the electron charge we find106

E = −
1

2

en0

ε0
∆, (4)107
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where ∆(t) ≡ Ri(t) − Re(t) where we will assume |∆| ≪ |Ri,e| as well as |∆| ≪ Rb.108

The vectors Ri, Re and ∆ are explained in Fig. 1. The magnitude of the displacement109

vector |∆| is assumed to be much smaller than R0.110

Surface charges are created when the electrons are displaced slightly with respect to

the ions. It is well known that these charges give rise to a constant electric field inside

the central lens-shaped part of the cross section, see Fig. 1, with the field direction

being along −∆. The factor 1/2 in (4) originates from the locally cylindrical geometry.

Throughout in the following we assume that |∆| ≪ Re,i. We introduce the blob radius

as Rb. The analytical variation for the electrostatic potential in the fixed frame for is

φ ∼ r sin θ or φ ∼ z in Cartesian coordinates, while outside the blob we have φ ∼ 1

r
sin θ

or φ ∼ z/(R2 + z2). Inside the “top-hat” blob we have a constant electric field. For the

electric field components outside the blob we have

ER ∼ −
R2 − z2

(R2 + z2)2
and Ez ∼

2Rz

(R2 + z2)2
,

in terms of the coordinates defined in Fig. 1. An illustration of the electric field vectors111

is given in Fig. 2.112

We can write the equation of motion for the ion center of mass as113

dRi(t)

dt
=

−
1

2
Ωci(εr − 1)∆(t)× b̂−

1

2
(εr − 1)

d∆(t)

dt
+ Ui ẑ , (5)

and for the electrons114

dRe(t)

dt
= −

1

2
Ωci(εr − 1)∆(t)× b̂− Ue ẑ (6)115

where electron polarization drifts are ignored. The relative dielectric plasma constant116

εr ≡ 1 + n0M/ε0B2 = 1 + (Ωpi/Ωci)2 was also introduced [20]. We introduced the ion117

plasma frequency so that Ω2
pi ≡ e2n0/(ε0M). The present analysis can be made identical118

to a single particle model because the plasma motion is adequately represented by the119

center-of-mass of the blob which can be accounted for by the motion of a single particle.120

This is a considerable simplification compared to a complete fluid model [19].121

The spatial variation of ϵr through the spatial variation of B is ignored by making122

a local analysis. The spatial variation of B enters only through the ∇B-drift. Due to123

the “top hat” model we have the plasma density to be constant inside the structure.124

Subtracting (2) and (3) we obtain an ordinary differential equation for ∆(t) =

Ri(t)−Re(t) in the form

d

dt
∆(t) =

Ui + Ue

1 +
1

2

n0M

ε0B2

ẑ ≡ 2
Ui + Ue

1 + εr
ẑ .

With the present simplified assumptions, the relative displacement of electrons and125

ions increases without limit, |∆(t)| → ∞, while the electric fields produced by the126
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separation accelerates the blob in the direction of the major radius of the torus. To127

find the acceleration of the bulk plasma-blob we use the average position Rp(t) ≡128

(Ri(t) +Re(t))/2. By adding (5) and (6) we have129

2
dRp

dt
= −Ωci(εr − 1)∆(t)× b̂+ (Ui − Ue) ẑ

−
1

2
(εr − 1)

d∆(t)

dt
, (7)

which ignores terms of the order of m/M by ignoring the electron polarization drift.130

By differentiation of (7) we find131

d2Rp

dt2
= Ωci(Ui + Ue)

εr − 1

εr + 1
R̂, (8)132

since d(Ui−Ue)/dt = 0 as well as d2∆/dt2 = 0, while ẑ× b̂ = −R̂ with z and R defined133

in Fig. 1. We have in particular134

lim
n0→∞

d2Rp

dt2
= Ωci(Ui + Ue) R̂ = const. (9)135

For large densities n0, i.e. Ωpi ≫ Ωci, we have εr ∼ n0. In the limiting case for large136

n0 we consequently find that d2Rp/dt2 is independent of blob density as indicated in137

(9). We have a linear scaling with plasma temperature Ti,e through Ui,e. Since Ui is138

independent of the ion mass, we have an inverse scaling of (9) with respect to M ; heavy139

ions experience a smaller acceleration than lighter ones. The blob is lost at a constant140

acceleration in the direction of the major radius, here the positive R̂-direction, see Fig. 1.141

This result accounts also for the well known lack of equilibrium for a simple magnetized142

toroidal plasma [16, 21, 22], since an entire toroidal plasma can also be considered as143

one large blob.144

For low density plasmas, with ϵr → 1 so that (εr − 1)/(εr + 1) ≈ 1

2
(εr − 1), we find145

d2Rp/dt2 ≈
1

2
Ω2

pi(Ui +Ue)R̂/Ωci which scales as ∼ n0T , being independent of ion mass.146

Lower density blobs are lost at a slower rate than those with high density. A qualitative147

argument then gives that the cross section of a blob with inhomogeneous density (as,148

for instance, a two dimensional Gaussian used elsewhere [15]), with density large in the149

center and decreasing outwards, will be deformed to a cross-section with a horse-shoe150

shape [20] as it expands by being accelerated in the direction of the major radius of the151

toroid, here the R̂-direction.152

While the blob moves in the positive R-direction (i.e. the direction of decreasing153

magnetic field) also its average density decreases since the net integrated plasma in the154

cylindrical volume is conserved. The radius in the “dough-nut” increases while its small155

radius is constant so n ∼ 1/R just like B ∼ 1/R. This density variation is small for156

relevant cases, but it is easy to account for as long as we at any time can take the density157

to be constant in a cross section.158

The simple model assumed a circular plasma cross section with uniform density.159

The spatial toroidal magnetic field variation was included by retaining a ∇B-drift of160

ions and electrons, assuming the magnetic field to be constant otherwise. The model161
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is self-consistent since a circular plasma column with uniform density will retain its162

circular cross-section for a spatially constant ∇B-drift velocity.163

The ∇B-drift polarizes the blob and induces an m = 1 mode on the potential164

variation. This is a basic mode of perturbation, originating from the fact that the165

plasma does not have a simple steady state toroidal equilibrium [21]. The corresponding166

homogeneous electric field variation has the direction −∆(t). Within this simple model,167

the electrostatic potential fluctuations within the plasma blob are in phase for all R-168

positions and fixed z, see Figs. 1 and 2.169
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Figure 2. Illustration of the electric fields and equi-potential lines for the simple
polarized top-hat model in the fixed laboratory frame shown in a). The dashed circle
gives the boundary of the top-hat blob density variation. The blob radius is here
Rb = 1. In b) we show the flow lines in a co-moving frame of reference, assuming here
the local magnetic field to be homogeneous so that the E×B/B2-flow in incompressible.
Positions R are measured here with respect to the reference position R0.

In some toroidal experiments inward propagating density depletions have been170

observed [12]. Such phenomena can quantitatively also be accounted for by a171

generalization of the foregoing model. We here thus assume the density depletion to172

have a top-hat form with depth n1 in a plasma background of density n0 ≥ n1. Many173

results can be found by simple generalization of those from the previous subsection by174

introducing a negative density perturbation associated with the blob.175

3. Applications to plasmas in gravitational fields176

The foregoing results can be applied for plasmas near equator, where the gravitational177

field is approximately perpendicular to the magnetic fields. The magnetic field can here178

be taken homogeneous, but the gravitational field gives a polarization very much like179

the ∇B-drift in the foregoing analysis. With g ⊥ B being the gravitational acceleration,180

we have Ui = Mg×B/(qB2). The results for the present problem can then be obtained181

by using Ui = g/Ωci, while Ue ≈ 0 because of the smallness of the gravitational force182

on electrons. The expression for the acceleration becomes particularly simple [20] in183
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the limit of high density where ϵr ∼ n0, i.e. d2Rp/dt2 = Ωci(Ui + Ue)ĝ = g by use of184

(9) for the present conditions with the direction of gravity replacing the ∇B-direction.185

A plasma blob at high density in a gravitational field will drop like a brick when it is186

infinitely elongated along a homogeneous horizontal magnetic field. The acceleration187

becomes gradually smaller as the density is decreased, and ultimately as n0 → 0 we find188

an electron-ion pair drifting in opposite directions due to their respective g ×B-drifts.189

Solar coronal loops or solar prominences can be kept floating by the gradient in190

magnetic pressure that results from the curvature of the magnetic fields [16]. This191

pressure force counteracts gravity. The plasma drifts caused by gravity and ∇B-drifts192

balance each other, at least partially. When the magnetic field lines are bent, the plasma193

can flow in the vertical direction along B under the influence of gravity, and other effects194

can have a role here [23]. The magnetic curvature affects both electrons and ions as195

long as their temperatures are comparable, while gravity acts mostly on the heavy ion196

component. An approximate balance can be argued when Mg/(eB) ≈ Ui + Ue ≈ 2Ui197

with M being an average ion mass and Ui being the ion ∇B-drift. We again estimate198

|∇B| ≈ B/Rc with Rc here being the local radius of curvature of the magnetic field199

lines [16], and g ≈ GM⊙/R2
⊙ with G = 6.67× 10−11 Nm2 kg−2 being the gravitational200

constant, M⊙ ≈ 1.99 × 1030 kg being the solar mass and R⊙ ≈ 6.96 × 108 m being201

the average solar radius. An approximate balance giving equilibrium between gravity202

and magnetic gradient drifts is then found by (G/e)MM⊙/(BR2
⊙) ≈ T/(eBRc), or203

Rc ≈ TR2
⊙/(GMM⊙) with T being an average plasma temperature. The result is204

independent of the magnetic field and the plasma density. With typical parameters we205

find as an order of magnitude the balance for Rc ≈ 106−107 m≪ R⊙. Smaller curvature206

radii gives a strong magnetic pressure gradient that erupts the protuberance, while for207

larger curvature radii the magnetic field pressure gradient can no longer support the208

plasma blob against gravity. Gradients in plasma temperature are not considered here,209

but in order to have an effect, their scale lengths must be comparable to the blob210

diameter.211

For application for the Earth’s ionosphere in the equatorial region we can consider212

a different formulation of the present problem. Here the vertical motion of “bubbles” is213

frequently observed [24]. The fluctuations in plasma density can be seen as depletions214

or “bite-outs” of the background plasma density in a horizontal magnetic flux tube. The215

bubbles are here the saturated stage of the Rayleigh-Taylor instability excited in the216

bottom region of the equatorial ionosphere [25]. We can model such a density depletion217

by assigning a negative density −n0 to the blob in our expressions, where it is then218

implicitly assumed that surrounding background plasma has a density exceeding n0.219

Consequently we find in our case a constant vertical acceleration of the bubbles towards220

higher altitudes. This acceleration will be reduced by viscosity and the drag due to221

collisions between plasma particles and neutrals.222



A solvable blob-model 9

4. Extensions of the model223

The model has some generalizations, the simplest one consisting of an approximation to224

a continuous distribution by use of several “steps” in density as illustrated in Fig. 3, here225

with only two steps. The motion of the individual layers can be attributed to basically226

two effects. One is the self-induced motion that depends on the density enhancement.227

This effect has been discussed already. It implies that the largest density blob moves228

fastest, the other successively slower as also illustrated in Fig. 3. The other effect is229

due to the distortion of the selected level by all the other density levels. We illustrate230

this latter case here. As a first approximation we can let the lowest density part in231

Fig. 3 with radius Rb = 1.5 be passively convected by the velocity field induced by the232

inner higher density core, here with radius Rb = 1, with the velocity vectors as shown in233

Fig. 2b). One immediate observation from this simple calculation is the steepening of234

the plasma density gradient at the stagnation point in agreement with previous results235

[15].236

Figure 3. Schematic illustration of blob-density distributions composed of several
“steps” in density, here shown for 2 steps. The figure to the left is the initial condition,
which with time distorts to the right in the limit where the interaction between the
two density levels is ignored and each one propagates by its own induced polarization
field.

5. Modifications of the ion and electron dynamics237

The foregoing basic discussion assumed the bulk motion of both electrons and ions to238

be in the direction perpendicular to the magnetic field. For plasmas with a toroidal239

magnetic transform, the model needs to be amended. While the equation for the low240

frequency ion dynamics can be assumed to be relatively general, the corresponding241

expression for the electrons is restrictive by not including the effect of electrons moving242

along the magnetic field lines due to a small vertical B-field component. To simplify243

the analysis we use a locally cylindrical model where the magnetic field has a small244

vertical component, which allows for a vertical component of the electron motion that245

to counteracts the ∇B-drift. The polarization charges that give the electric field along246

the ∆-direction are then reduced.247
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5.1. Effects of a small vertical magnetic field component248

The first modification of the basic model assumes that the electric field along the tilted249

magnetic field lines is constant and given as Eb = Ez sin θ ≡ E· ẑ sin θ ≈ E· ẑ θ where θ is250

the angle between the toroid axis (the x-axis in Fig. 1) and the slightly tilted magnetic251

field vector B. The present model can be seen as a local representation for a toroidal252

transform of the magnetic field. We allowed for the possibility that E need not be253

strictly along ẑ. By the present model we in effect assume the electron collisional mean254

free path to be smaller than the length scale of one turn in the toroidal transform. To255

describe the electron motion with collisions we can then use256

0 ≈ −Te

∂n

∂s
− neEb − nmνUeb, (10)257

where s is the coordinate along the tilted magnetic field lines, and the subscript b258

specifies electric field and electron fluid velocity components along B. We introduced ν259

as an electron collision frequency and Te as a constant electron temperature. Electron260

inertia has been ignored due to the smallness of the electron mass m,261

5.1.1. Boltzmann distributed electrons The simplest case where the electrons flow freely262

(i.e. with ν ≈ 0 in (10)) to maintain an isothermal Boltzmann equilibrium that gives263

n/n0 ≈ eφ/Te with n0 being some reference density. This limit corresponds to the264

one used for deriving the Hasegawa-Mima equation [26]. For the top-hat model we265

will have a constant potential inside the circular contour confining the blob and the266

electric field vanishes there. At the edge of the structure we find a radial electric field267

which in this case gives rise to an E × B/B2-rotation of a thin surface layer. The net268

blob displacement will be solely due to the ion ∇B-drift in this limit. The assumption269

of Boltzmann distributed electrons ignores electron inertia. Retaining a non-vanishing270

electron mass will give a short delay which allows for a weak vertical electric field to271

develop inside the structure. For realistic applications of the analysis, the effects of272

electron inertia are found to be immaterial.273

5.1.2. Constant electron mobility A non-vanishing collision frequency ν in (10) gives274

rise to a delay that resembles the effects of electron inertia, although it contributes275

with a different phase in the time variation. Within the top-hat model we have the276

plasma density to be constant and find Ueb ≈ −eEb/(νm) giving Uez ≈ Ueb sin θ ≈277

−(e/νm)Eb sin θ ≈ −(e/νm)Ez θ2 = −(e/νm)E · ẑ θ2 corresponding to a motion with278

constant electron mobility. For weak collisionality, small ν, we have Uez to be the279

dominant electron velocity having a vertical component in the ẑ-direction: even though280

θ is small, this velocity component can be large due to the smallness of ν. This velocity281

is now assumed to dominate the ∇B electron drift in the ẑ-direction.282

The electron equation of motion becomes283

d

dt
Re(t) =

E(Re(t), t)×B

B2
−

e

νm
E(Re(t), t) · ẑ θ

2 ẑ, (11)284
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instead of (3). We still have E = −1

2
(en0/ε0)∆, giving285

d

dt
Re(t) = −

1

2

en0

ε0B2
∆×B+

1

2

e2n0

ε0mν
∆ · ẑ θ2 ẑ. (12)286

For the ion dynamics we ignore collisions and have the previous result287

d

dt
Ri(t) = −

1

2

en0

ε0B2
∆×B−

1

2

en0

ε0BΩci

d∆

dt
+ Ui ẑ. (13)288

We have for ∆(t) ≡ Ri(t)−Re(t) the first order differential equation289

(
1 +

1

2

Ω2
pi

Ω2
ci

)
d∆

dt
= −

1

2

ω2
pe

ν
θ2 (∆ · ẑ)ẑ+ Ui ẑ. (14)290

Taking the scalar product ẑ· of all terms we readily find

1

2
(1 + ϵr)

d(∆ · ẑ)

dt
= −

1

2

ω2
pe

ν
θ2 (∆ · ẑ) + Ui,

which has simple solutions with Ui constant. Making a local model, we take also Ω2
pi291

and Ω2
ci to be constant. The solution is then292

∆ · ẑ = 2
Uiν

θ2ω2
pe

+ C1 exp

(
−

t

1 + ϵr

ω2
pe

ν
θ2
)
, (15)293

with C1 being an integration constant. The result demonstrates that the component294

of the polarization ∆ in the ẑ-direction eventually reaches a constant level due to the295

short-circuiting effect of electron motion along magnetic field lines. Inserting (14) into296

(15) we find that ∆ itself approaches a constant value. The characteristic time for297

reaching this saturated stage is is ν(1 + ϵr)ω−2
pe θ

−2 which varies with density but not298

with plasma temperature. The interesting feature is here that the saturation time is299

not determined solely by ν.300

For Rp(t) ≡
1

2
(Ri(t) +Re(t)) we find

d

dt
Rp(t) = −

en0

2ε0B2
∆×B−

1

2

en0

ε0BΩci

d∆

dt
+

1

4

e2n0

ε0mν
θ2 (∆ · ẑ) ẑ+

Ui

2
ẑ,

where we insert the solution found for ∆(t). The two last terms sum up to Uiẑ in the301

limit of large t. The term with d∆/dt vanishes in the same limit. For large t, the first302

term on the right hand side becomes Ui(Ωpi/Ωci)2θ−2(ν/ω2
pe)R̂. The blob will perform303

an oblique orbit in the (x, y)-plane in this limit. With ∆(t) asymptotically constant,304

the blob will move with constant velocity as t → ∞, i.e. without acceleration in contrast305

to the case where electron motion along magnetic field lines is ignored. The asymptotic306

velocity depends critically on the angle θ. Note that the assumption (10) is invalidated307

when θ → 0, so this limit can not be applied in (15).308

If we initiate a plasma blob that is strictly charge neutral (i.e. not merely quasi309

neutral [16]) with ∆ = 0, the ion polarization via Ui will induce an electric field in the310

blob and set it into motion. Its velocity will increase until it reaches an asymptotic level311

given before.312
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5.2. Ion friction through neutral collisions313

Another extension of the model is found by including also ion neutral collisions with314

frequency νi. In this case we modify the ion dynamics by rewriting (13) to include a315

collisional friction in the analytical form316

d2

dt2
Ri(t) = −

1

2

en0

ε0B2

d∆

dt
×B−

1

2

en0

ε0BΩci

d2∆

dt2
− νi

d

dt
Ri(t). (16)317

With Ri = ∆+Re we have318

d2

dt2
∆(t) +

d2

dt2
Re(t) = −

1

2

en0

ε0B2

d∆

dt
×B

−
1

2

en0

ε0BΩci

d2∆

dt2
− νi

d

dt
∆(t)− νi

d

dt
Re(t), (17)

where we insert dRe(t)/dt from (12) to find319

1

2
(1 + εr)

d2

dt2
∆(t) +

1

2

e2n0

ε0mν

d∆ · ẑ

dt
θ2 ẑ =

−νi
d

dt
∆(t) +

1

2

νien0

ε0B2
∆×B−

1

2

e2n0νi
ε0mν

∆ · ẑ θ2 ẑ. (18)

A stationary asymptotic solution for ∆ is found if and only if320

1

B
∆×B =

ωce

ν
(∆ · ẑ) θ2 ẑ. (19)321

This result imposes ∆×B ∥ ẑ and thereby ∆ ∥ R̂ also for θ ̸= 0. It is then readily seen322

that (19) has no solution for any vector ∆ ̸= 0. The asymptotic stationary solution323

where ∆ = 0 means that the blob reaches “halt”. By (16) we argue that a characteristic324

time for arresting the blob motion is ν−1

i . The expression (18) can be separated into325

vector components and solved in detail to give the entire time variation of ∆(t). The326

present result deserves scrutiny in light of experimental observations where the blob327

velocity seems only weakly affected by ion-neutral collisions [11].328

If we initiate a plasma blob that is strictly charge neutral, ∆(t = 0) = 0 with329

the additional constraint d∆/dt|t=0 = 0, it will remain so and there will be no net330

displacement of the blob. The present analysis retains a “top-hat” model even with ion-331

neutral collisions included. In reality, collisional diffusion will smear out this idealized332

density variation with time.333

6. Consequences of compressible flows334

The analysis so far uses the approximation ∇ · (E×B/B2) ≈ 0 for electrostatic335

conditions. This remains correct as long as we can assume B ≈ constant, as in Fig. 2b).336

Concerning the ∇B ×B-drift we used the standard approximation of a magnetic field337

varying linearly with the radial variable as B = {0, 0, B0(R0)/(1 + R/R0)} where R0338

is a reference position at the center of the circular cross section of the torus, with339

R/R0 here being a small quantity, the direction of R explained in Fig. 1. With this340

approximation the intensity of the magnetic field is spatially varying, but we let the341
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direction be constant. Allowing for spatial variations of the magnetic field we can342

modify the uE×B = E×B/B2-velocities in the previous sections by taking343

uE×B ≈
E×B0

B2
0

(
1 +

R

R0

)
. (20)344

Within the present model we have ∇ · uE×B = E×B0 · R̂/(R0B2
0) ≈ E/(R0B0) which345

will be useful later on. Note that ∇ ·uE×B is here the same in a fixed or a moving frame346

of reference.347

6.1. Isolated blobs348

With the approximation (20) we have slightly different velocities of the high and low349

magnetic field-sides of the blob with initially circular cross section. At later times the350

blob will obtain an elliptic cross section with a major axis that increases linearly with351

time. The minor axis will remain constant. The density n0 in the initial “top-hat” will352

decrease with time but remain spatially constant inside the ellipse in such a way that353

n0(t) multiplied with the area of the ellipse remains constant in time. As the ellipse354

becomes elongated the factor 1/2 in (4) is changed and in the limit of a very long ellipse355

we have 1/2 → 1 as appropriate for a slab geometry. This effect tends to increase E. On356

the other hand the decreasing density n0 compensates this effect and we have uE×B to357

remain approximately constant. If the initial density n0(0) is sufficiently large to allow358

the saturation approximation εr ≡ 1 + n0(0)M/ε0B2
0 ≈ n0(0)M/ε0B2

0 we can assume359

the approximation to remain valid for some time and the change in plasma density360

inside the elliptical contour has only little consequence, having in mind also that the361

blob will arrive at the wall of the confining plasma vessel in a relatively short time. For362

small initial plasma densities in the blob the conclusion has to be modified, and the363

density variation will here have comparatively smaller effect meaning that the increase364

in electric field (4) will be somewhat more important. We can conclude that for an365

isolated blob, the consequences of compressible flows due to spatially varying magnetic366

fields will generally be of little consequence.367

6.2. Blobs embedded in a plasma background368

For a blob propagating in a plasma background the changes in the flow velocities induced369

by the blob in the surrounding plasma need to be accounted for. If the background370

is initially homogeneous, then a moving blob will induce compressible motions and371

density perturbations in its surroundings. Taking Figs. 2a) and 2b) as reference we372

note that the E × B/B2-velocities induced in the surrounding plasma by the blob at373

R > R0 will be larger than at R0, while at the symmetric position for R < R0 the374

velocity will be smaller. Starting with an initially homogeneous plasma we have from375

the plasma continuity equation ∂n/∂t ≈ −n∇·uE×B ≈ −nE/(R0B0) ∼ −nE/B0. Since376

n > 0 always, the sign of the rate of change in the plasma density as induced by the377

compressible flow around the blob is then given solely by the sign of −E/B0. With378
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reference to Fig. 2 (where B0 < 0) we expect a density depletion to form along the R379

axis, while the plasma density will be enhanced on the top and bottom sides (measured380

along the z-direction) of the plasma blob.381

7. Conclusions382

In the present study we analyzed a simple but solvable blob-model. The model has383

a number of basic results. For the strictly magnetic field aligned plasma blob, where384

both the ion and electron bulk motion is perpendicular to B, we find a constant radial385

acceleration of the blob, in the major radius direction of a toroid. The value acceleration386

reaches a constant level as the plasma density is increased to have Ωpi ≫ Ωci. For387

reduced densities the acceleration is correspondingly reduced. The model assumes that388

the blob radius Rb is much larger than the ion Larmor radius rLi. For smaller Rb, the389

finite ion Larmor radius effects will average the spatial variations of the electric fields390

and thereby reduce the blob acceleration [27, 28]. As an order of magnitude estimate391

[16, 17] we can account for this effect by introducing a reduction factor (1− r2Li/R
2
b) on392

the electric fields and thereby on the velocity. Formally, the model allows for large spatial393

separations of the electron and ion components. This unphysical limit will however have394

little practical consequence since it gives very large E×B/B2-velocities, and the plasma395

will be rapidly lost to the confining walls of the plasma.396

We illustrated how electron motion along magnetic field lines will partially short-397

circuit the polarization electric fields to give an asymptotically constant blob velocity398

which scales as ∼ νT , where the temperature T scaling originates from Ui. Since εr399

disappears from the asymptotic result, there is here no dependence on the plasma density400

associated with the blob.401

The basic simplification of the model lies in an assumption of a constant density402

in the cross section. It is feasible to make an approximation to a multiple top-hat403

density distribution, with density “steps” in the cross section of the blob. For numerical404

modeling this approach has an advantage that it suffices to follow a small number of405

contours rather than the entire plasma density variation. In studies of neutral flows406

this approach was advantageous [29]. In that case, however, the tracer material was407

passively convected, while in the present plasma equivalent of the problem the contours408

are mutually interacting through the collective electric fields. The general analysis409

has elements in common with studies of “MHD-droplets”, but these more general410

cases include also viscous drags from the surrounding fluid [30]. An enhancement in411

plasma density, or an isolated localized blob of plasma, can propagate due to induced412

electric fields caused by charge separations generated by particle drifts. Similarly we413

can describe a localized depletion in an otherwise uniform plasma by a very similar414

analysis. Such cases have relevance for instance in modeling of Rayleigh-Taylor bubbles415

in the equatorial ionosphere [24, 25]. Blob propagation for conditions where we have416

electron and ion drifts perpendicular to the magnetic field in collisional parts of the417

lower ionosphere have interesting properties [31], but these problems are not considered418
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here.419

The analysis presented in this work deals with isolated blobs, possibly embedded420

in a background plasma. Two close blobs can interact presumably the same way as421

convective cells [32]. The spatial variations of the flow distributions shown in Fig. 2 can422

be used as a guide for this process.423
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