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Abstract
For high accuracy applications of integral operators in higher dimensions the
complexity of operation and storage usually grows exponentially with dimen-
sions. One method that has proven successful for handling these difficulties
are the separation of the integral kernels as linear combinations of products of
one-dimensional kernels, commonly referred to as separation of variables. In
this thesis we optimize the existing separable forms of the Poisson and com-
plex Helmholtz kernels used in the program package MRCPP. We then find a
new separable representation of the (non-complex) Helmholtz kernel.
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1
Introduction
MRChem [1] is a numerical real-space code for molecular electronic structure

calculations within the self-consistent field (SCF) approximations of quantum

chemistry. The code is built upon the MultiResolution Computation Program

Package (MRCPP), which is a general purpose numerical mathematics library

based on multiresolution analysis and the multiwavelet basis which provide

low-scaling algorithms as well as rigorous error control in numerical compu-

tations.

The work in this thesis contributes to the separable operator representations

required in the MRCPP library, where we optimize the already existing sepa-

rable representations of the Poisson and complex Helmholtz integral kernels,

and suggest a new separable representation of the (non-complex) Helmholtz

kernel.

1



2 CHAPTER 1 INTRODUCT ION

1.1 The Kohn-Sham equations
In the Kohn-Sham [2] formulation of Density Functional Theory [3], the

many-particle wave function of quantum mechanics is replaced by a set of

one-particle orbitalsψi interacting through the Kohn-Sham effective potential

Ve f f . The orbitals are obtained as solutions to a set of coupled eigenvalue

equations (
−
1
2
∇2 +Ve f f (x)

)
ψi(x) = ϵiψi(x) (1.1)

where the eigenvalues ϵi < 0 are often referred to as orbital energies. For a

closed-shell (spin unpolarized)molecule we assume double occupancy, and the

N electrons of the system are assigned to the N /2 orbitals of lowest energy.

From this the electronic charge distribution ρ is given by the Kohn-Sham

orbitals as

ρ(x) = 2
N /2∑
i

��ψi(x)��2 (1.2)

The effective potential is a collection of the three terms

Ve f f (x) = Vnuc(x) +Vel (x) +Vxc(x) (1.3)

The nuclear potential Vnuc accounts for the electrostatic attraction between

the electrons and the nuclei, given by the classical expression

Vnuc(x) = −
Nnuc∑
I=1

ZI

|x − xI |
(1.4)

where ZI and xI are the charges and positions of the nuclei. The electronic

potential Vel is the classical repulsion between the electrons, and is related to

the electronic charge distribution through the Poisson equation

−∇2Vel (x) = 4πρ(x) (1.5)

Finally, the exchange-correlation (XC) potential Vxc is the term that accounts

for all non-classical quantum effects. In principle, the exact XC potential
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would make the Kohn-Sham equations (1.1) equivalent to the many-particle

Schrödinger equation, and the Kohn-Sham electronic density would be the

exact (non-relativistic) density. However, the exact form of the XC potential

is not known, but a large number of approximate XC energy functionals

are available, with variable level of complexity and both with and without

empirical parameters [4].

1.2 Multiwavelets
Alpert’s[5] construction of the multiwavelet basis set can be understood by

the following argument. Starting with a small set of polynomials {ϕi}ki=0 of

order ≤ k on the unit interval, we attempt to represent a given function. If

this basis turns out to give a poor representation we increase the order k of

the basis, and as the order goes to infinity we reach a complete basis for the

interval, and thus an exact representation of the function. In multiresolution

analysis instead we keep a fixed finite order of the polynomials. Now, if this

turns out to give a poor representation of the function, we split the interval

into two subintervals, and double the number of basis functions by dilating

and translating the original basis into the two subintervals. This process is

continued recursively until we have an accurate representation of the function.

An adaptive representation of a function can be obtained if we are satisfied

with the function representation in one of the subintervals, but not the other.

In this case we continue the refinement only where it is necessary, based on

some local accuracy requirement, which ensures that the computational effort

is focussed in regions where the function is rapidly changing.

As shown by Alpert, this construction fits into the theory of wavelets, which

means that the basis has several desireable properties, like efficient represen-

tation of smooth functions, rigorous error control and sparse representations

of certain kinds of integral operators.

A potential problem with this basis set construction is the discontinuities that
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arise at the boundaries between different boxes. These lead to high-frequency

numerical noise that increase when differential operators are applied. For

instance, if we apply the one-dimensinal Laplacian to a functionwith numerical

noise of order ϵ and frequency k

∇2(f (x) + ϵeikx ) = ∇2 f (x) − k2ϵeikx (1.6)

we see how the differential operators enhances the numerical noise by a factor

k2, leading to large numerical errors for high frequencies. On the other hand,

let us consider the inverse Laplacian in one dimension

∇−2(f (x) + ϵeikx ) = ∇−2 f (x) − ϵ

k2
eikx (1.7)

In this case the inverse operator dampens the numerical noise, so that very

high accuracy can be maintained. This means that we should seek integral

formulations of the Kohn-Sham (1.1) and Poisson (1.5) equations, which can

be done if we have the corresponding integral kernels.

For the Poisson equation (1.5), it is simply a matter of inverting the differential

operator

−∇2Vel (x) = 4πρ(x) (1.8)

Vel (x) = 4πP[ρ](x) (1.9)

while the Kohn-Sham equations (1.1) must first be reorganized(
−
1
2
∇2 +Ve f f (x)

)
ψi(x) = ϵiψi(x) (1.10)

�
−∇2 − 2ϵi

�
ψi(x) = −2Ve f f (x) (1.11)

−
�
∇2 − µ2i

�
ψi(x) = −2Ve f f (x) (1.12)

ψi(x) = −2H µi
c

�
Ve f fψi

� (x) (1.13)

where H µ
c is the complex Helmholtz operator and µi =

√
−2ϵi are real num-

bers, assuming negative orbital energies. However, in certain applications this

assumption does not hold. For instance, when computing electric properties
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as a molecule’s response to an external electric field perturbation, we need to

invert the following operator

�
−∇2 − 2(ϵi + ω)�д(x) = f (x) (1.14)

where ω is the frequency of the perturbing field. For low frequencies we can

still use the complex Helmholtz operator as defined above, but whenever the

orbital energy and the frequency add up to a positive number, we are dealing

with the (non-complex) Helmholtz equation

−
�
∇2 + µ2i

�
д(x) = f (x) (1.15)

д(x) = H µi [f ] (x) (1.16)

This means that we need representations of the Poisson (P), Helmholtz (H µ)

and complex Helmholtz (H µ
c ) integral kernels in the multiwavelet basis. In

most cases the matrix representation of such integral operators will be dense,

leading to slow algorithms. However, by the non-standard (NS) form of mul-

tiresolution operators presented by Beylkin [6], these kinds of integral op-

erators will have sparse representations in the multiwavelets basis, yielding

fast algorithms that scales linearly with the system size. Unfortunately, the

straightforward generalization of the NS form to multiple dimensions is too

expensive both in application and storage. This again is solved by writing

the integral kernels as linear combinations of products of one-dimensional

kernels:

K(x, y) ≈ K̃(x, y) def
=

M∑
k=1

d∏
p=1

Kk
p (xp,yp) (1.17)

By this the storage requirements for the integral operator in a polynomial

basis of order k is reduced from

O((k + 1)2d)→ O(M(k + 1)2) (1.18)

while the complexity of applying the operator goes from

O((k + 1)2d)→ O(dM(k + 1)d+1) (1.19)
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In (1.17) an exact equality is often not necessary as floating point arithmetic

has finite precision. Wewill seek to bound the pointwise errore(x)where

e(x) def
= sup

y

�����
K(x, y) − K̃(x, y)

K(x, y)
�����
< ϵs (1.20)

The number of termsM = Mϵs in equation (1.17) is called the separation rank

of K and will depend on ϵs . In order to get efficient algorithms for operator

applications, M should be as small as possible.

In this thesis we are concerned with two main problems:

1. Reduce the separation rank of the already existing separable represen-

tation of the Poisson and complex Helmholtz kernels.

2. Find a separable representation of the (non-complex) Helmholtz kernel.

The rest of the thesis is divided into 5 chapters:

• In chapter 2 we derive the complexity of directly applying an operator

in multirsolution analysis (MRA) and how the complexity is reduced for

separable operators.

• In chapter 3 we derive the analytic expressons for the Poisson, complex

Helmholtz and Helmholtz kernels.

• In chatper 4 we write the Poisson and complex Helmholtz kernels in

terms of integrals with superexponentially decaying integrands. We then

propose an algorithm designed to find the optimal quadrature range for

integrating integrands that decay superexponentially. We then compare

our results for the quadrature range of the schemes used in MRChem

for the Poisson and compelx Helmholtz kernel.

• In chapter 5 we begin with look at how Beylkin did fast convolutions

with the Helmholtz kernel. We then suggest a new separable form of

the Helmholtz Kernel.
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• In chapter 6 we finish the thesis with a short discussion of our results,

we then suggest some future work.





2
Operator projection in MRA
In this chapter do we derive the complexity of direcly applyting an operator

in multiresolution analysis (MRA) and how the complexity is reduced for

separable operators.

We begin by defining a one-dimensional orthonormal MRA, then expand it

to multiple dimensions as a tensor product. We then give an introduction to

function and operator projection onto an orthonormal MRA basis.

2.1 Orthonormal multiresolution analysis (MRA)
A multiresolution analysis of L2([0, 1]) is an infinite nested sequence of sub-

spaces

V 0
k ⊂ V 1

k ⊂ ... ⊂ V n
k ⊂ ... ⊂ L2([0, 1]) (2.1)

with the following properties:

9
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1.
⋃∞

n=0 is dense in L2([0, 1])

2. f (x) ∈ V n
k
⇐⇒ f (2x) ∈ V n+1

k
, ∀n ∈ N

3. f (x) ∈ V n
k
⇐⇒ f (x − 2−nl) ∈ V n

k
∀n ∈ N, 0 ≤ l ≤ 2n − 1

4. There exists a function vector Φ in L2([0, 1]) of length k + 1 such that

the vector components ϕi forms a basis for V 0
k

This means that ifΦ spans a basis inV 0
k
, containing a finite number of functions

(k + 1).¹ By property 2 and 3 a basis for V n
k
can be constructed from the basis

Φ of V 0
k

ϕni,l
def
= 2n/2ϕi(2nx − 1) =

2n−1∑
m=0

k∑
j=0

H (m)
j,i ϕ

n−1
j,m (x) (2.2)

where H (m) are the filter matrices that describe the transformation between

basis functions in the different spaces V n
k
. The MRA is called orthonormal

if

〈ϕni,l ,ϕnl ,m〉 = δi,jδl ,m (2.3)

This orthonormality condition implies that the basis functionsϕn
i,l
are orthonor-

mal both within one function vector and through all possible translations on

one scale, but not through different scales. HenceforthwhenMRA is mentioned

its orthonormality is implied.

In figure 2.1, we see an illustration of how the line [0, 1] is refined into finer

scales. In the figure the grid refinement is uniform, however this is not a

requirement.

1. The number k is often referred to as the order of the basis.
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Figure 2.1: One-dimensional uniform grid refinement

2.1.1 MRA by tensor products
Now we expand the MRA into multiple dimensions and define the space V n,d

k

in terms of a tensor product

V n,d
k

def
=

d⊗
V n
k (2.4)

where the spaces V n
k
are defined as multiresolution spaces. The basis for this

d-dimensional space is given as tensor products of the one-dimensional basis

functions

Φn
j,l

def
=

d∏
p=1

ϕnjp ,lp (xp) (2.5)

with 0 ≤ lp ≤ k and 0 < lp < 2n − 1.

The number of basis functions on each hypercube l = (l1, l2, ..., ld) is (k + 1)d ,
while the number of such hypercubes on scale n becomes 2nd , which means

the number of basis functions are growing exponentially with the number of

dimensions.

In figure 2.2 we see an example of an adaptive grid refinement in three

dimensions. This means that basis functions are only projected deeper in

places where higher accuracy is required.
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Figure 2.2: Three-dimensional adaptive grid refinement
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2.2 Function representation
The multi-dimensional function representation is obtained by projecting f (x)
onto the multi-dimensional basis Φn

j,l (2.5) that span the space V n,d
k

f (x) ≈ f n(x) =
∑
l

∑
j

s
n,f
j,l Φ

n
j,l(x) (2.6)

where the sums are over all possible translation vectors l = (l1, l2, ..., lp, ..., ld)
for 0 ≤ lp ≤ 2n − 1, and all possible basis function combinations j =

(j1, j2, ..., jp, ..., jd) for 0 ≤ jp ≤ k. The expansion coefficients sn,fj,l are ob-

tained by the integral

s
n,f
j,l =

∫
f (x)Φn

j,l dx (2.7)

The accuracy of f n(x) is determined by the scale n of which the projection is

performed, as well as the order k of the basis.

2.3 Operator representation
In this section we describe how to project and apply an integral operator

(kernel) in an MRA basis. First by directly projecting the full 2d-dimensional

operator, then we project an operator that can be separated into d two-

dimensional contributions. Then we discuss the complexity of these operations

and compare the efficiency.

2.3.1 Direct application of multi-dimensional integral operators
An integral operator T in d dimensions is defined by its kernel K(x, y),

[T f ](x) =
∫

K(x, y)f (y) dy (2.8)

We expand the kernel K(x, y) in the 2d-dimensional MRA basis

K(x, y) ≈ Kn(x, y) =
∑
l,m

∑
i,j

�
τnlm

�
ij Φ

n
i,l(x)Φn

j,m(y) (2.9)
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where the expansion coefficients are given by equation (2.7):

�
τnlm

�
ij =

∫ ∫
K(x, y)Φn

i,l(x)Φn
j,m(y) dx dy (2.10)

Inserting (2.9) into (2.8) then yields

[T f ]n(x) =
∫

*.
,

∑
l,m

∑
i,j

[τnlm]ijΦn
i,l(x)Φn

j,m(y)+/
-
f (y) dy (2.11)

=
∑
l,m

∑
i,j

[τnlm]ijΦn
i,l(x)

∫
Φn
j,m(y)f (y) dy (2.12)

where we recognize the rightmost integral as the expansion coefficients sn,fj,m

from (2.7). Then the operation [T f ]n(x) in d dimensions is found to be

[T f ]n(x) =
∑
l,m

∑
i,j

[τnlm]ijΦn
i,l(x)sn,fj,m (2.13)

Let us now consider the complexity of this operation. The summation over l

and m amounts to a prefactor C(l,m) dependent on the scale of refinement

and dimension. For a uniform grid refinement this factor would be 2n for each

summation index, e.i. 22dn in total, wheren is refinement level. However, it has

been shown that this prefactor can be significantly reduced for appropriately

chosen basis sets (multiwavelets in combination with non-standard form of

operators) [6], so we omit it in the discussion of complexity here. We see that

the number of operations of applying an operator to a function f in an MRA

basis is determined by the summation
∑

j,i, where we sum over all possible

combinations of j = (j1, j2, ..., jp, ...jd) for 0 ≤ jp ≤ k and i = (i1, i2, ..., ip, ...id)
for 0 ≤ ip ≤ k, yielding a complexity of

O((k + 1)2d) (2.14)

We see that the complexity of applying an operator grows with a powerd. This

is an example of something commonly dubbed as the curse of dimensionality,

meaning the operations needed to perform an algorithm increases with a

power per dimension.
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2.3.2 Separable kernels projected onto an MRA basis
Above we saw how the number of operations needed to apply an integral

operator was increased with a power d for each dimension. Here we discuss

the complexity of applying operators that can bewritten in terms of a separable

product.

We begin by defining a separable approximation to the kernel

K(x, y) ≈ K̃(x, y) =
M∑
κ=1

d∏
p=1

Kκ
p (xp,yp) (2.15)

where K̃(x, y) is an appropriately² accurate representation ofK(x, y).Kκ
p (xp,yp)

is the operator kernel in the p-th coordinate, andM is the so-called separation

rank of the kernel K̃ . An exact equality is often not necessary as floating point

arithmetic has finite precision. We will take a closer look at such approxima-

tions in chapter 4.

The advantage of a separable representation of the operator is that convolu-

tions can be applied separately in each direction for functions represented in

a tensor product basis. In the following we discuss this in detail.

Let

[T f ](x) =
∫

K(x, y)f (y) dy (2.16)

be an integral operator. We approximate this by

[T̃ f ](x) =
M∑
κ=1

∫ d∏
p=1

Kκ
p (xp,yp)f (y) dy (2.17)

Next, we project f (y) onto the MRA basis, then insert f n(y) into equation

2. Piecewise relative error, specified by the user depending on the accuracy sought in the

final result.
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(2.17)

[T̃ f ](x) =
M∑
κ=1

∫ d∏
p=1

Kκ
p (xp,yp)

∑
m

∑
j

s
n,f
j,mΦ

n
j,m(y) dy (2.18)

=

M∑
κ=1

∑
m

∑
j

s
n,f
j,m

∫ d∏
p=1

Kκ
p (xp,yp)Φn

j,m(y) dy (2.19)

Writing out the basis Φn
j,m(y) = ϕnj1,m1

(y1) · ϕnj2,m2
(y2) · ... · ϕnjd ,md

(yd), and
rearranging the integrals, this takes the form

[T̃ f ](x) =
M∑
κ=1

∑
m

∑
j

s
n,f
j,m

(
∫

Kκ
1 (x1,y1)ϕnj1,m1

(y1) dy1∫
Kκ
2 (x2,y2)ϕnj2,m2

(y2) dy2 ... (2.20)

...

∫
Kκ
p (xp,yp)ϕnjp ,mp

(yp) dyp ...

...

∫
Kκ
d (xd ,yd)ϕnjd ,md

(yd) dyd
)

Now we take a closer look at the factor∫
Kκ
p (xp,yp)ϕnjp ,mp

(yp) dyp (2.21)

and then project Kκ
p (xp,yp) onto the MRA basis, we get

Kκ,n
p (xp,yp) =

∑
l ,l ′

∑
i,i ′

[τκ,n
l ,l ′

]ii ′ϕni,l (xp)ϕni ′,l ′(yp) (2.22)

where the expansion coefficients [τκ,n
l ,l ′

]ii ′ are given by equation (2.10). Inserting
(2.22) into equation (2.21) yields∫ ∑

l ,l ′

∑
i,i ′

[τκ,n
l ,l ′

]ii ′ϕni,l (xp)ϕni ′,l ′(yp)ϕnjp ,mp
(yp) dyp (2.23)

=
∑
l ,l ′

∑
i,i ′

[τκ,n
l ,l ′

]ii ′ϕni,l (xp)
∫

ϕni ′,l ′(yp)ϕnjp ,mp
(yp) dyp (2.24)
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By the MRA orthonormality condition (2.3)∫

ϕni ′,l ′(yp)ϕnjp ,mp
(yp) dyp = δi ′,jpδl ′,mp (2.25)

we have ∫
Kκ
p (xp,yp)ϕnjp ,mp

(yp) dyp =
∑
l ,mp

∑
i,jp

[τκ,n
l ,mp

]ijpϕni,l (xp) (2.26)

Using this, we again look at equation (2.20) for [T̃ f ](x), which simpifies

to

[T̃ f ](x) =
M∑
κ=1

2n−1∑
l=1

k∑
i=0

∑
m

∑
j

s
n,f
j,m

d∏
p=1

[τκ,n
l ,mp

]pi,jpϕni,l (xp) (2.27)

Now let us consider the complexity of this operation. Again, the summation

over l andm amounts to a prefactor that we omit in the following discussion.

We see that the summation
∑

j is to be taken over all possible basis function

combinations j = (j1, j2, ..., jp, ...jd) for 0 ≤ jp ≤ k. Giving rise to (k + 1)d
operations. Then all of this is summed by

∑k
i=0 and

∑M
κ=1, adding to the

complexity by a factor (k +1) andM , respectively, and the product
∏d

p=1 adds

on a factor d.

Thus, the final number of operations adds up to

O(dM(k + 1)d+1) (2.28)

Clearly, this is not a cure of the curse of dimensionality, however, it makes

computations in three dimensions much more manageable. We see that for a

sufficiently small separation rankM , the complexity from applying the integral

operator is greatly reduced from that of the direct approach.





3
Analytic representations of
the free space Poisson,
complex Helmholtz and
Helmholtz kernel
In this chapterwe derive analytic expressions to the free space Poisson, complex

Helmholtz and Helmholtz kernels. We follow the apprach by [7] to find the

fundamental solutions to the Lapace equation (homogenous Poisson equation),

expanding it to yield the fundamental solutions for the complex and non-

complex Helmholtz equation. We then require the fundamental solution to

have a specific behaviour at boundary, namely zero at infinity. Hence, the

fundamental solutions are then the free-space integral kernels of the Poisson,

complex Helmholtz and Helmholtz equation.

19
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3.1 Green’s identity
For u,v ∈ C2(Ω̄) we have Green’s identity [7]

∫
Ω
v∇2u dx =

∫
Ω
u∇2v dx +

∫
∂Ω

(
v
du
dn
− u

dv
dn

)
dS (3.1)

where d
dn indicates differentiation in the direction of the exterior normal to

∂Ω.

For v = 1 this identity takes the form

∫
Ω
∇2u dx =

∫
∂Ω

du
dn

dS (3.2)

It is easy to see that this also holds true for ∇2 + c, where c is some constant.

Thus Green’s (3.1) identity can be extended to the in general form

∫
Ω
vL′u dx =

∫
Ω
uLv dx +

∫
∂Ω

(
v
du
dn
− u

dv
dn

)
dS (3.3)

and

∫
Ω
L′u dx =

∫
∂Ω

du
dn

dS (3.4)

where L′ = ∇2 + c.

3.2 Free-space kernels
We begin with considering the problem
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L′u(x) = 0 (3.5)

u(x) = 0 on ∂Ω (3.6)

where u(x) is of class C2 in Ω and

L′L = ∇
2 Laplace Operator (3.7)

L′cH = ∇
2 − µ2 Complex Helmholtz Operator (3.8)

L′H = ∇
2 + µ2 Helmholtz Operator (3.9)

µ is a constant greater than zero.

For the Laplace, complex Helmholtz and Helmholtz operators this equation

is perserved under rotations about a point y, see Appendix B. This makes

it plausible that there exist special solutions v(x) of (3.5) that are invariant

under rotations about y, that is have the same value at all points x at the same

distance from y. Such solutions would be of the form

v(x) = K(r ) (3.10)

where

r = |x − y| (3.11)

we are then lead to the ordinary differential equation

L′K(r ) = 0 (3.12)

K(r ) = 0 as r → ∞ (3.13)
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or written out explicitly for each case

K′′L (r ) +
2
r
K′L(r ) = 0 (3.14)

K′′cH (r ) +
2
r
K′cH (r ) − µ2KcH (r ) = 0 (3.15)

K′′H (r ) +
2
r
K′H (r ) + µ2KH (r ) = 0 (3.16)

A solution of (3.14) and its derivative is found to be,

KL(r ) = C

r
(3.17)

d
dr

KL(r ) = −C
r2

(3.18)

and we recognize equations (3.15) - (3.16) as the special form of the Bessel

differential discussed in Appendix A, where we found (A.27) and (A.18) to

be a solution to (3.15) and (3.16), respectively. For the complex Helmholtz

equation we get

KcH±(r ) = C
e±µr

r
(3.19)

d
dr

K′cH±(r ) = −C
(1
r
∓ µ

) e±µr
r

(3.20)

We see that KcH+ does not vanish at infinity, condition (3.13). This permits us

to only considerKcH− , and to drop the ± notation. For the Helmholtz equation,

we get
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KH±(r ) = C
e±iµr

r
(3.21)

d
dr

K′H±(r ) = −C
(1
r
∓ iµ

) e±iµr
r

(3.22)

Now if we insert this into the identity (3.3), and because of the singularity

at r = 0 we cut out from Ω a ball B(y, ρ) contained in Ω with center y,

radius ρ, and boundary S(y, ρ). The remaining region Ωp = Ω−B(y, ρ). Since
L′v = L′K = 0 in Ωp we have

∫
Ωp

L′u dx =
∫
∂Ω

(
v
du
dn
− u

dv
dn

)
dS +

∫
S(y,ρ)

(
v
du
dn
− u

dv
dn

)
dS (3.23)

Here on S(y, ρ) the exterior normal to our region Ωp points towards y. Conse-

quently

v = K(ρ) (3.24)
dv
dn
= −K′(ρ) (3.25)

hence,

∫
S(y,ρ)

v
du
dn

dS = K(ρ)
∫
S(y,ρ)

du
dn

dS = −K(ρ)
∫
B(y,ρ)

L′u dx (3.26)

the last step in (3.26) is carried out by using (3.4)∫
S(y,ρ)

u
dv
dn

dS = −K′(ρ)
∫
S(y,ρ)

u dS (3.27)
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Noting both u and L′u is continuous at y, we consider what happens when ρ

goes to zero. We begin with considering the right hand side of (3.26) for each

of the cases, where we use that the integral of a continuous function over an

infinitely small surface is equal to the function value in the point, times the

area of the surface, and we get

lim
ρ→0

[
−K(ρ)

∫
B(y,ρ)

L′u dx

]
=




lim
ρ→0

[
−
C

ρ

∫
B(y,ρ)

L′u dx

]
= 0

lim
ρ→0

[
−C

e−µρ

ρ

∫
B(y,ρ)

L′u dx

]
= 0

lim
ρ→0

[
−C

e±iµρ

ρ

∫
B(y,ρ)

L′u dx

]
= 0

(3.28)

and for (3.27) we use how the integral of a continuous function over an infinitely

small volume is equal to the function value at the point, times the area, and

we get

lim
ρ→0

[
−K′(ρ)

∫
S(y,ρ)

u dS

]
=




lim
ρ→0

[
C

ρ2

∫
S(y,ρ)

u ds

]
= u(y)4πC

lim
ρ→0

[
C

(
1
ρ
+ µ

)
e−µρ

ρ

∫
S(y,ρ)

u dS

]
= u(y)4πC

lim
ρ→0

[
C

(
∓iµ +

1
ρ

)
e±iµρ

ρ

∫
S(y,ρ)

u dS

]
= u(y)4πC

(3.29)

We have now found that equation (3.23) becomes

∫
Ω
vL′u dx =

∫
∂Ω

(
v
du
dn
− u

dv
dn

)
dS − 4πCu(y) (3.30)

as ρ goes to zero.
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Now if we choose C = 1

4π , then K(r ) takes the form

KL(r ) = 1
4πr

(3.31)

KcH (r ) = e−µr

4πr
(3.32)

KH±(r ) =
e±iµr

4πr
(3.33)

Next write the corresponding dependence on x and y as

v = K(x, y) = K(r ) = K(|x − y|) (3.34)

Then (3.30) becomes

u(y) =
∫
Ω
K(x, y)(−L′)u dx +

∫
∂Ω

(
K(x, y)du(x)

dnx
− u(x)dK(x, y)

dnx

)
dSx

(3.35)

for y ∈ Ω, where the subscript x in Sx and dnx indicates the variable of

integration and differentiation, respectively.

Since both u(x) and K(x, y) vanish at ∂Ω (see equation (3.6)), the last term

in equation (3.35) vanish, giving us
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u(y) =
∫
Ω
K(x, y)(−L′)u dx (3.36)

now defining the operator L

L
def
= −L′ (3.37)

equation (3.36) takes the form

u(y) =
∫
Ω
K(x, y)Lu dx (3.38)

We look at (3.38) for a test function ϕ ∈ C∞0 (Ω) then by integration by parts

we find

ϕ(y) =
∫

K(x, y)Lϕ(x) dx =
∫

(LK(x, y))ϕ(x) dx (3.39)

meaning LK(x, y) defines a distribution for which

LK[ϕ] = ϕ(y) (3.40)

or put in otherwordsLK(x, y) defines the Dirac delta function with singularity
at y.

LK(x, y) def
= δy(x) (3.41)
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3.3 Fundamental solution to the Poisson, complex

Helmholtz and Helmholtz equation
The problem we need the fundamental solution for in this thesis is the inho-

mogeneous Laplace equation (henceforth referred to as the Poisson equation),

complex Helmhotz and the Helmholtz equation. In this section will we see

how K(x, y) is a fundamental solution to these equations.

Consider

Lu(x) = ρ(x) (3.42)

u(x) = 0 on ∂Ω (3.43)

Here we check if

u(y) =
∫

K(x, y)ρ(x) dx (3.44)

is a solution to the system (3.42) - (3.43).

We do this by applying the operatorLy taken with respect to y on (3.44).

Lyu(y) = Ly

∫
K(x, y)ρ(x) dx (3.45)

=

∫
LyK(|x − y|)ρ(x) dx (3.46)

=

∫
(LxK(|y − x|))ρ(x) dx (3.47)

=

∫
δy(x)ρ(x) dx = u(y) (3.48)
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which implies (3.44) is a solution. Thus K(x, y) as found in (3.31), (3.32)

and (3.33) is fundamental solutions to the Poisson, complex Helmholtz and

Helmholtz equation.

3.3.1 Sommerfeld radiation condition
We still have the ± notation for the fundamental solution of the Helmholtz

equation. We get a unique solution by applying the Sommerfeld radiation

condition [8]. Which in short states that sources of energy cannot be sinks

absorbing energy. It is given symbolically as

lim
r→∞

r

(
dK(r )
dr

− iµK(r )
)
= 0 (3.49)

imposing this on KH±

lim
r→∞

r

(
dKH+

dr
− iµKH+

)
= lim

r→∞

1
4π

(
iµ − iµ −

1
r

)
eiµr = 0 (3.50)

and

lim
r→∞

r

(
dKH−

dr
− iµKH−

)
= lim

r→∞

1
4π

(
−2iµ −

1
r

)
e−iµr = −

i

2π
µ (3.51)

from this we see thatKH− does not satisfy the Sommerfeld condition, excluding

it as a fundamental solution. Now since KH+ is the only solution of interest,

we drop the ± notation.

3.4 Summary
Now let us write P = KL, H

µ
c = KcH and H µ = KH . Then set Ω = R3. We then

have the free space kernels
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P(r ) = 1
4πr

(3.52)

H
µ
c (r ) = e−µr

4πr
(3.53)

H µ(r ) = eiµr

4πr
(3.54)

These will in the rest of the thesis be used to measure the accuracy of our

approixmations to the free-space Poisson, complex Helmholtz and Helmholtz

kernels.





4
Separable representations of
the Poisson and complex
Helmholtz kernels
In chapter 2 did we see how the complexity of applying an operator kernel

K(x, y) in d dimensions went fromO((k+1)2d) toO(dM(k+1)d+1), where k is

the polynomial order of the basis, d is the dimension and M is the separation

rank of the operator.

We begin the chapter by writing the free space Poisson and complex Helmholtz

kernels in terms of integrals with separable superexponentially decaying inte-

grands. The advantages of these forms are that the integrand dies superexpo-

nentially at both ends of the quadrature range so the equispaced quadrature

range converges geometrically, and the required resolution is only weakly

dependent on r .

31
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We will then propose an algorithm designed to find the optimal quadrature

range for integrating integrands that decay superexponentially. We then com-

pare our results for the quadrature range of the schemes used in MRChem

[9] for the Poisson and complex Helmholtz kernel.

4.1 Separable form of the Poisson kernel
In this section we go through the steps involved in expressing the three-

dimensional Poisson kernel in terms of an integral over a superexponentially

decaying Gaussian integrand. This form was first presented in [11] and was

later used in [9], where its effective and accurate nature is displayed.

We begin by considering the problem

−∇2P(x) = δy(x) (4.1)

P(x) = 0 on ∂Ω (4.2)

Next, on taking the Fourier transform of (4.1) we get

k2P̂(k) = 1 (4.3)

where

|k| = *
,

3∑
i=1

k2i
+
-

1/2

(4.4)

Now if we divide the equation by k2 we see that P̂(k) can be written in terms

of the integral

P̂(k) = 1
k2
=

∫ ∞

0
e−k

2τ dτ (4.5)

Taking the inverse Fourier transform of (4.5) using F −1[e−k2i τ ] = e−
x2i
4τ

2
√
πτ
, we

find that the Poisson kernel can be written in terms of the integral

P(x) = 1

8π 3/2

∫ ∞

0+

e−
r2
4τ

τ 3/2
dτ (4.6)
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where r =

�∑3
i=1(xi − yi)2

�1/2
. Following this we write P(r ) = P(x). Now if

we choose τ = 1
8t2 , the integral takes the form

P(r ) = 1

π 3/2

∫ ∞

0
e−4r

2t2 dt (4.7)

We are now at the starting point of the derivation in [11, 9]. We continue with

the substitution t = log(1 + eu) − u and notice the limits

lim
u→∞

log(1 + eu) − u = lim
u→∞

log(exp[log(1 + eu) − u]) (4.8)

= lim
u→∞

log
�
1 + e−u

�
= 0 (4.9)

and

lim
u→−∞

log(1 + eu) − u = ∞ (4.10)

Equation (4.7) then takes the form

P(r ) = 1

π 3/2

∫ ∞

−∞

e−4r
2(log(1+eu )−u)2

1 + eu
du (4.11)

Finally, we substitute u = − sinh(w), obtaining the form

P(r ) = 1

π 3/2

∫ ∞

−∞

cosh(w)
1 + e− sinh(w)e

−4r2(log(1+e− sinh(w ))+sinh(w))2 dw (4.12)

yielding superexponential decay of the integrand asw goes to plus and minus

infinity

e2r
2

2π 3/2
ew−r

2e2w for w → ∞ (4.13)

e2r
2

2π 3/2
e−w−

1
2e
−w

for w → −∞ (4.14)

4.2 Separable form of the complex Helmholtz kernel
In this section we go through the steps involved in expressing the complex

Helmholtz kernel in the Gaussian form found in [10]. Starting from the
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differential form

−
�
∇2 − µ2

�
Hc(x) = δy(x) (4.15)

Hc(x) = 0 on ∂Ω (4.16)

we take the Fourier transform of eq. (4.15)

�
k2 + µ2

�
Ĥc(k) = 1 (4.17)

where

|k| = *
,

3∑
i=1

k2i
+
-

1/2

(4.18)

If we further divide equation (4.17) by k2+µ2 we see that Ĥc(k) can be written

in terms of the integral

Ĥc(k) = 1
k2 + µ2

=

∫ ∞

0
e−(k2+µ2)τ dτ (4.19)

Now taking the inverse Fourier transform of (4.19) using F −1[e−k2i τ ] = e−
x2i
4τ

2
√
πτ
,

we find

Hc(x) = 1

8π 3/2

∫ ∞

0+

e−
r2
4τ −µ

2τ

τ 3/2
dτ (4.20)

where r =
�∑3

i=1(xi − yi)2
�1/2

. Following this we write Hc(r ) = Hc(x).

Hc(r ) = 1

8π 3/2

∫ ∞

0+

e−
r2
4τ −µ

2τ

τ 3/2
dτ (4.21)

Now if we choose τ = 1
4t2 the integral takes the form

Hc(r ) = 1

2π 3/2

∫ ∞

0+
e
−r2t2−

µ2

4t2 dt (4.22)

Finally, we get the form presented in [10] through the substitution t =

e2w

1

2π 3/2

∫ ∞

−∞

e−r
2e2w−

µ2

4 e−2w+w dw (4.23)
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Yielding superexponential decay of the integrand asw goes to plus and minus

infinity

2π 3/2e−r
2e2w+w for w → ∞ (4.24)

2π 3/2e−
µ2

4 e−2w+w for w → −∞ (4.25)

4.3 Truncation error of integrals with
superexponentially decaying integrands

Frediani [9] and Harrison [10] evaluates the integrals (4.12) and (4.44) by an

equispaced quadrature rule¹∫ ∞

−∞

f (w) dw ≈ h
∞∑

k=−∞

f (wk) (4.26)

which in turn is truncated as

h
∞∑

k=−∞

f (wk) ≈ h
M∑
k=1

f (wk) (4.27)

In this section we present a method that gives crude estimates to the residues

R due to the truncation of the infinite sum (4.27)

Consider the integral ∫ ∞

−∞

f (w) dw (4.28)

where f (w) is a superexponentially decaying integrand. We evaluate this

integral by the sum

h
∞∑

k=−∞

f (wk) ≈ h
M∑
k=1

f (wk) (4.29)

1. An equispaced quadrature means a constant step-size between each point evaluated,

wi+1 = wi + h.
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To estimate the truncation errors

Rupper = h
∞∑

k=M+1

f (wk) (4.30)

Rlower = h
0∑

k=−∞

f (wk) (4.31)

we consider the ratios

νupper =
f (wM+1)
f (wM+2) (4.32)

νlower =
f (w−2)
f (w−1) (4.33)

Since f (w) decays superexponentially, these ratios will decrease exponentially
as w increases and decreases, respectively. Then by the sum for an infinite

geometric series can we find an upper bound to the truncation error as

Rupper < δupper =
�����
hf (wM+1)
1 − νupper

�����
(4.34)

Rlower < δlower =
�����
hf (w−1)
1 − νlower

�����
(4.35)

Since the ratios ν decay exponentially this is a rather crude estimate for the

upper bound. However, as we will see, these estimates prove effective when

we attempt to determine w1 and wM in the discretization of the integrals for

the Poisson (4.12) and complex Helmholtz (4.44) kernels.

4.4 Numerical experiments with the Poisson kernel
In this sectionwe approximate the Poisson kernel in the area r ∈ [rmin, rmax ] for
a given error bound ϵs . Using the estimates for the truncation error displayed

in 4.3 we develop algorithms designed to find an optimal separation rank

M (algorithms 1 and 2), by the equispaced quadrature used in [9]. We then

compare our results with the well established algorithm used in MRChem

(algorithms 3 and 4).
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4.4.1 New algorithms for limits of integration
We aim to approximate the Poisson kernel in the area r ∈ [rmin, rmax ]. We

begin by rescaling into the area r ′ ∈
�
r ′0, 1

�
where r ′0 =

rmin
rmax

, and reintroduce

the Poisson kernel in its integral form

P(r ′) = 1

π 3/2

∫ ∞

−∞

cosh(w)
1 + e− sinh(w)e

−4r ′2(log(1+e− sinh(w ))+sinh(w))2 dw (4.36)

where the integrand takes the asymptotic forms

e2r
′2

2π 3/2
ew−r

′2e2w for w → ∞ (4.37)

e2r
′2

2π 3/2
e−w−

1
2e
−w

for w → −∞ (4.38)

To determine the upper limit of integrationwM , we see that the superexponen-

tial decay in (4.37) is the least prominent for the smallest value of r ′, namely

r ′0.

e2r
′2
0

2π 3/2
ew−r

′2
0 e2w ≥

e2r
′2

2π 3/2
ew−r

′2e2w (4.39)

so to select the upper limit wM for all r ′ ∈
�
r ′0, 1

�
, we do it for r ′ = r ′0 and

it will hold for all r ′. To compute it we start with some guess for the value

wM , then increase it until we have a sufficiently small estimate δupper of the

residue (4.35). We determine δupper empirically as

δupper =




104

4πr ′0
ϵs for ϵs ≤ 10−5

102

4πr ′0
ϵs for ϵs > 10−5

(4.40)

The procedure is displayed in the following algorithm.
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Algorithm 1 Determination of upper limit of integration for (4.11)

as discussed in this thesis
procedure UpperLimit(r0,δ ,h)

wM = Re(log
(
− log(δ )

r ′20

)
/2)/2

i = 0

while
exp(−r20e2(w0+(i+1)h)+(w0+(i+1)h))
(1− exp(−r20 e2(w0+(i+2)h)+(w0+(i+2)h))

exp(−r20 e2(w0+(i+1)h)+(w0+(i+1)h))
> ±δ do

i = i + 1

end while

wM = wM + ih

return wM

end procedure

Similarly for w0 we look at the integrand (4.38) and note that this has its

largest value for r ′ = 1

e2

2π 3/2
e−w−

1
2e
−w
≥

e2r
2

2π 3/2
e−w−

1
2e
−w

(4.41)

so to select the lower limit w0 for all r ′ ∈ [r0, 1] it is sufficient to find it for

r ′ = 1 and it will hold for all r ′. To compute this we start with some guess

for the value w0, then decrease it until we have a sufficiently small estimate

δlower of the residue (4.34). This is empirically determined to be

δlower = ϵs (4.42)

The procedure is displayed in the following algorithm.
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Algorithm 2 Determination of lower limit of integration for (4.11)

as discussed in this thesis
procedure LowerLimit(r0,δ ,h)

w0 = wM

i = 0

while w0 > 0 do

i = i + 1

w0 = w0 − ih

end while

while
exp(−(w0−(i+1)h)− 1

2e
−(w0−(i+1)h))

1−
exp(−(w0−(i+2)h)− 12 e−(w0−(i+2)h))
exp(−(w0−(i+1)h)− 12 e−(w0−(i+1)h))

> ±δ do

i = i + 1

end while

w0 = w0 − ih

return w0

end procedure

4.4.2 MRChem scheme for limits of integration
In the following algorithms we present the schemes for determining the lower

and upper limits of integration as it is implemented in the MRChem program.

The plan for creating this algorithm has been lost in time. The methods is

presented here for benchmark reasons only. And are displayed in the following

algorithms.
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Algorithm 3 Determination of upper limit of integration for (4.11)

as implemented in MRChem

procedure UpperLimit(ϵs ,r0)

T = 1

while
√
Te−T /r0 > ϵs do

T = 1.1T

end while

wM = log
�
T /r20

�
/2

return wM

end procedure

Algorithm 4 Determination of lower limit of integration for (4.11)

as implemented in MRChem

procedure LowerLimit(ϵs)

T = 1

while 2Te−T > ϵs do

T = 1.1T

end while

w0 = − log(2T )
return w0

end procedure

Remark. It may be noted that the same separation rank is found if the ending

condition for the lower limit is set as "integrand less than ϵs ", and the upper limit

is set as "integrand is less than ϵs 1
4πr ′0

". In algorithms 1 and 2 respectfully.

4.4.3 Results
For the numerical experimentation shown here. The area we are trying to find

accurate representations are set to |x| ∈ [rmin, rmax ]. We fix set rmax =
√
3.

This choice is motivated by the fact that we require expansions to be valid

within the three-dimensional interval [0, 1]3, thus the longest possible distance
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between two points are

√
3. For the experiments shown here we use the step-

size h presented in [10].

h =
1

0.2 − 0.47 log10(ϵs) (4.43)

In Table 4.1 and in Figure 4.1 we see that there is not much to be gained from

the new implementation of the Poisson kernel. The reason for this is simply

that the original algorithm is already well optimized.

In Figures 4.2 and 4.3 we see examples of the relative pointwise error eϵs ,r ,

for the MRChem scheme and the new scheme presented here. When it comes

to the spikes we see in Figures 4.2 and 4.3 for large r , where the error is not

within the requested bounds, has been shown in the supplementary material

of [9] not to influence the final precision of the result².

In Figure 4.4 do we outline the reason for the slight reduction in separation

rank. While the old scheme overshoots a bit on the minimum threshold, we

hit it perfectly.

rmin ϵs Mold Mnew di f f erence

1 × 10−4 1 × 10−6 47 44 3

1 × 10−4 1 × 10−8 62 60 2

1 × 10−4 1 × 10−12 94 91 3

1 × 10−6 1 × 10−6 61 58 3

1 × 10−6 1 × 10−8 81 78 3

1 × 10−6 1 × 10−12 121 119 2

Table 4.1: Separation rank for MRChem scheme (Mold ) and thesis scheme (Mnew ),

for the Poisson kernel. With corresponding difference Mold −Mnew

2. Convolutions with the kernel
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Figure 4.1: The log10 of ϵs versus separation rank for old (green dashed) and new

(blue) approximation. For rmin = 10−3, 10−4, 10−5, 10−6.
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Figure 4.2: Old and new approximation: Plot of relative error (P(r ) − P̂(r ))/P(r )
versus r. rmin = 10−4, rmax =

√
3 and ϵs = 10−12. Error bound ϵs in red

and minimum threshold rmin displayed in purple. With separation ranks

Mold = 94 and Mnew = 91.
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Figure 4.3: Old and new approximation: Plot of relative error (P(r ) − P̂(r ))/P(r )
versus r. rmin = 10−6 , rmax =

√
3 and ϵs = 10−6. Error bound ϵs in

red minimum threshold rmin displayed in purple. With separation ranks

Mold = 61 and Mnew = 58.
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Figure 4.4: Zoomed in comparison of overshooting by old scheme (green dashed)

and new scheme (blue) near the minimum threshold rmin . rmin = 10−6 ,

rmax =
√
3 and ϵs = 10−6

Remark. Something of note, the equispaced quadrature used for these integrals

are often in the literature referred to as trapezoidal quadrature. This often leads

to a misunderstanding in the implementation of these kernels. As opposed to the

equispaced quadrature where each discretization point is weighed by the step-

size h, a trapezoidal rule weigh the first and last term in the series by half. For

carefully chosen first and last terms as presented in this work, such a trapeziodal

rule will result in missing the threshold mark.

4.5 Numerical experiments with complex Helmholtz
kernel

In this section we approximate the complex Helmholtz kernel in the area r ∈

[rmin, rmax ] for a given error bound ϵs . Using the estimates for the truncation

error displayed in 4.3 we develop algorithms designed to find an optimal

separation rank M (algorithms 5 and 6), by the equispaced quadrature used
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in [10]. We then compare our results with the well established algorithm used

in MRChem (algorithm 7).

4.5.1 New algorithms for limits of integration
We aim to approximate the complex Helmholtz kernel in the area r ∈

[rmin, rmax ]. We begin by rescaling into the area r ′ ∈
�
r ′0, 1

�
where r ′0 =

rmin
rmax

,

and reintroduce the complex Helmholtz kernel in its integral form

Hc(r ′) = 1

2π 3/2

∫ ∞

−∞

e−r
′2e2w−

µ ′2

4 e−2w+w dw (4.44)

where the integrand takes the asymptotic form

2π 3/2e−r
2e2w+w for w → ∞ (4.45)

2π 3/2e−
µ ′2

4 e−2w+w for w → −∞ (4.46)

with the rescaled µ′ = µrmax .

To determine the upper limit of integrationwM , we see that the superexponen-

tial decay in (4.45) is the least prominent for the smallest value of r ′, namely

r0

2π 3/2e−r
′2
0 e2w+w ≥ 2π 3/2e−r

′2e2w (4.47)

So to select the upper limit wM for all r ′ ∈
�
r ′0, 1

�
we do it for r ′ = r ′0 and it

will hold for all r ′. To compute it we start with some guess for the value wM ,

then increase it until we have a sufficiently small estimate δupper of the residue

(4.34). This is empirically determined to be

δupper = ϵs
e−µ

′r ′0

4πr ′0
104 (4.48)

The procedure is displayed in the following algorithm.



4.5 NUMERICAL EXPER IMENTS WITH COMPLEX HELMHOLTZ KERNEL 47
Algorithm 5 Determination of upper limit of integration for (4.44)

as discussed in this thesis
procedure UpperLimit(µ,δ ,h)

wM = Re(log
(
− log(δ )

r ′20

)
/2)/2

i = 0

while
exp(−r20e2(w0+(i+1)h)+(w0+(i+1)h))
(1− exp(−r20 e2(w0+(i+2)h)+(w0+(i+2)h))

exp(−r20 e2(w0+(i+1)h)+(w0+(i+1)h))
> ±δ do

i = i + 1

end while

wM = wM + ih

return wM

end procedure

Similarly forw0 we look at the integrand (4.46) and note that this is indepen-

dent of r

e2

2π 3/2
e−
−µ ′2

4 e−2w+w (4.49)

so we just need to select w0 such that this is small enough. We compute it

by a usingwM as a starting guess, then integrate down with the step-size h,³

until we have a sufficiently small estimate δlower of the residue (4.35). This is

empirically determined to be

δlower = ϵs (4.50)

The procedure is displayed in the following algorithm.

3. The reason for this odd way of iterating is simply that it will force the separation rank

down.
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Algorithm 6 Determination of lower limit of integration for (4.44)

as discussed in this thesis
procedure LowerLimit(r0,δ ,h,wM)

w0 = wM

i = 0

while
exp

(
−
µ2

4 e−2(w0−(i+1)h)+(w0−(i+1)h)
)

(1−
exp

(
−
µ2
4 e−2(w0−(i+2)h)+(w0−(i+2)h)

)
exp

(
µ2
4 e2(w0−(i+1)h)+(w0−(i+1)h)

)
> ±δ do

i = i + 1

end while

w0 = w0 − ih

return wmin = w0

end procedure

4.5.2 MRChem for limits of integration
The upper and lower limits is for the complex Helmholtz kernel [10] are found

to be

wM =

log
(
T
r ′20

)
2

(4.51)

w0 = −

log
(
4T
µ ′2

)
2

(4.52)

(4.53)

where T = −2.5 log(ϵs) is an empirically determined parameter. The proce-

dure is displayed in the following algorithm.
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Algorithm 7 Determination of upper and lower limit of integration for (4.44)

as implemented in MRChem

procedure UpperLimit(r0, ϵs)

T = −2.5 log(ϵs)
wmin = −0.5 log 4T

µ2

wmax = 0.5 log T
r20

return wmin and wmax

end procedure

4.5.3 Results
For the numerical experimentation shown here. The area we are trying to find

accurate representations are set to |x| ∈ [rmin, rmax ]. We fix set rmax =
√
3.

This choice is motivated by the fact that we require expansions to be valid

within the three-dimensional interval [0, 1]3, thus the longest possible distance
between two points are

√
3. For the experiments shown here we use the step-

size h presented in [10].

h =
1

0.2 − 0.47 log10(ϵs) (4.54)

In Table 4.2 and in Figures 4.5-4.6 we see that in this case there is more to be

gained from new implementation of the complex Helmholtz kernel.

In Figures 4.7 and 4.8 we see examples of the relative pointwise error eϵs ,r ,

for the MRChem scheme and the new scheme presented here. In Figure 4.3

do we see how for large values of µ does the approximation run outside our

requested bounds. In the supplementary material of [9] is it shown how this

does not influence the final precision of the result.

In Figure 4.9 do we outline the reason for the slight reduction in separation

rank. While the old scheme overshoots a bit on the minimum threshold, we
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hit it perfectly.

rmin ϵs µ Mold Mnew di f f erence

1 × 10−4 1 × 10−6 100 28 24 4

1 × 10−4 1 × 10−6 0.1 49 44 5

1 × 10−4 1 × 10−8 100 38 33 5

1 × 10−4 1 × 10−8 0.1 65 59 6

1 × 10−4 1 × 10−12 100 57 51 6

1 × 10−4 1 × 10−12 0.1 98 90 8

1 × 10−6 1 × 10−6 100 42 38 4

1 × 10−6 1 × 10−6 0.1 63 58 5

1 × 10−6 1 × 10−8 100 56 51 5

1 × 10−6 1 × 10−8 0.1 83 77 6

1 × 10−6 1 × 10−12 100 84 78 6

1 × 10−6 1 × 10−12 0.1 124 118 6

Table 4.2: Separation rank for MRChem scheme (Mold ) and thesis scheme Mnew for

the complex Helmholtz kernel. With corresponding differenceMold−Mnew
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Figure 4.5: The log10 of ϵs versus separation rank for old (green dashed) and new

(blue) approximation. For µ = 0.1 rmin = 10−3, 10−4, 10−5, 10−6.
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Figure 4.6: Complex Helmholtz: log10 of ϵs versus separation rank for old (green

dashed) and new (blue) approximation. For µ = 100 and rmin =

10−3, 10−4, 10−5, 10−6.
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Figure 4.7: Old and new approximation: Plot of relative error (Hc (r ) − H̃c (r ))/Hc (r )
versus r. rmin = 10−4,rmax =

√
3, µ = 0.1 and ϵs = 10−12. Error bound ϵs

in red and minimum threshold rmin displayed in purple. With separation

ranks Mold = 98 and Mnew = 90
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Figure 4.8: Old and new approximation: Plot of relative error (Hc (r ) − H̃c (r ))/Hc (r )
versus r. rmin = 10−6, rmax =

√
3, µ = 100 and ϵs = 10−6. Error bound in

red and minimum threshold (rmin) displayed in purple. With separation

ranks Mold = 42 and Mnew = 38



4.5 NUMERICAL EXPER IMENTS WITH COMPLEX HELMHOLTZ KERNEL 55

1.× 10
7
2.× 10

7
5.× 10

7
1.× 10

6
2.× 10

6
5.× 10

6
-2.× 10

-6

-1.× 10
-6

0

1.× 10
-6

2.× 10
-6

r

R
e
la
ti
v
e
E
rr
o
r

Figure 4.9: Zoomed in comparison of overshooting by old scheme (green dashed)

and new scheme (blue) near the minimum threshold rmin . rmin = 10−6,

rmax =
√
3, µ = 100 and ϵs = 10−6.





5
Approximation of the
Helmholtz kernel
The goal with this chapter is to find a separable approximation to the free space

Helmholtz kernel. We begin by following the approach used in chapter 4,where

we found separable representations to the free space Poisson and complex

Helmholtz kernels. Then we see where this approach fails in generating

separable representations for the Helmholtz kernel. We then outline the

approach by Beylkin [12] for fast convolutions with the Helmholtz kernel.

This approach is inspired by the work of Ewald in [13]. Here Beylkin finds

a way where parts of the free space Helmholtz kernel can be expressed in

a separable form. However, convolutions with the remaining parts of the

kernel has to be done by multiplications (of singular functions) in the Fourier

domain. This can be done effectively and accurately by following the grid

constructions described in [14, 15, 16]. In addition to this, these methods

require an efficient implementation of the Non-Uniform Fast Fourier Transform

57
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(NUFFT) [17, 18, 19].

Finally, we propose a new separable representation of the free space Helmholtz

kernel, inspired by the work of Ewald in his doctoral thesis from 1912 [20].

Let us consider the problem

−
�
∇2 + µ2

�
H (x) = δy(x) (5.1)

H (x) = 0 on ∂Ω (5.2)

Next, we take the Fourier transform of (5.1)

�
k2 − µ2

�
Ĝ(k) = 1 (5.3)

where

|k| = *
,

d∑
i=1

k2i
+
-

1/2

(5.4)

Now if we divide the equation by k2 − µ2, we get

Ĝ(k) = 1
k2 − µ2

(5.5)

We see thatwe can no longeruse the trickwherewewrite 1
k2−µ2 =

∫ ∞
0

e−(k2−µ2)τ dτ ,
as the integral does not converge when k2 < µ2. So we need to come up with

some other plan to find a suitable representation of the Helmholtz kernel. We

will begin with discussing the approach by Beylkin [12].

5.1 Beylkin’s approach
In [12] Beylkin shows how the Helmholtz kernel can be written in terms of

the regularization

G(x) = lim
λ→0+

1

(2π )d
∫

1

|k|2 − (µ − iλ)2 dk (5.6)
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Next, let us define

Ĝ(κ, λ) = 1
κ2 − (µ + iλ)2 (5.7)

where κ = |k |. We split this into its real and imaginary part

Re(Ĝ(κ, λ)) = 1
2κ

(
κ − µ

(κ − µ)2 + λ2 +
κ + µ

(κ + µ)2 + λ2
)

(5.8)

and

Im(Ĝ(κ, λ)) = 1
2κ

(
λ

(κ − µ)2 + λ2 −
λ

(κ + µ)2 + λ2
)

(5.9)

(5.10)

On taking the limit, we get∫ ∞

0
lim
λ→0+

Re(Ĝ(κ, λ)) dκ = PVκ=µ

∫ ∞

0

1
κ2 − µ2

dκ (5.11)

and ∫ ∞

0
lim
λ→0+

Im(Ĝ(κ, λ)) dκ =
∫ ∞

0

π

2κ
(δ (κ − µ) − δ (κ + µ)) dκ (5.12)

=

∫ ∞

0

π

2κ
δ (κ − µ) dκ (5.13)

so we have

G(x) = 1

(2π )d PV|k|=µ
∫

eix·k

|k|2 − µ2
dk + i

π

2(2π )d
∫

δ (|k| − µ)
|k|

e−ix·k dk

(5.14)

Now we take a closer look at the imaginary part of G(x) in (5.14)

Im(G(x)) = π

2(2π )d
∫

δ (|k| − µ)
|k|

e−ix·k dk (5.15)

By the convolution theorem, (see e.g. [21]), convolutions in real space can be

done as multiplications in Fourier space

[Im(G) ∗ f ](x) = π

2(2π )d
∫

f̂ (k)δ (|k| − µ)
|k|

ke−ix·k dk (5.16)
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which corresponds to an integral over a sphere.

Now let us take a closer look at the real part of Ĝ(κ, λ)

Ĝ(κ, λ) = 1
κ2 − µ2

(5.17)

We split this into two parts, a singular and an oscillatory part (as seen from

real space)

1
κ2 − µ2

= F̂sinд(κ) + F̂oscill (κ) (5.18)

where

F̂sinд(κ) = 1 − e−α
2(κ2−µ2)/µ2

κ2 − µ2
(5.19)

and

F̂oscill (κ) = e−α
2(κ2−µ2)/µ2

κ2 − µ2
(5.20)

using the following parameters

α2 =
logδ−1

b2 − 1
(5.21)

with b > 1. The purpose of these parameters will become clear shortly. Let us

first invert F̂sinд. We do this by using

1 − e−α
2(κ−µ2)/µ2

κ2 − µ2
= 2

∫ log α
µ

−∞

e−r
2 e2s

′

4 +µ
2e−2s

′
+(d−2)s ′ ds′ (5.22)

then we use the inverse Fourier transform F −1[e−k2i e2s ′ ] = e−
x2i e
−2s ′

4 e−s
′

2
√
π

, and

substitute s′ = −s. F̂sinд is then found to be

Fsinд(r ) = 1

2d−1πd/2

∫ ∞

− log α
µ

e−r
2 e2s

4 +µ
2e−2s + (d − 2)s ds (5.23)

Fsinд can then be written as a sum of Gaussians. We now have a separable

representation of the singular part of the Helmholtz kernel.
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Similarly as for the imaginary part of the operator, we do the convolution with

the oscillatory part of the real part as multiplications in Fourier space

[Foscill ∗ f ](x) = 1

(2π )d PVk=µ

∫
F̂oscill (k) f̂ (k)eix·k dk (5.24)

And since α2 =
logδ−1

b2−1 , F̂oscill is less than δ this can again be approximated

by

[Foscill ∗ f ](x) ≈ 1

(2π )d PVk=µ

∫
|k|<bµ

F̂oscill (k) f̂ (k)eix·k dk (5.25)

The principal value is avoided in [12] by approximating F̂oscill in the region
��κ − µ�� ≥ min{µδ ,δ} following the constructions in [15]. The integral is

then transformed into spherical coordinates, where the angular quadrature

points can be generated by following [14], and the grid points in radial

direction is found by following [22]. The function f (x) is transformed into the

quadrature points in Fourier space by the non-uniform fast Fourier transform,

see [17, 18, 19].

5.2 Separated representation of the Helmholtz
kernel

In [20] Ewald shows how the Helmholtz kernel can be written in terms of the

integral

H µ(r ) = 1

2π 3/2

∫
Γ
e
−r2t2+

µ2

4t2 dt (5.26)

where Γ is an appropriately chosen contour. Later in [13] Ewald follows an

approach similar to the one displayed in the previous section where instead of

integrating along a contour in complex space, the integral is done in real space

and the parameter µ is expanded to µ + iλ. However, for those approaches

the separability of the Helmholtz kernel is lost, but (5.26) inspires us to look

for contours in the complex plane that yields fast convergent approximations

to the Helmholtz kernel.
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Inspired by this we found the integral

H µ(r ) = 1

2π 3/2

∫ ∞

0
e
−r2(γi−t)2+ µ2

4(γ i−t )2 dt −
i

2π 3/2

∫ γ

0
e
r2t2−

µ2

4t2 dt (5.27)

where γ > 0 which we in principle can select freely.

As an argument to show that these integrals compose the Helmholtz kernel can

be done by the following argument: By using [23] we find that the integrals

in (5.27) can be expressed in terms of error functions

1

2π 3/2

∫ ∞

0
e
−r2(γi−t)2+ µ2

4(γ i−t )2 dt = (5.28)

e−iµr

8πr

[
1 − ei2µr

(
1 + erf

(
µ

2γ
+ irγ

))
+ i erfi

(
rγ + i

µ

2γ

)]
(5.29)

and

1

2π 3/2

∫ γ

0
e
r2t2−

µ2

4t2 dt = (5.30)

e−iµr

8πr

[
−i + iei2µrerfc

(
µ

2γ
+ irγ

)
+ erfi

(
rγ + i

µ

2γ

)]
(5.31)

where erf(z) and erfi(z) = −i erf(iz) are the error function and the imaginary

error function (see e.g. [24]).

Now if we insert this into (5.27) we get

e−iµr

8πr

{ [
1 − ei2µr

(
1 + erf

(
µ

2γ
+ irγ

))
+ i erfi

(
rγ + i

µ

2γ

)]
− (5.32)

i

[
−i + iei2µrerfc

(
µ

2γ
+ irγ

)
+ erfi

(
rγ + i

µ

2γ

)] }
(5.33)

If we do the cancellations this simplifies to

e−iµr

8πr

[
−ei2µr

(
1 + erf

(
µ

2γ
+ irγ

)
+ erfc

(
µ

2γ
+ irγ

))]
(5.34)

We simplify this further by factoring out the exponential function inside the

parenthesis and use erf(z) + erfc(z) = 2√
π

∫ ∞
0

e−τ
2
dτ = 1. We then end up
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with

1
4π

e−µr

r
(5.35)

which is the analytic form of the free space Helmholtz kernel.

5.3 Numerical experiments
From Equation (5.27) we see that the entire real part of the integral is con-

tained in the first term. Then from the second term we see that if we select γ

sufficiently small compared to µ, this term can be neglected and themost signif-

icant contribution is contained within this integral. Thus we will approximate

the Helmholtz by

H µ(r ) ≈ 1

2π 3/2

∫ ∞

0
e
−r2(γi−t)2+ µ2

4(γ i−t )2 dt (5.36)

Here we have some simple numerical experiments to illustrate how the kernel

can be approximated accurately with an equispaced quadrature rule. The

area we are trying to find accurate representations are set to r ∈ [10−4,√3].
The choice of

√
3 is motivated by the fact that we require expansions to be

valid within the three-dimensional interval [0, 1]3, thus the longest possible

distance between two points are
√
3. For the experiments here we select the

step-size h in a similar manner as we did in chapter 4

h =
1

0.2 − 0.47 log10(δ0) (5.37)

only here the integrands can for some r and µ oscillate, introducing numerical

difficulties. We circumvent this by selecting δ0 less than the required error

bound. This does increase the separation rank, but this is the price to pay for

a separable representations of the Helmholtz kernel. Since γ only has to be

chosen such that the last term in (5.27) is small enough, it can be selected to

yield integrands that are relatively easy to integrate.
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Since we need to evaluate the integrand over a finite area we look formappings

for t such that the integrand decays fast asymptotically. The most useful

mapping we found was t = log
�
1 + e− sinh(w)� + sinh(w). In Figures 5.1 - 5.2

we see examples of how the absolute relative error is bound in the area

r ∈ 10−4,
√
3. The error is easily controlled for small values of r . But we need

a small step-size to keep the error bound for large values of r .

A case of interest is when µ gets small, which is displayed in Figure 5.3. As the

real part of the integrand will get closer to the integrand of the Poisson kernel

do we expect it to accurately be represented there, as can also be seen from

the figure. However, if µ is small, the neglected term in (5.27) grow large, and

we lose our accurate representation of the imaginary part. One fix to this is

to reduce γ , but for this mapping the integrand gets too singular. A possible

solution is to map the argument in (5.36) to t = ew , this however yields a

high separation rank, typically aroundO(100). An alternative but maybe more

viable approach would be to find a quadrature where the right hand side of

the integral in (5.27) is accurately represented. Unfortunately we did not find

any good candidates during the work of this thesis.
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Figure 5.1: Plot of relative error ���H
µ (r ) − H̃ µ (r )���/|H µ (r )| versus r . rmin =

10−4, rmax =
√
3, µ = 4, γ = 0.7, ϵs = 10−4 and δ0 = 10−6. w0 = −4,

wM = 10.3, M = 45. Error bound in red and minimum threshold rmin

displayed in purple.
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Figure 5.2: Plot of relative error ���H
µ (r ) − H̃ µ (r )���/|H µ (r )| versus r . rmin =

10−4, rmax =
√
3, µ = 10, γ = 1, ϵs = 10−4 and δ0 = 10−11. w0 = −4,

wM = 11.3, M = 84. Error bound in red and minimum threshold rmin

displayed in purple.
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Figure 5.3: Plot of relative error (Re[H µ (r )]−Re[H̃ µ (r )])/Re[H µ (r )] versus r . rmin =

10−4, rmax =
√
3, µ = 0.1, γ = 0.4, ϵs = 10−4 and δ0 = 10−4. w0 = −4,

wM = 10.3, M = 31. Error bound in red and minimum threshold rmin

displayed in purple.



6
Discussion
The purpose with this thesis was to investigate the possibility of reducing the

separation rank for the separable representations of the Poisson and complex

Helmholtz kernels, and look for a feasible separable representation of the

(non-complex) Helmholtz kernel.

In both of these cases we succeeded, we found an easy method that proved

successful in finding near optimal separation ranks for the Poisson and complex

Helmholtz kernels.

In the second case we found a separable representation, that also, with some

careful parameter choices andmappings can give us a separable representation

of the Helmholtz kernel with a relatively small separation rank. However, for

some cases the separation rank can be large (for instance for the imaginary

part when µ is small). This means that for a large enough separation rank we

risk the complexity of applying the separable version of the operator exceeds

the complexity of directly applying it. But one must also remember that

the storage requirement of separable integral kernels are much smaller than
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kernels that has not been separated. Meaning operators that may not have

been possible to efficiently store in a computer, can be stored efficiently, then

by this reduce the computation time.

6.1 Future work
For the Poisson and complex Helmholtz kernels, there is not much to be done

further, we are pretty much at an optimal configuration.

For the Helmholtz kernel, one can look for more optimal quadratures in the

evaluation of the integrand as µ varies. Especially find an accurate method to

evaluate the integral

1

2π 3/2

∫ γ

0
e
r2t2−

µ2

4t2 dt (6.1)

accurately with a small separation rank, to achieve this the paper in reference

[22] may prove helpful.



A
Bessel Functions
Bessel functions y = yκ(x) are solutions of the Bessel differential equa-

tion

d2y

dx2 +
1
x

dy

dx
+

(
1 −

κ2

x2

)
y = 0 (A.1)

or equivalently

x2d
2y

dx2 + x
dy

dx
+

�
x2 − κ2

�
y = 0 (A.2)

where κ is a constant.

Special types of Bessel functions are what are called Bessel functions of the

first kind y = Jκ(x), Bessel functions of the second kind y = Yκ(x) (also called
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Neumann functions and often written y = Nκ(x)), and Bessel functions of the

third kind y = H (1)
κ (x) = Jκ(x) + iYκ(x) and y = H (2)κ (x) = Jκ(x) − iYκ(x)

(also called Hankel’s functions). For more information see [25, 26]

A.1 Transformed Bessel differential equation
Following Bowman [27] we seek an equation satisfied by

y = xαyκ(βxγ ) (A.3)

where α , β and γ are constants. If we put

η =
y

xα
ξ = βxγ (A.4)

then (A.3) gives η = Jκ(ξ ), hence

ξ 2
d2η

dξ 2
+ ξ

dη

dξ
+ (ξ 2 − κ2)η = 0 (A.5)

and since

ξ
d
dξ

(
ξ
dη

dξ

)
= ξ 2

d2η

dξ 2
+ ξ

dη

dξ
(A.6)

then (A.5) can be written

ξ
d
dξ

(
ξ
dη

dξ

)
+ (ξ 2 − κ2)η = 0 (A.7)
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by the chain rule

dη

dξ
=

dη

dx
dx
dξ

(A.8)

where

dx
dξ
=

1
γ β

(
ξ

β

) 1
γ −1

=
x

ξ
(A.9)

therefore

ξ
dη

dξ
=
x

γ

dη

dξ
(A.10)

then

ξ
d
dξ

(
ξ
dη

dξ

)
=

x

γ 2

d
dx

(
x
dη

dξ

)
(A.11)

follows immediately. Next using the product rule we find

x
dη

dx
= x

d
dx
yx−α =

1
xα−1

dy

dx
−
α

xα
(A.12)

again using the product rule we find

x
d
dx

(
x
dη

dx

)
=

1
xα−2

d2y

dx2 −
2α − 1
xα−1

dy

dx
+
α2

xα
(A.13)
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hence the equation satisfied by y is

1
γ 2

(
1

xα−2
d2y

dx2 −
2α − 1
xα−1

dy

dx
+
α2

xα
y

)
+

(
β2x2γ − κ2

xα

)
y = 0 (A.14)

or

d2y

dx2 −
2α − 1

x

dy

dx
+

(
β2γ 2x2γ−2 +

α2 − κ2γ 2

x2

)
y = 0 (A.15)

with corresponding general solutions

y = xα [AJκ(βxγ ) + BYκ(βxγ )] (A.16)

(A.17)

A case of particular interest to us is when α = −1
2 , κ =

1
2 , γ = 1 and β = ±µ

where µ is a positive real constant, then (A.15) reveal itself as

d2y

dx2 +
2
x

dy

dx
+ µ2y = 0 (A.18)

the corresponding general solution (A.16) then takes the form

y = x−
1
2

[
AJ 1

2
(±µx) + BY 1

2
(±µx)] (A.19)

using [23] we find

J 1
2
(±µ) =

√
2
µπ

sin(µx)
x

1
2

(A.20)
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and

Y 1
2
(±µ) =

√
2
µπ

cos(µx)
x

1
2

(A.21)

with this we select A′ = iA
√

2
µπ = B

√
2
µπ , and with Euler’s identity [28] a

solution to (A.18) is

y±(x) = A′
e±iµx

x
(A.22)

A equally relevant case for us is when α = −1
2 , κ =

1
2 , γ = 1 and β = ±iµ

where µ is a positive real constant and i is the imaginary unit. Now (A.15)

transforms into

d2y

dx2 +
2
x

dy

dx
− µ2y = 0 (A.23)

with corresponding solutions

y = x−
1
2

[
AJ 1

2
(±iµx) + BY 1

2
(±iµx)] (A.24)

using [23] and selecting A in a similar way as we did in the previous case we

find

J 1
2
(±µ) = A

sinh(±µx)
x

1
2

(A.25)

and

Y 1
2
(±µ) = A

cosh(±µx)
x

1
2

(A.26)



74 APPENDIX A BESSEL FUNCT IONS

This combined with the identity cosh(x) + sinh(x) = ex+e−x

2 + ex−e−x

2 = ex

equation (A.24) takes the form

y±(x) = A
e±µx

x
(A.27)



B
Rotational invariance of the
homogenous Laplace,
complex Helmholtz and
Helmholtz equations
The content here is from [29], and expanded to be valied for the complex

Helmholtz and Helmholtz equation.

An equation is rotationally invariant if the equation does not change under

rotations around some point. Here we show how Rotational invariance of

Lu = 0, that is, if A is an orthogonal n × n where the matrix elements are

denoted aij .

We define
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v(x) = u(Ax) (B.1)

Div(x) =
n∑

k=1

Dku(Ax)aki (B.2)

Di jv(x) =
n∑
l=1

n∑
k=1

Dklu(Ax)akial j (B.3)

Since A is orthogonal, then AAT = I where I is the n × n identity matrix, and

T denotes the transpose. Thus for all k, l = 1, ...,n

(∇2 + c)v(x) =
n∑
i=1

n∑
l=1

n∑
k=1

Dklu(Ax)akial j + cu(Ax) (B.4)

=

n∑
l=1

n∑
k=1

Dklu(Ax) *
,

n∑
i=1

akiali+
-
cu(Ax) (B.5)

=

n∑
l=1

n∑
k=1

Dklu(Ax) *
,

n∑
i=1

δkl+
-
cu(Ax) (B.6)

= (∇2 + c)u(Ax) = 0 (B.7)

That is

(∇2 + c)v(x) = (∇2 + c)u(Ax) = 0 (B.8)

thus The homogenous Laplace, complex Helmholtz and Helmholtz equation

are rotationally invariant.
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