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To Galina and Roy.

Only one of you were right.



“They read all the books, but they can’t find the answers.”

–John Mayer



Abstract
The observable universe consists of several non equilibrium systems that

generate spatiotemporal behaviour in the form of various patterns. As the

elementary laws of physics and chemistry are unable to explain the pattern

forming behaviour of such systems, scientists have turned to desktop exper-

iments and model equations to gain further insight. The model equations

that generate numerical solutions similar to real world systems are compu-

tationally intensive, and this thesis discusses the possibility of designing a

numerical scheme which are to reduce the computation time for a specific

model equation.

The design is based on the perfectly matched layer (PML), a mathematical-

numerical technique that works as an artificial absorbing layer within the

discretized grid boundaries.

The thesis discuss how to impose a PML version of the model equation into

the numerical method of lines(MOL) procedure, and various numerical and

mathematical techniques are discussed in order to build this scheme.

The numerical simulations for the PML-equation fail to produce the correct

spatiotemporal behaviour, and the discussed analysis states that a PML does

not apply to the model equation discussed in the thesis.
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1
Introduction
When we look at the surrounding universe and its diverse components ranging

from large galaxies to smaller structures within our own terrestrial spheres,

the number of apparent patterns are in many ways striking. Several physi-

cal systems have a tendency to generate patterns seemingly out of nowhere,

and many of them are filled with interesting underlying features. The spi-

ralling arms of a galaxy, the similar stripes and spots on animals, and the

crystalline structure of snowflakes are just a few examples of such appearing

patterns.

Where people throughout history have wondered "why is there something?",

the study of natural patterns concerns the question "why does the something

look and behave like it does?". The elementary laws of physics and chemistry

does neither describe the appearing pattern forming structures, or the similar-

ity between many of them. For example, we might wonder: why does zebra

stripes resemble ripples in desert sand, or how can Jupiter’s stormy "Red Eye"

coexist together with the highly turbulent striped flow in its atmosphere? Such

1
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unanswered questions have led to a branch of science which includes fields

within mathematics, physics and computation, where the aim is to investigate

pattern forming systems.

The stated intrinsic pattern feature of mother nature, and the desire to under-

stand its realisation mechanisms, constitutes the overall theme for this thesis.

To introduce the field of pattern formation, we take the tour from observable

to experimental patterns, which in turn leads to model equations of pattern

forming systems. Note that the presented material in section 1.1 through 1.3

is similarly discussed in Cross and Greenside[1].

1.1 Natural patterns
As scientists we are driven by questioning the observable universe. To be able

to answer questions regarding "the why" of natural pattern formation, we must

specify the interesting features of real world patterns. We will therefore con-

sider three systems on very different spatial scales, where we are to highlight

some characteristics and relevant questions.

Figure 1.1 illustrates the 30 million light years distant M51 galaxy, where

the appearing pattern is defined by two large spiralling arms. The spirals

are slowly whirling around its gravitational center with a certain rotational

frequency and pitch. The underlying cause for those features are not known,

but they must have a corresponding explanation. Why some galaxies develop

such spiralling patterns is poorly understood, and it is to date an open question

within the field of astronomy.

The striped pattern in figure 1.2 describes the approximately periodic ripples

found in some terrestrial environments covered by water or air. Such patterns

appear on sand dunes or at the beach, and the driving mechanisms for those

patterns are readily understood as driven-dissipative systems. However, the

stripes do not have a well defined average wavelength, and the wavelength
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Figure 1.1: The M51 galaxy with spiralling arms(from the national optical astronomy

observatory - NOAH).

Figure 1.2: Striped pattern in desert sand dunes(from [1]).

is observed to slowly grow with time. The latter is exemplified by the Mar-

tian sand dunes in figure 1.3, where kilometre long wavelengths have been

observed.
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Figure 1.3: Sand dunes on Mars(from NASA).

Figure 1.4: A slime mold colony named Dictyostelium discoideum(from [1]).

Figure 1.4 depicts a snapshot of an aggregation state for a starving slime-

mold colony found on various forest floors. The lighter regions corresponds to

elongated cells that moves with a speed of approximately 10 µm/s, while the

darker regions show stationary cells. A secrete is leaked into the system as a

consequence of the starvation, which in turn triggers the organism to generate

the chaotic pattern of propagating spiralling waves. Chemical gradients are

shown to be the driving force of the system, and we argue that the interesting

features are the frequencies and velocities of the spiralling waves, and how

they vary with different system states.

The systems illustrated on the previous pages are systems which are driven

by the ever expanding universe and its continuous non equilibrium state,
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where patterns emerge as a response to the everlasting drive. Systems with

pattern forming nature must therefore be defined and analysed in terms of non

equilibrium dynamics, and to be able to understand and usefully investigate

such systems we turn to controllable desktop experiments.

1.2 Desktop experiments
We will in this section present patterns generated from desktop experiments,

but to establish a precise vocabulary for our forthcoming observations and

investigations, we will begin by exploring a controllable non equilibrium

system: a Rayleigh-Bénard convection experiment.

1.2.1 Rayleigh-Benard convection
Figure 1.5a outlines the concept of a Rayleigh-Bénard convection experiment,

which in short is nothing more than a special squared box filledwith some fluid.

The horizontal plates consists of a heat conducting material rigged to take

on different temperatures Twarm
1 and T cold

2 , and all side walls are made from

a substance with poor conductivity. ∆T = T1 − T2 denotes the temperature

difference between the conducting plates, and the initial state of the system

is given by ∆T = 0 and thermodynamic equilibrium. The lateral width of the

horizontal plates is denoted L, and the relation L >> d dictates the internal

height d.

This setup allows us to drive the system out of equilibrium by increasing T1

to a fixed value T ∗1 > T1, such that ∆T > 0 remains the same throughout the

experiment. Small parcels of fluid near the bottom plate will then expand

and decrease in density as they gain energy from the hot plate, while the

contrary applies to parcels of fluid at the cold top plate. Buoyancy forces will

then come into play and accelerate the less dense warm parcels upwards in

the fluid, while the denser cold parcels move downwards. This behaviour is
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Cold T2

Warm T1

L

d

(a) A Rayleigh-Benard convection apparatus.

T1

T2

(b) Small parcels inside the Rayleigh-Benard

experiment box .

Figure 1.5: Rayleigh-Benard convection(from [1]).

illustrated in figure 1.5b.

However, the buoyancy induced acceleration is opposed by both the friction

from the fluid viscosity, and heat diffusion between warm and cold regions of

the fluid. The system might therefore stall in this slightly tuned state, without

generating spatiotemporal behaviour. On the other hand, if ∆T is larger that

some critical value ∆Tc , the buoyancy forces may overcome the dissipative

effects, such that the parcels are free to move, and the system may generate

spatiotemporal dynamics.

It turns out that the Rayleigh-Benard convection experiment is able to produce
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a wide range of patterns depending on certain physical parameters like the box

height d, the initial temperature T1, the viscosity, and the thermal expansion

coefficient of the fluid. We will not discuss these in details here, but in general

it is possible to express the system state with the single parameter relation

r (∆T ) = β∆T , (1.1)

where β is a dimensionless constant that contains the stated physical properties.

Hence, the behaviour of the entire system varies linearly with ∆T , which we

are able to control at any time.

As a side note we remark that patterns generated in a Rayleigh-Benard con-

vection experiment are visualized through an advanced scientific shadow play

named shadowgraphy, which involves a transparent top plate, a mirroring bot-

tom plate, a camera, LED lights and a complex composition of lenses.

The presented experiment illustrates the three main features of many pattern

forming non equilibrium systems:

• The system state is determined from a single dimensionless parameter

r , which we refer to as the control parameter.

• The system generates interesting non equilibrium behaviour when

r > rc , where rc is defined as the critical parameter value.

• The spatial extent of the system is large compared to the interesting

characteristics generated during non equilibrium.

1.2.2 Experimental patterns
To illustrate the wide range of pattern forming desktop experiments, we intro-

duce three different systems by presenting snapshot pictures of the patterns

formed under certain conditions. We discuss each experiment briefly, but we

will not emphasise details and underlying causes for each case.
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Figure 1.6a depicts a disordered many-spiralled state of a chemical Belusov-

Zhabotinsky experiment in a Petri-like dish. The pattern is a result of an

excitable reaction of two chemical reagents in a shallow layer of fluid, where

the patterns becomes time independent after a transient state.

In figure 1.6b the striped state of a so called granular crispation experiment is

illustrated. The experiment consists of a box filledwith a granularmedia which

contains thousands of tiny brass balls,where a varying frequency is shaking the

box in the vertical direction. When the shaking amplitude is sufficiently large,

the granular material is thrown into the air with different velocities, while the

bottom plate moves upwards. Since the balls have different velocities, some

will hit the bottom plate while others are up in the air. This process can be

rigged to result in an alternating pattern, in which peaks and valleys of balls

formed in one cycle, becomes valleys and peaks at the next cycle.

Figure 1.6c illustrates a rotating three spiralled state of a Rayleigh-Benard

convection experiment, where the white and dark regions corresponds to

descending colder, and rising warm fluid respectively. Note that the spirals

terminate long before they reach the lateral wall by merging into three topo-

logical defects, which is refferd to as dislocations.

As a remark we point out the single parameter that controls the outcome of

the non linear dynamics for each experiment:

• The Belusov-Zhabotinsky reaction is controlled by one of the reagents,

such that one is placed in the Petri dish, while the other is added

afterwards.

• The crispation experiment is controlled by varying the shaking frequency.

• The Rayleigh-Benard convection experiment is controlled by ∆T .
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(a) Spiral state of a Belusov- Zhabotinsky

excitable reaction.

(b) Stripes in a granular crispation exper-

iment.

(c) Three armed spiral pattern from Rayleigh-

Benard convection.

Figure 1.6: Experimentally generated patterns (from [1]).
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1.3 Modelling patterns
As illustrated in the previous sections, non equilibrium systems with a pattern

forming behaviour are very complex, even though their nature depends on

a single controllable parameter. However, non equilibrium systems varies in

space and time, and within the fields of mathematics and physics spatiotem-

poral varying behaviour is described by partial differential equations. It is

therefore possible to model real life non linear systems by those equations,

in order to investigate them from a theoretical point of view. The equations

that models patten forming systems are visually very different, but many of

them are derived from fluid-similar equations, or from a derivation where

oscillatory solutions are assumed.

We will therefore introduce two pattern forming model equations, and illus-

trate numerical solutions of those equations.

The general she reads

ut = ru − (1 + ∇2)2u + N (u) (1.2)

where where N (u) is some nonlinear term, r the control parameter, and

u = u(x ,y, z, t) is a scalar field. A striped state solution of the she is presented

in figure 1.7a, and we remark the similarity between the numerical solution

and the real life systems 1.6b and 1.2.

A variant of the the complex Ginzburg - Landau equation (gle) is given by

the formula

At = (1 − ic3)A + ∇2A − (1 − ic1)|A|2A (1.3)

where A = (x ,y, t) defines a complex field. Both c1 and c3 are control param-

eters. Figure 1.7b and 1.7c depicts the numerical solutions, and by comparison

with the previously presented natural and desktop patterns in figure 1.1, 1.4

and 1.6, we observe that the complex gle is well suited to model real life

systems.
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(a) Striped solutions of the she
(from [1]).

(b) Tied spiral solution of gle
(from umd.edu).

(c) Single spiral solution of the gle (from [1]).

Figure 1.7: Experimentally generated patterns.
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1.4 The Perfectly Matched Layer
Whenever one tries to solve partial differential equation (pde)s numerically by

some discretization, one must truncate the computational grid. This leads to

the possible problem of boundary reflections, and if such phenomena occurs,

we are always in need of a way to minimize or eliminate the boundary

and reflectory effects. While some pdes have a behaviour where one can

apply periodic or zero boundary conditions, or use a sufficently large grid

if the solution decays rapidly in space, problems which involves waves and

oscillatory solutions demands a more advanced approach to eliminate such

effects. A way to get around this issue is by the perfectly matched layer (pml),
a numerical method that acts as an absorbing layer within the discretized grid

boundaries. Figure 1.8 [5] illustrates the overall idea of an absorbing layer in

two dimensions.

Figure 1.8: A perfectly matched layer in two dimensions.

A real world example of a pml might be a room with so called "absorbing

walls". Suchwalls can be found in recording studios and consists of geometrical

structures that are designed to "capture" incoming soundwaves. When trapped,

the sound waves bounces back and forth within the geometric structures, and

never re-enters the room. A slightly less physical example of the pml analogous
to figure 1.8 is to imagine a very large pool where pebbles are thrown into

the center with a varying frequency, where our intention is to study the wavy
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pattern around the center. The region of interest is in this case around the

center, while the reflecting boundary waves from the pool edges are the

problem we want to eliminate. To solve this we insert a "mystical frame"

inside the pool edges that "absorb and flattens" the wave fronts as they hit the

frame, such that one may study the center region without interference from

disturbing waves.

Although this illustration is highly unphysical, it is possible to handle this

concept mathematically. In short, we manipulate our initial problem with

some complex analysis to formulate a new problem, where the real and

physical part of the solution is "zeroed out" at the pml.

1.5 Motivation and outline
1.5.1 Motivation
The objective of this thesis is to apply a complex contour basedpml to a pattern
generating pde, and to argue why it is relevant and useful to endeavour this,

we present the following arguments:

As briefly stated in section 1.3, model equations like the she or the gle
are pdes designed to possess a oscillatory nature in order to imitate pattern

forming systems. Alternatively, model equations may be a result of some

mathematical procedure applied to other physical models with spatiotemporal

fluid-like dynamical behaviour. In that manner, a pml is a useful method

to apply on such equations, since it allows us to study the spatiotemporal

behaviour without unwanted boundary interference.

More importantly, a fully functioning pml routine for a model equation

would require less computational power and therefore produce solutions

faster compared to standard numerical routines for a regular model equation.

In general pdes are computationally intensive, but model equations like the
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she and the gle are additionally time consuming since the spatial extent

of pattern forming systems must be significantly larger than the length scale

of the pattern characteristics. In other words, the computational grid must

very large when we want to solve model equations numerically, which imply

time consuming algorithms. However, if we are able to implement a pml
into the solution routine, the spatial domain only has to be reasonably larger

than the pattern characteristics, since the solutions are zeroed out at the pml.
Hence, a model equation with a fully functioning pml are to produce the

same spatio-temporal characteristics as the regular equation, but the pml
solutions are faster to compute.

1.5.2 Outline
Chapter 2 introduces a numerical method named method of lines, and how

to apply a pml on a variant of the Schrodinger equation. It also covers how

to numerically approximate differential operators with and without a pml,
and how to include boundary conditions into the numerical scheme.

Chapter 3 discuss a particular model equation, how to transform it into a

model equation with a pml, how to implement the pml scheme for the modele

equation. Numerical solutions are also presented.

Chapter 4 serves as an analysis of the results obtained in chapter 3.

Chapter 5 summarizes the relevant findings from chapter 4 and discuss future

work.



2
Methods and concepts
To get a feel for the different methods, concepts and techniques we are to

apply in our investigation of pattern forming equations, we need a toolbox

with certain mathematical and computational tools. These routines are not

straightforward to acquire or implement, so as a start, we concentrate on

some simpler equations and a few numerical methods to develop some useful

machinery.

2.1 A Schrödinger equation
We introduce the one dimensional reduced Schrödinger equation (rse)

ϕt = iϕxx

ϕ(x , t) = 0 when x → ∞

ϕ(x , 0) = f (x)
(2.1)

15
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defined on the whole line with an initial condition f (x) and zero boundary

conditions, where ϕ = ϕ(x , t). In this section we are to solve the rse by testing

two methods against each other: the numeric mol versus an implemented

analytical Fourier solution.

2.1.1 A Fourier method
We express a solution ϕ(x , t) of the rse in terms of the Fourier transform

ϕ̂(k, t) = 1
√
2π

∫
R
dx ϕ(x , t)e−ikx , (2.2)

ϕ(x , t) = 1
√
2π

∫
R
dk ϕ̂(k, t)eikx , (2.3)

where ϕ̂(k, t) denotes the inverse transform ofϕ(x , t). If we assume the relation

ϕ̂(k, t) = ϕ̂0(k)e−iωt , (2.4)

and insert (2.3) into the rse, the relation ω = k2 between the frequencies

in the spatial and temporial domain falls out. This ensures a well defined

analytical solution for ϕ(x , t) on the form

ϕ(x , t) = 1
√
2π

∫
R
dk ϕ̂0(k)e−ik2teikx , (2.5)

with a given initial condition ϕ̂0(x) in the frequency domain. With the Gaussian

initial frequency

ϕ̂0(k) = e−
(k−k0)2

σ , (2.6)

where k0 denotes a shift from the origin, and σ denotes the width of the bell

shape, the spatial initial condition reads

f (x) = 1
√
2π

∫
R
dk e−

(k−k0)2
σ eikx (2.7a)

=

√
σ
√
2
e

(
ik0x−

σx2

4

)
. (2.7b)
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2.1.2 Method of lines
The concept of method of lines (mol) is way of solving pdes in which all

except one dimension, primarily time, is discretized. Amol routine transforms

a pde into a large, coupled system of ordinary differential equations,which we

are to solve with a standard, general-purpose ordinary differential equation

(ode) solver.

Figure 2.1[7] illustrates how the mol discretizes space and converts the pde
of some scalar function u(x , t)

ut = Lu , (2.8)

with the corresponding differential operator L, into the ode system (2.9).

Figure 2.1: An illustration of the method of lines

u′ = Lu (2.9)

uuu in (2.9) denotes the discretized spatial part of u(x , t) by the vector

uuu =
[
u(x0, t) u(x1, t) · · · u(xm−1, t) u(xm, t)

]T
, (2.10)
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defined on the spatial grid x = [x0,x1, · · · ,xm−1,xm]. The matrix L is a

numerical approximation of L and constitutes the main problem of the mol:
establish the operator approximation.

If we implement themol routine in a object oriented programming language,

the code will in general take the form as illustrated in listing 2.1, and at a

timestep tk equation (2.9) reads

u′i =
∑
j

Lijuj (2.11)

where j ∈ [0,m], and ui denotes the vector u for i ∈ [0,m].

Listing 2.1: Pseudo code of the mol

def RHS( time , u)

return dotproduct (D, u)

so l u t i on = odeso lver (RHS, u _ i n i t i a l )

for t imes teps in some_timegrid

Do so lu t i on

For a time grid t =
�
t0, t1, · · · , tp

�
, the output of the mol solution takes the

form

u(x , t) = [
u(x , t0), u(x , t1), · · · , u(x , tp)

]
, (2.12)

where each element in (2.12) corresponds to the solution over the discrete

spatial domain at a certain time step.
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The MOL for the rSE
To establish a differential operator for the rse (2.1) we discretize the spatial

grid by

∆x =
xhiдh − xlow

m
, (2.13a)

xj = xlow + j∆x , j ∈ [0,m] , (2.13b)

where xlow and xhiдh denotes the endpoints of the grid, andm + 1 are the

number of gridpoints. ϕj = ϕ(xj , t) describes the function value ϕ(x , t) at a
gridpoint xj for all timesteps tk , as illustrated in figure 2.1. The second order

spatial derivative at a gridpoint j is given by the formula

[ϕxx ]j ≈ 1
[∆x]2 (ϕj−1 − 2ϕj + ϕj+1) , (2.14)

where (2.14) is known as the cdm of second order accuracy [6].

Since ϕj−1 and ϕj+1 in (2.14) don’t exist at the first and last gridpoints x0
and xm respectively, the cdm does not represent ϕxx with the same accuracy

everywhere. To ensure the same precision we apply the second order forward

difference method (fdm), and backward difference method (bdm) [2] at the

endpoints x0 and xm with the standard rules

[ϕxx ]j=0 ≈ 1
[∆x]2 (2ϕ0 − 5ϕ1 + 4ϕ2 − ϕ3) (2.15a)

[ϕxx ]j=m ≈ 1
[∆x]2 (−ϕm−3 + 4ϕm−2 − 5ϕm−1 + 2ϕm) . (2.15b)

With the stated difference rules, the rse turns into the ODE system

d

dt



ϕ(x0, t)
ϕ(x1, t)

...

...

ϕ(xm, t)



=
i

[∆x]2



2 −5 4 −1 0 · · · 0

1 −2 1 0 0 · · · 0

0 1 −2 1 . . .
. . . . . . . . . . . . . . .
. . . 1 −2 1 0

0 · · · 0 0 1 −2 1

0 · · · 0 −1 4 −5 2





ϕ(x0, t)
ϕ(x1, t)

...

...

ϕ(xm, t)



, (2.16)
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which in a more compact form reads

ϕ′ = iD2ϕ , (2.17)

where

D2 =
1

[∆x]2



2 −5 4 −1 0 · · · 0

1 −2 1 0 0 · · · 0

0 1 −2 1 . . .
. . . . . . . . . . . . . . .
. . . 1 −2 1 0

0 · · · 0 0 1 −2 1

0 · · · 0 −1 4 −5 2



. (2.18)

represents the second order spatial derivative.

Comparing solutions
Now we are to test these independent methods against each other. The

analytical Fourier solution (2.5) can be found from brute force summation

over a large spatiotemporal grid, and a built in integration routine for the k

dependent integral. Moreover, the mol solution is given by the matrix D2,

the initial condition (2.7b), and the same time grid applied to the Fourier

solution.

For the constants in table 2.1 we get the result depicted in figure 2.2 for the real

part of the solutions. As the figures illustrate, the analytical and numerical

k0 klow khiдh xmin xmax ∆x tmin tmax ∆t σ

5 -100 100 -10 20 0.1 0 10 0.1 0.5

Table 2.1: Fourier and Difference comparison constants for the rse

solution coincides and results in a travelling wave packet for the real part of

the solution, witch we would expected since we are solving a Schroödinger

equation [3]. Table 2.2 states the computational time for both methods, and it
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Figure 2.2: Two solutions methods for the rse plotted against each other for 4 differ-

ent time steps.

reveals that the mol is significantly better compared to the time consuming

analytic Fourier solution.

Method Computing time

Fourier 621.6 s

Finite difference 2.31 s

Table 2.2: Computing time comparison for the Fourier integral and the mol
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2.2 Discrete approximation of derivatives
2.2.1 A procedure for generating difference rules
Where we in section 2.1.2 applied standard discretization rules for the second

order spatial derivative, we now want to develop a somewhat general proce-

dure to generate such difference rules. The following scheme is valid for any

s ≥ d where:

• d express the order of the derivative we are approximating.

• xi is the discrete gridpoint we are generating a difference rule around.

• s denotes the number of surrounding gridpoints to xi , relative to the

cdm

In the presented example we estimate the fourth derivative with four and five

surrounding gridpoints for the cdm and boundary rules respectively, such that

d = 4 and s = 4.

As a first step in this process we approximate a Cd+1 function ϕ(x) around a

point xi by the series

ϕ(x) ≈
s∑

l=0

al (x − xi)l , (2.19)

for the cdm, and

ϕ(x) ≈
s+1∑
l=0

al (x − xi)l , (2.20)

for the boundary rules.
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f

ϕ(xi−2)
ϕ(xi−1)ϕ(xi)ϕ(xi+1)

ϕ(xi+2)

xi−2 xi−1 xi xi+1 xi+2

Figure 2.3: A difference routine of order 4

The interior points
Next we express our function and the desired derivative in terms of the

approximation (2.19)

ϕ(x) ≈ a0 + a1(x − xi) + a2(x − xi)2 + a3(x − xi)3 + a4(x − xi)4 , (2.21)

ϕ′′′′(x) ≈ 24a4 . (2.22)

These equations illustrate why s ≥ d for this procedure to work, since

one would end up with 0 for the derivative otherwise. If we discretize the

independent variable x by

∆x =
xhiдh − xlow

m
, (2.23a)

xi = xlow + i∆x , i ∈ [0,m] , (2.23b)

we can center the approximation at any interior gridpoint xi , as shown figure

2.3. Note that the forthcoming calculations are valid for other discretizations,
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since the presented procedure is useful as long one are able to keep track of

each gridpoint, and have established ∆x .

From the s surrounding gridpoints of xi , the corresponding function values

ϕ(xi), and the approximation (2.21), we are able to put up the system of

equations (2.24).

ϕ(xi−2) = a0 + a1(xi−2 − xi) + a2(xi−2 − xi)2 (2.24a)

+ a3(xi−2 − xi)3 + a4(xi−2 − xi)4
ϕ(xi−1) = a0 + a1(xi−1 − xi) + a2(xi−1 − xi)2 (2.24b)

+ a3(xi−1 − xi)3 + a4(xi−1 − xi)4
ϕ(xi) = a0 (2.24c)

ϕ(xi+1) = a0 + a1(xi+1 − xi) + a2(xi+1 − xi)2 (2.24d)

+ a3(xi+1 − xi)3 + a4(xi+1 − xi)4
ϕ(xi+2) = a0 + a1(xi+2 − xi) + a2(xi+2 − xi)2 (2.24e)

+ a3(xi+2 − xi)3 + a4(xi+2 − xi)4

Since the factors

(xi±k − xi) = ±k∆x for k ∈ {0, 1, 2} , (2.25)

the equations in (2.24) form a system with s + 1 equations and unknowns

{a0, · · · ,as}. The solution of (2.24) reads

a0 = ϕi

a1 =
1

12∆x
(ϕi−2 − 8ϕi−1 + 8ϕi+1 − ϕi+2)

a2 = −
1

24∆x2
(ϕi−2 − 16ϕi−1 + 30ϕi − 16ϕi+1 + ϕi+2)

a3 =
1

12∆x3
(−ϕi−2 + 2ϕi−1 − 2ϕi+1 + ϕi+2)

a4 =
1

24∆x4
(ϕi−2 − 4ϕi−1 + 6ϕi − 4ϕi+1 + ϕi+2) ,

(2.26)

where we according to (2.22) need the a4 coefficient to establish the desired

difference rule for ϕ′′′′(x) as an expression of ∆x and ϕ(xi±k) = ϕi±k . Our
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xi−1
x0

xi
x1

xi+1
x2

xi+2
x3

xi+3
x4

xi+4
x5

xi

x0

xi+1

x1

xi+2

x2

xi+3

x3

xi+4

x4

xi+5

x5

Figure 2.4: Difference rule discretization for the two first gridpoints for Φ′′′′(x).

cdm formula then reads

ϕ′′′′(xi) = 1
∆x4 (ϕi−2 − 4ϕi−1 + 6ϕi − 4ϕi+1 + ϕi+2) (2.27)

in standard form.

Boundary rules
By the same argument as in section 2.1.2, equation (2.27) does not represent

ϕ′′′′(x) for the two¹ first and last gridpoints x0,x1,xm−1,xm, and to approxi-

mate the derivative at those points, we must modify the cdm setup.

Figure 2.4 highlights the key steps for of the boundary discretization:

• Askew centering for xi , marked in black.

• The endpoint rules require one more gridpoint relative to the cdm.

Remark that figure only illustrates the leftmost part of the boundary for

the fdm discretization, and that the concept apply symmetrically for the

bdm at the opposite boundary. The first bullet point concerns the actual

gridpoints we need to address difference rules to, while the second - as we

will clarify in section 2.2.2 - is necessary to obtain the same order of accuracy

for the boundary derivatives. Estimating ϕ(x) and ϕ′′′′(x) near the boundary
1. In general there will be s gridpoints that need a modification, with s

2 points on each

boundary.
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gridpoints by (2.20), results in the derivative approximation at the boundary

(2.28).

ϕ′′′′(x) ≈ 24a4 + a5120(x − xi) (2.28)

Since we are skew centring the rules at the boundary gridpoints by x = xi , the

second term on the right hand side of (2.28) disappears, and we are again left

with (2.22) for the derivative. By the same geometric argument as in figure

2.3 - only with a shifted centre and one more gridpoint - one can put up a

s + 2 system of equations and unknowns analogous to (2.24), and solve for

a4. As an illustration, we display the system and its corresponding solution

coefficient for the case xi = x1, while the remaining difference rules will be

stated.

The equations for the case xi = x1 is given by

ϕ0 = a0 + a1(−∆x) + a2(−∆x)2 + a3(−∆x)3 + a4(−∆x)4
ϕ1 = a0

ϕ2 = a0 + a1(∆x) + a2(∆x)2 + a3(∆x)3 + a4(∆x)4
ϕ3 = a0 + a1(2∆x) + a2(2∆x)2 + a3(2∆x)3 + a4(2∆x)4
ϕ4 = a0 + a1(3∆x) + a2(3∆x)2 + a3(3∆x)3 + a4(3∆x)4
ϕ5 = a0 + a1(4∆x) + a2(4∆x)2 + a3(4∆x)3 + a4(4∆x)4 ,

(2.29)

where the solution for a4 reads

a4 =
1

24∆x4 (2ϕ0 − 9ϕ1 + 16ϕ2 − 14ϕ3 + 6ϕ4 − ϕ5) . (2.30)

Assigning the same procedure for the remaining boundary points results in
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the difference rules

ϕ′′′′(x0) = 1
∆x4 (3ϕ0 − 14ϕ1 + 26ϕ2 − 24ϕ3 + 11ϕ4 − 2ϕ5) (2.31a)

ϕ′′′′(x1) = 1
∆x4 (2ϕ0 − 9ϕ1 + 16ϕ2 − 14ϕ3 + 6ϕ4 − ϕ5) (2.31b)

ϕ′′′′(xm−1) = 1
∆x4 (−ϕm−5 + 6ϕm−4 − 14ϕm−3 + 16ϕm−2 − 9ϕm−1 + 2ϕm)

(2.31c)

ϕ′′′′(xm) = 1
∆x4 (−2ϕm−5 + 11ϕm−4 − 24ϕm−3 + 26ϕm−2 − 14ϕm−1 + 3ϕm) .

(2.31d)

The cdm (2.27) and boundary rules (2.31) comprise the derivative at all

spatial gridpoints, and we are to represent ϕ′′′′(x) as

ϕ′′′′(x) = 1
[∆x]4



3 −14 26 −24 11 −2 0 · · · 0

2 −9 16 −14 6 −1 0 . . . 0

1 −4 6 −4 1 0 . . .

0 . . . . . . . . . . . . . . . . . . 0
. . . 1 −4 6 −4 1 . . .

0 . . . . . . . . . . . . . . . . . . 0

0 1 −4 6 −4 1

0 . . . 0 −1 6 −14 16 −9 2

0 · · · 0 −2 11 −24 26 −14 3





ϕ(x0)
ϕ(x1)
...
...

...

...

ϕ(xm−1)
ϕ(xm)



,

(2.32)

which in a more compact form reads

ϕ′′′′ = D4ϕ , (2.33)

where D4 defines the operator matrix of d4

dx4 .

2.2.2 Order of accuracy
To determine the order of accuracy for the presented differential approxi-

mations, we Taylor expand the terms ϕ(xi±k) for required k around xi with
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s + 2 terms, and insert the expansions into the difference rules (2.27) and

(2.31).

As the boundary rules states, we need the expansions

ϕ(xi±1) = ϕ(xi) ± ∆xϕ′(xi) + (∆x)2
2

ϕ′′(xi) ± (∆x)3
6

ϕ′′′(xi)

+
(∆x)4
24

ϕ(4)(xi) ± (∆x)5
120

ϕ(5)(xi) + (∆x)6
720

ϕ(6)(xi) (2.34a)

ϕ(xi±2) = ϕ(xi) ± 2∆xϕ′(xi) + 2(∆x)2ϕ′′(xi) ± 4
3
(∆x)3ϕ′′′(xi)

+
2
3
(∆x)4ϕ(4)(xi) ± 4

15
(∆x)5ϕ(5)(xi) + 4

45
(∆x)6ϕ(6)(xi) (2.34b)

ϕ(xi±3) = ϕ(xi) ± 3∆xϕ′(xi) + 9
2
(∆x)2ϕ′′(xi) ± 9

2
(∆x)3ϕ′′′(xi)

+
27
8
(∆x)4ϕ(4)(xi) ± 81

40
(∆x)5ϕ(5)(xi) + 81

80
(∆x)6ϕ(6)(xi) (2.34c)

ϕ(xi±4) = ϕ(xi) ± 4∆xϕ′(xi) + 8(∆x)2ϕ′′(xi) ± 32
3
(∆x)3ϕ′′′(xi)

+
32
3
(∆x)4ϕ(4)(xi) ± 128

15
(∆x)5ϕ(5)(xi) + 256

45
(∆x)6ϕ(6)(xi) ,

(2.34d)

which inserted into (2.27) and (2.31) leads to the relations (2.35)

ϕ′′′′(xi) = ϕ′′′′(xi) + (∆x)2
6

ϕ(6)(xi) (2.35a)

ϕ′′′′(xi) = ϕ′′′′(xi) − γ (∆x)
2

6
ϕ(6)(xi) (2.35b)

for the cdm and bondary rules respectively. We remark that γ = 17 for

outmost gridpoints, while γ = 5 for the ones within.

According to [6], the second term on the right hand side in (2.35) defines

the approximation error, and the corresponding exponent of ∆x in the error

term determines the order of approximation accuracy. Hence, D4 represents

a second order approximation of the operator d4

dx4 .

The difference rules contained in D4 are well known and presented in text-

books and articles on the topic[2], but the overall procedure is what we want

to bring along within the landscape of pattern forming equations.
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2.3 Properties of a discrete differential operator
Where we in section 2.1.2 did not reveal how to implement the boundary

conditions of the rse into the differential operator D2, we will now discuss

how to include such properties into a discrete approximation of a differential

operator.

For simplicity we will work with the second order accuracy approximation of

∂xx (2.18), which in a rewritten form reads

D2 =



α1 α2 α3 α4 0 · · · 0

c1 c2 c3 0 · · · 0

0 c1 c2 c3
...

...
. . . . . . . . .

...
... c1 c2 c3 0

0 · · · 0 c1 c2 c3

0 · · · 0 α4 α3 α2 α1



. (2.36)

The factor 1/(∆x)2 in (2.18) is embedded into the matrix operator (2.36), and

the dimension of D2 is (m + 1)2.

We remark that the procedure presented in the upcoming paragraphs is similar

for other orders of derivatives and accuracy, but involves more of the same

ideas, and thereby more calculations.

2.3.1 Boundary conditions
Before we reveal how to include boundary conditions into a operator matrix,

we must discuss how the mol algorithm calculates its results. Rewriting (2.9)
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with the matrix operator (2.36) leads to the relation

d

dt



u(x1, t)
u(x2, t)
u(x3, t)
...
...

u(xm−1, t)



=



u0α1 + u1α2 + u2α3 + u3α4

u0c1 + u1c2 + u2c3

u1c1 + u2c2 + u3c3

u2c1 + u3c2 + u4c3
...
...

um−2c1 + um−1c2 + umc3

um−3α4 + um−2α3 + um−1α2 + umα1



, (2.37)

where {u0, · · · ,um} denotes the values {u(x0, t), · · · ,u(xm, t)}.

Zero boundary conditions
To maintain zero boundary conditions for the system (2.9), we require that

the relations

u(x0, t) = 0 and u(xm, t) = 0 (2.38)

holds for all t in (2.37). One possibility to ensure so is to set the α -constants

in (2.36) to zero, and implementu(x0, t) = u(xm, t) = 0 in the RHS illustrated

in listing 2.1 to provide that the u0 and um terms in (2.37) are zero for all t . An

equivalent alternative, and the one we choose to apply, is to remove the first

and last rows and columns of the operator matrix, while removing the points

u0 and um from our computational grid. In that manner, the modified matrix

operator and the acting gridpoints produces a solution as if the boundary

values were zero. This procedure results in the matrix illustrated in figure 2.5,

and the mol equation (2.39).

d

dt



u(x1, t)
u(x2, t)
u(x3, t)
...
...

u(xm−1, t)



=



u1c2 + u2c3

u1c1 + u2c2 + u3c3

u2c1 + u3c2 + u4c3
...
...

um−2c1 + um−1c2



. (2.39)
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α1 α2 α3 α4 0 · · · 0

c1 c2 c3 0 · · · 0

0 c1 c2 c3
...

...
. . . . . . . . .

...
... c1 c2 c3 0

0 · · · 0 c1 c2 c3
0 · · · 0 α4 α3 α2 α1





Figure 2.5: Modified operator matrix to sustain zero boundary conditions

u(x , t) = 0 and ux(x, t) = 0 at the boundary
In order to sustain both ux (x , t) = 0 and u(x , t) = 0 at the boundary, the

reasoning and the manipulations from the previous subsection apply to the

condition u(x , t) = 0. If ux (x , t) = 0 are to be satisfied , some elements of

the operator matrix need to be adjusted. To see why, we investigate the rules

that describes the first order spatial derivative of second order accuracy at the

endpoints[2] of the grid:

u′(x0) = 1
2∆x

[−3u(x0) + 4u(x1) − u(x2)] (2.40a)

u′(xm) = 1
2∆x

[u(xm−2) − 4u(xm−1) + 3u(xm)] . (2.40b)

For simplicity we have not included the time variable in the equations and

imminent calculations, since the spatial calculations are the same for all t ,

relative to the mol.

Sinceu(x) = 0 at the boundaries, the terms containingu(x0) oru(xm) in (2.40)
disappears from the equations. To ensure a zero derivative on the boundaries

we let u′(x0) = u′(xm) = 0 in (2.40) to obtain the relations

u(x1) = u(x2)
4

(2.41a)

u(xm−1) = u(xm−2)
4

. (2.41b)
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These equations are now the criteria we must implement into our operator

matrix. To manage this, we put up the difference rules containing the left

hand side terms of (2.41):

u′(x1) = c1u(x0) + c2u(x1) + c3u(x2) (2.42a)

u′(x2) = c1u(x1) + c2u(x2) + c3u(x3) (2.42b)

u′(xm−2) = c1um−3 + c2um−2 + c3u(xm−1) (2.42c)

u′(xm−1) = c1um−2 + c2um−1 + c3u(xm) . (2.42d)

Inserting (2.41) and (2.38) into the difference rules (2.42), they turn out as

u′(x1) = u(x2)
(c2
4
+ c3

)
(2.43a)

u′(x2) = u(x2)
(c1
4
+ c2

)
+ c3u(x3) (2.43b)

u′(xm−2) = c1u(xm−3) + u(xm−2)
(
c2 +

c3
4

)
(2.43c)

u′(xm−1) = u(xm−2)
(
c1 +

c2
4

)
. (2.43d)

To incorporate this into the operator matrix we exclude two more rows and

columns, while we build in the relations (2.43), as demonstrated in figure 2.6.

This might seem as trickery since we are removing two more gridpoints from

our computational grid, which could affect our solution. What saves the day,

is that the equations (2.41) and (2.43) incorporates those gridpoints into the

operator matrix, together with the boundary derivatives.

u(x , t) = 0 and uxx(x, t) = 0 at the boundary
Redoing the routine described in the previous section with the second deriva-

tive of second order accuracy[2], which is given by the equations

u′′(x0) = 1
∆x2 [2u(x0) − 5u(x1) + 4u(x2) − u(x3)] (2.44a)

u′′(xm) = 1
∆x2 [−u(xm−3) + 4u(xm−2) − 5u(xm−1) + 2u(xm)] , (2.44b)
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α1 α2 α3 α4 0 · · · · · · 0

c1 c2
c2
4 + c3 0 · · · · · · 0

0 c1
c1
4 + c2 c3 0 0

c1 c2 c3

. . . . . . . . .
c1 c2 c3

0 c1 c2 +
c3
4 c3

0 · · · · · · 0 c1 +
c2
4 c2 c3

0 · · · · · · 0 α4 α3 α2 α1




Figure 2.6: Modified operator matrix for u(x , t) = 0 and ux (x , t) = 0 at the bound-

aries.

results in equations

u(x1) = 4
5
u(x2) − 1

5
u(x3) (2.45a)

u(xm−1) = −15u(xm−3) +
4
5
u(xm−2) . (2.45b)

(2.45) constitutes the boundary criteria, and inserting those into the difference

rules (2.42) leads to the relations

u′(x1) = u(x2)
(4c2
5
+ c3

)
−
c2
5
u(x3) (2.46a)

u′(x2) = u(x2)
(4c1
5
+ c2

)
+ u(x3)

(
c3 −

c1
5

)
(2.46b)

u′(xm−2) = u(xm−3)
(
c1 −

c3
5

)
+ u(xm−2)

(
c2 +

4c3
5

)
(2.46c)

u′(xm−1) = −c35 u(xm−3) + u(xm−2)
(
c1 +

4c2
5

)
, (2.46d)

which modifies the operator matrix into the matrix depicted in figure 2.7.



34 CHAPTER 2 METHODS AND CONCEPTS

α1 α2 α3 α4 0 · · · · · · 0

c1 c2
4c2
5 + c3 −

c2
5 0 · · · · · · 0

0 c1
4c1
5 + c2 c3 −

c1
5 0 0

c1 c2 c3

. . . . . . . . .
c1 c2 c3

0 c1 −
c3
5 c2 +

4c3
5 c3

0 · · · · · · 0 −
c3
5 c1 +

4c2
5 c2 c3

0 · · · · · · 0 α4 α3 α2 α1




Figure 2.7: Modified operator matrix for u(x , t) = 0 and uxx (x , t) = 0 at the bound-

aries.

2.3.2 Combining operators
For the differential operators

L2 =
d2

dx2 (2.47a)

L4 =
d4

dx4 , (2.47b)

it is from elementary operator algebra known that

L2[L2 f (x)] = [L2L2]f (x) (2.48a)

= L4 f (x) (2.48b)

for some C4 function f (x).

Since we have established numerical approximations for the operators (2.47)

with the matrices D2 (2.18) and D4 (2.32), we can test if (2.48) holds for the
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discrete case. The discrete equivalent of [L2L2] is given by

[D2]2 =



−1. 4. −6. 4. −1. 0. · · · 0.

0. 0. 0. 0. 0. 0. 0. 0. 0.

1. −4. 6. −4. 1. 0. 0. 0. 0.
...
. . . . . . . . . . . . . . . . . .

...

0. 0. 1. −4. 6. −4. 1. 0. 0.
...

. . . . . . . . . . . . . . . . . . 0.

0. 0. 0. 0. 1. −4. 6. −4. 1.

0. 0. 0. 0. 0. 0. 0. 0. 0.

0. · · · 0. −1. 4. −6. 4. −1.



, (2.49)

which imply the relation

(D2)2 , D4 (2.50)

by comparing (2.49) with D4 in (2.32). In (2.49) we note that the identity

(2.48) holds for the interior points, but breaks down at boundary. Since the

mol converts a pde into a system of coupled odes, the boundary rules are

important, as we discussed in the previous subsections regarding the boundary

conditions, and we are to be aware of the result (2.50).

2.4 Perfectly Matched Layer for the reduced
Schrödinger equation

As an introductory example, we will demonstrate and make use of the pml
on the rse with a contour based pml.
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x

z(x)

θ
θ−a

a

Figure 2.8: The complex contour z(x) in (2.51)

2.4.1 The overall idea of a contour based PML
For a solution ϕ(x , t) of the rse we introduce its analytic continuation Φ(z, t)
where Φ |R = ϕ , and the complex contour

z(x) =



−a + eiθ (x + a) for x ≤ −a

x for x ∈ (−a,a)
a + eiθ (x − a) for x ≥ a .

(2.51)

The angle θ is defined as in figure 2.8, and we say that the pml starts at the

points {z(x) = ±a}. To uphold a precise language we will from now on, and

throughout the thesis, refer to the points {z(x) = ±a} as the pml points, the

set {z(x) ∈ (−a,a)} as outside the pml region, and the two remaining sets as

inside the pml region². The contour branches z(x)− and z(x)+ are referred

to as the negative and positive pml regions respectively.

We define

Ψ(x , t) = Φ(z, t) �
z=z(x) (2.52)

as the analytical continuation of ϕ(x , t) along the contour z(x). Hence, Ψ(x , t)
takes the same values as ϕ(x , t) outside the pml region, but is modified on

the inside. Our claim is that the input domain modification x → z(x) impose

a pml for the rse, and to show why, we study a single solution mode of the

rse
ϕ0(x , t) = Ae−iωteikx (2.53)

2. It is possible to argue about the semantics in this choice of inside and outside for the

pml region, but for simplicity we have let "the inside" be where the pml applies.
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where ω = k2, as in section 2.1.1. If we assume that the mode initiates at

the origin and ensure k > 0, the wave propagates towards the positive pml
region. Denoting eiθ = c̃ = α + iβ where {α , β} ∈ R+ for consistency with

figure 2.8, z(x)+ could be rewritten as

z(x)+ = a + eiθ (x − a) (2.54a)

= a(1 − c̃) + (α + iβ)x . (2.54b)

Incorporating this form of z(x)+ into (2.53), a wave packet moving from the

origin into the positive pml region turn out as

ϕ0(z(x)+, t) = Ae−ik
2teika(1−c̃)eikx(α+iβ) (2.55a)

= Ãe−ik
2teikxαe−kxβ (2.55b)

= Ãe−i(k2t−kxα)e−kxβ (2.55c)

= Ãe−iG(x ,t)e−kxβ , (2.55d)

where Ã = Aeika(1−c̃) andG(x , t) = (k2t−kxα). The first two factors in (2.55d)
describes the mode amplitude and oscillatory behaviour, while the last factor

ensures exponential decay since β ,k,x > 0. For a wave mode travelling in

the other direction z(x)−, we may redo the calculations with {k,α , β} < 0 for

consistency with direction and figure 2.8. This results in a solution

ϕ0(z(x)−, t) = Ãe−iH (x ,t)ekxβ (2.56)

where Ã = Aeika(c̃−1) and H (x , t) = (k2t +kxα). The outcome of this scenario

is the same as for the positive pml region, since the numbers β,k,x < 0. If

we impose the Fourier mode solution

ϕ(x , t) =
∑
k

Ae−ik
2teikx (2.57)

to the rse, the presented arguments ensures exponential decay inside the

pml region for all k.

Now we are to transform the rse into a problem containing the pml imposed

solution Ψ(x , t). In general, the procedure has the following structure: begin
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with the original problem, put up the analogous equation for the general

analytical continuation Φ(z, t), and evaluate it along the contour z = z(x).
This idea is illustrated schematically in (2.58c).

ϕ(x , t)t = iϕ(x , t)xx (2.58a)

↓ analytic continuation

Φ(z, t)t = iΦ(z, t)zz (2.58b)

↓ along z(x)
Φ(z, t)t �

z=z(x) = iΦ(z, t)zz
�
z=z(x) (2.58c)

Our task is then to express the spatiotemporal derivatives of (2.58c) in terms

of Ψ(x , t). From the chain rule we obtain the relations

∂xΨ(x , t) = ∂xΦ(z(x), t) (2.59a)

=
∂Φ(z(x), t)
∂z

∂z(x)
∂x

(2.59b)

= z′(x) ∂zΦ(z(x), t) (2.59c)

= Φzz
′ , (2.59d)

∂xxΨ(x , t) = ∂x [∂xΨ(x , t)] (2.60a)

= ∂x
�
z′(x) ∂zΦ(z(x), t)� (2.60b)

= z′′(x)∂zΦ(z(x), t) + z′(x)∂x∂zΦ(z(x), t) (2.60c)

↓ where Φ(z(x), t)|R ∈ C2 : ∂x∂z = ∂z∂x (2.60d)

= z′′(x)∂zΦ(z(x), t) + z′(x)∂z[∂xΦ(z(x), t)] (2.60e)

= z′′(x)∂zΦ(z(x), t) + z′(x)∂z[z′(x) ∂zΦ(z(x), t)] (2.60f)

= z′′(x)∂zΦ(z(x), t) + [z′(x)]2∂zzΦ(z(x), t) (2.60g)

= z′′Φz + [z′]2Φzz , (2.60h)

for the spatial derivatives. Combining the results from (2.59) - (2.60) will

after some manipulation result in the relations (2.61) - (2.62), which describes
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the pml-modified first and second order derivative.

Φz =
Ψx

z′
(2.61)

Φzz =

[
Ψxx −

z′′

z′
Ψx

]
1

[z′]2 (2.62)

Since Ψ(x , t) and Φ(z(x), t) depends equally on time, the temporal derivative

does not change, such that

∂tΨ(x , t) = ∂tΦ(z(x), t) . (2.63)

The converted equation (2.58c) with z(x) as stated in (2.51), and the derived

relations (2.61) - (2.62) leads to the pml version of the rse

Ψt = i LΨ , (2.64)

where the operator L reads

L =




1
e2iθ

Ψxx for x < −a

Φzz

�
z=z(x) for x = −a

Ψxx for x ∈ (−a,a)
Φzz

�
z=z(x) for x = a

1
e2iθ

Ψxx for x > a .

(2.65)

Since z(x) not is twice continuous differentiable at the pml points {z(x) = ±a},
as we assumed in (2.60d) for the mixed partial derivatives, the operator L

must be defined specifically in terms of Φ(z(x), t) at those points. To manage

this we apply the difference rule procedure discussed in section 2.2.1, where

we will express the spatial part of Φ(z(x), t) with the approximation

Φ(zj , t) �
zj=±a ≈

s∑
l=0

ci(t)(zj − zi)l (2.66)

of some order s to match the desired order of accuracy. In (2.66) zj denotes

z(xj), while zi express the points we are assigning difference rules to, where

Φ(zj , t) corresponds to a function value at the gridpoint zj .
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Given a suitable discretisation, and a correct boundary condition setup, L is

now possible to implement on a computer.

To illustrate the pml setup in terms of relevant domains, we refer to the

diagram in figure 2.9.

R × R C × R C × R
z(x)

Ψ(x ,t)

ϕ(x ,t)

Φ(z(x),t)

Figure 2.9: Diagram for the rse continuation

2.4.2 Discretization of the rSE with the PML
To be able to land a numerical solution routine like the mol for the reformu-

lated rse (2.64), there are some key details we must delve into concerning

the operator L. As discussed in section 2.2.1, our overall goal is to construct a

matrix that represents the discretized operator for the spatial derivatives, but

since the difference rules varies between each defined region in (2.65), we

must include this feature into the numerical scheme.

For the pml scheme to be at all useful we must ensure that the pml points

are on the grid, and the discretization

∆x =
a

M
(2.67a)

L = ∆x · N (2.67b)

xl = l · ∆x l ∈ (−N ,N ) , (2.67c)

ensures this detail. In (2.67) M denotes the number of gridpoints from the

origin to the pml point a, while N express the number of gridpoints from the
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xj

z(xj)

ZM−

ZM−−1

ZM−−2

ZM+

ZM++1

ZM++2

xM+−1xM+−2

xM−+1 xM−+2

Figure 2.10: Discretization of the complex contour z(x)

origin to the endpoint L. Note that the domain length L with this discretization

follows as a consequence of N :

L = a
N

M
. (2.68)

The discrete version of z(x) reads

z(xl ) =



−xM + e
iθ (xl + a) for xl ≤ −a

xl for xl ∈ (−a,a)
xM + e

iθ (xl − a) for xl ≥ a ,

(2.69)

where a = xM . Figure 2.10 illustrates the outline of this discretization where

z(xj) = zj , and {zM−, zM+} denotes the pml points such that

zM− = −a and zM+ = a . (2.70)

2.4.3 Generating the operator L for the rSE with PML enforced
With the discretization(2.67), the spatial part of the operator L in (2.65) takes

the form of the following block matrix

D2(θ ) =
*........
,

Dz(x)−

PML− 0
DR

0 PML+

Dz(x)+

+////////
-

. (2.71)
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The PML∓ blocks in (2.71) corresponds to the pml points at x = ±a in (2.65),

and will be discussed on the next pages. Using a fourth order precision for

Ψxx , the D-blocks in (2.71) turn out as

Dz(x)− = e−2iθ

∆x2

*..............
,

15
4 −77

6
107
6 −13 61

12 −5
6

5
6 −5

4 −1
3

7
6 −1

2
1
12

− 1
12

4
3 −5

2
4
3 − 1

12

. . . . . . . . . . . . . . .

− 1
12

4
3 −5

2
4
3 − 1

12

+//////////////
-

, (2.72)

DR =
1

∆x2

*......
,

− 1
12

4
3 −5

2
4
3 − 1

12

. . . . . . . . . . . . . . .

− 1
12

4
3 −5

2
4
3 − 1

12

+//////
-

, (2.73)

Dz(x)+ = e−2iθ

∆x2

*..............
,

− 1
12

4
3 −5

2
4
3 − 1

12

. . . . . . . . . . . . . . .

− 1
12

4
3 −5

2
4
3 − 1

12

1
12 −1

2
7
6 −1

3 −5
4

5
6

−5
6

61
12 −13 107

6 −77
6

15
4

+//////////////
-

, (2.74)

where the entries of these D-blocks are generated in the same way as in section

2.2.1 for the constants d = 2 and s = 4.

2.4.4 Generating difference rules around the PML points
As stated in the derivation of the operator L (2.65), we must build our nu-

merical scheme at the pml points from the analytical continuation Φ(z, t). In
order to understand why, we will explain why we not want to use Ψ(x , t) to
do so.
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Since Ψ(x , t) = Φ(z, t)|z=z(x), the following relations apply

• at negative pml point:

Ψx = −e
iθΦz |z=−a , (2.75)

• for x ∈ (−a,a):
Ψx = Φz , (2.76)

• at positive pml point:

Ψx = eiθΦz |z=a . (2.77)

To keep the number of calculations at a minimum we only derive the forth-

coming relation for the positive pml point, while we will state the analogous

relation at the negative pml point.

We define the following

Ψ+x = lim
x→a+

Ψx (2.78a)

= eiθΦz |z=a , (2.78b)

Ψ−x = lim
x→a−

Ψx (2.78c)

= Φz |z=a , (2.78d)

which combined leads to the relation

Ψ+x = eiθΨ−x (2.79)

at the positive pml point. Redoing the same calculations would result in the

relation

−eiθΨ−x = Ψ+x (2.80)

at the negative pml point.

(2.79) and (2.80) illustrates that the spatial derivative of Ψ(x , t) is discon-

tinuous at the pml points, and the relations are to be coincided as internal

boundary conditions for the rse.
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zi+1

zi

zi−1zi−2
zi+1 zi+2

zi−1
zi+2

zi−2
zi−1

zi

zi+1

zi+2

zi−2

zi+2

zi−1
zi

zi+1

zi−2 zi+1zi−1 zi zi+2

zi

zi−2

Figure 2.11: The cdm around the negative pml point with a five point approximation.

The relations (2.79) and (2.80) are obviously tedious to handle, so in stead of

implementing these unmanageable relations into our numerical scheme, we

turn to the analytic continuation. Since Φ(z, t) is a analytic continuation of

ϕ(x , t), it is per definition possible to approximate by a power series, which

we therefore may use to generate the differential rules from.

To generate difference rules for the two regions where the pml emerges

we approximate discrete function value Φ(zj , t) around the pml points zi by

Φ(zj , t) ≈ c0(t) + c1(t)(zj − zi) + c2(t)(zj − zi)2
+ c3(t)(zj − zi)3 + c4(t)(zj − zi)4 ,

(2.81)

to uphold the same order of accuracy as the matrices (2.72) - (2.74).

Since the cdm extends over s + 1 gridpoints, we must modify s − 1 difference

rules around each pml point to approximate Φ(zj , t) at those points. To

understand why, we turn to figure 2.11 for clarification. The figure depicts

the cdm with s = 4 at the outbreak of the negative pml domain, for the
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gridpoints zi ∈ {zM−−2, zM−+2}. From the figure we observe:

• The factors (zj − zi) for the rules marked with black gridpoints are fully

contained inside or outside pml domain, and thereby belongs to the

D-blocks in (2.71).

• The rules marked with red gridpoints have factors (zj − zi) that extend
inside and outside of the pml domain, andmust be calculated separately.

With the approximation (2.81) we can put up equations analogous to the

system (2.24)

Φ(zi−2, t) = c0(t) + c1(t)(zi−2 − zi) + c2(t)(zi−2 − zi)2 (2.82a)

+ c3(t)(zi−2 − zi)3 + c4(t)(zi−2 − zi)4
Φ(zi−1, t) = c0(t) + c1(t)(zi−1 − zi) + c2(t)(zi−1 − zi)2 (2.82b)

+ c3(t)(zi−1 − zi)3 + c4(t)(zi−1 − zi)4
Φ(zi , t) = c0(t) (2.82c)

Φ(zi+1, t) = c0(t) + c1(t)(zi+1 − zi) + c2(t)(zi+1 − zi)2 (2.82d)

+ c3(t)(zi+1 − zi)3 + c4(t)(zi+1 − zi)4
Φ(zi+2, t) = c0(t) + c1(t)(zi+2 − zi) + c2(t)(zi+2 − zi)2 (2.82e)

+ c3(t)(zi+2 − zi)3 + c4(t)(zi+2 − zi)4 ,
for the second derivative

∂zzΦ(zi , t) ≈ 2c2(t ,Φ(zi−2), · · · ,Φ(zi+2)) . (2.83)

Our task is now to calculate c2(t ,Φ(zi−2), · · · ,Φ(zi+2)) for the required grid-

points zi . Since we apply the mol, the time dependency of c2 in (2.83) is the

same for all timesteps, and we will therefore concentrate on the spatial part

of c2 in the imminent calculations.

To be able to solve the system (2.82) we need to establish what the factors

(zj − zi) are around the PML points, and in essence there are three possibili-

ties:
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1. Both zi and zj are outside the pml region.

2. Both zi and zj are inside the pml region.

3. Either zi is inside the pml region and zj on the outside, or the contrary.

In all cases we have

m < i such that xm < xi , (2.84a)

n > i such that xn > xi , (2.84b)

(2.84c)

and we define

|m − i | = k1 , (2.85a)

|n − i | = k2 , (2.85b)

wherem,n, i ∈ Z and k ∈ N.

1. Both zj and zi are outside the pml region.

zm − zi = xm − xi

= −k1∆x (2.86a)

zn − zi = xn − xi

= k2∆x (2.86b)

2. Both zj and zi are are inside the pml region. For simplicity we combine

the discretized equations for z(x)+ and z(x)− such that

z∓i = z(xi)∓ = ∓a + eiθ (xi ± a) (2.87)

The factor difference relations then reads

z∓m − zi = [∓a + eiθ (xm ± a)] − [∓a + eiθ (xi ± a)] (2.88a)

= eiθ (xm − xi) (2.88b)

= −k1∆xe
iθ , (2.88c)
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z∓n − zi = [∓a + eiθ (xn ± a)] − [∓a + eiθ (xi ± a)] (2.89a)

= eiθ (xn − xi) (2.89b)

= k2∆xe
iθ . (2.89c)

Hence, the factors (zj − zi) are just multiples of ∆x times the complex

factor eiθ .

3. If one point lies inside the pml region and the other on the outside,

there are two cases.

(a) zi sits on the complex branch of z(x), while zj is on the real.

(b) zj sits on the complex branch of z(x), while zi is on the real.

In the presented calculations x∓M denotes the pml points ∓a.

(a) zi ∈ z(x)∓ while zj ∈ (−a,a):

zj − zi = xj − zi (2.90a)

= xj − [∓a + eiθ (xi ± a)] (2.90b)

= xj − [z∗M + eiθ (xi − z∗M)] (2.90c)

= (xj − x∗M) − eiθ (xi − x∗M) , (2.90d)

where j = n and x∗M = x−M at the negative pml region, while j =m

and x∗M = x+M at the positive pml region.

(b) zi ∈ (−a,a) while zj ∈ z(x)∓

zj − zi = zj − xi (2.91a)

= [∓a + eiθ (xj ± a)] − xi (2.91b)

= [z∗M + eiθ (xj − z∗M)] − xi (2.91c)

= (x∗M − xi) + eiθ (xj − x∗M) , (2.91d)
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where j = m and x∗M = x−M for the negative pml region, while

j = n and x∗M = x+M for the positive pml region.

Taking use of the presented factors (zj −zi), the solution of system (2.82) leads

to the approximations

∂zzΦ(zi , t) ≈ 1
∆x2

(ηi−2Φi−2 + ηi−1Φi−1 + ηiΦi + ηi+1Φi+1 + ηi+2Φi+2)
(2.92)

where zi and ηi are stated in table 2.3.

Coefficients

Gridpoint ηi−2 ηi−1 ηi ηi+1 ηi+2

rule

ZM−−1 − e−iθ

3(3eiθ+1)
(3eiθ+1)e−2iθ
(2eiθ+1) −

(3eiθ+2)e−2iθ
(eiθ+1) e−2iθ

3

�
eiθ + 3

�
− 2e2iθ(6e3iθ+11e2iθ+6eiθ+1)

ZM−
(−3eiθ+2)e−2iθ
2(2e2iθ+3eiθ+1)

2(6eiθ−2)e−2iθ
(e2iθ+3eiθ+2) e−2iθ

2

�
2e2iθ − 9eiθ + 2

� 2(−2eiθ+6)eiθ
(2e2iθ+3eiθ+1)

(2eiθ−3)eiθ
2(e2iθ+3eiθ+2)

ZM−+1 − 2e−iθ(e3iθ+6e2iθ+11eiθ+6) e−iθ

3

�
3eiθ + 1

�
− 2eiθ+3(eiθ+1) eiθ+3(eiθ+2) − 1

3(eiθ+3)
ZM+−1 − 1

3(eiθ+3) eiθ+3(eiθ+2) − 2eiθ+3(eiθ+1) e−iθ

3

�
3eiθ + 1

�
− 2e−iθ(e3iθ+6e2iθ+11eiθ+6)

ZM+
(2eiθ−3)eiθ

2(e2iθ+3eiθ+2)
2(−2eiθ+6)eiθ
(2e2iθ+3eiθ+1) e−2iθ

2

�
2e2iθ − 9eiθ + 2

� 2(6eiθ−2)e−2iθ
(e2iθ+3eiθ+2)

(−3eiθ+2)e−2iθ
2(2e2iθ+3eiθ+1)

ZM++1 − 2e2iθ(6e3iθ+11e2iθ+6eiθ+1) e−2iθ

3

�
eiθ + 3

�
−
(3eiθ+2)e−2iθ
(eiθ+1)

(3eiθ+1)e−2iθ
(2eiθ+1) − e−iθ

3(3eiθ+1)

Table 2.3: Difference constants associated with the six difference rules around the

pml points for the second derivative with a fourth order accuracy.

With the presented procedure we are able to represent the PML± blocks in

the matrix (2.71), and the operator L (2.65) is represented on the entire

discretized contour. We note that these difference rules by no means are

calculated by hand, but are produced from a script that does all the symbolic

work.
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2.4.5 The numerical solution
Now we apply the mol with the specified matrix operator (2.71), the initial

condition (2.7b) defined on z(x), and the constants in table 2.4 to produce

k0 a M N ∆x θ tmin tmax ∆t σ

5 10 75 150 2/15 π/2 0 10 0.05 0.5

Table 2.4: Fourier and Difference comparison constants for the rse

the solution depicted in figure 2.12. The figures illustrate that the real part of

the solution ϕ(x , t) travels towards the positive pml point, and goes to zero.

Hence, the theory concerning the pml holds, and the analytical work we have

done applies.
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Figure 2.12: Solution of the rse with the pml enfocred.



3
A pattern forming system
Now that we have achieved some mathematical-numerical methods and tech-

niques, we are equipped to wander the landscape of pattern forming equations

and dynamics. As one reads from the introduction, the terrain of this land-

scape is an overwhelming one, and to be able to apply the obtained machinery,

we are throughout the thesis to work in a mathematical laboratory containing

one spatial dimension in addition to time. In the following studies we will

investigate a single model, the Swift-Hohenberg equation.

3.1 The Swift Hohenberg equation
We start by reacalling the Swift - Hohenberg equation(she):

ut = ru − (1 + ∇2)2u + N (u) , (3.1)

a model equation thoroughly discussed in [1], which the material in the

upcoming paragraphs and subsection 3.2 originates from.

51
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Historically, the equation was developed in 1977 to investigate to what extent

the nonequilibrium transition from a uniform to a nonuniform convecting

state were similar to a phase transition. As time went by and technology made

numerical computations more accessible, one discovered that the equation

could produce solutions with rich spatiotemporal dynamics, which in turn led

to the she as a model of pattern forming systems.

The she is a so called generated model equation, since it is a result of a

heuristic derivation using explicit criteria like symmetry arguments to embed

"physical properties" into the equation. In thatmanner, the she does notmodel

a specific physical system, rather several different systems. The equation is

thus designed to imitate various non equilibrium systems where its solutions

are evolving patterns, like the ones observed in Rayleigh-Benard convection.

A consequence of this imposed "physical nature", is that the she is fruitful

to investigate when one are to assay the mathematics of pattern forming

systems.

The one dimensional version of the she we want to consider throughout the

thesis reads

ut = ru − (1 + ∂xx )2u − u3

u(x , 0) = f (x)
x ∈ (−L,L) ,

(3.2)

where L can be finite or infinite, u = u(x , t), r is the control parameter of the

system, f (x) the initial condition, and −u3 the non-linearity. If L is infinite

the boundary conditions reads

u(±L, t) = 0 (3.3a)

ux (±L, t) = 0 , (3.3b)

whereas periodic conditions

u(x , t) = u(x + 2L, t) (3.4a)

ux (x , t) = ux (x + 2L, t) (3.4b)
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apply for finite L. Other conditions may apply¹, but (3.3b) - (3.4) are the

default conditions.

3.2 Linear stability analysis of the SHE
By observation we establish a solution to (3.2) from the trivial solution ub = 0,

that we will refer to as a base solution. A small perturbation u → u + ub
around the base solution can be shown to result in the linearized she (3.5).

ut = ru − (1 + ∂xx )2u (3.5)

To develop useful terminology and understanding of how the she evolves

with time relative to a small perturbation, we will explore the linear perturbed

part of the she by playing with formulas and equations. The main calculations

and overall conclusions presented in this subsection are as mentioned similarly

discussed in [1], but our analysis contain some modifications to the original

script.

Equation (3.5) is a linear pdewith constant coefficients, whose solution might

be a standard mode on the form

u(x , t) = Aeσteξx , (3.6)

where σ and ξ are arbitrary constants. Inserting (3.6) into (3.5) results in the

algebraic equation

σ = r − (ξ 2 + 1)2 , (3.7)

that can be satisfied for some σ , r and ξ . To establish the nature of ξ and σ

we analyse how u(x , t) (3.6) behaves relative to the parameters, under the

assumption of a small perturbation u(x , t).

The behaviour of ξ is determined by investigating how the spatial part of

u(x , t) changes if the domain is finite or infinite.

1. i.euxx (±L, t) = 0 oruxx (x , t) = uxx (x+2L, t), for the infinite and finite case respectively
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• Infinite boundaries: if x → ±∞ in (3.6) a real, non zero ξ would make

the spatial part ofu(x , t) grow out of bounds on either side, contradicting

the assumption of a small perturbation around ub . The same applies if

ξ = a + ib, only that such a ξ will force u(x , t) to oscillate towards ±∞.

If ξ is purely imaginary, ξ = ik where k ∈ R, the spatial part of u(x , t)
does not grow exponentially for any x , which is consistent relative to

the perturbation.

• Periodic boundaries: ifu(x , t) is 2L periodic for finite L, we demand that

the solution is the same at all positions x and x +2L, at all times. Hence,

the relations

u(x , t) = u(x + 2L, t) (3.8a)

Aeσteξx = Aeσteξ (x+2L) (3.8b)

1 = e2ξL , (3.8c)

emerge, which results in the formula

ξ =m
iπ

L
, m ∈ Z (3.9)

for ξ . Since ξ in (3.9) is a imaginary number, we denote ξ = ik and

write

km =m
π

L
, m ∈ Z , (3.10)

where km is a discrete countable set. With this, the mode solution (3.6)

holds for one km, and is consistent under the assumption of a small

perturbation around ub .

To summarize, we can for finite and infinite L write ξ = ik, such that (3.7)

reads

σk = r − (1 − k2)2 , (3.11)

for some k. The stated relations and equations imply that the perturbation

u(x , t) is on the form

u(x , t) = Aeσk teikx , (3.12)
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where we recognise k as the wavenumber, and σk as the growth rate of a

oscillating Fourier mode. The superposition principle for linear pdes results
in the Fourier series and transform

u(x , t) =
∑
km

cke
σkm teikmx , (3.13)

u(x , t) =
∫
R
dk eσk teikx , (3.14)

for the periodic discrete and infinite continuous domain respectively.

To ensure that the solutions u(x , t) (3.13) - (3.14) are small and decays in the

limit t → ∞, the criteria for σk emerge as

max
k

Re σk < 0, (3.15)

which by observation holds for r ∈ R−.

3.2.1 Growth rate behaviour
To determine how the perturbation u(x , t) evolves with time, we are to inves-

tigate how the growth rate σk (3.11) changes for varying k and r . As a first

remark, we note that σk is a real number for all wave numbers k, and could

be interpreted as a real valued parameter function σ (k) for the variable k,

and the varying parameter r . Furthermore we denote that if k → ±∞, then

σ (k) describes a monotonically decreasing function, which ensures a decaying

behaviour of the perturbation u(x , t). Figure 3.1 illustrates the growth rate

function for small k with different of r . If r ∈ (0, 1) the zeros of σ (k) are given
by

k−2 = −

√
1 +
√
r and k−1 = −

√
1 −
√
r (3.16a)

k+1 =

√
1 −
√
r and k+2 =

√
1 +
√
r , (3.16b)

and they are distributed along the k-grid as depicted in figure 3.2. If r > 1 the

k±1 roots goes imaginary, and we are left with the real k±2 roots. This behaviour
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Figure 3.1: The growth rate σ (k) for different values of r.

k+1

k

k−2 k−1 k+20

Figure 3.2: The zeros of the Swift Hohenberg Equation if 0 < r < 1.

is illustrated in figure 3.1, where the image of σ (k) elevates with increasing r ,

while the real k±1 roots disappears as r → 1.

The derivative of σ (k) reads

σ ′(k) = −4k(k2 − 1) , (3.17)

and reveal the global maxima at k = ±1, as already predicted by the image

of σ (k). This imply that the maximum values of σ (k) are given by

max
k

σ (k) = r , (3.18)

since the term (k2 − 1)2 in (3.11) goes to zero at k = ±1 .
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From (3.18) we conclude that the solution u(x , t) around the base state ub is

linearly stable when r < 0, linearly unstable for r > 0, and that the threshold

of instability is given by the critical value rc = 0. Furthermore, we define the

corresponding critical wavenumber as kc = 1, since the global maxima of σ (k)
occurs atk = 1 for all r . ² From figure 3.1 and equation (3.17) we conclude that

wavenumbers in the neighbourhood of kc ensures growing spatial modes, and

that those modes grow much slower than the decaying modes corresponding

to large wavenumbers |k | >> kc .

In summary, the outcome of this linear stability analysis suggests that a

small perturbation around the base state ub with r > rc results in some

form of spatiotemporal evolution for the linear she (3.5) due to the positive

growth rates for some wavenumbers. From pde theory we know that Fourier

solutions with positive growth rates results in exploding solutions as t → ∞,

which therefore suggest that the perturbed solution u(x , t) are to grow out of

bounds. However, the full she (3.2) is equipped with a negative nonlinearity,

which at the end of the day ensures a bounded dynamical spatiotemporal

behaviour.

3.3 A perfectly matched layer for the Swifth
Hohenberg equation

Inspired by the results in section 2.4, we now want to enforce a pml on the

she (3.2), and build a numerical scheme to solve the transformed equation

with the mol.

To achieve this, we will perform the same routine on the she as we did for the

2. We do not include both signs for the established wave number since the absolute value

for both k-roots are 1. The sign only describes direction relative to the associated wave

vector in 2 and 3 dimensions, that in one dimension corresponds to wave a travelling in

either the positive or negative direction.
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rse; apply some complex analysis to find a pml version of the she, establish
the nature of the differential operators, choose a suitable discretization, and

build the numerical approximation for the spatial part of the equation.

3.3.1 Converting the SHE to a PML equation
Recalling subsection 2.3.2 and the results concerning combinations of numeri-

cal differential operators, we rewrite the she (3.2) as

ut = (r − 1)u − (2∂xx + ∂xxxx )u − u3 , (3.19)

to avoid computational errors.

The necessary calculations to transform (3.19) into a pml equation are more

or less identical to the ones in subsection 2.4, and are therefore not included

in detail here. We write the required few, and present the main features of the

imminent calculations by words and a somewhat precise hand waving.

By defining the analytic continuation of u(x , t) asU |R = u whereU = U (z, t),
the equation

Ut = (r − 1)U − (2∂zz + ∂zzzz)U −U 3 , (3.20)

is analogous to (3.19) for the analytic continuationU (z, t). The function

Ψ(x , t) = U (z, t) �
z=z(x) (3.21)

is a solution of (3.20) along some complex contour z(x), and we want to

express the spatiotemporal derivatives of (3.20) in terms of Ψ(x , t). Using the

same contour (2.51) as for the rse, and an industrious practice of the chain rule

similar to the manipulations in (2.59) - (2.60), one can derive equations for

Uz,Uzz,Uzzz andUzzzz expressed by Ψx , Ψxx , Ψxxx , and Ψxxxx . These relations

contain derivatives of z(x), as (2.61) and (2.62), whereby everything simplifies

due the zero derivatives of z(n)(x) when n ≥ 2. By the stated procedure, the
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second and fourth "spatial" complex derivative in (3.20) turn out as

Uzz =
Ψxx

[z′(x)]2 (3.22a)

= e−2iθΨxx , (3.22b)

Uzzzz =
Ψxxxx

[z′(x)]4 (3.22c)

= e−4iθΨxxxx . (3.22d)

If we combine the stated pieces of theory, the pml version of the she emerges

as

Ψt = [(r − 1) − L]Ψ − Ψ3 , (3.23)

which we from now will refer to as the pmlshe. The differential operator L
in (3.23) reads

L =




2
e2iθ

Ψxx +
1

e4iθ
Ψxxxx for x < −a

2Uzz

�
z=z(x) +Uzzzz

�
z=z(x) for x = −a

2Ψxx + Ψxxxx for x ∈ (−a,a)
2Uzz

�
z=z(x) +Uzzzz

�
z=z(x) for x = a

2
e2iθ

Ψxx +
1

e4iθ
Ψxxxx for x > a ,

(3.24)

and the initial and boundary conditions are given by the relation

Ψ(x , 0) = f (x)
Ψ(±L, t) = 0

Ψx (±L, t) = 0

x ∈ (−L,L) ,

(3.25)

where L can be both finite and infinitely large.

Due to the fact that z(x) is neither twice nor four times continuous differ-

entiable at the pml points - as one has to assume to perform the previous

mentioned chain rule bonanza - the derivatives ∂xx and ∂xxxx need to be

specified in terms of the analytic continuationU (z(x), t) at those points. Such
a procedure is discussed in section 1.4, and the routine is the same this time

around.



60 CHAPTER 3 A PATTERN FORM ING SYSTEM

The intention of this setup is that the pmlshe are to produce solutions with

spatiotemporal dynamics outside the pml region for r > 0, while the solutions

decays symmetrically from the pml points and into pml regions, long before

it reaches the endpoint of L. In that manner, finite L can be interpreted as

periodic boundary conditions. This idea is illustrated in figure 3.3, but we

remark that this imagery is much more an idea, than rigorous mathematics.

−2L −L L 2L

Ψ(x, t )

Figure 3.3: The idea of periodic boundary conditions for the pml setup.

Since the pmlshe (3.23), and the corresponding differential operator (3.24)

is a quite complex collection of expressions, we want to simplify our notation.

By introducing the step function

θ (x) =



θN for x < −a

0 for x ∈ (−a,a)
θP for x > a ,

(3.26)

as depicted in figure 3.4, where θN and θP are the z(x)-contour angles defined

−a a

θN

θ = 0

θP

Figure 3.4: The step function θ (x)

on the interval

{θN ,θP} ∈
[
0,
π

2

]
, (3.27)
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we present the more compact version of the pmlshe

Ψt = [r − (1 + 2e−2iθ (x)∂xx + e−4iθ (x)∂xxxx )]Ψ − Ψ3 . (3.28)

Note that (3.28) in general not is analogous to (3.23) due to the discontinuities

at the pml points, but behaves like (3.23) at all other spatial points. However,

if θ is constant over the whole line, where θ is a constant in the interval (0, π2 ),
then (3.28) and (3.23) describe the same system.

3.4 Discretization, numerical representations of
operators, and numerics for the SHE with a PML

As a first remark concerning the numerics of the pmlshe (3.23), we want to

discuss the number of necessary gridpoints to approximate the differential op-

erators contained in the operatorL (3.24). Contrary to the rse, that contained
one differential operator, the transformed she (3.23) inheres a sum of two

differential operators. To sustain the same order of accuracy for both terms,

the difference rules corresponding to each term should be approximated with

the number of gridpoints as stated in table 3.1. One must not demand the same

∂xx ∂xxxx

Order of accuracy 2 4 2 4

# of gridpoints, cdm 3 5 5 7

# of gridpoints, boundary rules 4 6 6 8

Table 3.1: Number of required gridpoints to approximate the second and fourth spatial

derivative for two different orders of accuracy.

order of accuracy for both operators, but since the differential operator with

the lowest precision dictates the precision of the solution Ψ(x , t), we choose
this setup for consistency.
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Applying the same discretization as for the rse

∆x =
a

M
(3.29a)

L = ∆x · N (3.29b)

xl = l · ∆x l ∈ (−N ,N ) , (3.29c)

we again ensure that the pml points are on the grid. If we represent the

spatial domain with the vector

Ψ =
[
Ψ(x−N , t) Ψ(x−N+1, t) · · · · · · Ψ(xN , t)

]T
, (3.30)

and denote it as Ψl for l ∈ [−N ,N ] , the pmlshe (3.23) can be turned into a

ode system like (2.9) by the relation

Ψ′l =
N∑

s=−N

MlsΨs − (Ψl )3 . (3.31)

The non-linearity³ in (3.31) is implemented into themol routine by changing

the return statement of the RHS function in listing 2.1, to the one described

in listing 3.1.

Listing 3.1: Pseudo code of the right hand side subroutine for the mol with a non

linearity

def RHS( time , p s i )

return dotproduct (M, p s i ) − ps i **3

Mls in (3.31) represents the system operator differential matrix (sodm),which

is defined as

M(r ,θ ) = (r − 1)Id − L(θ ) , (3.32)

where r is the control parameter and θ denotes the contour angle given by z(x).
Id specifies the identity matrix, and L(θ ) represents the differential operator
L (3.24) for the angle θ . The operator L(θ ) reads

L(θ ) = 2D2(θ ) +D4(θ ) , (3.33)

3. (Ψl )3 is to be read as raising each component of Ψl to the third power.
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where D2(θ ) and D4(θ ) are on the block matrices form (2.71), and contains

difference rules for all spatial points. In appendix A both D2 and D4 are

independently tested and verified for different functions and angles.

Since the discretized system obviously is defined on at finite interval, we im-

plement the required grid and operator manipulations⁴ to satisfy the assumed

boundary conditions in (3.25). With this, we have a complete discretized ver-

sion of the pmlshe, and we are now ready to solve both the regular and the

pml transformed she.

3.5 Numerical solutions
3.5.1 The standard SHE
Since our entire numeric scheme is based on the contour z(x) (2.51), we let

θ = 0 such that z(x) describes the x -axis, while the transformed system (3.23)

- (3.25) collapses into the regular she (3.2), with (3.19) as the governing

equation.

We are with this setup able to test if the numerical scheme produces the

expected outcome for the standard she (3.2), which according to theory is

one dimensional stripes[1]. This is actually a "kill two birds in one stone"

situation, since we are to perform a first test on the numerical scheme, and

establish the nature of u(x , t) for the regular she. If the numerics do not

portray the expected outcome, we know something is wrong in our setup, and

we are sent back to the drawing board.

Applying white noise and a gaussian function as initial conditions, together

with the constants in table 3.2, our scheme produces the results depicted in

figure 3.5 and 3.6 for the regular she. Note that the figures reads left to right,

4. Note that these manipulations imply the index shift N → N − 1 for the summation

(3.31).
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and downwards.

a M N ∆x θ tmin tmax ∆ t r L

10 150 500 1/15 0 0 15000 2 0.5 100/3

Table 3.2: Constants in the mol scheme of the pmlshe for different values of θ .
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Figure 3.5: Solution of the standard she with white noise as the initial condition.
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Figure 3.6: Solution of the standard she with the the initial condition e−
(x−x0)2

2

around x0 = 0.

At first glance, the solution u(x , t) seems to be a ordinary sinusoidal function

for large t , but this exactly what we should expect. To understandwhy, imagine

that the extremal values of a solutionu(x , t = tlage) takes one color at the peaks,
and another at the bottoms. Then imagine that the solution was stretched

inwards or outwards from the paper plane, and visualize the solution by
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looking at it from above. The result would then illustrate two dimensional

stripes. Even tough this explanation is ad hoc, we conclude that the numerical

scheme has passed its first naive test, since it produces the expected outcome

in form of one dimensional stripes. We are also to observe one of the more

subtle pieces of unsaid theory from this simulation: the same pattern appears

from different initial conditions. The onset pattern and evolution of u(x , t) is
not the same in both figures, but both solutions turn into a regular "striped

state" around the same time.

3.5.2 The SHE with a PML
Now that we have established the solution of the standard she, we step up

our game and turn to the pmlshe (3.23). Our intention is that the numerical

scheme are to produce "sinusodal" stripes as observed for the standard she
outside the pml region, while the solution decays exponentially from the pml
points, and goes to zero inside the pml region. Applying a white noise initial

condition, the angles (θ1,θ2,θ3) = (π8 , π4 , π2 ), and the constants in table 3.2,

results in the solutions illustrated in figure 3.7 to 3.9 respectively.
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Figure 3.7: Solutions of the pmlshe with θ1 = π
8 .
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Figure 3.8: Solutions of the pmlshe with θ2 = π
4 .
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Figure 3.9: Solutions of the pmlshe with θ3 = π
2 .
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The figures clearly illustrate that the numerical scheme do not result in the

desired outcome for the pmlshe (3.23) when θ > 0, contrary to what we

observed for the rse. As previously mentioned, other boundary conditions may

apply to the she, but a switch from Ψx (±L, t) = 0 to Ψxx (±L, t) = 0 results

in such similar solutions, that we do not include them in the text.



4
Investigation and analysis
4.1 A qualitative comparison between the numerical

results of the standard SHE and the PMLSHE
To qualitative discuss the behaviour of the solutions of Ψ(x , t), we are to

compare the pml solutions in figure 3.7 - 3.9 with the solution of the standard

she u(x , t) in figure 3.5. The behaviour of Ψ(x , t) for different θ is discussed

in the upcoming paragraph, while table 4.1 briefly states the overall nature of

Ψ(x , t) for large t .
θ Ψ inside pml region: |x | > 10 Ψ outside pml region: x ∈ (−10, 10)

θ1 = π/8 Distorted and barely damped. No regular stripes.

θ2 = π/4 Extreme growth on grid scale Two stripes.

θ3 = π/2 Totally damped Uneven striped pattern

Table 4.1: The behaviour of Ψ(x , t) for large t .

θ1 does not result in a solution where Ψ(x , t) goes to zero within the pml

71
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region. Actually,Ψ(x , t) behaves diametrically opposite: stripes are not present

outside the pml region, while they are partially represented on the inside.

Note that the magnitude |Ψ(x , t)| overall is larger than |u(x , t)|.

The result of θ2 is way off inside the pml region, where Ψ(x , t) seems to be

grid levelled oscillations, with |Ψ(x , t)| >> |u(x , t)|. Outside the pml region

some pattern evolution takes place, but Ψ(x , t) contains fewer peaks than

u(x , t) within this domain.

θ3 leads to a solution that is somewhat close to what we actually want,

since Ψ(x , t) is damped inside the pml region, while there is some evolution

from white noise to stripes relative to u(x , t) on the outside. However, the

stripes located at the pml points seem to be influenced by a Gibbs-similar

phenomenon, while the magnitude of |Ψ(x , t)| matches |u(x , t)| the remaining

stripes outside the pml region.

Common for all simulations are the early evolution of unwanted spatiotemporal

behaviour in contrast to our intention of a well functioning pml, and that

the amplitude |Ψ(x , t)| overall is larger than |u(x , t)| for large t . A physical

interpretation of this result is that the pml seems to put "extra energy" into

the system.

The obtained solutions suggests that something is wrong somewhere in our

overall setup, since every nonzero θ to some extent fails to produce the desired

solution. Our task becomes to investigate the setup and try to establish exactly

where the problems occur. We suggest that the answer hides behind one of

the following three doors: either the contour based pml not applies to the

she, or themol based pml scheme is numerically unstable as a consequence

of the discretization. The third possibility might be implementation errors.

Even though the differential operators contained in the sodm are shown to

generate the correct derivatives for different θ , and all pml solutions Ψ(x , t)
are generated from the same code that produces the expected outcome for the

standard she solution u(x , t), we can not assume that the implementation is
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correct. Nor does it help that the pml scheme for the she follows the same

design as the pml scheme for the rse, where the pml did apply. At the end of

the day, we can not rule out that the unwanted behaviour of Ψ(x , t) for θ > 0

originates from implementation errors.

4.2 Analysis of the linear numerical PMLSHE system
A natural way to start our investigation is by analysing the implemented nu-

merical scheme, since it is the decisive cause for our presented solutions. We

suspect that the implemented pmlshe-system becomes additionally unstable

relative to the the default instability of the she for r > 0, and we want

to investigate the numerical scheme in the context of "additional instabil-

ity". Therefore, the task becomes to determine whether or not the numerical

scheme enforces more instability into the pml system, relative to the original

system.

To do so, we need to preform a numerical linear stability analysis for the

implemented pml scheme. We recall the mol formulation of Ψ (3.30) such

that the linear numerical system reads

Ψ′ = M(r ,θ )Ψ , (4.1)

where M(r ,θ ) denotes the sodm in (3.31) and (3.32). This system is well

known from standard ode theory, and a trial solution Ψ = eλtu0 results in

the eigenvalue problem

λu0 = M(r ,θ )u0 , (4.2)

with the corresponding solution

Ψ(t) =
∑
l

αlule
λl t , (4.3)

under the assumption that M(r ,θ ) is diagonalizable. λl denotes the eigenval-
ues of the sodm, and are analogous to σk in the discrete Fourier solution

(3.13) of the she. ul express the corresponding eigenvectors of λl , and αl
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a M1 M2 N1 N2 r ∆x1 ∆x2 L

10 150 300 500 1000 0.5 1
15

1
30

100/3

Table 4.2: Constants used to generate the function λ∗(θ ).

denotes the associated amplitude. The solution (4.3) is said to be unstable if

one or more eigenvalues λl have a positive real part greater than zero, and

we will denote the largest real eigenvalue by λ∗. Based on the observations in

figure 3.7 to 3.9, where the nature of Ψ(x , t) strongly varied with θ , we are to

investigate how λ∗ varies with θ .

Figure 4.1 and 4.2 illustrates the image of λ∗(θ ) for two different ∆x , where

the constants in table 4.2 have been applied, and ∆x1 > ∆x2. Note that the

λ∗-axis are logarithmically scaled.
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Figure 4.1: The max eigenvalue function λ∗(θ ) with ∆x1 =
1
15

As insinuated in the numerical solutions of Ψ(x , t) in the previous section, the

figures suggest that λ∗ strongly varies with θ . As a first observation, we note
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Figure 4.2: The max eigenvalue function λ∗(θ ) with ∆x2 =
1
30

that λ∗(0) ≈ r as it should, compared to the linear she. Furthermore, the

behaviour of λ∗(θ ) is the same in both figures: λ∗ takes values of order 105

and larger when θ ∈ (0.39, 1.2), and is of order 100 in the remaining two

θ -domains. We remark that the magnitude of λ∗ for θ ∈ (0.39, 1.2) varies
with the resolution, such that |λ∗(θ )|∆x1 << |λ∗(θ )|∆x2 .

This strange behaviour states that the numerical scheme has some unwanted

behaviour built into the system, since "extra instability" seem to occur for all

θ > 0. However, we are not ready to take the images of λ∗(θ ) as absolute truths
just yet. Figure 4.1 and 4.2 of λ∗(θ ) are created by the same implemented

sodm used to generate the time varying solution Ψ(x , t) in figure 3.7 to 3.9,

and if the implementation is erroneous, we can not trust either result.
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4.3 A comparisation between the SHE and the
PMLSHE using an eigenvalue perturbation
method

Based on the results in the previous sections, we are in need to analyse the

implemented pmlshe from another point of view. Since the numerical system

allegedly changes nature for all θ , one alternative approach is to investigate

how the pmlshe behaves after a small change in θ . For simplicity of notation

and manageable calculations, we choose to work with (3.28) as the governing

equation for the pmlshe in the imminent calculations.

To investigate the pmlshe for small θ , we apply the first order Taylor expan-

sions

e−2iθ (x) ≈ 1 − 2iθ (x) (4.4a)

e−4iθ (x) ≈ 1 − 4iθ (x) , (4.4b)

which inserted into (3.28) leads to the equation

Ψt = [U + 4iθ (x)V]Ψ , (4.5)

where the differential operatorsU andV reads

U = r − (1 + ∂xx )2 (4.6a)

V = ∂xx (1 + ∂xx ) . (4.6b)

If we assume a separable solution Ψ = ψ (x)eσt , (4.5) turns into
σψ = [U + 4iθ (x)V]ψ , (4.7)

as an equation for the spatial part of Ψ, analogous to the implemented mol
discretization for small θ . The structure of (4.7) states that the spatial part of

the pmlshe can be read as a perturbation problem where θ (x) acts as the
perturbation parameter, since θ (x) is constant in each θ -domain relative to

the pmlshe formulation (3.23). In that manner, the equation

σψ = Uψ (4.8)
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specify the unperturbed problem with the corresponding solution ψ = eikx ,

while (4.7) defines the perturbed problem.

Since our objective is to investigate how the pmlshe (3.23) behaves on a

finite domain, we define the unperturbed problem (4.8) as the standard she
on a finite domain, such that the boundary conditions are periodic. With the

derived relations, our objective becomes to establish a pml correction for a

small θ to the finite she.

We then turn towards the mathematical toolbox and take out the apparatus

of perturbation theory, which is the only game in town for analysing small

variations around a known state of a mathematical formulation of a physical

system.

Since the forthcoming analysis concerns finite L, the wavenumbers are discrete

and given as

kj =
π

L
j , (4.9)

where j is an integer. The corresponding for kj eigenfunction is given by

ψj = eikjx , (4.10)

and the associated growth rate reads

σj = r − (1 − k2
j )2 . (4.11)

The calculations within the field of perturbation theory are by nature tedious,

and we do not include all details in the forthcoming paragraphs. We write the

required relations, and present the main arguments by words to substantiate

our results.

Since we are to establish corrections to the growth rate σj , and its correspond-

ing wavenubmerkj for any integer j, we need to establish a consistent notation.

By denotingψj(4.10) asψ
j
0, and σj (4.11) as σ

j
0 for a integer j ∈ Z, we suggest

the perturbation relations

σ j = σ j
0 + ϵσ

j
1 + ϵ

2σ j
2 , (4.12)
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ψ j = ψ j
0 + ϵψ

j
1 + ϵ

2ψ j
2 , (4.13)

witch inserted into (4.7) results in the perturbation hierarchy

• ϵ0:

σ j
0ψ

j
0 = Uψ

j
0 , (4.14)

• ϵ1:

(U − σ j
0)ψ j

1 = σ
j
1ψ

j
0 − 4iθ (x)Vψ j

0 , (4.15)

• ϵ2:

(U − σ j
0)ψ j

2 = σ
j
1ψ

j
1 + σ

j
2ψ

j
0 − 4iθ (x)Vψ j

1 . (4.16)

We are now to determine σ j
1 and σ

j
2 as the first and second order correction to

σ j
0 (4.11), and to manage this, we will discuss each order of ϵ separately. Our

most trusted tools in the imminent calculations is the inner product

〈f (x),д(x)〉 =
∫ L

−L
dx f (x)д(x) , (4.17)

and standard results from linear algebra on a functional space. Particularly the

theory concerning orthogonality of eigenfunctions, with the corresponding

Kronecker Delta as a result of the inner product between different and equal

eigenfunctions, and eigenfunction expansion of a vector in the functional

space.

ϵ0 :
Equation (4.14) describes is the initial problem and is thereby solved by

(4.11).
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ϵ1 :
The inner product between (4.15) andψ j

0 described in (4.18)

〈 (U − σ j
0)ψ j

1, ψ
j
0 〉 = 〈σ j

1ψ
j
0 − 4iθ (x)Vψ j

0, ψ
j
0 〉 (4.18)

whereψ j
1 is expressed by the expansion

ψ j
1 =

∑
n,j

bnψ
n
0 , (4.19)

results in the relation

σ j
1 = 4i

〈θ (x)Vψ j
0, ψ

j
0〉

〈ψ j
0, ψ

j
0〉

(4.20)

for the first order correction σ j
1. To substantiate this result we remark that

the left hand side of (4.18) is zero since to the inner product 〈 ψ j
0, ψ

n
0 〉,

which emerges after inserting the expansion (4.19), is zero ∀ n , j. The right

hand side is thereby zero, and standard inner product rules results in the

presented formula for σ j
1. Equation (4.20) states that σ j

1 is strictly imaginary,

and it is therefore of no use to us, since we are interested in the real valued

corrections to the growth rate σ j
0. According to (4.16) we must establish an

exact expression forψ j
1, in order to determine the next correction σ j

2. Hence,

we are to determine the constants bn in (4.19). To find those constants we

expand the right hand side of (4.15) by∑
n,j

cnψ
n
0 = σ

j
1ψ

j
0 − 4iθ (x)Vψ j

0 , (4.21)

where the inner product between (4.21) andψm
0

〈
∑
n,j

cnψ
n
0 , ψ

m
0 〉 = 〈 σ j

1ψ
j
0 − 4iθ (x)Vψ j

0, ψ
m
0 〉 , (4.22)

results in the relation

cm = −
2i
L
〈 θ (x)Vψ j

0, ψ
m
0 〉 . (4.23)

This follows since the left hand side of (4.22) is 0 for all n , m, and 1 for

n =m, which explains the constant cm in (4.23). The right hand side of (4.22)
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contains two inner products, of which one is zero by the same argument as in

the previous paragraph, and the other is given by cm in (4.23).

Inserting (4.19) and (4.21) into (4.15), together with the relation

U
∑
n,j

bnψ
n
0 =

∑
n,j

bnσ
n
0ψ

n
0 , (4.24)

as argued by (4.14), leads to the equation∑
n,j

bn(σn
0 − σ

j
0)ψn

0 =
∑
n,j

cnψ
n
0 . (4.25)

Equation (4.25) is true by comparison if the relation

bn =
cn

σn
0 − σ

j
0

(4.26)

holds, and since cn in (4.26) is given by cm in (4.23), we obtain the equation

bn = −
2i

L(σn
0 − σ

j
0)
〈 θ (x)Vψ j

0, ψ
n
0 〉 . (4.27)

for the constants bn. This expression contains only known mathematical

objects, which allows us to step up the game and carry out the last correction

σ j
2.

ϵ2 :
Redoing the inner product calculations from (4.18) on the second order per-

turbation equation (4.16) with a eigenfunction ψ j
0, where ψ

j
2 is expressed by

an expansion likeψ j
1 in (4.19), the second order correction σ j

2 reads

σ j
2 =

2i
L
〈 θ (x)Vψ j

1, ψ
j
0 〉 . (4.28)

Substitutingψ j
1 in (4.28) with the expansion (4.19), and the corresponding bn

in (4.27), results in the relation

σ j
2 =

4
L2

∑
n,j

1

σn
0 − σ

j
0

〈 θ (x)Vψ j
0, ψ

n
0 〉 〈 θ (x)Vψn

0 , ψ
j
0 〉 , (4.29)
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which contains only known mathematical objects. To proceed with (4.29),

we need to establish what the factor Vψm
0 in the inner products describes.

Applying an eigenfunctionψm
0 , leads to the relation

Vψm
0 = ∂xx (1 + ∂xx )eikmx (4.30a)

= k2
m(k2

m − 1)ψm
0 (4.30b)

= αmψ
m
0 , (4.30c)

where αm reads

αm = k
2
m(k2

m − 1) . (4.31)

With this, the growth rate (4.29) takes the simple form

σ j
2 =

4
L2

∑
n,j

αnαj

σn
0 − σ

j
0

〈 θ (x)ψ j
0, ψ

n
0 〉 〈 θ (x)ψn

0 , ψ
j
0 〉 , (4.32)

where the inner products in (4.32) are given as

〈 θ (x)ψ j
0, ψ

n
0 〉 = θN

[
i

kj − kn
eix(kj−kn)

]−a

−L

+ θP

[
i

kj − kn
eix(kj−kn)

]L

a

(4.33a)

〈 θ (x)ψn
0 , ψ

j
0 〉 = θN

[
i

kn − kj
eix(kn−kj )

]−a

−L

+ θP

[
i

kn − kj
eix(kn−kj )

]L

a

,

(4.33b)

if we recall the definition of θ (x) (3.26).

Since the relations αm (4.31), σm(4.11), and the stated inner products (4.33)

all are given by kj and the fixed constants {L,a,θN ,θP , r}, equation (4.32)

represents a function σ j
2(kj) over the discrete set of wavenumbers kj , and is

possible to calculate numerically from a suitable list of integers j. By taking use

of the same parameter regime for {M,N ,a, r ,L}¹ as applied to the numeric

solutions Ψ(x , t) in figure 3.5 to 3.9, the growth rate correction σ0 + σ2 is

analogous to the eigenvalues λl in (4.3) for the numeric pml scheme for small

θ .

1. Note that L is given by the relation L = N
M a from the discretization (2.67).
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a M N jlow jhigh θP θN r L

10 150 500 −55 55 π/30 π/30 0.5 100/3

Table 4.3: Parameters to the pml correction σ j
2.

We are with this numeric perturbation able to produce a pml correction

σ0 + σ2 very similar to our numerics, and plot it against the growth rate σ0
for the standard she on a finite domain. Applying the constants in table 4.3

results in the image depicted in figure 4.3 for the functions

f1(kj) = σ j
0(kj) (4.34a)

f2(kj) = σ j
0(kj) + σ j

2(kj) . (4.34b)

As the figure illustrates, the growth rate of the pml correction matches

−8 −6 −4 −2 0 2 4 6 8
kj

−1400

−1200

−1000

−800

−600

−400

−200

0

200

σ

f1(kj) = σ0(kj)

f2(kj) = σ0(kj) + σ2(kj)

Figure 4.3: The standard she growth rate σ0 on a finite domain plotted against its

second order pml correction σ2.
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the standard she, but changes nature completely at a specific wavenumber

and grows in the opposite direction. However, since the correction σ2 is a

asymptotic pml correction to σ0 for small θ , we are not in position to make

any decisive conclusions concerning the pmlshe just yet. The growth caused

by σ2 might flatten out and never become positive which not would affect the

pmlshe. Alternatively, it may grow out of bounds and influence its solutions

extensively.

Based on the presented results for the pml correction to the she, we are led to
suspect that the numerical results of Ψ(x , t) and λ∗(θ ) in the previous sections

not are a consequence of implementation errors, but rather a built in feature

of the pmlshe. To investigate this further, we turn to the original formulation

of the pmlshe with the intention to carry out analytical calculations.

4.4 Stability analysis of a PMLSHE similar equation
Based on the results in the two previous sections, we will consider the option

that a pml transformation of the she imposes an unforeseen nature of

the pmlshe. To determine whether the pml actually produces the desired

outcome for the she, we are to perform a stability analysis of the pmlshe
(3.23). We will as in the previous section work with (3.28) as the governing

equation for the pmlshe to keep the number of calculations at a manageable

minimum.

The base solution Ψb = 0 also applies to (3.28), which in turn leads to the

linear pmlshe
Ψt = [r − (1 + e−2iθ (x)∂xx )2]Ψ . (4.35)

However, normal modes on the form eikxeσt does not solve for Ψ in (4.35),

since it leads to the relation

σ = r − (1 − e−2iθ (x)k2)2 , (4.36)

which physically makes little sense: the growth rate can not be a function of the
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spatial variable x . We must therefore modify our equation into something solv-

able, but at the same time, partially analogous to the original pmlshe.

Since the stepfunction θ (x) is the undisputed cause for the futile relation

(4.36), we redefine θ (x) to be constant over the whole spatial domain by

θ (x) = θ ∀x where θ ∈ (0,π/2), as a somewhat naive, but seemingly rele-

vant simplification. Furthermore we assume that the domain length L of the

pmlshe is infinitely large, such that the function Ψ(x , t) can be expressed by

a integral solution analogous to the Fourier transform (3.14). As previously

mentioned, both formulations (3.28) and (3.23) of the pmlshe are equivalent

statements under these conditions.

With the stated assumptions, a small perturbation Ψ → Ψ+Ψb around Ψb = 0

for the linear pmlshe (4.35) results in the linear constant pml equation

Ψt = [r − (1 + e−2iθ∂xx )2]Ψ , (4.37)

which we from now on will refer to as the cpmlshe.

Even though (4.37) not is equivalent to (4.35) as a variant of the linear

pmlshe, or our numerical scheme, we have to assume that the nature and

behaviour of (4.37) resembles those systems in some way. Equation (3.28)

describes with the stated modification an evolution equation on a infinite

domain that can be said to be "covered by a constant pml"², whereby the

stability analysis of this system might give us advantageous insight.

Inserting a Fourier mode (3.12) into (4.37) results in the growth rate equation

σ = r − (1 − 2k2e−2iθ + k4e−4iθ ) , (4.38)

with the control parameters θ and r . Note that the right hand side of (4.38)

is complex, which imply that σ is complex and on the form σ = σR + iσI .

2. A physical interpretation of a constant pml: think of the she as an equation describing

the flow of a fluid with a specific viscosity, and that the pml is a noticeable change in

viscosity.
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As discussed in the linear stability analysis of the standard she, we are to

investigate the real part of the growth rate as a function over the different

wavenumbers. Applying a variant of Eulers identity

eiax = cos(ax) + i sin(ax) , for a ∈ R , (4.39)

to (4.38) results in the equation

σR(k) = r − 1 + 2k2 cos(2θ ) − k4 cos(4θ ) , (4.40)

for the real part of the growth rate. Our task is to determine under which

parameter conditions the growth changes sign for all possible wave num-

bers.

As a first observation we remark that if k → ∞, the −k4 cos(4θ ) term domi-

nates the growth rate, such that the relation

σR(k) ≈ −k4 cos(4θ ) (4.41)

holds for large k. Figure 4.4 which imply that cos(4θ ) < 0 for θ ∈ (π8 , 3π8 ),

0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

θ

Figure 4.4: cos(4θ ) for θ ∈ [0, π2 ]

we conclude that the growth rate σR(k) is both positive and describes an

unbounded monotonically increasing function for those θ . This result is fun-

damentally problematic, because it implies an ill posed problem, where (4.37)
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no longer describes a physical system. A proof to support this allegation is

presented in appendix B.

The zeros of cos(4θ ) are given by θZ1 =
π
8 and θZ2 =

3π
8 , which in turn controls

the sign of the 2k2 cos(2θ ) term in (4.40). Since cos(2θ ) > 0 and cos(2θ ) < 0

for θZ1 and θZ2 respectively, it follows that σR(k) is monotonically increasing

for θZ1 , and monotonically decreasing for θZ2 . To summarize, the valid pml
angles for the cpmlshe (4.37) are given by the set SI ∪ SI I where

SI = (0, π8 ) (4.42a)

SI I = [3π8 , π2 ] , (4.42b)

since σR(k) defines a monotonically decreasing function for the valid θ .

Now we are to determine how σR(k) changes for valid pml angles. We begin

by examining the derivative of σR(k)
σ ′R(k) = 4k(cos(2θ ) − k2 cos(4θ )) , (4.43)

with the corresponding zeros

k = 0 (4.44a)

k2 =
cos(2θ )
cos(4θ ) . (4.44b)

The left hand side of the (4.44b) is always positive, and as figure 4.5 illustrates,

the graph of V (θ ) = cos(2θ )
cos(4θ ) states that

V (θ ) > 0 if θ ∈ SI (4.45a)

V (θ ) < 0 for θ ∈ SI I . (4.45b)

Hence, σR(k) has three possible extremal points given by the wavenumbers

k0 = 0 , k+ =

√
cos(2θ )
cos(4θ ) , k− = −

√
cos(2θ )
cos(4θ ) , (4.46)

where all three of them realizes if θ ∈ SI , while only k0 occurs when θ ∈

SI I .
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0.0 0.5 1.0 1.5
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θ

Figure 4.5: V (θ ) = cos(2θ )
cos(4θ ) for θ ∈ [0, π2 ]

Since we have established the zeros σR(k), and its monotonically decreasing

nature for feasibleθ , the image and criticalwavenumbers ofσR(k) are implicitly

given:

• If θ ∈ SI , the shape of the growth rate curve is as illustrated in subfigure

4.6a, whereby the global maxima occurs at the critical wavenumbers

kc = k±.

• If θ ∈ SI I , the shape of the growth rate curve is as illustrated in subfigure

4.6b, and the global maxima occurs at the critical wavenumber kc = k0.

From the the wavenumber-wavelenght relation

ξ =
2π
k
, (4.47)

where ξ denotes the wavelenght, we remark that the already assumed infinite

domain of x is a necessary criteria if θ ∈ SI I are to be valid pml angles. This

follows as a consequence of the critical wavenumber k0 = 0 that arises for

σR(k) when θ ∈ SI I , as depicted in figure 4.6b.

Now we have reached the final step of this analysis, namely to decide how

the maximal value of σR(k) depends on the control parameter r . Since we
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(a) Image of σR(k) if θ ∈ SI .
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-5

-4

-3

-2

-1

0

σR

(b) Image of σR(k) if θ ∈ SI I .
Figure 4.6: The growth rate curve σR(k) for valid pml angles.

have established the nature of σR(k), the r -dependency is straight forward to

determine from the critical wave numbers. Inserting (4.46) into σR(k) (4.40)
results in the following formulas

• If θ ∈ SI :

max
k

σR(k) = r − 1 +
cos2(2θ )
cos(4θ ) . (4.48)

By letting maxk σR(k) = 0 in (4.48) we obtain the function

r1(θ ) = cos2(2θ )
cos(4θ ) − 1 (4.49)

which is depicted in figure 4.7. As the figure illustrates, the critical value

rc of the cpmlshe is smaller than zero for all θ ∈ SI .

• If θ ∈ SI I
max
k

σR(k) = r − 1 , (4.50)

which results in the function

r2(θ ) = 1 . (4.51)
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Hence, the critical parameter of the cpmlshe for θ ∈ S2 is given by

rc = 1 for all angles, which is illustrated in figure 4.7.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

θ

r

(a) r1(θ ) for θ ∈ (0, π8 ) of the cpmlshe.

1.2 1.3 1.4 1.5

0.0

0.5

1.0

1.5

2.0

θ

r

(b) r2(θ ) for θ ∈ (3π8 , π2 ) of the cpmlshe.

Figure 4.7: rc (θ ) for valid pml angles SI ∪ SI I .

In summary, the pml applies to the cpmlshe on a infinite domain for the

two valid ranges of SI ∪ SI I stated in (4.42). Both the growth rate, and the

critical parameter rc depends on θ such that rc is a varying function of θ for

θ ∈ SI where rc < 0 ∀ θ , while rc = 1 for all θ ∈ SI I .

The goal for this section were to consider the option of a ill posed nature for

pmlshe, which resulted in the presented cpmlshe analysis. The obtained

results indicates that well posedness of the pmlshe depends on θ , but since
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the presented cpmlshe analysis assumed a infinite domain, we are to analyse

the cpmlshe on a finite domain to approximate the finite pmlshe even

better.

4.5 The cPMLSHE on a finite domain
In this section we will analyse the cpmlshe on a finite domain, and the

objective is to derive an analytic solution where the boundary conditions

u(x , t) = 0 and uxx (x , t) = 0 are enforced. Furthermore, we will compare the

analytic solution with a numerical solution based on the scheme we applied

to the pmlshe, only with a constant pml enforced. However, we will not

investigate the solutions in terms of spatiotemporal dynamics, but through

comparison of analogous corresponding spatial modes, when the system is on

the onset of pattern formation.

We will also investigate how the critical parameter rc varies with θ both

analytically and numerically, and we will assume that the feasible pml angles

from the previous section applies in the finite case, since we are of no reason

to believe otherwise.

As we will see, the analytical solution must be determined by a case study,

and to sustain readability we present a general overview of the numerical and

analytical solution process, while we present both analytical and numerical

solutions for each case separately.
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4.5.1 Analytical analysis
The cpmlshe with the assumed boundary conditions reads

Ψt = [r − (1 + e−2iθ∂xx )2]Ψ (4.52a)

Ψ(±L, t) = 0 (4.52b)

Ψx (±L, t) = 0 , (4.52c)

whereby a test solution Ψ = ϕ(x)eσt leads to the eigenvalue problem

(r − σ )ϕ = (1 + e−2iθ∂xx )2ϕ (4.53a)

ϕ(±L) = 0 (4.53b)

ϕx (±L) = 0 , (4.53c)

for the spatial part of the cpmlshe. Based on the results from the previous

section, we assume that the growth rate is complex and on the form σ =

σR + iσI .

However, we let σR = 0 in the forthcoming calculations since the objective is

to determine the critical parameter function rc(θ ), and analyse the system on

the onset of pattern formation.

Since the constant on the left hand side of (4.53) varies with θ , we need to

solve (4.53) by preforming a case study, where the expression (r −σ ) = r − iσI
dictates the different cases. Since both r and σI are real numbers, there are

only two cases.

1. Case I: r − iσI is a possible complex number for real r and σI , where at

most one can be zero

2. Case II: r = σ = 0

To solve the eigenproblem (4.53) we apply the eigenfunction

ϕkn (x) = eiknx , (4.54)
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which for each case of r and σI results in a criteria equation with n solutions

for the wavenumbers k = kn. With those kn we are able to establish a basis

solution to the eigenproblem by the linear combination

ϕ(x) =
∑
n

ane
iknx , (4.55)

which we will use to satisfy the boundary conditions and determine analytical

critical parameter function rAc (θ ).

4.5.2 Numerical analysis
To generate the numerical critical parameter function rNc (θ ) and the spatial

mode analogous to (4.55) from the numerical scheme, we recall the ode
system formulation (4.1) - (4.3), with the corresponding notation for the

eigenvalues λl , eigenvectors ul and maximal eigenvalue λ∗ of a operator

matrix.

For the finite cpmlshe (4.52) we define the constant pml operator matrix

C(r ,θ ) = (r − 1)Id − [2e−2iθD2(0) + e−4iθD4(0)] , (4.56)

as a modified version of the pml sodm M(r ,θ ) (3.32). D2(0) and D4(0)
represents the standard spatial second and fourth order derivative on a finite

domain, and Id denotes the identity matrix.

For a fixed θF we define the function

f (r ) = max
λl

C(r ,θF ) (4.57a)

= λ∗[C(r ,θF )] , (4.57b)

and establish the root finding problem

f (r ) = 0 (4.58a)

r ∈ (a,b) (4.58b)

f (a) <0 < f (b) . (4.58c)
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The solution of (4.58) determines rc for the fixed θF , and is easily solved

by a built in numerical root finder routine. For a suitable θ -grid of the valid

pml angles we are therefore able to numerically determine the function

rNc (θ ).

For corresponding values of θ and r , the spatial mode analogous to the solution

ϕ(x) (4.55) is given by the eigenvector ul of C(r ,θ ) that corresponds to the

eigenvalue λl = λR + iλI where λR ≈ 0. We denote this eigenvector u∗.

4.5.3 Case I: Analytical analysis
Inserting (4.54) into (4.53) results in the criteria equation

(1 − k2e−2iθ )2 = r − iσI , (4.59)

where the solutions of (4.59) are given by the expressions

k1 = eiθ (1 + √r − iσI )1/2 (4.60a)

k2 = eiθ (1 − √r − iσI )1/2 (4.60b)

k3 = −e
iθ (1 + √r − iσI )1/2 (4.60c)

k4 = −e
iθ (1 − √r − iσI )1/2 . (4.60d)

The corresponding linear combination which determines the solution space

of ϕ(x) reads

ϕ(x) = Aϕk1(x) + Bϕk2(x) +Cϕk3(x) + Dϕk4(x) , (4.61)

and we will use (4.61) to satisfy the boundary conditions by establishing a

nontrivial solution to the matrix system



ϕk1(−L) ϕk2(−L) ϕk3(−L) ϕk4(−L)
ϕk1(L) ϕk2(L) ϕk3(L) ϕk4(L)
ϕ′
k1
(−L) ϕ′

k2
(−L) ϕ′

k3
(−L) ϕ′

k4
(−L)

ϕ′
k1
(L) ϕ′

k2
(L) ϕ′

k3
(L) ϕ′

k4
(L)





A

B

C

D



=



0

0

0

0



. (4.62)
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Our task is therefore to establish under which conditions the determinant

of the matrix in (4.62) is zero for fixed L. We denote the matrix MI , which

takes the form of (4.63) after inserting the corresponding basis vectors and

constants.

MI =



e−ik1L e−ik2L e−ik3L e−ik4L

eik1L eik2L eik3L eik4L

ie−ik1Lk1 ie−ik2Lk2 ie−ik3Lk3 ie−ik4Lk4

ieik1Lk1 ieik2Lk2 ieik3Lk3 ieik4Lk4



(4.63)

Conceptually the determinant |MI | reads
|MI | = f (k1,k2,k3,k4) · д(k1,k2,k3,k4) , (4.64)

where the factors f andд are to large to include in the text. Since kn is defined

as a relation kn(θ , r ,σI ), the governing determinant equation reads

f (θ , r ,σI ) · д(θ , r ,σI ) = 0 , (4.65)

where the factor f (θ , r ,σI ) is on the form eh(θ ,r ,σI ), and non zero by defini-

tion.

Hence, the boundary conditions are satisfied for combinations of {r ,θ ,σI}
which fulfils the equation

д(θ , r ,σI ) = 0 , (4.66)

and since д is a complex function д = дR + iдI , (4.66) transforms into the

system of equations

дR(θ , r ,σI ) = 0 (4.67a)

дI (θ , r ,σI ) = 0 . (4.67b)

The symbolic expressions of дR and дI are to our knowledge unmanageable,

and we will therefore solve (4.67) numerically for fixed θ . In that manner,

(4.67) describes a system of two equations with two unknowns, which we

can solve to determine r (θ ) by a numerical iteration process like the Newton

Method from a initial guess γ0 = (r ∗,σ ∗I ). However, both дR and дI are highly
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nonlinear expressions of trigonometric functions, which imply multiple solu-

tions of (4.67). The problem is therefore to determine a useful initial guess д0,

such that the iterated solution corresponds to the lowest r -value at the onset

of pattern formation. Taking use of a symbolic mathematical software with

numerical support³, we are able to plot the contour lines of (4.67), and from

the plot determine a initial guess д0.

As an example we present the contour plot depicted in figure 4.8 for θ = 15π
32 ,

and the previously applied domain length L = 100/3. A solution of (4.67) is

given where the different coloured lines intersect, and as the figure illustrates,

the smallest zero occurs aroundγ0 = (1, 0). Usingγ0 as the initial guess results
in the exact solution r = 1.00755 and σI = −0.000925538, which states that

rAc (15π32 ) = 1.00755. For a suitable θ -grid we are to repeat this process for

0.96 0.98 1.00 1.02 1.04

-0.04

-0.02

0.00

0.02

0.04

r

σ

Figure 4.8: Contour plot of (4.67) for θ = 15π
32 .

the valid pml angles, which will result in the numerically calculated analytic

3. Mathematica
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θ rc L M M

15π/32 1.00755 100/3 150 500

Table 4.4: Constants used to generate the eigenvector u∗ and ϕ(x) in figure 4.10.

rAc (θ ).

In summary, the eigenvalue problem (4.53) for this case is solved by (4.61), for

entangled values of θ , σI and r which determines kn(θ , r ,σI ). To determine

the constants {A,B,C,D} we investigate the nullspace of MI (4.63), where

the entries of the eigenvector that corresponds to a almost zero eigenvalue

defines the constants.

4.5.4 Case I: Comparing the numerical and analytical solutions
Now that we have established analytical expressions for the solution ϕ(x)
and rAc (θ ) we will take use of the numerical procedures to calculate the

corresponding modes and rNc (θ ) from the operator matrix C(r ,θ ) to test our

numerical setup.

The critical parameter function rc(θ )
Both the numerically calculated rNc (θ ), and the analytical rAc (θ ) are depicted
in figure 4.9, and as the figures states, the numerical and analytical solutions

match for both θ -domains. By comparing the finite rc(θ ) in figure 4.9 with

the infinite rc(θ ) depicted in figure 4.7, we observe that the nature of rc(θ )
appears to be the same for θ ∈ S1, and identical when θ ∈ SI I .

The spatial modes
Applying the constants in table 4.4 results in the image ofu∗ andϕ(x) depicted
in figure 4.10. Since that r and θ are tuned such that the cpmlshe are on the
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rNc (Θ)

rAc (Θ)

(a) Image of rNc (θ ) and rAc (θ ) for θ ∈ SI .
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0.85
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0.95
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1.05

rNc (Θ)

rAc (Θ)

(b) Image of rNc (θ ) and rAc (θ ) for θ ∈ SI I .
Figure 4.9: Image of the numerically calculated rNc (θ ), and analytic rAc (θ ) for the

valid pml angles SI ∪ SI I .

onset of pattern formation, the figure illustrates the first unstable spatial mode

of the finite cpmlshe. As the figure states, both the numerical eigenvector

and the analytical solution describes the same standing wave, even though

the amplitudes are different due to unmatched scalings.
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(a) The analytic solution ϕ(x) (2.5) for the finite

cpmlshe.
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(b) The eigenvector u∗ of C(r ,θ ) that corresponds to the eigen-

value λl with zero real part.

Figure 4.10: A standing spatial mode of the cpmlshe on a finite domain for θ = 15π
32 .
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4.5.5 Case II: Analytics and numerics
In this case, the eigenfunction (4.54) results in the criteria equation

(1 − k2e−2iθ )2 = 0 , (4.68)

with the corresponding solutions

k1 = eiθ (4.69a)

k2 = −e
iθ . (4.69b)

The wavenumbers in (4.69) corresponds to a two termed linear combination

ϕ(x) = Aϕk1(x) + Bϕk2(x), (4.70)

which imply that the solution (4.70) is degenerated, since (4.53) is a fourth

order problem. We must therefore modify our solution (4.70) to span the

solution space of ϕ(x). As we always do in such situations, we make a qualified

wild guess, and we suggest the modified solution

ϕ(x) = Axϕk1(x) + Bxϕk2(x) +Cϕk1(x) + Dϕk2(x) , (4.71)

for each kn in (4.69).

To justify the modification xϕkn (x), we must argue that the relation

(1 + e−2iθ∂xx )2xϕkn(x) = 0 (4.72)

holds for both kn. Applying some algebra to the left hand side of (4.72) results

in the relation

(1 + e−2iθ∂xx )2xϕkn (x) = e−4iθ
(
e2iθ − k2

n

) (
kn(4i − knx) + e2iθx

)
ϕkn(x) ,

(4.73)

where the factor
�
e2iθ − k2

n

�
confirms (4.72) since it satisfies the relation(

e2iθ − k2
n

)
= 0 , (4.74)

for each kn.
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In order to proceed from here we ought to redo the calculations (4.62)-(4.63),

but we will rather present the imminent calculations by words and precise

hand waving.

Since k1 and k2 only depends on θ , the determinant is given by the relation

|MI | = w(θ ) , (4.75)

for fixed L, where w(θ ) = wR(θ ) + iwR(θ ). In this case, we are left with two

options:

1. Either w(θ ) , 0 ∀ θ , which imply that the only solution to the matrix

system analogous to (4.62) for k1 and k2 is the non trivial, such that

ϕ(x) (4.71) not defines a solution to the problem when r = σR = 0.

2. Alternatively,w(θ ) forms a system of two equations and one unknown.

This system might have solutions and corresponding spatial modes, but

we will argue that these solutions and modes are of little interest to us:

When r = σ = 0, the solution ϕ(x)eσt describes a time independent sta-

tionary mode, which not would generate any spatiotemporal behaviour.

Since our analysis concerns modes on the onset of pattern formation,

these modes are of little interest to us.

4.5.6 cPMLSHE summary
In this section we have established an analytic solution to the finite cpmlshe,
and we have produced the corresponding numerical solution from our imple-

mented scheme. Furthermore, we have developed an algorithm that calculates

the numerical rNc (θ ), which is illustrated to produce the same results as the

analytical function rAc (θ ). We also note that the nature of the critical parameter

function rc(θ ) is the same for both the finite and infinite cpmlshe. This tells
us that the numerical scheme and the developed procedures are correct, which

we can use to determine rc(θ ) and spatial modes for the pmlshe.
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4.6 The linear PMLSHE revisited
Based on the discussions and results presented in section 4.2 - 4.5, we will

continue our investigation of linear pmlshe (3.23) under the assumption that

the implemented numerical scheme (3.31) - (3.32) generates true solutions to

the pmlshe.

Our intention is to establish the nature of both rc(θ ) and the fastest growing

spatial modes u∗ the for fixed, corresponding r and θ values. By comparing

the results from the eigenvalue analysis of the pmlshe in section 4.2 with

the different θ -domains for the cpmlshe in section 4.4 and 4.5, we define

the domains

I1 =
(
0,

4π
32

)
, (4.76a)

I2 =
(4π
32
,
12π
32

)
, (4.76b)

I3 =

(
12π
32
,
16π
32

)
. (4.76c)

To sustain readability, we discuss the critical parameter dependency and

present images of the spatial modes in stand alone sections, while we discuss

the established results in a summarizing section.

In order to generate the spatial modes on the onset of pattern formation for

different θ , we must know corresponding r values, and must therefore start

our investigation by establishing the nature of rc(θ ).

4.6.1 rc(θ ) for the numeric PMLSHE
For the the pmlshe and the corresponding sodm M(r ,θ ) (3.32) we recall

the eigenvector and eigenvalue notation from the previous sections, and for a

fixed θF we define the function

fpmlshe(r ) = max
λl

M(r ,θF ) (4.77a)

= λ∗[M(r ,θF )] . (4.77b)



102 CHAPTER 4 INVEST IGAT ION AND ANALYS IS

a M1 M2 N1 N2 ∆x1 ∆x2 L

10 150 300 500 1000 1
15

1
30

100/3

Table 4.5

Furthermore we establish the root searching problem

fpmlshe(r ) = 0 (4.78a)

r ∈ (a,b) (4.78b)

fpmlshe(a) <0 < fpmlshe(b) , (4.78c)

which we can solve numerically for a suitable θ -grid to establish the function

rc(θ ).

Based on the results in section 4.2 where λ∗ varied with resolution, we are

to calculate rc(θ ) for two different ∆x . Applying the constants in table 4.5

results in the image of rc(θ ) depicted in figure 4.11 for ∆x1 > ∆x2. Note that

the rc(θ )-axis is logarithmically scaled and that ∆x2 represents a doubling in

precision relative to ∆x1.

Figure 4.11 clearly states that rc(θ ) varies with precision, and its nature differs

for each region in (4.76):

• If θ ∈ I1, rc(θ ) is the approximately same for both resolutions.

• If θ ∈ I2, rc(θ ) varies extensively as a consequence of the increased

resolution.

• If θ ∈ I3, rc(θ ) becomes significantly smaller as a consequence of the

increased resolution.

If we combine this result for rc(θ ) for θ ∈ I2 with the plots of the grid levelled

oscillating Ψ(x , t) for θ = π
8 in section 3.5, and the large λ∗-values for θ ∈ I2

in section 4.2, we are to conclude that θ ∈ I2 defines a ill posed problem for

the pmlshe, as also were the case for the cpmlshe.
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0 4π
32

12π
32

16π
32

-108

-107
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-104
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-102

-101

-100
0

r1c (Θ)|∆x1 =0. 0667

r2c (Θ)∆x2 =0. 0334

Figure 4.11: rc (θ ) for the pmlshe for ∆x1 = 1
15 and ∆x2 =

1
30 .

We will therefore exclude I2 in the forthcoming analysis, while I1 and I3 are

to be investigated further in order to determine the nature of rc(θ ) and the

fastest growing modes of the pmlshe. Before we proceed with our analysis,

we recall the discretization and wavenumber-wavelenght relations stated in

previous sections:

L = N
Ma , (4.79a)

∆x = a
M , (4.79b)

ξ = 2π
k . (4.79c)

They require that the constants a, L, and the ratio N
M must be the same

for all numerical calculations of rc(θF ), in order to make the investigation

useful. Since we have applied a = 10 and L = 100
3 in all previous she and

pmlshe calculations, it is given that we apply those values in the forthcoming

analysis.
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In order to calculate the full rc(θ ) for higher resolutions, the algorithm that

solves (4.78) becomes impractically computational intensive, since the dimen-

sion of the sodm grows as (2N )2, and all eigenvalues of M(r ,θF ) must be

calculated to determine the root of f (r ).

However, since rc(θ ) not varies with resolution for θ ∈ I1, and its nature is the

same for both resolutions when θ ∈ I3, rc(θ ) should therefore vary equally for

all θF in each region. We will therefore apply the angles

θ1 =
3π
32
∈ I1 (4.80a)

θ3 =
15π
32
∈ I3 (4.80b)

in the imminent calculations to determine the nature of rc(θ ) and the spatial

modes u∗.

We define rc(Mθ=θF ) as a "function" of M gridpoints between the origin and

the pml point for a fixed angle θF , and figure 4.12 illustrates the image of

rc(M) for the angles θ1 and θ3 when M ∈ (100, 700). Note that this notation
only is useful in the context of figure 4.12; we are after all calculating how

rc(θ1) and rc(θ3) varies with resolution.

100 200 300 400 500 600 700
M

−0.25

−0.20

−0.15

−0.10

rc(M)|Θ= 3π
32

(a) How rc (3π32 ) varies with resolution.

100 200 300 400 500 600 700
M

−1.2

−1.0

−0.8

−0.6

−0.4 rc(M)|Θ= 15π
32

(b) How rc (15π32 ) varies with resolution.

Figure 4.12: How rc (θF ) for a fixed θF varies with increasing resolution.

The figures illustrates that rc(θF ) varies withwith resolution in bothθ -domains,
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but in opposite ways: rc(θ1) varies on the scale 10−3 at all resolutions except

the smallest, and seems to converge to a negative and constant value, while

rc(θ3) varies at the scale 101 and seems to slowly diverge. As we will discuss

in a few paragraphs down the road, the implications of these results are

possibly substantial for what concerns well posedness for the pmlshe, but
to investigate the results of figure 4.12 further we return to the function f (r )
(4.77).

We start by rewriting f (r ) as

λ∗(r ) = max
λl

M(r ,θF )|∆x , (4.81)

which calculates the real maximum eigenvalue of the operator matrixM(r ,θF )
for a fixed θF at a given resolution ∆x .

Figure 4.13 and 4.14 illustrates the image of λ∗(r ) for θ1 and θ3 respectively,

where figure 4.13 is given by two subplots: one for the full r -domain, and

one for smaller values in order to illustrate the nature of λ∗(r ). Both figures

are generated with the resolutions ∆x = {0.1, 0.067, 0.033, 0.022}, where
r ∈ (−3, 3). Note that the zeros of (4.81) marked as black dots in figure 4.13

and 4.14 corresponds to the red points in figure 4.12, and that the vertical

stippled line at r = 0.5 represents the parameter value r we applied in our

numerical calculations in section 3.5.

The figures 4.13 - 4.14 states the image of λ∗(r ) as straight lines for the given
values of r . We remark that we have calculated λ∗(r ) for both θ1 and θ3 with
the precision ∆x = 0.1 for the larger interval r ∈ (−50, 50), and the result

was the same straight lines as depicted in the figures.

Now that we have established the nature of rc(θ ), and how it varies with

resolution, we are to investigate the spatial modes on the onset of pattern

formation to hopefully gain more information about the pmlshe.
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(a) How λ∗(r ) at θ = 3π
32 varies with resolutions.
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(b) How λ∗(r ) at θ = 3π
32 varies with resolutions for smaller values of r .

Figure 4.13: How λ∗(r ) at θ = 3π
32 varies with resolutions.
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Figure 4.14: How λ∗(r ) at θ = 15π
32 varies with resolutions.

4.6.2 Eigenmodes for the numeric PMLSHE
We recall that the eigenvector u∗ ofM(r ,θ ) that describes the fastest growing
mode on the onset of pattern formation is found from corresponding r and θ

values determined by rc(θ ) since λ∗ ≈ 0 for those values.

Figure 4.15 to 4.17 illustrates u∗ for three different θ , one from each defined

domain in (4.76). All modes are normalized and generated for decreasing ∆x .

The modes in figure 4.15 and 4.17 corresponds to θ1 and θ3 respectively, while

θ2 =
16π
32 is used to generate the modes in figure 4.16. If we compare u∗ from

each domain with the solutions of Ψ(x , t) in section 3.5, we observe that the

modes explain much of the observed behaviour of Ψ(x , t) for large t .

If we compare the corresponding modes in each domain, we note that u∗ for
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(a) u∗ for ∆x = 1
15 when θ = θ1.
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(b) u∗ for ∆x = 1
30 when θ = θ1.
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(c) u∗ for ∆x = 1
50 when θ = θ1.
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(d) u∗ for ∆x = 1
70 when θ = θ1.

Figure 4.15: u∗ on the onset of pattern formation for θ1 for different resolutions.

θ ∈ I1 has some growing behaviour at the pml points, but does not seem to

vary with resolution. The modes for θ ∈ I2 describes grid levelled oscillations

for both depicted resolutions, which supports our previous claim of a ill posed

pmlshe for those θ . u∗ for θ ∈ I3 clearly changes nature with resolution, and

the modes attain δ function similar behaviour around the pml points. Note

that this behaviour seems to tighten as the resolution decreases.

In the presented qualitative analysis ofu∗ we have strengthened our allegation

of a ill posed pmlshe for θ ∈ I2, but in order to determined posedness for the

other regions we return to rc(θ ) and the results obtained in figure 4.12.
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(a) u∗ for ∆x = 1
30 when θ = θ2.
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(b) u∗ for ∆x = 1
70 when θ = θ2.

Figure 4.16: u∗ on the onset of pattern formation for θ2 for different resolutions.

4.6.3 A conjecture
As stated in section 4.6.1, the behaviour of rc(θ ) depicted in figure 4.12 may

reveal details concerning the posedness of the pmlshe for θ in the regions

I1 and I3. To argue why, recall the figures 4.13 - 4.14 which describe the

image of the real maximum eigenvalue λ∗ as a function of control parameters

for different resolutions, and the mol formulation of the linear pmlshe
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(a) u∗ for ∆x = 1
15 when θ = θ3.
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(b) u∗ for ∆x = 1
30 when θ = θ3.
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(c) u∗ for ∆x = 1
50 when θ = θ3.
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(d) u∗ for ∆x = 1
70 when θ = θ3.

Figure 4.17: u∗ on the onset of pattern formation for θ1 for different resolutions.
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(4.1) - (4.3). We also remark that rc for the standard she is given by rc =

0, and our intention were to run the pml system with r > 0 in order to

generate spatiotemporal behavior, while the solutions were supposed to decay

exponentially from the pml points and into the pml region.

Figure 4.13 indicates that rc(θ ) for θ ∈ I1 converges as the resolution increases.

In that manner, there are two alternatives: rc(θ ) may converge to a small

negative value rn, or a positive value rp.

• If r → rn as ∆x → 0, the pml would be of no use to us, since we want

to run the system for r > 0. Modes located inside the pml region would

grow when we stress the system for positive r , which violates one of the

intentions of introducing a pml.

• If r → rp as ∆x → 0, the pml would apply for 0 < r < rp since

modes outside the pml region will grow and generate spatiotemporal

behaviour, while modes located inside the pml region would decay and

go to zero. However, this pml is also of no use to us, since it violates

the intention of reduced computational time: If ∆x → 0, the gridpoint

number M must be very large, and in that case, the operator matrix

becomes very large, which imply that nothing is gained in terms of

computational time.

Figure 4.14 indicates that rc(θ ) for θ ∈ I3 diverges such that rc(θ ) → −∞ as

∆x → 0. If rc(θ ) actually diverges, it would state that λ∗ → ∞ as ∆x → 0.

This imply that small initial data would generate infinity large derivatives

at the instant when t > 0, which leads to an ill posed problem. If rc(θ ) not
diverges, but rather converges to a negative value rc(θ ) → rn, the argument

in the top bullet point above applies, and the pml is again of no use.

Based on presented discussion, we are to state the following conjecture: A

contour based pml is ill posed for the she if θ > π
8 , and well posed for

0 < θ < π
8 .





5
Concluding remarks
5.1 Concluding remarks
The sole intention of this thesis were to apply a pml to a pattern generating

model equation in order to save computational time, and eliminate boundary

effects. We chose to work with the Swift-Hohenberg equation, but after thor-

ough numerical and analytical examination, it turns out that we simply chose

the wrong equation to apply a pml to.

In the first part of the thesis we introduced numerical and mathematical

concepts, where the aim of the discussion were to establish a procedure on

how to implement a numerical pml scheme to a general pde, which in turn

resulted in the pmlshe.

The numerical simulations of the pmlshe turned out to not produce the

desired pml behaviour, and we began our investigations by postulating that

the undesirable results could be a consequence of either implementation

errors, ill posedness of the pmlshe, or an unstable pml scheme due to the

113
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mol discretization.

In our investigations we performed the following: an eigenvalue analysis of the

pmlshe, a numerical eigenvalue perturbation method for the standard she
with a small pml correction, an analytical analysis of the infinite cpmlshe,
a comparative numerical and analytical analysis of the finite cpmlshe, and
a numerical analysis of the pmlshe.

Both the numerical eigenvalue perturbation method of the pml correction to

the standard she, and the analytical calculations of the cpmlshe indicated

that the pmlshe could be ill posed. Since the numerical and analytical

comparative analysis of the cpmlshe gave equal results, we were to trust our

numerical scheme and the developed procedures. Based on these analysis we

were to rule out implementation errors as the decisive reason for the undesired

behaviour of pmlshe. The final analysis of the pmlshe illustrated that the

problem is either ill posed, or of little relevance, depending on the angle given

by the complex contour based pml.

5.2 Future work
As for the Swift-Hohenberg equation, we would suggest that the idea of a

fully functioning pml should be abandoned, and we recommend readers not

to follow the path we have laid out in this thesis. One might try to prove or

disprove existence of pml solutions forθ ∈ (0, π8 ) analytically, but this problem
is of little interest since nothing is gained in terms of reduced computational

time, thereby violating the intention of a pml.

However, the pml is demonstrated apply to the rse, and the sciences are

filled with a wide range of pdes where the pml-concept is useful to apply. As

for pattern equations, the natural next step might be to investigate the one

dimensional complex gle (1.3) using the tools and concepts presented in this

thesis.



A
Testing differential operators
on a PML
Where the mol is a clever way of transforming a pde into a system of odes,
a possible pitfall of the routine is that it utterly depends on the numeric dif-

ferential operator implementation. One must therefore check the established

operators, and a naive - but reliable way - to do so is by a visual comparison of

the analytic derivative versus the numeric. The procedure is straight forward:

pick a function f (x) that is continuous up to the order of the differential

operator L, and plot the numeric derivative Lnumeric f (xi) against the ana-

lytic Lanalytic f (xi). If they match for a wide range of different functions with

different behaviour, one can assume that the numeric approximation is fairly

good. There are other tests and routines one can preform(different norms,

conditional numbers, and so on), but those are not of our interest in this

thesis.
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a M n ∆x

5 50 20 0.1

Table A.1: Applied discretization constants to D2(θ ) and D4(θ ).

In the following figures, the operators D2(θ ) and D4(θ ), as used in the pml
versions of the she (3.23) and rse (2.64), are tested for the functions

f1(x) = sin(x) (A.1a)

f2(x) = ei
x2

10 . (A.1b)

They are tested relative to the contour z(x) (2.51), and for different θ . We

remark that if θ = 0,D2(θ ) andD4(θ ) should produce the standard numerical

second and forth derivative of f (x). All plots are generated relative to the

discretization (2.67), using the constants in table A.1. Note that ∆x in these

plots are bigger than the resolution we used to solve the pml versions of the

she and rse, such that they are in many ways more inaccurate.

As we see in the figures A.1 - A.12, the oscillatory and spiky behaviour of the

functions are well preserved. The derivatives are tested on other not included

functions and resolutions, but the result is general the same. From this we

can conclude that the numerical derivatives are good approximations to the

analytical ones.
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Figure A.1: sin(z(x)) and θ = 0

Figure A.2: D2sin(z(x)) and θ = 0

Figure A.3: D4sin(z(x)) and θ = 0
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Figure A.4: sin(z(x)) and θ = π
10

Figure A.5: D2sin(z(x)) and θ = π
10

Figure A.6: D4sin(z(x)) and θ = π
10
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Figure A.7: ei
x2

10 and θ = 0

Figure A.8: D2e
i x

2

10 and θ = 0

Figure A.9: D4e
i x

2

10 and θ = 0
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Figure A.10:

[
ei

x2

10

]
and θ = π

4

Figure A.11: D2

[
ei

x2

10

]
and θ = π

4

Figure A.12: D4

[
ei

x2

10

]
and θ = π

4



B
Well posed partial differential
equations
For a pde with given initial and boundary data to model a physical system, or

to give mathematical sense, the equation must fulfill some criteria. In general

those read:

• The problem must have at least one solution.

• The problem must at most have one solution.

• The solution must depend in a continuous way on the data related

to problem. Small data must thereby produce a small corresponding

solution.

By data we mean parameters occurring in the pde, description of boundary

curves, and the functions that describe the boundary and initial data. We are

121
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to discuss the last criteria, and we will in this section we analyse an equation

on the form

Auxx + 2Buxt +Cutt + Dux + Eut + Fu = 0 , (B.1)

where the constants A, . . . , F are real. Aspects of the imminent conclusions

for the equation (B.1) can be extended to a other equations [8], hereby the

pml version of the she.

We assume normal mode solutions of (B.1) on the form

u(x , t) = a(k)eikx+σ (k)t . (B.2)

By the principle of superposition, several normal modes can be added together

for continuous k or discrete kj to obtain the

u(x , t) =
∞∑

j=−∞

a(kj)eikjx+σ (kj )t (B.3)

u(x , t) =
∫ ∞

−∞

dka(k)eikx+σ (k)t (B.4)

Fourier series and Fourier transform respectively.

Inserting the normal mode (B.2) into the equation (B.1) results in the relation

Cσ 2(2ikB + e)σ + (iDk + F −Ak2) = 0 , (B.5)

where σ denotes σ (k). A normal mode solution can only exist if (B.5) is

satisfied. (B.5) has two complex solutions, where we for each of those can

denote its solution

σ (k) = R[σ (k)] + iI[σ (k)] , (B.6)

and the corresponding normal mode as

u(x , t) = a(k)eR[σ (k)]tei(kx+I[σ (k)]t . (B.7)

By assuming that the mode amplitude |a(k)| is bounded, the growth of |u(x , t)|
is thereby determined by R[σ (k)]. To determine the outcome of this scheme
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is straight forward: either R[σ (k)] is bounded ∀ k ∈ R, or it is not. We define

Ω = sup
k∈R
R[σ (k)] (B.8)

as the maximal value of σ (k) ∀k.

If R[σ (k)] is unbounded such that Ω = ∞, we let a(k) = 1
σ 2(k) and consider

the initial value problem for the normal mode with data at t = 0, on the form

u(x , 0) = eikx

σ 2(k) (B.9a)

ut (x , 0) = eikx

σ (k) . (B.9b)

Since R[σ (k)] is unbounded, there exist values of k such that |u(x , 0)| and
|u(x , 0)| are as small as we like. Hence, these data impose an arbitrarily small

initial value problem. However, the mode

|u(x , t)| = |a(k)|eR[σ (k)]t (B.10)

grows exponentially as a function of k, and can for any fixed t > 0 be made as

large as desired due to the fact that an exponential growth grows faster than

a second order algebraic decay. Hence, arbitrarily small data can be made

arbitrarily large for any t > 0. Our third criteria for well posed pde problems

are thereby not satisfied, and imply a ill posed problem.





C
Discrete Fourier Transform
C.1 Matching the continuous Fourier transform with

the one defined in the Python programming
language

One of the numerous ways¹ one can define the Fourier transform and its

inverse is the following:

F (λ) = 1
√
2π

∫
R
dx f (x)e−iλx (C.1)

f (x) = 1
√
2π

∫
R
dλ F (λ)eiλx . (C.2)

1. There are different conventions for where one got the normalization factor and a minus

sign in one of the exponents, but it does not matter as long as the transform of the either

gives the other under the L2 inner product 〈f (x),д(x)〉L2 =
∫
D dµ f (x)д(x)
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By introducing the discrete Fourier transform (dft)

vs =
1
√
n

n−1∑
r=0

ure
−2πi rsn s = 0, 1, . . . ,n − 1 (C.3)

and its inverse, the inverse discrete Fourier transform (idft)

ur =
1
√
n

n−1∑
s=0

vse
2πi rsn r = 0, 1, . . . ,n − 1 (C.4)

as defined in the Python programming language, we want to get the definition

of the Fourier transform (C.1) and its inverse (C.2) on the form of (C.3) and

(C.4). We remark that the imminent calculations are based on the notes in

[4], but that our calculations are based on the Python programming language,

contrary to the Mathematica-based original notes.

To manage this we start by introducing a discretization for the domain axes

αj = (j − 1
2)∆x for j ∈ Z (C.5a)

βl = (l − 1
2)∆λ for l ∈ Z , (C.5b)

where the relations

αj+1 − αj = ∆x (C.6a)

βl+1 − βl = ∆λ (C.6b)

are obtained. With (C.5) we define another set of discretizations for our

domain axes

xj =
1
2
(αj+1 + αj) (C.7a)

λl =
1
2
(λl+1 + λl ) , (C.7b)

where we observe that

xj = j∆x (C.8a)

λl = l∆λ . (C.8b)
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Figure C.1: A discretization for the Fourier domains

With this machinery in hand we have the picture as seen in figure C.1 for the

domain axes. Applying the midpoint rule together with the integrals (C.1) and

(C.2) our transforms turn into

F (λ) = 1
√
2π

∞∑
j=−∞

∫ α j+1

α j

dx f (x)e−iλx

≈
∆x
√
2π

∞∑
j=−∞

f (xj)e−iλx j
(C.9)

f (x) = 1
√
2π

∞∑
l=−∞

∫ βl+1

βl

dλ F (λ)eiλx

≈
∆λ
√
2π

∞∑
l=−∞

F (λl )eiλlx .
(C.10)

To implement (C.9) and (C.10) on a computer, we need to truncate the series.

By assuming that

Fl ≡ F (λl ) ≈ 0 for |l| > N (C.11a)

fj ≡ f (xj) ≈ 0 for |j| > N (C.11b)

we can truncate the series (C.9) and (C.10) for some N such that the expres-

sions for F (λ) and f (x) becomes

F (λ) = ∆x
√
2π

N∑
j=−N

fje
−iλx j (C.12)

f (x) = ∆λ
√
2π

N∑
l=−N

Fle
iλlx . (C.13)
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xjxj−1 xj+1

∆x ∆x

f (x)

Figure C.2: Discretized spatial domain

This approximation demands certain assumptions and needs to made valid

on the grids. In (C.13) we have approximated f (x) with a periodic function

where the largest and shortest periods are given by

Pmax =
2π
λ1
=

2π
∆λ

(C.14a)

Pmin =
2π
λN
=

2π
N∆λ

. (C.14b)

This we need to match against our xj grid, and from figure C.2 we have that

the shortest possible period on the xj grid is 2∆x . That leads to the relation

2∆x ≤ Pmin ⇐⇒ ∆x ≤
π

N∆λ
(C.15)

where the optimal choise is ∆x∆λ = π
N . Now f (x) is well represented on the

gridvalues xj , and with the same argument as above F (λ) is also defined on

the grid λl . This leads to the expressions

Fl =
∆x
√
2π

N−1∑
j=−N

fje
−iπ jl

N for l ∈ −N , . . . ,N − 1 (C.16)
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fj =
∆λ
√
2π

N−1∑
l=−N

Fle
iπ jl

N for j ∈ −N , . . . ,N − 1 (C.17)

where we have changed the upper limit of the sum such that N → N − 1.

That maneuver is kosher since we must have

F±N ≈ 0 and f±N ≈ 0 (C.18)

for (C.16) and (C.17) to be a good approximation of (C.1) and (C.2), and thus

no accuracy is lost if N → N − 1. These summation expressions begin to

resemble the Python versions of dft and idft, and by introducing the index

relations

r = N + j for j ∈ −N , . . . ,N − 1 (C.19a)

s = N + l for l ∈ −N , . . . ,N − 1 (C.19b)

(C.16) and (C.17) turn into

Fs−N =
∆x
√
2π

2N−1∑
r=0

fr−Ne
−iπ (r−N )(s−N )

N (C.20)

fr−N =
∆λ
√
2π

2N−1∑
s=0

Fs−Ne
iπ (r−N )(s−N )

N . (C.21)

To get rid off the extra exponent terms we define the scalings

Fs−N = αsvs and fr−N βrur (C.22)

where the constants αs and βr are given by

αs = α0e
iπs and βr = β0e

iπNe−iπr . (C.23)

Inserting the scalings in (C.20) and (C.21) gives

vs =
2N−1∑
r=0

ur
β0∆x

α0
√
2π

e−iπ
r s
N (C.24)

ur =
2N−1∑
s=0

vs
α0∆λ

β0
√
2π

eiπ
r s
N . (C.25)
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By making
β0∆x

α0
√
2π
= 1 and

α0∆λ

β0
√
2π
= 1 (C.26)

where the one could be turned into the other using the optimal relation from

(C.15), and letting n = 2N we have transformed (C.1) and (C.2) on the form

of (C.3) and (C.4).

C.2 Testing the transform
To test the numerical transform we take the function

f (x) = x2e−x
2
, (C.27)

and its corresponding analytic transform

f̂ (k) =
∫
R
x2e−x

2
eikxd (C.28a)

= −
e−

k2
4

�
k2 − 2

�

4
√
2

, (C.28b)

and plot the numerically calculated f̂ (k) against the analytic expression (C.28).
As figure C.3 illustrates, the numeric and the analytic transformmatches.
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Figure C.3: Numerically tested, and analytically verified f̂ (k).
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